Department of Computer Science at UH

University of Houston

Department of Computer Science

In Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy

Sujing Wang

Will defend her PhD dissertation

Spatial and Spatio-temporal Clustering


Due to the advances in remote sensors and sensor networks, different types of dynamic and geographically distributed spatial and spatio-temporal data become increasingly available. Spatial and temporal properties are key aspects of data analysis in many applications, such as geographic information systems, weather forecasting, medical imaging, etc. The combination with spatial and temporal dimensions in large spatio-temporal data has introduced new challenges to data mining and knowledge discover. Traditional clustering techniques are inefficient in clustering spatial and spatio-temporal data because they do not incorporate the idiosyncrasies of the spatial domain. New techniques are needed to address these challenges.

The goal of this research is to develop new spatial clustering algorithms, spatio-temporal clustering algorithms, and post-processing analysis techniques for mining spatial and spatial-temporal data, especially complex types of spatial objects, i.e. polygons that are spatially overlapped and dynamically change their locations, sizes and shapes though time. The specific objectives are: (i) to develop density-base spatial clustering algorithms to find spatial patterns, (ii) to implement density-based spatio-temporal clustering algorithms to identify spatio-temporal patterns, (iii) to investigate post-processing analysis techniques to interpret the identified patterns and extract useful information, and (iv) to evaluate our algorithms by example of enriched real spatial and spatio-temporal data.


Date: Tuesday, April 22, 2014
Time: 2:30 PM
Place: PGH 501D

Faculty, students, and the general public are invited.
Advisor: Prof. Christoph F. Eick