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Abstract
This manuscript presents a discontinuous Galerkin-based numerical method for solving fluid-structure

interaction problems involving incompressible, viscous fluids. The fluid and structure are fully coupled via
two sets of coupling conditions. The numerical approach is based on a high-order discontinuous Galerkin
(with Interior Penalty) method, which is combined with the Arbitrary Lagrangian-Eulerian approach to
deal with the motion of the fluid domain, which is not known a priori. Two strongly coupled partitioned
schemes are considered to resolve the interaction between fluid and structure: the Dirichlet-Neumann and the
Robin-Neumann schemes. The proposed numerical method is tested on a series of benchmark problems, and
is applied to a fluid-structure interaction problem describing the flow of blood in a patient-specific aortic
abdominal aneurysm before and after the insertion of a prosthesis known as stent graft. The proposed
numerical approach provides sharp resolution of jump discontinuities in the pressure and normal stress
across fluid-structure and structure-structure interfaces. It also provides a unified framework for solving
fluid-structure interaction problems involving nonlinear structures, which may develop shock wave solutions
that can be resolved using a unified discontinuous Galerkin-based approach.

Keywords: Fluid-structure interaction; Discontinuous Galerkin methods; Arbitrary Lagrangian-Eulerian
formulation; Domain decomposition methods; Hemodynamics.

1. Introduction

This work is motivated by problems arising in cardiovascular applications where modeling the interaction
between the flow of an incompressible, viscous fluid such as blood and an elastic/viscoelastic structure such
as cardiovascular tissue or vascular prosthesis is of paramount importance. Sharp resolution of the jump
in the normal stress across the fluid-structure interface, or across a structure-structure interface in multi-
layered structures, is one of the difficulties associated with the numerical resolution of this class of problems.
Notice that the same difficulties arise in many engineering applications, e.g., the interaction between air
domes and the surrounding air. The resolutions of sharp jumps across the interface influences the quality of
the underlying fluid-structure interaction (FSI) solution, and of the calculation of the biological or physical
quantities such as, e.g., wall shear stress. As an example of such a problem, in this manuscript we consider
the flow of an incompressible, viscous fluid modeled by the Navier-Stokes equations simulating blood flow
through an aortic abdominal aneurism (AAA) before and after treatment with a vascular prosthesis called
stent graft. See Fig. 1. AAA is a localized enlargement of the abdominal aorta, which is the largest
artery in the human body. See Fig. 1. It is caused by the weakening of the aortic wall, usually caused by
atherosclerosis. The pressure exerted by the blood flow onto the weakened and bulged walls of AAA may
cause AAA rupture, which may be fatal.
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Figure 1: A sketch of AAA treated with a stent-graft (from: www.badaorta.com).

A way to treat AAA entails inserting a vascular prosthesis called stent-graft, shown in Fig. 1, which
excludes the aneurysm sack from circulation, and lowers the probability of AAA rupture. It is of particular
interest to explore how the pressure on the AAA walls is influenced by the implantation of a stent-graft.
The answer to this question depends on the biophysical parameters such as shape of AAA and the elastic
properties of the stent-graft material and of the aortic walls. Accurate description of the pressure heavily
depends on the accuracy and sharpness of the numerical description of the pressure jump across the stent-
graft which divides the flow inside the stent-graft (the lumen) and the fluid occupying the aneurysm sack.
A discontinuous Galerkin (DG) method is a way to deal with this difficulty.

We are interested in fluid-structure interaction problems where the location of the structure is not known
a priori, but is one of the unknowns in the problem, the fluid is incompressible, and the fluid domain is
moving in time. This is a nonlinear moving-boundary problem whose resolution has attracted a lot of
attention within the past several decades. Most literature reports on the use of either conforming finite
elements [4, 75, 16, 15, 20] or finite difference [71, 70] approaches to discretize the problem in space. To
capture the motion of the fluid domain, the Immersed Boundary Method [71, 70, 35, 42, 58, 62, 47] and the
Arbitrary Lagrangian Eulerian (ALE) method [32, 51, 75, 16, 15, 17, 31, 45, 64] are perhaps the most popular.
We also mention an Extended ALE method recently proposed to capture large structural deformations [10],
the Fictitious Domain Method in combination with the mortar element method or ALE approach [4, 83],
the Lattice Boltzmann method [34, 36, 55, 56], the Level Set Method [29], and the Coupled Momentum
Method [40].

In this manuscript we use the Discontinuous Galerkin with Interior Penalty method [1, 2, 80] for spatial
discretization, and combine it with an Arbitrary Lagrangian Eulerian approach to deal with the motion
of the fluid domain. DG methods combined with ALE approaches have been used for the simulation of
compressible Navier-Stokes equations in moving geometries, see e.g., [59, 69, 25]. Furthermore, DG methods
have recently become a competitive choice for solving the incompressible Navier-Stokes equations on fixed
domains [27, 39, 81]. Most recently a space-time Hybridizable Discontinuous Galerkin (HDG) finite element
method was introduced for problems involving incompressible Navier-Stokes equations on moving domains,
as an alternative to the ALE method to deal with the dynamically changing, a priori given motion of the
fluid domain [78]. The HDG approach proposed in [78] has the ability to achieve higher-order accurate
approximations in both time and space by simply increasing the order of polynomial approximation in the
space-time elements. The problems under consideration in [78], however, included fluid domain motions
that are prescribed.

We consider a fully coupled fluid-structure interaction problem, where the structure is elastic (modeled
by a couple of different membrane or shell models), the fluid is incompressible, and the fluid domain is
moving in time as a function of the structure position. Thus, the structure in this manuscript is a co-
dimension one manifold, moving in a way that allows the use of an ALE method (i.e., the ALE mapping is
a diffeomorphism). The fluid and structure are coupled via two sets of coupling conditions: the kinematic
coupling condition describing continuity of velocity at the fluid-structure interface, and the dynamic coupling
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condition describing the balance of contact forces (traction) at the fluid-structure interface. Moreover, since
we target cardiovascular applications, we take the structure density close to the density of the fluid, since
cardiovascular tissue is composed of mostly water. This is an additional difficulty that needs to be considered
in cases when the fluid motion is not prescribed a priori, since in such scenarios loosely coupled partitioned
(explicit, iterative) schemes suffer from stability issues associated with the so called added mass effect [23].
Monolithic algorithms are a way to circumvent this difficulty [40, 45, 64, 85, 13, 12]. These algorithms are
based on solving the entire nonlinear fluid and structure coupled problem as one monolithic system. They
are, however, generally quite expensive in terms of the computational time, programming time and memory
requirements, since they require solving large nonlinear systems using, e.g., the fixed point and Newton’s
methods [24, 64, 31, 61].

The multi-physics nature of this class of problems strongly suggest to employ partitioned (or staggered)
numerical algorithms, where the coupled fluid-structure problem is separated into a pure fluid sub-problem
and a pure structure sub-problem [16, 5, 14, 17, 18, 20, 21, 49, 65, 38, 37, 3, 7, 31, 30, 8, 9, 30]. The
fluid and structure sub-problems are solved in an alternating way, and the coupling conditions are enforced
asynchronously. When the density of the structure is much larger than the density of the fluid, as is
the case in aeroelasticity, it is sufficient to solve, at every time step, just one fluid sub-problem and one
structure sub-problem to obtain a solution. For problems for which the added mass effect is strongly
pronounced, such as cardiovascular applications, sub-iterations at every time step are usually necessary to
get a better approximation of the energy of the coupled problem and guarantee stability. We consider in
this manuscript two such classical strongly-coupled partitioned schemes: the Dirichlet-Neumann [57] and the
Robin-Neumann partitioned scheme [65]. At every time step a fluid and a structure sub-problems are solved
with sub-iterations, followed by an update of the current fluid domain, and of the fluid domain mesh. For
this purpose an ALE mapping based on the harmonic extension of the boundary data onto the fluid domain
is used. It was shown in [52] that this mapping satisfies the discrete geometric conservation law associated
with nonlinear stability of ALE schemes [60, 19]. The Laplace’s equation defining the ALE mapping was
solved with the already available DG (with Interior Penalty) approach constructed for the fluid sub-problem.

The time discretization is performed using a second order semi-implicit splitting scheme, introduced in
[44] for fluid problems on fixed domains. See also [50, 76] for more details about this scheme.

In summary, in this manuscript we introduce the first ALE based Interior Penalty Discontinuous Galerkin
(IP-DG) strongly-coupled partitioned scheme for solving fluid-structure interaction problems involving in-
compressible fluids, where a sharp resolution of jump discontinuity across the fluid-structure interface, or
within a nonlinear structure, is of particular importance. This IP-DG-ALE based strongly-coupled parti-
tioned schemes is tested on a series of benchmark problems and a real-life inspired problem of blood flow
through an aortic abdominal aneurysm. The test problems are as follows:

• 2D and 3D flow past a cylinder [79, 53, 11]: verifying the accuracy and performance of the fluid DG
solver, including mass conservation.

• FSI benchmark problem of flow through a 2D cylinder with elastic walls [43, 73, 7, 16, 48]: testing the
Dirichlet-Neumann FSI solver.

• Stationary linearly elastic 1D membrane bubble: testing the Robin-Neumann FSI solver and showing
sharp resolution of pressure jump across fluid-structure interface.

• Oscillating linearly elastic 1D membrane bubble: testing convergence of Robin-Neumann FSI solver with
respect to mesh refinement, and showing accuracy of mass conservation.

• Aortic Abdominal Aneurysm with and without a Stent Graft: 2D and 3D simulations of flow in a patient-
specific AAA geometry with elastic walls are presented. In the 2D case the difference in the pressure
on the AAA walls was compared before and after the implantation of a stent-graft, showing significant
reduction in the pressure and displacement of the AAA walls after the insertion of the stent-graft.

This is the first step toward developing a unified approach based on DG-ALE strongly-coupled partitioned
solvers for FSI problems between incompressible viscous fluids and elastic structures. In particular, our goal
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is to study FSI problems involving nonlinearly elastic structures, where accurate resolution of not only
the pressure jump across the interfaces, but also accurate resolution of singularity formation within the
nonlinearly elastic structures themselves is of importance.

2. Problem definition

We consider a fluid-structure interaction problem between an incompressible, viscous, and Newtonian
fluid and a linearly elastic structure. The fluid domain, which is not known a priori, is a function of time,
and is denoted by Ω(t) ⊂ Rd, with d = 2, 3. The structure covers a part of the fluid domain boundary,
denoted by Γ(t), and it is assumed to be thin, i.e. (d−1)-dimensional. Thus, the structure domain coincides
with the fluid-structure interface.

