Sample Preliminary Examination in Algebra

You have three hours to complete the exam. You cannot use any books or notes.

- 1. Let **G** and **H** be groups. Define that φ is a homomorphism from **G** to **H**.
- 2. Define that N is a normal subgroup of G and define the factor group G/N. In particular, say what the elements of G/N are and how multiplication, inverse and unit are defined.
- 3. Define ker(φ) for a homomorphism between groups and state the homomorphism theorem for groups.
- 4. List all subgroups of the additive group \mathbb{Z} of integers and prove your answer.
- 5. Define cyclic groups and prove that every cyclic group is a homomorphic image of the additive group \mathbb{Z} of integers.
- 6. Define that \mathbf{I} is an ideal of the commutative ring \mathbf{A} (with unit). Define the factor ring \mathbf{A}/\mathbf{I} and prove that it is a field if and only if \mathbf{I} is maximal.
- 7. (a) State Zorn's lemma.
 - (b) Give an application of Zorn's lemma of your choice.
- 8. (a) Define that **D** is a p.i.d., that is a principal ideal domain.
 - (b) Let **F** be a field. Sketch a proof that the polynomial ring $\mathbf{F}[x]$ is a p.i.d.
- 9. Let a and b be elements of a principal ideal domain **D**.
 - (a) Define: d is the greatest common divisor of a and b.
 - (b) Prove that $\{xa + yb | x, y \in \mathbf{D}\}$ is the smallest ideal in **D** which contains a and b.
 - (c) Prove that the greatest common divisor of a and b exists and that it is of the form xa + yb for certain x and y in **D**.
- 10. Let $(\mathbf{A}, +)$ be a commutative group and $\mathbf{A}_1, \mathbf{A}_2, \dots, \mathbf{A}_n$ be subgroups of \mathbf{A} . Define:
 - (a) **A** is the sum of the subgroups A_i .
 - (b) **A** is the internal **direct** sum of the A_i .
- 11. (a) State the structure theorem for finite abelian groups.
 - (b) List up to isomorphism classes all abelian groups of order 144, e.g., in terms of direct sums of cyclic groups of prime power order.
- 12. Let $T: \mathbf{V} \to \mathbf{V}$ be a linear map on the vector space \mathbf{V} over the field \mathbf{F} .
 - (a) Define: $m_T(x)$ is the minimal polynomial of T.
 - (b) Define: $c_T(x)$ is the characteristic polynomial of T.
 - (c) State the *Caley-Hamilton* Theorem.
- 13. Assume that the characteristic polynomial for the linear map T on \mathbb{R}^3 is $c_T(x) = (x-1)(x+1)^2$.
 - (a) Find the minimal polynomial for T in case that T is cyclic.
 - (b) Find the minimal polynomial in case that T has an eigen base.
 - (c) Find all possible Jordan normal forms for T.