Department of Computer Science at UH

University of Houston

Department of Computer Science

In Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy

Mahbubur Rahman

Will defend his dissertation

A multi-scale computational framework to understand vascular adaptations


Researchers have been continuously applying a wide variety of approaches to understand vascular adaptation over the past two decades. However, the specific cause/effect or links between the hemodynamic factors, inflammatory biochemical mediators, cellular effectors and vascular occlusive phenotype remain unexplained still today. To explain these biological phenomena, we have introduced a multi-scale computational framework to systematically test many hypotheses associated with the vascular adaptation and finally applied this framework to explain some widely observed clinical and experimental cases. Our framework incorporates the cellular activities inside the vein graft influenced by the shear stress and tension, which are two of the most important environmental factors in the vascular adaptation. This is a hybrid agent based model (ABM) coupled with the partial differential equations (PDEs) associated with the calculation of the shear stress. Based on the computational framework, we have designed and developed a modular, adaptive, efficient and scalable simulation program so that we can explain some specific pattern formations associated with the vascular adaptation by pattern recognition algorithms of the framework in real time. Finally, we have coupled a genetic algorithm with the framework to verify the fact that a combination of interesting patterns associated with the vascular adaptation can be regenerated in a multivariate data analysis environment. As a result, this research will reduce the gap in understanding different cases observed in the vascular adaptation.


Date: Tuesday, April 7, 2015
Time: 10:00 AM
Place: PGH 550

Faculty, students, and the general public are invited.
Advisor: Prof. Marc Garbey