2.1. The fluid equations

The motion of an incompressible, viscous fluid with density ρ and kinematic viscosity ν in a spatial
domain Ω(t), with t ∈ (0, T ), is described by the Navier-Stokes equations

∂tu+∇ · F (u) =
1

ρ
(∇ · σ) = −1

ρ
∇p+ ν∆u in Ω(t), (1)

∇ · u = 0 in Ω(t), (2)

where u is the fluid velocity, σ is the Cauchy stress tensor, which is given by σ = −pI + 2νρD(u), where
D(u) is strain rate tensor,and p is the fluid pressure. We use F (u) = u⊗ uT to denote the quadratic flux
corresponding to the nonlinear advection term (u ·∇)u, which can be written in conservation form ∇·F (u)
for an incompressible fluid. This form will be convenient for the presentation of the numerical method in
Sec. 4. Equations (1)-(2) are supplemented with the initial data u = u0 in Ω×{0} and boundary conditions
given as follows:

u = uD on ∂ΩD × (0, T ), (3)

σn = −pNn on ∂ΩN × (0, T ), (4)

where ∂ΩD ∪ ∂ΩN ∪ Γ(t) = ∂Ω(t), ∂ΩD ∩ ∂ΩN = ∅, and uD and pN are given data on the fixed Dirichlet
boundary ∂ΩD and Neumann boundary ∂ΩN , respectively. The boundary Γ(t) corresponds to the moving
structure boundary. The data on Γ(t) will be specified below from the coupling conditions between the fluid
and structure. We consider the particular Neumann boundary condition in (4) because it is relevant to the
applications that will be presented in Sec. 5. We assume that the fluid motion is driven by the boundary
conditions (inlet and outlet boundary data) and no external force is applied to the fluid.

The Reynolds number can be used to characterize the flow regime. We define the Reynolds number as

Re =
UD

ν
, (5)

where U is a characteristic velocity magnitude and D is a characteristic length, e.g. U is the mean sectional
velocity within a pipe of diameter D. The Reynolds number can be thought of as the ratio of inertial forces
to viscous forces. For large Reynolds numbers, inertial forces are dominant over viscous forces and vice
versa.

2.1.1. The ALE mapping

In order to describe the evolution of the fluid domain, we adopt an Arbitrary Lagrangian-Eulerian (ALE)
approach, see, e.g. [51]. Let Ω0 ⊂ Rd be a fixed reference domain, e.g. Ω0 = Ω(0) . We consider a smooth
mapping

At : Ω0 −→ Ω(t),

At : x0 7→ x,
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where x and x0 are the coordinates in the physical domain Ω(t) and the reference domain Ω0, respectively.
For each time instant t ∈ [0, T ], At is assumed to be a diffeomorphism. The domain velocity w is given by

w(t, ·) =
dAt
dt

(t, At(t, ·)−1).

The ALE time derivative of the fluid velocity is defined as:

∂tu|x0
= Dtu(t, At(x0)) = ∂tu(t,x) +w(t,x) · ∇u(t,x), for x = At(x0), x0 ∈ Ω0.

With these definitions, we can write the incompressible Navier-Stokes equations in the ALE formulation
as follows:

∂tu|x0 +∇ · F (u)−w · ∇u = −1

ρ
∇p+ ν∆u in Ω(t), (6)

∇ · u = 0 in Ω(t). (7)

Since the time derivative is now computed in the reference domain, the ALE formulation is well-suited for
the time discretization.

Let JAt
denote the Jacobian of the deformation gradient, i.e. JAt

= det( ∂x∂x0
). We have:

∂tJAt
|x0

= JAt
∇ ·w.

With this notation, we can write the fluid and ALE advection in conservation form to obtain:

∂t(JAt
u)
∣∣∣
x0

+ JAt
∇ · (F (u)−w ⊗ uT ) = −JAt

ρ
∇p+ JAt

ν∆u in Ω(t). (8)

The ALE map can be written in terms of fluid domain displacement d(x0, t) as At(x0) = x0 + d(x0, t).
Let η be the displacement of the deformable boundary of Ω0 denoted by Γ0, i.e. d(x0, t)|Γ0

= η. Inside Ω0

the displacement d is arbitrary: it can be any reasonable extension of η over Ω0. A classical choice is to
consider a harmonic extension in the reference domain, that is:

∆d = 0 in Ω0, (9)

with boundary conditions:

d = η on Γ0, (10)

d = 0 on ∂Ω0/Γ0. (11)

In the following, we will refer to problem (9) as ALE problem.

2.2. The structure equations

We will be using two different thin structure models to describe the elastic behavior of compliant wall:
the generalized string model, and the elastic spring model.

To write the two models recall that we use Γ(t) and Γ0 to denote the current structure domain and the
fixed reference structure domain, respectively, and x and x0 to denote the respective coordinates. Let η =
(ηx, ηy, ηz)

T = x−x0 denote the structure displacement from its reference configuration. The elastodynamics
of thin structures studied in this manuscript can be generally described by a partial differential equation
which is of the following form:

ρshs∂ttη + Lη+γV∂tη = fs in Γ0 × (0, T ). (12)

The third term on the left hand side is added to capture viscoelasticity of the structure. Here, ρs is the
structure density, hs is the structure thickness, fs is the force acting on the structure, and γ is a viscoelastic
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parameter. The operator L in this manuscript will be linear, acting on a vector function η describing the
elastic properties of the structure (coming from the elastic energy), and V is a linear operator acting on
the vector function ∂tη describing the viscoelastic properties of the structure. In general, L and V may be
nonlinear operators associated with the elastic or viscoelastic energy of the nonlinearly elastic membrane
or shell. Below we will specify the different forms of operators L and V that we consider here as simple
examples. The general approach to solving FSI problems with the IP-DG-ALE methodology proposed here
can be applied to more complicated, nonlinear models, and to structures of finite thickness.

We begin with the generalized string model in 1D [75], which can be considered as a special case of a
cylindrical shell model studied in [22]. The reference configuration in this case is a cylinder of radius R0 and
length L. Only the displacement in the transversal direction (or vertical direction y) is considered different
from zero, while the longitudinal and azimuthal components of displacement are assumed negligible. The
model reads:

ρshs
∂2ηy
∂t2

+
Ehs

(1− ν2
s )

ηy
R2

0

− kGhs
∂2ηy
∂x2

− γ ∂
3ηy

∂x2∂t
= fs,y (13)

which means that the operators L and V are given by:

Lη =

(
0,−kGhs

∂2ηy
∂x2

+
Ehs

(1− ν2
s )

ηy
R2

0

, 0

)T
, V ∂η

∂t
=

(
0,− ∂3ηy

∂x2∂t
, 0

)T
. (14)

Here k is the Timoshenko shear correction factor, G is the shear modulus, E is the Young’s modulus, and νs
is the Poisson ratio of the structure. Structure model (13) is endowed with absorbing boundary conditions
of first order:

∂ηy
∂t
−
√
kG

ρs

∂ηy
∂x

= 0 at x = 0, (15)

∂ηy
∂t

+

√
kG

ρs

∂ηy
∂x

= 0 at x = L. (16)

We will be using this model to test our computational FSI solver.
The second model we consider does not require the structure reference domain to be a cylinder, and the

model involves no spatial derivatives and no viscoelasticity. The operators L is defined as follows:

Lη = (Cxηx, Cyηy, Czηz)
T , (17)

and viscoelasticity parameter γ = 0. In this model, x, y and z correspond to three components of the
Cartesian coordinates, and constants (Cx, Cy, Cz) are three spring constants. The specific form of these
constants will be given in each example.

Model (12),(17) is supplemented with homogeneous Dirichlet boundary conditions:

η = 0 on ∂Γ0. (18)

Most of our numerical FSI examples will be given in 2D. To show the feasibility that our method can be
applied to 3D problem, we conclude the manuscript by showing an example of a pressure wave propagating
in a 3D, patient-specific geometry of aortic abdominal aneurysm.

2.3. The coupling conditions

The fluid and the structure problems described in Sec. 2.1 and 2.2 are coupled via two boundary condi-
tions:

- Kinematic coupling condition, which describes the continuity of velocity at the fluid-structure interface
(no-slip condition)

u ◦At = ∂tη on Γ0 × (0, T ); (19)
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- Dynamic coupling condition, which describes the continuity of the stress at the fluid-structure interface

J σ̂n|Γ(t) = fs on Γ0 × (0, T ), (20)

where fs is given by the left hand-side of (12), J denotes the Jacobian of the transformation from
Eulerian to Lagrangian coordinates, and σ̂n|Γ(t) denotes the normal fluid stress at the deformed fluid-
structure interface, which is evaluated with respect to the reference configuration. Vector n is the
outward unit normal to the deformed fluid domain.

Coupling conditions (19)-(20) can be written in the equivalent form:

αfu ◦At − J σ̂n|Γ(t) = αf∂tη − fs on Γ0 × (0, T ), (21)

αsu ◦At + J σ̂n|Γ(t) = αs∂tη + fs on Γ0 × (0, T ),

where αf > 0 and αs > 0 (αf 6= αs) are constants, which we specify later.

3. Partitioned methods for the fluid-structure interaction problem

The FSI problem described in Sec. 2 will be solved using two different partitioned strategies based on
Domain Decomposition methods [77]: the Dirichlet-Neumann (DN) and the Robin-Neumann (RN) algo-
rithms. Partitioned method are appealing for solving multi-physics problems such as those discussed in
this manuscript, because they allow the reuse of existing solvers with minimal modifications. Because of
the modularity of DN and RN algorithms, each physics sub-problem is solved separately, with the coupling
conditions enforced in an iterative fashion. In the DN algorithm the coupling boundary condition (19) is
imposed at the interface as a Dirichlet boundary condition for the fluid sub-problem, whereas in the RN
algorithm the fluid sub-problem is endowed with Robin interface condition (21). In both algorithms, the
structure sub-problem is supplemented with the Neumann “boundary condition” (20). Eq. (20) is a proper
Neumann boundary condition when the structure is thick; for thin structures eq. (20) prescribes a load on
the structure.

To describe the DN and RN algorithms, we introduce the time-discretization step ∆t and set tn = n∆t,
for n = 1, . . . , N , with N = T/∆t. At every time tn, the DN and RN algorithms iterate over the fluid and
structure sub-problems until convergence. Let k be the index for these iterations.

3.1. The Dirichlet-Neumann method

Assume that Ωn, Atn , Jn, un and ηn are given. The goal is to calculate Ωn+1, Atn+1 , Jn+1, un+1, pk+1,
ηn+1 at time tn+1, by using the following iterations in k. Assume that uk, and ηk are known, starting with
u0 = un, and η0 = ηn. Calculate:

- Step 1: Solve the fluid sub-problem for the flow variables of uk+1 and pk+1 on the fluid domain Ωn

with Dirichlet boundary condition:

uk+1 ◦Atn = ∂tηk on Γ0. (22)

- Step 2: Solve the structure sub-problem for the structure displacement ηk+1, driven by the just
calculated hydrodynamic force fs,k+1, i.e. fs,k+1 = Jn σ̂k+1n|Γn on Γn.

