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Abstract

The purpose of this thesis is to discuss the theory of holomorphic curves in order

to study value distributions of the (generalized) Gauss map of complete minimal

surfaces immersed in Rm. The study was initiated by S.S. Chern and R. Osserman [4]

in 1960s. Since then, it has been developed by F. Xavier [27], H. Fujimoto [7], M. Ru

[22], etc. In this thesis, we prove a unicity theorem for two conformally di�eomorphic

complete minimal surfaces immersed in Rm whose generalized Gauss maps f and g

agree on the pre-image ∪qj=1f
−1(Hj) for given hyperplanesHj, 1 ≤ j ≤ q, in Pm−1(C),

located in general position, under the assumption that
⋂k+1
j=1 f

−1(Hij) = ∅. In the

case when k = m− 1, the result obtained gives an improvement of the earlier result

of Fujimoto [10].
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Chapter 1

Introduction

Figure 1.1: Catenoid Soap Film

http://faraday.physics.uiowa.edu

Minimal surfaces are surfaces which have min-

imal areas for all small perturbations. Minimal

surfaces have been studied not only in math-

ematics but also in many other �elds such as

physics, biology, architecture, art, and so on.

Physicians have studied the minimal surface us-

ing soap �lms. The picture on the right is the

catenoid created from a soap bubble by a physi-

cian. After Alan Schoen discovered a minimal

surface called a �gyroid�, many biologists have

found gyroid structures in the membrane of but-

ter�ies' wings and in certain surfactant or lipid
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mesophases. In recent years, new types of architecture and art using minimal sur-

faces have been created and developed. In short, interest in the minimal surface has

been growing in many �elds over the past several decades.

Minimal surface theories was studied for the �rst time by Joseph-Louis Lagrange

who in 1762 considered the variational problem of �nding the surface of least area

stretched across a given closed contour. Since Lagrange's initial investigation, there

have been multiple discoveries on minimal surface theories by many great mathe-

maticians. In 1967, the value distribution theory of Gauss map of complete minimal

surfaces started to be studied by S.S. chern and R. Osserman [4]. Since then, it have

been studied by many mathematicians such as F. Xavier, H. Fujimoto, M. Ru, S.J.

Kao, H.P. Hoang, etc. From 1992 onward, the unicity theorem for Gauss maps of

complete minimal surfaces also have been studied by H. Fujimoto, but there have

been no particular improvements. That is, until now. In this thesis, we shall give

an improvement of Fujimoto's unicity theorem of Gauss maps of complete minimal

surfaces.

For a minimal surface x := (x1, · · · , xm) : M → Rm immersed in Rm with m ≥ 3,

its generalized Gauss map G is de�ned as the map which maps each p ∈ M to the

point in Qm−2(C) := {(w1 : · · · : wm) | w2
1 + · · · + w2

m = 0} corresponding to the

oriented tangent plane of M at p. We may regard M as a Riemann surface with a

conformal metric and G as a holomorphic map ofM into Pm−1(C). With this setting,

many value-distribution-theoretic properties of holomorphic curves in the complex

projective space can be carried into the study of the Gauss maps of complete minimal

surfaces in Rm. This thesis speci�cally focuses on the corresponding unicity results

2



for two conformally di�eomorphic complete minimal surfaces immersed in Rm.

We begin with by recalling H. Fujimoto's result [10]. Let x : M → Rm and

x̃ : M̃ → Rm be two oriented non-�at complete minimal surfaces immersed in Rm

and let G : M → Pm−1(C) and G̃ : M̃ → Pm−1(C) be their generalized Gauss maps.

Assume that there is a conformal di�eomorphism Φ of M onto M̃ . Then the Gauss

map of the minimal surface x̃ ◦ Φ : M → Rm is given by G̃ ◦ Φ. Fujimoto obtained

the following result.

Fujimoto′s Theorem (H. Fujimoto, [10]). Under the notations above, consider the

holomorphic maps f = G : M → Pm−1(C) and g = G̃ ◦ Φ : M → Pm−1(C). Assume

that there exist hyperplanes H1, · · · , Hq in Pm−1(C) located in general position such

that

(i) f−1(Hj) = g−1(Hj) for every j = 1, · · · , q,

(ii) f = g on

q⋃
j=1

f−1(Hj).

If q > m2 +m(m− 1)/2, then f ≡ g.