- Step 3: Check the stopping criterion, e.g.:

||ηk+1 − ηk||
||ηk||

< ε, (23)

where ε is a given tolerance. If not satisfied, repeat steps 1–3. If satisfied, stop the iterations in k and
move to the next step to update the variables at t = tn+1.
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Update n+ 1: Set un+1 = uk+1, pn+1 = pk+1, and ηn+1 = ηk+1. Solve the ALE problem for displacement
dn+1 with interface condition dn+1 = ηn+1 on Γ0 and then compute the corresponding fluid domain Ωn+1,
ALE map Atn+1 , and Jacobian Jn+1.

It is well known that the convergence properties of the DN algorithm depend heavily on the added-mass
effect [23]. In fact, when the structure constitutes a part of the fluid domain boundary, the number of
DN iterations required to satisfy the stopping criterion (23) increases as the structure density approaches
the fluid density. Moreover, below a certain density ratio ρs/ρf , which depends on the domain geometry,
relaxation is needed for the DN algorithm to converge [63, 64, 23].

The DN algorithm has been shown in [5] to fail for FSI problems with ballon-type structures, i.e., closed
structures that contain a certain amount of fluid which must be conserved. This is because in the DN
algorithm the coupling conditions are satisfied asynchronously. As a result, the fluid sub-problem uses
Dirichlet boundary condition (22) which is based on the velocity of the structure ∂tηk calculated from the
previous sub-iteration. This ∂tηk may not be consistent with the incompressibility condition (2), giving
rise to an ill-posed problem at the semi-descrete level. Because of this limitation, in the next subsection we
consider a Robin-Neumann algorithm for the solution of the FSI problem involving closed structures.

3.2. The Robin-Neumann method

At time tn+1, iteration k+ 1, assuming that Ωn, Atn , Jn, uk, and ηk are known, the following steps are
performed:

- Step 1: Solve the fluid sub-problem for flow variables of uk+1 and pk+1 on the fluid domain Ωn with
the following Robin boundary condition:

αfuk+1 ◦Atn − Jn σ̂k+1n|Γn = αf∂tηk − fs,k on Γ0. (24)

- Steps 2, 3, and Update n+ 1 are as in Sec. 3.1.

Notice that the DN algorithm can be interpreted as a particular case of the RN algorithm for αf →∞.
It was shown in [5] that for a suitable choice of parameter αf the RN method features excellent conver-

gence properties: it always converges without any relaxation and its convergence does not depend on the
added-mass effect. In [5] the value of αf is estimated by considering a simplified structure model. Following
[5], we set:

αf =
ρshs
∆t

. (25)

4. The fully discrete problem

We begin by first explaining the time discretization and space discretization of the fluid subproblem,
i.e., the subproblem in Step 1 of the above-mentioned schemes, and then discuss the time and space
discretization of the structure sub-problem, i.e., the problem listed in Step 2 above.

4.1. Time discretization of the fluid problem

Step 1 of both the DN and RN algorithm entails solving fluid problem (7), (8). For the time discretization
of problem (7), (8) we consider a second order semi-implicit splitting scheme introduced in [44] for fluid
problems in fixed domain. More details about this scheme can be found in [50, 76]. To simplify notation, in
this section we omit the subscript x0 in the ALE time derivative term. To advance from time tn to tn+1, we
iterate over k, and for each iteration in k this scheme splits problem (7), (8) into three sub-problems: the first
sub-problem deals with the pure advection part (incorporating the fluid and ALE advection simultaneously),
the second sub-problem accounts for the incompressibility constraint, and the third sub-problem treats the
viscous term. The corresponding updates of the fluid velocity will be denoted by uk+ 1

3
, uk+ 2

3
, and uk+1.

They are all defined on Ωn. In what follows, we will be using the following abbreviated notation: F n will
denote F (un) = un ⊗ (un)T . The algorithm is as follows.
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- Step a: Solve the fluid and ALE advection sub-problem. The inertia term is discretized using the
Backward Difference Formula (BDF2 [74]) and the convective term is treated explicitly. The problem
reads: given Jn−1, un−1, wn−1, F n−1, and Jn, un, wn, F n find the first intermediate velocity field
Jnuk+ 1

3
defined on Ωn such that:

(3Jnuk+ 1
3
− 4Jnun + Jn−1un−1)

2∆t
= −2Jn∇ · (F −w⊗ uT )n + Jn−1∇ · (F −w⊗ uT )n−1. (26)

- Step b: Account for the incompressibility constraint and the associated Lagrange multiplier pk+1. The
problem reads: given Jnuk+ 1

3
, find pk+1 and the second intermediate velocity field Jnuk+ 2

3
defined

on Ωn such that:

3
Jnuk+ 2

3
− Jnuk+ 1

3

2∆t
= −1

ρ
∇Jnpk+1, (27)

∇ · (Jnuk+ 2
3
) = 0.

The reason for the 3/2 factor on the left-hand side will be explained below. To solve the above problem,
we apply the divergence operator to both sides of eq. (27) to get:

1

ρ
∆Jnpk+1 =

3

2∆t
∇ · (Jnuk+ 1

3
). (28)

Problem (28) is supplemented with boundary conditions:

1

ρ

∂Jnpk+1

∂n
=− 2n ·

[
Jnunt + Jn

(
∇ · (F −w⊗ uT )n − ν∆un

)]

+ n ·
[
Jn−1un−1

t + Jn−1
(
∇ · (F −w⊗ uT )n−1 − ν∆un−1

)]
on ∂ΩD, (29)

pk+1 =pN on ∂ΩN , (30)

where ∂ΩD and ∂ΩN are the fixed portions of the boundary where Dirichlet and Neumann data are

prescribed, respectively. Furthermore, here unt = Jnun−Jn−1un−1

∆t is the discrete acceleration Once
Jnpk+1 has been computed, we plug it into eq. (27) to get Jnuk+ 2

3
.

- Step c: Solve a Helmholtz problem to treat the viscous term. The problem reads: given Jnuk+ 2
3
,

find the end-of-step velocity Jnuk+1 defined on Ω0:

3
Jnuk+1 − Jnuk+ 2

3

2∆t
= νJn∆uk+1. (31)

with boundary conditions:

uk+1 = uD on ∂ΩD, (32)

(∇uk+1) · n = 0 on ∂ΩN , (33)

The 3/2 factor on the left-hand side of both eq. (27) and (31) is there to obtain a second order accurate
scheme. That appears clear when eq. (26) is added to eq. (27) and (31):

3Jnuk+1 − 3(���
�Jnuk+ 2
3
−����Jnuk+ 2

3
+XXXXJnuk+ 1

3
−XXXXJnuk+ 1

3
)− 4Jnun + Jn−1un−1

2∆t

−νJn∆uk+1 +
1

ρ
∇Jnpk+1 = −2Jn∇ · (F −w⊗ uT )n + Jn−1∇ · (F −w⊗ uT )n−1.

Moreover, notice that velocity uk+1 and pressure pk+1 satisfy boundary conditions (3),(4), i.e. uk+1 = uD
on ∂ΩD × (0, T ) and σk+1n = −pNn on ∂ΩN × (0, T ).

This scheme is referred to as semi-implicit since the convective term is treated explicitly, while the viscous
and pressure terms are treated implicitly.
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4.2. Space discretization of the fluid problem

For the space discretization of problem (7), (8) we consider a high order Discontinuous Galerkin (DG)
method [54]. The use of DG methods for incompressible, viscous fluids is motivated by applications in which
some of the state variables may have a jump. This includes, for example, a jump in the pressure, which
occurs in blood flow problems with an immersed structure, such as a stent-graft used in the treatment of
Aortic Abdominal Aneurysm, discussed in Sec. 5.5, or the motion of closed, immersed structures, discussed
in Sec. 5.4, which occurs in blood flow applications when modeling the interaction between red blood cells
and blood flow.

For simplicity, in this section we present the details for a 2D problem discretized in space with triangular
meshes. Extensions to 3D, while computationally demanding, are conceptually straightforward as we show
in Secs. 5.1 and 5.5, see also [54].

Let Th be a conformal and quasi-uniform partition of Ω. Let x and y be the space coordinates of the
2D computational domain and let E be the generic element of Th. Let r and s be the space coordinates
for the reference triangular element Ê, which is the standard isosceles right triangle that every element Ê
of Th can be mapped to. The unknowns of the problem can be written locally as linear combinations of
modal basis functions or nodal basis functions. For example, a generic function u(x, y) defined on a local
triangular element E can be written as:

u(x, y) =
N∑

i=1

ûiΦi(x, y) =
N∑

j=1

uj lj(x, y), (x, y) ∈ E, (34)

where ûi are the local expansion coefficients associated with orthonormal modal basis {Φi(x, y)}Ni=1, while
uj are the local expansion coefficients associated with nodal basis {lj(x, y)}Nj=1. Each {lj(x, y)} coincides
with the value of u(x, y) at the grid point (x, y)j on triangular element E. For simplicity, eq. (34) assumes
that the number of nodes and the number of modes are both equal to N . We will stick to this assumption
for the rest of this section. In 2D, if we are using (modal or nodal) polynomials of n-th degree we have
N = (n+1)(n+2)/2. In this paper, we will consider approximations with nodal basis functions (Lagrangian
polynomials).

There are two main difficulties associated with nodal bases. Firstly, it is nontrivial to build high order
nodal bases for triangular elements. In fact, one needs to find a set of interpolation points that satisfy two
requirements: the associated basis functions have to remain linearly independent when the order increases
and the condition number of the associated system matrix has to remain relatively small. Secondly, those
interpolation points are not necessarily good quadrature points for the approximation of integrals. To face
the first issue, we use the so-called Fekete points shown in Fig. 2(b) for n = 4 on triangular elements. For
details on the properties of these points we refer to [54]. The second issue is addressed by expressing nodal
basis functions in terms of modal basis functions in order to simplify numerical integration [54].

More precisely, we begin by considering a set of orthonormal polynomial modes defined on the reference
triangle Ê, reported in [46, 33, 50]:

Φ̂i(r, s) =
√

2P 0,0
k (2

1 + r

1− s − 1)P
(2k+1,0)
l (s)(1− s)k, (r, s) ∈ Ê.

Here, subscript i stands for the i-th mode of the basis functions, and i = (N + 1)k + l + 1 − k
2 (k − 1),

with k, l ≥ 0 and k + l ≤ N , P
(α,β)
k (s) is a Jacobi polynomial of order k where α, β > −1 define the power

of the weight (1 − s)α(1 + s)β . Jacobi polynomials are a family of polynomial solutions to the singular
Sturm-Liouville problem. Fig. 2(a) shows all the modes (N = 15) of the 4th order (n = 4) modal basis
functions on the reference triangular element Ê. We will use a “hat” for all the functions defined on the
reference element Ê, e.g., Φ̂i(r, s) defined on Ê is the corresponding function to Φi(x, y) defined on E.

To write the nodal basis functions on Ê in terms of the modal basis functions described above, we
introduce the generalized Vandermonde matrix V [50, 54] with entries:

Vij = Φ̂j(r, s)i, i, j = 1, . . . , N.

10



Figure 2: (a) Modal basis functions Φj , j = 1, . . . , 15, defined on the standard isosceles right triangle Ê for n = 4 and (b)

corresponding Fekete points in Ê.

Let l̂ = [l̂1, l̂2, ..., l̂N ]T and Φ̂ = [Φ̂1, Φ̂2, ..., Φ̂N ]T denote the nodal and modal basis functions on reference
triangle Ê. We have:

l̂ = (V T )−1Φ̂,

that is, nodal basis l̂i on reference triangle Ê can be expressed as:

l̂i =

N∑

k=1

(V T )−1
ik Φ̂k.

The mass matrix defined on reference triangle Ê is given by:

Mij =

∫

Ê

l̂i l̂j drds =

∫

Ê

( N∑

k=1

(V T )−1
ik Φ̂k

N∑

l=1

(V T )−1
jl Φ̂l

)
drds

=
N∑

k=1

N∑

l=1

(V T )−1
ik (V T )−1

jl

∫

Ê

Φ̂kΦ̂l drds

︸ ︷︷ ︸
δkl

=
N∑

k=1

(V T )−1
ik (V T )−1

jk =
N∑

k=1

(V T )−1
ik (V )−1

kj = (V V T )−1
ij ,

with i, j = 1, . . . , N . The mass matrix ME for a generic element E is given by:

MEij =

∫

E

lilj dxdy = JEMij ,

where JE = det
∣∣∂(x,y)
∂(r,s)

∣∣ is the Jacobian of the affine transformation that maps E into Ê.

Next we define the local matrix LE associated with the divergence operator by:

LE =
[
LEx

, LEy

]T
,

where

(LEx
)i,j =

∫

E

li
∂lj
∂x

dxdy, (LEy
)i,j =

∫

E

li
∂lj
∂y

dxdy, i, j = 1, . . . , N.

11



The x and y components LEx and LEy correspond to the x and y derivatives in the gradient operator. Note
that LE is an N × 2N matrix. It is convenient to write LE in terms of the (r, s) coordinates defined on the
reference triangle Ê as follows:

(LEx
)i,j =

∫

Ê

l̂i

[
∂l̂j
∂r

∂r

∂x
+
∂l̂j
∂s

∂s

∂x

]
JEdrds

=

∫

Ê

l̂i

N∑

k=1

[
∂l̂j
∂r

∣∣∣
(r,s)k

∂r

∂x

∣∣∣
(r,s)k

+
∂l̂j
∂s

∣∣∣
(r,s)k

∂s

∂x

∣∣∣
(r,s)k

]
l̂kJEdrds. (35)

By using the following relationships [50]:

∂r

∂x
=

1

JE

∂y

∂s
,
∂r

∂y
= − 1

JE

∂x

∂s
,
∂s

∂x
= − 1

JE

∂y

∂r
,
∂s

∂y
=

1

JE

∂x

∂r
,

we write (35) as

(LEx
)i,j =

∫

Ê

l̂i

N∑

k=1

[
∂l̂j
∂r

∣∣∣
(r,s)s

∂y

∂s

∣∣∣
(r,s)k

− ∂l̂j
∂s

∣∣∣
(r,s)k

∂y

∂r

∣∣∣
(r,s)k

]
l̂kdrds.

Similarly,

(LEy )i,j =

∫

Ê

l̂i

N∑

k=1

[
−∂l̂j
∂r

∣∣∣
(r,s)s

∂x

∂s

∣∣∣
(r,s)k

+
∂l̂j
∂s

∣∣∣
(r,s)k

∂x

∂r

∣∣∣
(r,s)k

]
l̂kdrds,

i, j = 1, . . . N .
We are now in a position to write the matrix form of the three subproblems discussed in Sec. 4.1. We

use boldface characters to denote the arrays of nodal values for each variable.

- Step a: The full discretization of problem (26) yields the system

ME

3Jnuk+ 1
3
− 4Jnun + Jn−1un−1

2∆t
= −2JnLE · (F−w ⊗ uT )n + Jn−1LE · (F−w ⊗ uT )n−1 + b1.

Here, the entries of vector b1 are given by:

b1,j =

∫

∂E

n · [ − 2Jn
(
(F −w⊗ uT )− (F −w⊗ uT )∗

)n

+Jn−1
(
(F −w⊗ uT )− (F −w⊗ uT )∗

)n−1
]
lj dξ, j = 1, . . . , N.

where dξ denotes integration along the boundary ∂E, and (F − w ⊗ uT )∗ denotes the local Lax-
Friedrichs flux:

(F −w⊗ uT )∗ =
(F −w⊗ uT )+ + (F −w⊗ uT )− + τ(u+ − u−)

2
.

As usual, superscripts + and − indicate exterior and interior values for element E, and coefficient τ
is the local maximum value of the directional flux Jacobian [50]. Recall that LE is the discretized
divergence operator and b1 comes from the boundary terms from integration by parts.

- Step b: Following [28], we introduce an auxiliary variable q to write eq. (28) as an equivalent first
order system:

Jn

ρ
∇pk+1 = q, (36)

∇ · q =
3

2∆t
∇ · (Jnuk+ 1

3
), (37)
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with q = (qx, qy). On each triangle E, we approximate (pk+1, qx, qy) with the N th order nodal basis
{lj}Nj=1 constructed on that triangle. Let us introduce the following interior penalty fluxes:

p∗ =
p+
k+1 + p−k+1

2
, q∗ = (q∗x, q

∗
y) =

Jn

ρ

(∇(pk+1)
+

+∇(pk+1)
−

2
− τ
[
n−(pk+1)

−
+ n+(pk+1)

+])
,

where τ is the penalty parameter. We refer to [80] for how to set the value of τ . The subscript k + 1
is omitted for q, q∗, p∗ to simplify notation. The interior penalty flux q∗ serves the role to eliminate
large jumps in pk+1 between the adjacent elements when the pressure is continuous. To define n+

and n−, we note that adjacent elements do not necessarily have aligned edges as a result of the ALE
mapping. If the edges are aligned, n− = −n+. If the edges are not aligned, n+ is the outward normal
for element E and n− is the outward normal to the corresponding edge for the adjacent element. See
Fig. 3.

E

n+

n−

Figure 3: Neighboring elements with edges that are not aligned: outward normal n+ for element E and outward normal n−

to the corresponding edge for the adjacent element. The gap between the edges is exaggerated for visualization purposes. In
practice, we keep the gaps between the neighboring elements at the minimum by using interior penalty. See Sec. 4.5.

To write the discretized problem, we will again be using p and q to denote the vectors corresponding
to the nodal values of p and q. We define vector b2,x and b2,y on E:

(b2,x)j =

∫

∂E

nx
(
pk+1 − p∗

)
ljdξ, (b2,y)j =

∫

∂E

ny
(
pk+1 − p∗

)
ljdξ, j = 1, . . . , N,

where n = (nx, ny) is the outward normal to ∂E. Notice that for a given element n coincides with
n+ introduced above. The matrix form of eq. (36) on element E is given by:

Jn

ρ

(
LExpk+1 − b2,x

)
= ME qx,

Jn

ρ

(
LEypk+1 − b2,y

)
= ME qy.

The matrix form of (37) on element E is:

LEx
qx + LEy

qy =
3

2∆t
LE · (Jnuk+ 1

3
) + b3,

with (b3)j =
∫
∂E
n · (qx − q∗x, qy − q∗y)lj dξ, for j = 1, . . . , N .

- Step c: We follow a procedure similar to Step b. Let u = (ux, uy). We introduce auxiliary variables
gx = (gx,x, gx,y) and gy = (gy,x, gy,y) to write eq. (31) as an equivalent system of first order equations:

∇ux,k+1 = gx, ∇uy,k+1 = gy, (38)

3
Jnux,k+1 − Jnux,k+ 2

3

2∆t
= νJn∇ · gx, 3

Jnuy,k+1 − Jnuy,k+ 2
3

2∆t
= νJn∇ · gy. (39)
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Let us introduce also the following interior penalty fluxes:

u∗x =
(ux,k+1)+ + (ux,k+1)−

2
, u∗y =

(uy,k+1)+ + (uy,k+1)−

2
,

g∗x = (g∗x,x, g
∗
x,y) =

∇(ux,k+1)
+

+∇(ux,k+1)
−

2
− τ
[
n−(ux,k+1)

−
+ n+(ux,k+1)

+]
,

g∗y = (g∗y,x, g
∗
y,y) =

∇(uy,k+1)
+

+∇(uy,k+1)
−

2
− τ
[
n−(uy,k+1)

−
+ n+(uy,k+1)

+]
,

where τ is the penalty parameter [80]. The matrix form of eq. (31) is given by:

LEx
ux,k+1 = ME gx,x + b4,x,x, LEy

ux,k+1 = ME gx,y + b4,x,y,

LEx
uy,k+1 = ME gy,x + b4,y,x, LEy

uy,k+1 = ME gy,y + b4,y,y,

3

2∆t
ME(Jnux,k+1 − Jnux,k+ 2

3
) = νJn

[
LEx

gx,x + LEy
gx,y − b5,x

]
,

3

2∆t
ME(Jnuy,k+1 − Jnuy,k+ 2

3
) = νJn

[
LEx

gy,x + LEy
gy,y − b5,y

]
,

where vectors b4,x, b4,y and b5 on each element E are defined as follows:

(b4,x,x)j =

∫

∂E

nx
(
ux,k+1 − u∗x

)
lj dξ, (b4,x,y)j =

∫

∂E

ny
(
ux,k+1 − u∗x

)
lj dξ,

(b4,y,x)j =

∫

∂E

nx
(
uy,k+1 − u∗y

)
lj dξ, (b4,y,y)j =

∫

∂E

ny
(
uy,k+1 − u∗y

)
lj dξ,

(b5,x)j =

∫

∂E

n · (gx,x − g∗x,x, gx,y − g∗x,y)lj dξ,

(b5,y)j =

∫

∂E

n · (gy,x − g∗y,x, gy,y − g∗y,y)lj dξ, j = 1, . . . , N.

4.3. Time discretization of the structure problem

At the Step 2 of both the DN and RN algorithm we have to solve the structure problem. In this section we
focus on the time discretization of problem (13) and in the next section we describe its space discretization.
As for problem (12),(17), its full discretization is trivial since it does not contain spatial derivatives.

In order to devise a time splitting scheme, we introduce variables:

U = ρshs
∂ηy
∂t
− γ ∂

2ηy
∂x2

and W =
∂2ηy
∂x2

.

Problem (13) can be equivalently written as the following first-order system in time:

ρshs
∂ηy
∂t

= U + γW in Γ0 × (0, T ),

∂U

∂t
= kGhsW −

Ehs
(1− ν2)

ηy
R2

0

+ fs,y in Γ0 × (0, T ),

with initial conditions:

ηy = 0,
∂ηy
∂t

= 0, U = ρshs
∂ηy
∂t
− γW = 0, in Γ0 × {0}.