Main Theorem. Assume that both f = G : M → Pm−1(C) and g = G̃ ◦ Φ : M →

Pm−1(C) are linearly non-degenerate (i.e. the images of f and g are not contained

in any linear subspaces of Pm−1(C)) and that there exist hyperplanes H1, · · · , Hq in

Pm−1(C) located in general position and a positive integer k > 0 such that

(i) f−1(Hj) = g−1(Hj) for every j = 1, · · · , q,

(ii)
k+1⋂
j=1

f−1(Hij) = ∅ for any {i1, · · · , ik+1} ⊂ {1, · · · , q},

3



(iii) f = g on

q⋃
j=1

f−1(Hj).

If q >
(m2 +m+ 4k) +

√
(m2 +m+ 4k)2 + 16k(m− 2)m(m+ 1)

4
, (1.1)

then f ≡ g.

When k = 1, the condition (1.1) becomes

q >
(m2 +m+ 4) +

√
(m2 +m+ 4)2 + 16(m− 2)m(m+ 1)

4
.

In this case, notice that

3m− 2 +
m(m− 1)

2
>

(m2 +m+ 4) +
√

(m2 +m+ 4)2 + 16(m− 2)m(m+ 1)

4

for all m ≥ 3, then the Main Theorem gives the following corollary.

Corollary 1. Under the notations above, consider the holomorphic maps f = G :

M → Pm−1(C), g = G̃ ◦ Φ : M → Pm−1(C). Assume that f and g are linearly

non-degenerate, and that there exist hyperplanes H1, · · · , Hq in Pm−1(C) located in

general position such that

(i) f−1(Hj) = g−1(Hj) for every j = 1, · · · , q,

(ii) f−1(Hi

⋂
Hj) = ∅ for i 6= j,

(iii) f = g on

q⋃
j=1

f−1(Hj).

If q ≥ 3m− 2 + m(m−1)
2

, then f ≡ g.

4



When k = m− 1, since the condition (ii) in the Main Assumption automatically

holds under the assumption that H1, · · · , Hq are in general position, we can omit it.

Then, the Main Theorem gives the following Corollary.

Corollary 2. Under the notations above, consider the holomorphic maps f = G :

M → Pm−1(C), g = G̃ ◦ Φ : M → Pm−1(C). Assume that f and g are linearly

non-degenerate, and that there exist hyperplanes H1, · · · , Hq in Pm−1(C) located in

general position such that

(i)f−1(Hj) = g−1(Hj) for every j = 1, · · · , q,

(ii)f = g on

q⋃
j=1

f−1(Hj).

If q >
(m2+5m−4)+

√
(m2+5m−4)2+16(m−2)(m−1)m(m+1)

4
, then f ≡ g.

Furthermore, if m = 3 and k = m − 1 = 2 in the Main Theorem, we obtain

q > 6, which matches the result in Fujimoto's paper [8] for the case of the complete

minimal surface immersed in R3 exactly.

Now we shall compare the number of hyperplanes, q, in order to show that the

result in this thesis gives an improvement of Fujimoto's theorem mentioned before.

Let q1 = m2 + m(m−1)
2

as in Fujimoto's result and

q2 =
m2 + 5m− 4 +

√
(m2 + 5m− 4)2 + 16(m− 2)(m− 1)m(m+ 1)

4

5



as in our Corollary 2, we verify that q1 ≥ q2 for m ≥ 3. Indeed, for m ≥ 3,

(5m2 − 7m+ 4)2 − (
√

17m4 − 22m3 +m2 − 8m+ 16)2

= 8m4 − 48m3 + 88m2 − 48m = 8m(m− 1)(m− 2)(m− 3) ≥ 0.

This implies that 5m2 − 7m+ 4 ≥
√

17m4 − 22m3 +m2 − 8m+ 16. Hence,

q1 − q2 =
5m2 − 7m+ 4−

√
17m4 − 22m3 +m2 − 8m+ 16

4
≥ 0

for m ≥ 3. The same argument show that q1 > q2 for m > 3. Thus our Corollary 2

gives an improvement of Fujimoto's result mentioned above. The graph below gives

how q1 and q2 grows as m becomes larger.

We outline here the strategies of proving our Main Theorem: (a) Instead of using

Fujimoto's approach in [10], we use the method of Ru [19] which gave an explicit

construction of the negative curvature on the unit disc; (b) Instead of the auxiliary

6



function χ constructed in Fujimoto's paper [10], we use the new auxiliary function

constructed in Chen-Yan [14] (see also [15] or [16]) which allows us to improve Fu-

jimoto's result, as well as working for general k (while Fujimoto's case is only for

k = m− 1).

7



Chapter 2

Basic Facts about Complete Minimal

Surfaces in Rm

2.1 Minimal Surfaces in R3

In this section, we de�ne the classical Gauss map and study the relation between

the generalized Gauss map (G = [φ1 : φ2 : φ3] : M → P2(C)) and the classical Gauss

map (g : M → C) of a surface in R3. Via the Weierstass-Enneper Representations,

the Gauss map of a minimal surface is considered a meromorphic function on the

corresponding Riemann surface. From this, we can see a remarkable analogy be-

tween the value distribution theory and the minimal surface theory. That analogy

applies to their respective unicity theorems as well, so in this section we prove the

Enneper-Weierstrass Representation theorem and see some examples.
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In R3, each oriented plane P ∈ G2,Rm is uniquely determined by the unit vec-

tor N such that it is perpendicular to P and the system {X, Y,N} is a positive

orthonormal basis of R3 for arbitrarily chosen positively oriented orthonormal basis

{X, Y } of P . For an oriented surface in R3 the tangent plane is uniquely determined

by the positively oriented unit normal vector. On the other hand, the unit sphere

S2 of all unit vectors in R3 is bijectively mapped onto the extended complex plane

C̄ = {C ∪∞} by the stereographic projection ω̄.

Definition 2.1.1. For a minimal surface M immersed in R3 the classical Gauss map

g : M → C̄ of M is de�ned as the map which maps each point p ∈ M to the point

ω̄(Np) ∈ C̄, where Np is the positively oriented unit normal vector Np of M at p.

We begin by studying the stereographic projection ω̄. For an arbitrary point

(ξ, η, ζ) ∈ S2 set z = x+
√
−1y := ω̄(ξ, η, ζ) ∈ C̄, which means that, if P 6= (0, 0, 1),

then the points N(0, 0, 1), P (ξ, η, ζ), and P ′(x, y, 0) are collinear and, otherwise, z =

∞. Using γ(t) =N+t(P−N) := P ′, we obtain x = ξ
1−ζ , y = η

1−ζ , ξ
2 + η2 + ζ2 = 1.

Then by elementary calculation, we see

ξ =
z + z̄

|z|2 + 1
, η =

√
−1

z̄ − z
|z|2 + 1

, ζ =
|z|2 − 1

|z|2 + 1
. (2.1)

For two points (ξ1, η1, ζ1) and (ξ2, η2, ζ2) in S2 we denote by θ (0 ≤ θ ≤ π) the angle

between two vectors P1(ξ1, η1, ζ1), P2(ξ2, η2, ζ2) and α = x1 +
√
−1y1 := ω̄(ξ1, η1, ζ1),

β = x2 +
√
−1y2 := ω̄(ξ2, η2, ζ2).

9



Figure 2.1: Chordal Distance

De�ne

|α, β| = sin
θ

2
(≤ 1).

Appling Law of Cosine, by de�nition we have

P1P2 =
√

2− 2 cos θ = 2 sin
θ

2
= 2|α, β|

Thus, geometrically 2|α, β| is the chordal distance between P1 and P2. If α 6= ∞

and β 6=∞, by (2.1)

|α, β|

=
1

2
P1P2 =

1

2

√
(ξ1 − ξ2)2 + (η1 − η2)2 + (ζ1 − ζ2)2

=
1

2

√
2(1− ξ1ξ2 − η1η2 − ζ1ζ2)

=

√
2

2

√
1−

(
α+ α

|α|2 + 1

)(
β + β

|β|2 + 1

)
+

(
α− α
|α|2 + 1

)(
β − β
|β|2 + 1

)
−
(
|α|2 − 1

|α|2 + 1

)(
|β|2 − 1

|β|2 + 1

)
=

|α− β|√
|α|2 + 1

√
|β|2 + 1

.
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If β =∞, then (ξ2, η2, ζ2) = (0, 0, 1), so

|α, β|

=
1

2
P1P2 =

1

2

√
(ξ1)2 + (η1)2 + (ζ1 − 1)2

=
1

2

√
2(1− ζ1)

=

√
2

2

√
1− |α|

2 − 1

|α|2 + 1

=
1√
|α|2 + 1

.

We de�ne the chordal distance between α and β by |α, β| . By de�nition, we see

0 ≤ |α, β| ≤ 1.

Now we take an arbitrary point [w1 : w2 : w3] ∈ Q1(C). Write wi = xi −
√
−1yi

(1 ≤ i ≤ 3) with xi, yi ∈ R, and set

W := (w1, w2, w3), X := (x1, x2, x3), Y := (y1, y2, y3).

Since W ∈ Q1(C), we have

w2
1 + w2

2 + w2
3 = 0⇐⇒ (x1 −

√
−1y1)2 + (x2 −

√
−1y2)2 + (x3 −

√
−1y3)2 = 0

⇐⇒ x2
1 + x2

2 + x2
3 = y2

1 + y2
2 + y2

3 and x1y1 + x2y2 + x3y3 = 0

⇐⇒ |X| = |Y | and 〈X, Y 〉 = 0.