For the time discretization of the above system we use the forward Euler scheme. The time discrete problem
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reads: given ηny , Un, Wn and fs,k+1, find ηy,k+1, Uk+1 and Wk+1 such that

Uk+1 − Un
∆t

= kGhsW
n − Ehs

1− ν2

ηny
R2

0

+ fs,k+1, (40)

ρshs
ηy,k+1 − ηny

∆t
= Uk+1 + γWn, (41)

Wk+1 =
∂2ηy,k+1

∂x2
. (42)

We remind the reader that fs,k+1 is the force coming from the fluid normal stress, which in this scheme
comes from the just calculated fluid subproblem in Step 1.

4.4. Space discretization of the structure problem

We use the nodal DG method for the space discretization of system (40)-(42). We recall that system
(40)-(42) describes a 1D structure that lies on a part of a 2D fluid domain boundary. We consider matching
fluid and structure meshes, i.e. the structure mesh will be made up of the edges of the fluid elements that
lie on Γ0. Therefore, to construct the structure nodal basis functions {lsj(x)}Nj=1 we use the interpolation
points on the sides of the fluid mesh triangles that lie on Γ0. Normalized Legendre polynomials [28] are
used to built the Vandermonde matrix. We follow a similar procedure to the one described in Sec. 4.2 to
construct the local mass matrix Ms

E and differential matrix LsE .
The martix forms of eq. (41) and eq. (40) are given by:

ρshsM
s
E ηy,k+1 = ρshsM

s
E η

n
y + ∆tMs

E

(
Uk+1 + γWn

)
,

Ms
EUk+1 = Ms

EUn + ∆tMs
E

(
kGhsW

n − Ehs
1− ν2

ηny
R2

0

+ fs,k+1

)
,

where the vectors ηy, W, U denote the nodal values of the state variables ηy, W , and U .
As for eq. (42), we introduce an intermediate variable qk+1 to write it as an equivalent system of first

order differential equations in space:

qk+1 =
∂ηy,k+1

∂x
,

Wk+1 =
∂qk+1

∂x
.

The matrix form of the above system is:

Ms
E qk+1 = LsE ηy,k+1 − b6,

Ms
E Wk+1 = LsE qk+1 − b7,

where local vectors b6 and b7 are given by:

(b6)j =

∫

∂E∩Γ0

n · (ηy,k+1 − η∗y)lsjdξ, (b7)j =

∫

∂E∩Γ0

n · (qk+1 − q∗)lsjdξ, j = 1, . . . , N.

Here, we take the flux pairs q∗ = q−k+1 and η∗y = η+
y,k+1, or q∗ = q+

k+1 and η∗y = η−y,k+1, to guarantee
stability. More details and analysis of this choice can be found in [84].
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4.5. Space discretization of the ALE problem

We conclude this section by describing the space discretization of the ALE problem that needs to be
solved at the end of both the DN and RN algorithms. Since we have already implemented the DG method
to solve a parabolic problem for the fluid, it is computationally inexpensive to then use the DG method
with interior penalty to also solve the corresponding elliptic problem for the Laplace’s equation [2, 1, 80],
which needs to be solved to update the mesh.

Following what we have done in Secs. 4.2 and 4.4, we write eq. (9) as a system of two first order equations
for each component of displacement vector d = (dx, dy):

∇dx = hx, ∇dy = hy, ∇ · hx = 0, ∇ · hy = 0 in Ω0, (43)

where hx = (hx,x, hx,y) and hy = (hy,x, hy,y).
To keep the gaps between the neighboring elements at the minimum, we introduce the following interior

penalty flux:

d∗x =
d+
x + d−x

2
, h∗x = [h∗x,x, h

∗
x,y]T =

∇d+
x +∇d−x

2
− τ [n−d−x + n+d+

x ],

d∗y =
d+
y + d−y

2
, h∗y = [h∗y,x, h

∗
y,y]T =

∇d+
y +∇d−y

2
− τ [n−d−y + n+d+

y ],

where parameter τ is the penalty parameter [80]. After writing this system in weak form, integrating by
parts, and discretizing it, we obtain the following matrix form of the discretized system (43), defined on
each triangle:

LEx
dx = ME hx,x + b8,x,x, LEy dx = ME hx,y + b8,x,y,

LEx
dy = ME hy,x + b8,y,x, LEy dy = ME hy,y + b8,y,y,

LEx
hx,x + LEy

hx,y = b9,x, LEx
hy,x + LEy

hy,y = b9,y,

where:

(b8,x,x)j =

∫

∂E

nx(dx − d∗x)ljdxdy, (b8,x,y)j =

∫

∂E

ny(dx − d∗x)lj dξ,

(b8,y,x)j =

∫

∂E

nx(dy − d∗y)ljdxdy, (b8,y,y)j =

∫

∂E

ny(dy − d∗y)lj dξ,

(b9,x)j =

∫

∂E

n · (qx,x − q∗x,x, qx,y − q∗x,y)lj dξ,

(b9,y)j =

∫

∂E

n · (qy,x − q∗y,x, qy,y − q∗y,y)lj dξ, j = 1, . . . , N.

4.6. The implementation of the Robin-Neumann algorithm for immersed structures

The time-splitting algorithm for the fluid sub-problem, described in Sec. 4.1, makes the implementation
of the Robin-Neumann algorithm tricky, in particular for immersed structures. In fact, when the structure
is immersed Robin boundary condition (24) becomes:

αfuk+1 ◦Atn − Jn Jσ̂k+1nK|Γn = αf∂tηk − fs,k on Γ0. (44)

The main difficulty comes from calculating the jump in the normal stress, appearing in the second term on
the left hand-side of (44). Another difficulty is related to the fact that the splitting algorithm in Sec. 4.2
requires boundary conditions for the velocity sub-problem (31) and for the pressure sub-problem (28).

To get around this difficulty we rewrite the Robin boundary condition (44) as follows. First, the Cauchy
stress tensor is explicitly written as shown below:

αfuk+1 ◦Atn − Jn J−p̂k+1In+ 2νρ ̂D(uk+1)nK|Γn = αf∂tηk − fs,k on Γ0. (45)
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Notice that νρ = µ is the dynamics viscosity of the fluid. Next, equation (45) is separated into two parts:
one will be used as a boundary condition for the pressure sub-problem (28) along Γ0, and the other will be
used in the velocity sub-problem (31) along Γ0. More precisely, we rewrite (45) as follows:

Jn Jp̂k+1InK|Γn · n =
(
αf∂tηk − fs,k − αfuk ◦Atn + Jn J2µD̂(uk)nK|Γn

)
· n, (46)

αfuk+1 ◦Atn = αf∂tηk − fs,k + Jn J−p̂k+1In+ 2µD̂(uk)nK|Γn , on Γ0. (47)

Then, we introduce p̂+
k+1|Γn

and p̂−k |Γn
to denote the pressure on either side of the interface Γn at time tn+1,

at iterations k + 1 and k respectively. The superscripts + and − denote the pressures on the “right” and
“left” sides of the boundary Γn, where “right” and “left” are determined by the orientation of the normal
n to Γn. Notice that the exterior pressure is taken at iteration k which is known. Then, we have:

p̂−k+1|Γn = p̂+
k |Γn + Jp̂k+1K|Γn .

With this strategy, the Robin boundary condition (44) is converted into boundary conditions for the pressure
sub-problem (28):

Jnp̂k+1|Γn = Jnp̂+
k |Γn + (αf∂tηk − fs,k) · n− αfuk◦Atn · n+ Jn2µJD̂(uk)nK|Γn · n on Γ0, (48)

and the boundary condition for the velocity sub-problem (31):

αfuk+1 ◦Atn = αf∂tηk − fs,k + JnJ−p̂k+1In+ 2µD̂(uk)nK|Γn on Γ0. (49)

With this approach we partitioned the Robin boundary condition involving the fluid velocity and normal
stress implicitly on the left hand-side of (45), into two boundary conditions of Dirichlet type, but still
involving the fluid velocity and pressure (the dominant component of normal stress) implicitly on the left
hand-sides of conditions (49) and (48).

Our numerical simulations presented in Sec. 5.4 show that this approach provides a good approximation
of the solution for the corresponding FSI problem with an immersed closed structure, i.e., a “bubble”
problem.

5. Numerical results

5.1. Benchmark test 1: 2D and 3D simulations of flow past a cylinder

We begin by considering a classical benchmark problem in fluid dynamics which consists of studying the
flow of an incompressible, viscous fluid past a circular cylinder [79, 53]. We report the results of our 2D and
3D simulations, and compare them with results in the literature.

The problem in 2D is defined on a rectangular fluid domain shown in Fig. 4 with an obstacle (a cylinder
in 3D, or a circle in 2D) located 0.15 m away from the inlet., The cylinder is fixed and rigid. The no-slip
boundary condition is imposed at the top and bottom container boundary, as well as on the surface of
the obstacle (cylinder). The fluid enters the rectangular domain through the left side where the following
Dirichlet boundary condition is imposed:

u =
(

sin(πt/8)
(
6y(0.41− y)/(0.41)2

)
, 0
)T
, 0 ≤ y ≤ 0.41, 0 ≤ t ≤ 8s. (50)

The fluid outlet is the entire right side of the rectangular container, where the following outlet boundary
conditions are prescribed for sub-problems (31) and (28):

∂u

∂n
= 0 and p = 0,

respectively.
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Figure 4: Schematic of 2D computational domain for flow past a cylinder. The vertical lines denote the locations in the domain
where the horizontal component of flow rate was integrated to test mass conservation.

All the values in this benchmark problem are given in the SI units. The kinematic viscosity is ν = 10−3

m2/s, and the fluid density is ρ = 1.0 kg/m3. The maximum Reynolds number is around 100.
We used a triangular mesh with 1664 elements, shown Fig. 5 (top), with the basis functions of 4th order,

and time step ∆t = 10−4. Fig. 5 (bottom) illustrates the numerical results depicting the velocity vector
field superimposed over the pressure contours at time t = 8s. A von Karman vortex sheet is captured in the
channel.

Figure 5: DG simulation of 2D flow past a cylinder: (top) 2D mesh consisting of 1664 elements and 4th order polynomial bases,
(bottom) Velocity vector field and pressure contours at time t = 8s.

Next, we carried out six simulations with different mesh and basis function settings, reported in Table 1.
The maximum drag coefficient, lift coefficient and pressure difference between the front and back of the

Results No. Dof No. Elem. Poly. Max. Drag Max. Lift ∆p at t = 8 s
h-refinement 9810 218 4 3.0278 0.4449 0.1021

18360 408 4 3.0016 0.428 0.1075
36360 808 4 2.96 0.3869 0.1072
74880 1664 4 2.9444 0.3837 0.1075

p-refinement 35820 1194 3 2.9778 0.3890 0.1096
53730 1194 4 2.9490 0.3872 0.107
75222 1194 5 2.9446 0.3881 0.1073
100296 1194 6 2.9446 0.3871 0.1074

Ref. [79] (21508,667246) (2.9220,3.8420) (0.2649,1.1100) (0.0200,0.1142)

Table 1: 2D simulation results compared to the values reported in Table 5 [79]. The interval values reported above correspond
to the range of the values obtained in [79] with different solvers and finest meshes. We see that our results fall well within the
values reported in [79].

cylinder were examined and compared with the values reported in Table 5 in [79]. The pressure difference
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refers to the difference ∆p(t) = p(0.15, 0.2, t)− p(0.25, 0.2, t). Table 5 in [79] contains results obtained with
10 different approaches to numerically solving this problem. We report the intervals for the maximum drag
coefficient, lift coefficient and pressure difference obtained with the finest meshes reported in Table 5 of [79],
and compare those to our simulations. The results are show in Table 1. We see that our results fall well
within the interval of values reported in [79]. Furtheromore, except for one simulation in [79], the number of
degrees of freedom for our simulations were roughly one tenth of the degrees of freedom used with standard
Finite Elements reported in [79].

Next, we considered a full 3D problem of flow past a cylinder with a circular cross-section. The fluid
channel, shown in Fig. 6 (left), is defined by 0 ≤ x ≤ 1.5 m, −0.205 ≤ y ≤ 0.205 m, −0.205 ≤ z ≤ 0.205
m, see [79, 11] . A cylinder of diameter 0.1 m is located at x = 0.5, y = 0, and z = 0. Similar to the 2D

Figure 6: Left: Schematic of 3D computational domain for the flow past a cylinder. Right: a mesh of 5920 elements and 3rd

order of bases. The top panel on the right shows a size view of the mesh near the cylinder.

simulation, no-slip velocity boundary conditions are set at the channel walls and cylinder’s surface. At the
inflow side of the channel, see Fig. 6 (left), a Dirichlet boundary condition is prescribed with fluid velocity
0.45 m/s in the x direction. At the outflow, as in Sec. 5.1 ∂u

∂n= 0 and p = 0 are assumed. The kinematic
viscosity is given by ν = 10−3 m2/s, and the fluid density is ρ = 1.0 kg/m3. The maximum Reynolds number
is around 20.

Fig. 6 (right) shows a mesh of 5920 elements. Tetrahedral elements are depicted by black lines, while
the interpolation points for 3rd order bases are presented by the intersections of red lines. Our numerical
results obtained with the mesh in Fig. 6 (right) are presented in Fig. 7, where contour plots of velocity in x
direction are plotted, showing different slices of the velocity field.

Two simulations were performed with different levels of mesh refinement. The computed drag and lift
coefficients, as well as the pressure difference ∆p = p(0.45, 0.20, 0.205, t)− p(0.55, 0.20, 0.205, t) between the
front and back of the cylinder are compared to the results reported in [79, 11]. Table 2 lists the details of
the simulations and compares them with the values reported in Table 7 of [79]. We report the intervals of
the values for the drag, lift and pressure difference obtained in [79] with eight different numerical approaches
and finest meshes. Again, very good match with the reference values can be observed, with a significantly
smaller number of degrees of freedom.

Mass conservation. We use this example to test mass conservation of our DG solver. The cross-
sectional average of the horizontal component of the velocity was calculated at 7 different cross-sections
along the fluid domain, shown in Fig. 4, at 3 different times: t = 2, 4, 6 s. The times t = 2, 6 s were chosen
symmetrically around the peak flow rate at t = 4 s associated with the sinusoidal inlet data given in (50).
Since the fluid domain has rigid walls, we expect that the flow rate along the fluid domain remains constant
if the mass is conserved, which is, indeed, the case in our simulations, as shown in Fig. 8(a). Notice how
the graphs of the flow rates at t = 2 and t = 6 overlap in Fig. 8(a), as expected. A close inspection of
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(a) t = 4 ms (b) t = 6 ms

Figure 7: 3D DG simulation of flow past a cylinder with the mesh in Fig. 6 (right): contour profile of velocity u in the x
direction.

Results Nodf No. Elements Poly. Drag Lift ∆p
405720 2898 4 6.1059 0.0095 0.1611
473600 5920 3 6.1105 0.0095 0.1613

Ref. [79] 2426292 (6.1043,6.1932) (0.0010,0.010) (0,1604,0.1709)

Table 2: 3D simulation results showing drag, lift and pressure difference compared to the values from Table 7 of [79]. The
interval values quoted from Table 7 of [79] correspond to the results obtained with eight different numerical approaches, reported
for finest meshes.

the relative error in mass conservation is shown in Fig. 8(b), where the numerically calculated flow rate is
compared with the exact flow rate, obtained from the prescribed inlet data. We see that the relative error
in absolute value is less than 0.4%, which shows excellent mass conservation properties of this scheme.

(a) Flow rate (b) Percentage error in mass conservation

Figure 8: Benchmark test 1: (a) flow rate and (b) percentage error in mass conservation reported at 7 different locations along
the fluid domain, and three different times t = 2, 4, 6 s. We see that mass conservation error is below 0.4%.

5.2. Benchmark test 2: Compliant vessel

We consider the classical FSI test problem proposed in [43]. This benchmark has been used for testing
the results of fluid structure interaction algorithms by several authors [5, 16, 48, 73]. The structure model
for this benchmark problem is given by eq. (13) with absorbing boundary conditions (15),(16).
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Inlet Outlet

Γ

Γ

(a) Computational domain showing computational mesh (b) Inlet data.

Figure 9: Benchmark test 2: (a) computational domain at the initial time with an unstructured triangle mesh (fine mesh) and
(b) inlet pressure pulse as a function of time.

The reference computational domain is a 6 cm × 1 cm rectangle shown in Fig. 9(a). The top and bottom
walls are deformable. Neumann boundary conditions are imposed at the inlet and the outlet:

σn|Γin = −pNn = −Pmax
2

[
1− cos

(
πt

2.5

)]
n, (51)

σn|Γout
= −pNn = 0, (52)

where

Pmax =

{
2 · 104 dynes/cm2, t ≤ 5 ms,

0, t > 5 ms.

See Fig. 9(b). The values of all the parameters in the structure model are given in Tables 3.

Table 3: Structural parameters for benchmark test 2.

Structure density ρs = 1.1 g/cm3 Wall thickness hs = 0.1 cm
Timoshenko shear factor k = 1 Young modulus E = 0.75× 106 dynes/cm2

Shear modulus G = E
2(1+ν) = 0.25× 106 dynes/cm2 Viscoelastic parameter γ = 0.01

Poisson ratio νs = 0.5 Reference radius R0 = 0.5 cm

Two unstructured triangular meshes are used: a coarse mesh with 282 triangles and a fine mesh with
684 triangles. The fine mesh is shown in Fig. 9(a). The time interval under consideration is [0, 12] ms.

The time step is set to 2.5 · 10−4 s for the coarse mesh and to 10−4 s for the fine mesh. For this test,
we use the Dirichlet-Neumann algorithm and the nodal DG method discussed in Sec. 3 with third order
Lagrangian basis functions. The numerical results given by our DG solver with IP fluxes were compared
with the numerical results obtained using the monolithic scheme presented in [72, 6]. The results in [72, 6]
were obtained using a mesh comparable to the fine mesh used here and time step 10−4 s.

Fig. 10 shows the propagation of the pressure wave in the 2D tube, obtained using our solver. A
detailed comparison between the pressure evaluated along the center line at six different times between our
simulations and the results of [72, 6] is shown in Fig. 11. This figure also shows our results obtained at
the coarse and fine mesh, which are almost indistinguishable. We see excellent agreement with the results
reported in [72, 6].

5.3. Benchmark test 3: Stationary linearly elastic 1D membrane bubble

In this section we consider a benchmark test with a pressure discontinuity. The goal is to validate the
implementation of the Robin-Neumann algorithm and to show that our DG method is able to correctly
capture the pressure discontinuity.

The test, inspired by an example in [10], consists of trying to recover a steady-state solution that develops
after a circular membrane of radius 1, immersed in a fluid at rest, is exposed to a pressure jump that causes
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(a) t = 4 ms (b) t = 6 ms

(c) t = 10 ms (d) t = 12 ms

Figure 10: Benchmark test 2: Pressure wave at four times: (a) t = 4 ms, (b) t = 6 ms, (c) t = 10 ms, and (d) t = 12 ms.

the membrane to stretch and approach a steady state which is a circle of radius R, where R is determined
from the pressure jump and the elastic properties of the membrane.

More precisely, we consider the fluid domain to be a rectangle Ω = (−2, 2)× (−2, 2) cm, and we consider
a fluid with density ρ = 1 g/cm3, and viscosity µ = 1 g/(cm s). The structure, i.e., the closed elastic
membrane immersed in the fluid, is set initially to be a circle of radius 1 centered at the origin, parameterized
by s ∈ [0, 2π):

x0(s) = (cos(s), sin(s))T , s ∈ [0, 2π). (53)

The circular membrane is exposed to a pressure jump JpK = 1 dyne/cm2, and the membrane stretches from
its reference configuration x0 to a new position x, which is obtained by solving the structure model (12),
(17) with Cx = Cy =: C = 10 dynes/cm3, and ρshs = 1 g/cm2. The displacement is given η = x− x0.

To get to the steady state, we are numerically solving the following a FSI problem where the structure
is modeled by:

ρshs
∂2x(s, t)

∂t2
+ Cx(s, t) = JpKn+ Cx0,

with x(2π) = x(0). The steady-state solution of the FSI problem is given by:

x =
(

1 +
JpK
C

)
x0, or η =

JpK
C
x0, u = 0, p(x) =

{
1 dynes/cm

2
inside the membrane,

0 dynes/cm
2

outside the membrane.
(54)

Thus, the steady-state solution consists of a circular membrane of radius 1 + JpK
C = 1.1 cm, immersed in the

fluid at rest, with the fluid pressure inside the membrane equal to 1 dyne/cm2, and outside 0 dyne/cm2.
To solve this problem numerically, we consider the unstructured mesh shown in Fig. 12(a), which has

180 triangles and is aligned with the membrane. A seventh order Lagrangian basis is used for the fluid,
structure, and ALE problem. The time step is set to ∆t = 0.002 s, initial velocity to u = 0 cm/s, and initial
structure position given by (53). Fig. 12(b) and (c) shows the velocity magnitude and pressure at t = 0.1 s,
i.e. after 50 steps, calculated using the Robin-Neumann algorithm. We see in Fig. 12(c) that the pressure
jump is perfectly resolved. The velocity magnitude displayed in Fig. 12(b) is around 10−5 cm/s in most of
the domain. Slightly larger values of the velocity magnitude (around 10−4 cm/s) can be observed close to
the 1D membrane. This is due to the fact that the exact solution for the membrane position, i.e. a circle,
is approximated with a piecewise polynomial of degree seven. Thus, the exact velocity is approximated up
to a discretization error.
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(a) t = 2 ms (b) t = 4 ms

(c) t = 6 ms (d) t = 8 ms

(e) t = 10 ms (f) t = 12 ms

Figure 11: Benchmark test 2: Pressure (dynes/cm2) along the centerline at times: (a) t = 2 ms, (b) t = 4 ms, (c) t = 6 ms, (d)
t = 8 ms, (e) t = 10 ms, (f) t = 12 ms. As shown in the legend, the blue line denotes the results obtained in [72, 6], while the
red triangles and blue squares denote the results obtained with our DG solver with IP fluxes, using the fine and coarse mesh,
respectively.

This example shows that our methodology captures the correct steady-state solution, and that the jump
in the pressure is well resolved.

5.4. Benchmark test 4: Oscillating immersed linearly elastic 1D membrane bubble

The goal of this test, also inspired by the work in [10], is to verify convergence of the algorithm and the
mass conservation with respect to mesh refinement.

For this purpose we consider the same linearly elastic circular membrane, as in the benchmark test 3,
discussed in Sec. 5.3, where the membrane is immersed in an incompressible, viscous fluid with viscosity
µ = 0.2 g/cm s, occupying the rectangle Ω = (−2.5, 2.5) × (−2.5, 2.5) cm. However, we are interested in
studying the membrane oscillations that are induced by its initial shape, which is an ellipse, given by:

η(s) =
(

(a− 1) cos(s), (1.21/a− 1) sin(s)
)T
, s ∈ [0, 2π], (55)

where a = 1.5. Here the displacement is again measured from the reference configuration, which is a circle
of radius 1. We impose the same periodic boundary condition as in Sec. 5.3. Due to the elastic forces, the
membrane will oscillate and eventually converge to its equilibrium configuration, which is determined by the
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(a) Mesh (b) Velocity magnitude and vector field (c) Pressure discontinuity

Figure 12: Benchmark test 3: (a) Unstructured triangular mesh used for the computations; (b) Velocity magnitude and vector
field at t = 0.1 s; (c) Pressure jump at t = 0.1 s.

jump between the interior and exterior pressure, equal to 1 dyne/cm2, and by the spring constant C = 10
dyne/cm3. Thus, again, the equilibrium state is given by the membrane assuming a circular shape of radius
1.1 cm. However, due to the elliptical initial state, the membrane will oscillate, as shown in Fig. 13, until it
reaches the equilibrium state. We will track the maximum x coordinate of the membrane, and compare the
behavior of the oscillations of the x coordinate for different mesh refinements.

We solve the coupled FSI problem with the Robin-Neumann algorithm. The whole computational domain
consists of the sub-domains: Ω1, and Ω2, and the boundary Γt separating the two fluid domains. Domain Ω1

represents the exterior fluid domain, Ω2 the interior fluid domain (the bubble), and Γt the elastic membrane.
The following boundary conditions for velocity and pressure are assigned on each boundary:

- on the outer boundary of Ω1 (the square boundary), boundary conditions (30) with pN = 0 and (33)
are prescribed;

- on Γt, considered as the remaining part of the boundary of Ω1, equations (29) and (49) are prescribed;

- on Γt considered as the boundary of Ω2, equations (48) and (49) are prescribed.

Two meshes are considered: a coarse mesh with 6416 triangles and a fine mesh with 8980 triangles. The
latter mesh is shown in Fig. 13(a). In both cases we use quadratic polynomial bases and time step ∆t = 0.01
s.

Fig. 13(b)-(f) shows pressure contour computed with the fine mesh at six different times. We see that
the membrane, initially elliptic, oscillates until it reaches a circular shape around time t = 8 s. Fig. 14(a)
reports the maximum x-coordinate of the structure position over time. We see that the maximum x-
coordinate evolves towards 1.1 cm through damped oscillations, as expected since the stationary solution
for the membrane is the circle of radius 1.1 cm centered at the origin. Fig. 14(a) also shows that the
two simulations, performed for two different meshes, are almost identical. A magnified view of the absolute
value of the difference between the two simulations is shown in Fig. 14(b), indicating the maximum difference
between the two simulations of 0.6%.

Mass conservation. We shown in this example that our method approximates well the mass conservation
property. We tested the change in area inside the membrane over time. Since the fluid is incompressible,
and there are no sources or sinks of fluid inside the membrane, the volume (area) of the “bubble” must be
conserved. Indeed, in Fig. 15 we show the relative difference in the “bubble” area in absolute value over time
for two different meshes. We first observe that as the mesh gets refined, the mass conservation property is
better approximated. Secondly, we observe that the mass conservation error is less than 0.7% for the fine
mesh, indicating that our FSI solver satisfies well the mass conservation property.
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(a) fine mesh (b) t = 0.1 s (c) t = 0.5 s

(d) t = 1 s (e) t = 2 s (f) t = 8 s

Figure 13: Benchmark test 4: (a) fine mesh (6416 elements) at time t = 0.1 s and the pressure contour at times: (b) t = 0.1 s,
(c) t = 0.5 s, (d) t = 1 s, (e) t = 2 s, and (f) t = 8 s.

(a) Maximum x-coordinate over time. (b) Difference.

Figure 14: Benchmark test 4: Comparison between solutions at two different meshes (coarse (6416 elements) and fine (8980
elements)). (a) Oscillations of the maximum x-coordinate over time plotted for two different meshes. The results are almost
identical. (b) Difference in absolute value between the two curves plotted in (a). The maximum difference for the two different
meshes is 0.6%.

5.5. Abdominal Aortic Aneurysm

We conclude this manuscript by applying the methodology presented above on the simulation of blood
flow through a patient-specific aortic abdominal aneurysm (AAA) before and after treatment with a vascular
prosthesis called stent-graft.

As mentioned in Sec. 1, aortic abdominal aneurysm, shown in Fig. 1, is an enlargement of the abdominal
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Figure 15: Benchmark test 4. Mass conservation test: relative difference in the “bubble” area in absolute value for two different
meshes.

STENT  
GRAFT 

ANEURYSM 
SACK 

Figure 16: Left: Patient-specific AAA computational mesh with a delineated stent-graft location used in our simulations.
Middle and right: Inlet data (velocity) and outlet data (pressure). The red and green lines in the pressure data correspond to
the times when the pressure, velocity, and displacement are reported in Figs. 17 and 18 below (systole and diastole, respectively).

aorta, which may rupture and be fatal. Treatment entails excluding the aneurysm from circulation by
implanting a device called stent-graft, pictured in Fig. 1. One of the goals of the treatment is to lower
the pressure on the aneurysm walls and thereby minimize the probability of AAA rupture. The goal of
this section is to simulate the flow and the pressure wave exerted by the time-dependent blood flow on the
aneurysm walls before and after the implantation of stent-graft in order to understand the benefits of the
stent-graft implantation. For this purpose we consider a section of a patient-specific AAA geometry, with
the corresponding computational domain shown in Fig. 16 (left), obtained from a 3D reconstruction of the
in-vivo acquired CT scans, presented in [82]. The inlet is at the top of the domain, corresponding to the
proximal section of the patient’s abdominal aorta, and exits from the two outlet sections at the bottom of
the computational geometry, corresponding to the iliac arteries. We consider this geometry without and
with an implanted stent-graft. The location of the stent-graft is sketched in Fig. 16 (left). The lateral
walls of the entire computational domain are considered elastic, as well as the walls of the stent-graft. The
elastic membrane model in (12) and (17) is used to model both elastic structures. The flow inlet is aligned
with the y-axis, and the elastic walls are assumed to displace in both x and y direction. The density and
spring constants of the AAA walls and of the stent-graft are assumed to be the same: ρs = 1 g/cm3 and
Cx = Cy = 1.0 × 105 dynes/cm3. The fluid has the same density and viscosity as in the Sec. 5.2. In the
region where the stent-graft overlaps the aortic wall, the spring constant’s value are given by the sum of
the spring constants of the two elastic materials. At the inlet section, we specify a parabolic velocity profile
with the average velocity reported in Fig. 16(a). At the outlet sections, we impose a non-homogeneous
Neumann condition with the given data as shown in Fig. 16(b). The data in Fig. 16, which spans three
cardiac cycles, is taken from [66] and rescaled in order to have a peak Reynolds number of roughly 1800. In
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(a) p without stent graft (b) ||u|| without stent graft (c) ||d|| without stent graft

(d) p with stent graft (e) ||u|| with stent graft (f) ||d|| with stent graft

Figure 17: Numerical simulation of flow in Aortic Abdominal Aneurysm before and after the implantation of a sent-graft. The
top and bottom rows correspond to AAA before and after the placement of the stent-graft, respectively. Panels (a) and (d)
show the pressure, (b) and (e) velocity magnitude and vector field, and (c) and (f) displacement magnitude at time t = 2.3 s.

fact, the maximum Reynolds number inside AAA is normally between 1500 and 2000 [41, 68, 67, 26]. The
external pressure of pext = 12000 Pa is used to model the surrounding pressure. This value corresponds to
the average pressure, i.e., the minimum outlet pressure plus one third of the pressure difference between the
maximum and minimum outlet pressure in one cardiac cycle.

For the case without a stent graft we used the Dirichlet-Neumman method to solve the FSI problem,
while for the case with a stent graft we had to use the Robin-Neumann scheme since the problem contains
a fluid region that is entirely surrounded by an elastic structure. This is because the stent graft divides the
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(a) p without stent graft (b) ||u|| without stent graft (c) ||d|| without stent graft

(d) p with stent graft (e) ||u|| with stent graft (f) ||d|| with stent graft

Figure 18: Numerical simulation of flow in Aortic Abdominal Aneurysm before and after the implantation of a sent-graft. The
top and bottom rows correspond to AAA before and after the placement of the stent-graft, respectively. Panels (a) and (d)
show the pressure, (b) and (e) velocity magnitude and vector field, and (c) and (f) displacement magnitude at time t = 2.85 s.

fluid domain into two subdomains: the lumen and the aneurism sack, the latter being a closed domain.
The following boundary conditions for the pressure and velocity are assigned for this problem:

• On the AAA walls, conditions (48) and (49) are prescribed with p+
k = pext.

• On the exterior boundary of the aneurism sack, conditions (29) and (49) are prescribed.

• On the interior boundary of the aneurism sack, conditions (48) and (49) are prescribed.
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Figure 19: Maximum displacement magnitude of the aneurysm wall over time (3 cycles) without and with stent graft.

Using the proposed DG method for this problem provides a sharp resolution of the pressure jump that
occurs across the stent graft, between the fluid occupying the lumen and the fluid in the aneurysm sack. An
unstructured mesh with 2297 triangles, reported in Fig. 16 (left), was used in the simulations, with a third
order Lagrangian basis for the fluid, structure, and ALE problem. The number of degrees of freedom for
the fluid problem is only 62×103. Three cardiac cycles where simulated, corresponding to 2.85 s of physical
time, with ∆t = 0.00025 s. This took around 12 hours on a i5 CPU and 16GB memory desktop.

Fig. 17 shows the pressure, velocity magnitude, velocity vector field, and displacement magnitude without
and with the stent graft inserted into AAA, at time t = 2.3 s, which is the time in systole when the pressure
at the iliac arteries reaches its maximum. Fig. 18 shows the same plots except at time t = 2.85 s, which is
the time in diastole when the pressure at the iliac arteries reaches the minimum. Comparing the velocity
magnitude sub-plots (b) and (e) in both Figs. 17 and Fig. 18, we see that after the stent graft implantation
the vortices are inhibited and confined. In particular, during systole, shown in Fig. 17, we see almost laminar
flow through the stented AAA, with significant reduction in vortex formation. Even more importantly, panels
(a) and (d) in Figs. 17 and 18 show significant reduction in the pressure exerted onto the aneurysm sack
walls, which results in reduction of AAA pulsation (periodic displacement/deformation of AAA walls), as
shown in panels (c) and (f), after the insertion of the stent-graft.

The maximum displacement magnitude over time with and without the stent-graft is reported in Fig. 19,
which reveals that the presence of the stent-graft makes the displacement magnitude of the AAA sack roughly
50% smaller.

This example shows that the proposed computational method can be successfully used to investigate
which stent graft is better for a given patient-specific geometry. The geometry of AAA, the material
properties and geometry of the stent-graft will all influence the pressure reduction of a given patient-specific
AAA.

5.6. Preliminary FSI results in 3D

We conclude this paper by presenting numerical results showing blood flow in a 3D patient-specific
AAA, shown in Fig. 20. With this example we show that the method considered in this manuscript can be
successfully extended to 3D. Furthermore, to emphasize the importance of assuming compliant AAA walls
in correctly capturing the pressure wave propagation, we also include the simulation with rigid walls, which
shows a significantly different pressure distribution in AAA walls, as expected.

We set the blood density and viscosity to ρ = 1 g/cm3 and µ = 0.035 cm2/s, respectively. At the fluid
inlet and outlet sections (see Fig. 20(a)) we impose the boundary conditions in (51),(52) with

Pmax =

{
1.5 · 104 dynes/cm2, t ≤ 5 ms,

0, t > 5 ms.

The inlet pressure pulse is shown in Fig. 21, where the red dots indicate the times at which the snap-shots
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Figure 20: Two views of the reference AAA domain, with computational mesh shown in the figure on the left.

Figure 21: Inlet pressure pulse. The red dots indicate the times at which the pressure is plotted in Fig. 22.

showing pressure wave propagation are taken in Fig. 22.
The aneurysm wall is modeled by (12),(17). We enforce zero displacements at both the proximal and

distal region (descending aorta and iliac arteries respectively, see Fig. 20(a)). The density, thickness and
Young’s modulus of the aneurysm are set to ρs = 1 g/cm3, hs = 0.1 cm and E = 1 × 105 dynes/cm2,
respectively.

(a) t = 4 ms (b) t = 8 ms (c) t = 12 ms (d) t = 16 ms (e) t = 20 ms (f) t = 24 ms

Figure 22: Snapshots of the pressure ( dynes/cm2 ) propagation inside the AAA at six different times: (a) t = 4 ms, (b) t = 8
ms, (c) t = 12 ms, (d) t = 16 ms, (e) t = 20 ms, (f) t = 24 ms. The times correspond to the red dots in Fig. 21.

We considered the unstructured mesh shown in Fig. 20(a), which consist of 47192 tetrahedra, and second
order Lagrange bases for the fluid, structure, and ALE problem. The total number of degrees of freedom
for the fluid problem is 1,887,680. We let the simulation run from 0 to 24 ms with time step ∆t = 0.0001
s. The simulation takes 2 hours 45 minutes on a i5 and 64GB memory desktop. Fig. 22 shows the pressure
computed by the Dirichlet-Neumann scheme at six different times corresponding to the red dots in Fig. 21.
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We clearly see the propagation of the pressure pulse in the fluid domain.
Finally, we compare these simulations with the case when the AAA walls are rigid. We expect in this

case to see close to linear pressure distribution between the inlet and outlet data, with zero pressure in the
entire domain occurring when the inlet and outlet data both assume zero values, which is immediately after
4 ms. Indeed, in Fig. 23(a) we see an almost linear pressure distribution between the inlet and outlet for
t = 4 ms, and zero pressure everywhere in the fluid domain at time t = 8 ms shown in panel (b). A direct
comparison with the case of compliant walls, shown in Fig. 23, shows very different solutions. Compliant
walls support pressure wave propagation, whose speed depends on the elastic properties of the AAA walls.

(a) t=4ms (RIGID) (b) t=8ms (RIGID) (c) t = 4 ms (COMPLIANT) (d) t = 8 ms (COMPLIANT)

Figure 23: Comparison in pressure wave propagation between rigid (panels (a) and (b)) and compliant walls (panels (c) and
(d)). The prescribed inlet normal stress is depicted in Fig. 21, and the outlet normal stress is zero. Pressure exerted to the
aneurysm walls at times t = 4 ms and t = 8 ms is shown. For t ≥ 8 ms the pressure in the rigid case is equal to zero.

6. Conclusion and Outlook

In this work we presented a higher-order DG method with interior penalty, combined with an ALE ap-
proach and two strongly-coupled partitioned schemes (the Dirichlet-Neumann and Robin-Neumann schemes)
to study fluid-structure interaction problems between incompressible, viscous fluids and elastic structures.
The main reasoning behind considering a DG framework in the context of incompressible fluids is the need
for a sharp resolution of the jump in the normal stress across fluid-structure and structure-structure inter-
faces that normally arises in this class of problems. More generally, when thick structures are considered
(finite elasticity) in the context of nonlinear elasticity, shock wave solutions might occur within structures
themselves. In this case the proposed framework would naturally extend to simulating the elastodynamics
of nonlinearly elastic structures, and would present a unified approach to solving the entire FSI problem
in a way that would resolve jump discontinuities naturally arising at the interfaces and within structures
themselves.
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[21] S. Canić, B. Muha, and M. Bukač. Stability of the kinematically coupled β-scheme for fluid-structure interaction problems
in hemodynamics. Journal for Numerical Analysis and Modeling, 12(1):54–80, 2015.
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Model. Lect. Notes, pages 109–158. Matfyzpress, Prague, 2012.

[53] V. John. Reference values for drag and lift of a two dimensional time-dependent flow around a cylinder. Int. J. Numer.
Meth. Fluids, 44:777–788, 2004.

[54] G. Karniadakis and S. Sherwin. Spectral/hp Element Methods for Computational Fluid Dynamics. Oxford, 2005.
[55] M. Krafczyk, M. Cerrolaza, M. Schulz, and E. Rank. Analysis of 3D transient blood flow passing through an artificial

aortic valve by lattice-boltzmann methods. J Biomech., 31(5):453–462, 1998.
[56] M. Krafczyk, J. Tolke, E. Rank, and M. Schulz. Two-dimensional simulation of fluid-structure interaction using lattice-

Boltzmann methods. Comput. Struct., 79:2031–2037, 2001.
[57] U. Küttler and W.A. Wall. Fixed-point fluid-structure interaction solvers with dynamic relaxation. Computational

Mechanics, 43(1):61–72, 2008.
[58] S. Lim and C.S. Peskin. Simulations of the whirling instability by the immersed boundary method. SIAM J. Sci. Comput.,

25:2066–2083, 2004.
[59] I. Lomtev, R.M. Kirby, and G.E. Karniadakis. A Discontinuous Galerkin ALE Method for Compressible Viscous Flows

in Moving Domains. Journal of Computational Physics, page 128159, 1999.
[60] C. Farhat M. Lesoinne. Geometric conservation laws for flow problems with moving boundaries and deformable meshes,

and their impact on aeroelastic computations. Comput. Methods Appl. Mech. Eng., 134:7190, 1996.
[61] H. Matthies and J. Steindorf. Numerical efficiency of different partitioned methods for fluid-structure interaction. Z.

Angew. Math. Mech., 2(80):557–558, 2000.
[62] L.A. Miller and C.S. Peskin. A computational fluid dynamics study of ’clap and fling’ in the smallest insects. J. Exp.

Biol., 208(2):195–212, 2005.
[63] D.P. Mok and W.A. Wall. Partitioned analysis schemes for transient interaction of incompressible flows and nonlinear

flexible structures. In Trends in computational structural mechanics (W.A. Wall, K.U. Bletzinger and K. Schweizerhof,
Eds.), CIMNE, Barcelona, Spain, 2001.

[64] F. Nobile. Numerical approximation of fluid-structure interaction problems with application to hemodynamics. Ph.D.
thesis EPFL, 2001.

[65] F. Nobile and C. Vergara. An effective fluid-structure interaction formulation for vascular dynamics by generalized Robin
conditions. SIAM J. Sci. Comput., 30:731–763, 2008.

[66] K. Ouriel, R.M. Green, C. Donayre, C.K. Shortell, J. Elliott, and J.A. DeWeese. An evaluation of new methods of
expressing aortic aneurysm size: relationship to rupture . Journal of vascular surgery, 15:12–20, 1992.

[67] R.A. Peattie, C.L. Asbury, E.I. Bluth, and J.W. Ruberti. Steady flow in models of abdominal aortic aneurysms. part i:

33



Investigation of the velocity patterns. J Ultrasound Med., 15(10):679–88, 1996.
[68] R.A. Peattie and E.I. Bluth. Experimental study of pulsatile flows in models of abdominal aortic aneurysms. Proceedings

of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 20(1), 1998.
[69] P.O. Persson, J. Bonet, and J. Peraire. Discontinuous Galerkin solution of the Navier-Stokes equations on deformable

domains. Computer Methods in Applied Mechanics and Engineering, page 15851595, 2009.
[70] C. Peskin and D.M. McQueen. A three-dimensional computational method for blood flow in the heart i. immersed elastic

fibers in a viscous incompressible fluid. J. Comput. Phys., 81(2):372–405, 1989.
[71] C. S. Peskin. The immersed boundary method. Acta Numer., 11:479–517, 2002.
[72] A. Quaini. Algorithms for fluid-structure interaction problems arising in hemodynamics. Ph.D. thesis EPFL, 2009.
[73] A. Quaini and A. Quarteroni. A semi-implicit approach for fluid-structure interaction based on an algebraic fractional

step method. Math. Models Methods Appl. Sci., pages 957–985., 2007.
[74] A. Quarteroni, R. Sacco, and F. Saleri. Numerical Mathematics. Springer Verlag, 2007.
[75] A. Quarteroni, M. Tuveri, and A. Veneziani. Computational Vascular Fluid Dynamics: Problems, Models and Methods.

Comput. Vis. Science, 2:163–197, 2000.
[76] A. Quarteroni and A. Valli. Numerical approximation of partial differential equations. Springer, 1997.
[77] A. Quarteroni and A. Valli. Domain Decomposition Methods for Partial Differential Equations. Oxford Science Publica-

tions, 1999.
[78] B. Cockburn S. Rhebergen. A spacetime hybridizable discontinuous Galerkin method for incompressible flows on deforming

domains. Journal of Computational Physics, 231:4185–4204, 2012.
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