Without loss of generality, we may assume that |X| = |Y | = 1. Then, the unit

normal vector of the plane which has a positive basis {X, Y } is given by

N := X × Y = (x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1) = Im{(w2w3, w3w1, w1w2)}

11



For the case where w1 6=
√
−1w2, we assign to W the point

z =
w3

w1 −
√
−1w2

(2.2)

and, otherwise, the point z = ∞. This correspondence is continuous inclusively at

∞. To see this, we rewrite (2.2) as

z =
w3(w1 +

√
−1w2)

w2
1 + w2

2

= −w1 +
√
−1w2

w3

.

If W tends to the point with w1 =
√
−1w2, z tends to ∞ because

w2
1 + w2

2 + w2
3 = 0⇔ (

√
−1w2)2 + w2

2 + w2
3 = 0⇔ w3 = 0.

If w1 6=
√
−1w2, from

z = −w1 +
√
−1w2

w3

and
1

z
=
w1 −

√
−1w2

w3

we have

w1

w3

=
1

2
(
1

z
− z) and

w2

w3

=

√
−1

2
(
1

z
+ z). (2.3)

Since |w1|2 + |w2|2 + |w3|2 = x2
1 + y2

1 + x2
2 + y2

2 + x2
3 + y2

3 = |X|2 + |Y |2 = 2, we get

|w3|2 =
2

|w1

w3
|2 + |w2

w3
|2 + 1

=
4|z|2

(|z|2 + 1)2
. (2.4)

Then, (2.3) and (2.4) yield that

N = Im{(w2w3, w3w1, w1w2)}

= |w3|2 Im

{(
w2

w3

,

(
w1

w3

)
,
w1

w3

(
w2

w3

))}

=

(
2 Re z

|z|2 + 1
,

2 Im z

|z|2 + 1
,
|z|2 − 1

|z|2 + 1

)
.

12



By (2.1) this shows that the point in S2 corresponding to [w1 : w2 : w3] ∈ Q1(C) is

mapped to the point z = w3 ∈ C by the stereographic projection.

Figure 2.2: The Classical Gauss Map

Now we go back to the study of surfaces in R3. Let x = (x1, x2, x3) : M → R3

be a non-�at surface immersed in R3. Then its generalized Gauss map G is not a

constant, andM may be considered as a Riemann surface (we shall discuss this more

in the section 2.2) with a conformal metric ds2. For a holomorphic local coordinate

z = u+
√
−1v, G is represented as G = [φ1 : φ2 : φ3] = [f1 : f2 : f3], where

φi = fidz =
∂xi
∂z

dz. (2.5)

13



Set

hdz = φ1 −
√
−1φ2 (6≡ 0) and g :=

f3

f1 −
√
−1f2

(2.6)

By the above discussion, the function g is the classical Gauss map of M .

Since the above correspondences are all biholomorphic, we obtain the following

proposition which is the special case of Proposition 2.3.2. Refer to Proposition 2.3.2

for the proof of the following proposition.

Proposition 2.1.2. For a surface M immersed in R3, M is a minimal surface if and

only if the classical Gauss map is meromorphic on M .

Now we explain the following Enneper-Weierstrass representaion theorem for min-

imal surfaces.

Theorem 2.1.3. (H. Fujimoto, [9]) Let x = (x1, x2, x3) : M → R3 be a non-�at

minimal surface immersed in R3. Consider the holomorphic forms φ1, φ2, φ3, hdz and

the meromorphic function g which is de�ned by (2.5) and (2.6) respectively. Then,

(i) it holds that

φ1 =
1

2
(1− g2)hdz, φ2 =

√
−1

2
(1 + g2)hdz, and φ3 = ghdz (2.7)

and

(x1, x2, x3) =

(
2 Re

∫ z

z0

φ1 + x1(z0), 2 Re

∫ z

z0

φ2 + x2(z0), 2 Re

∫ z

z0

φ3 + x3(z0)

)
,

(2.8)

(ii) the metric induced from the standard metric on R3 is given by

ds2 = (1 + |g|2)2|h|2|dz|2, (2.9)

14



(iii) the holomorphic form h has a zero of order 2k when and only when g has a pole

of order k.

Proof. Consider the function fi and h for a holomorphic local coordinate z. Obvi-

ously, ghdz = φ3. Since f
2
1 + f 2

2 + f 2
3 = 0, we have

1

2
(1− g2)hdz =

1

2

(
1−

(
f3

f1 −
√
−1f2

)2
)(

f1 −
√
−1f2

)
dz

=
f 2

1 − f 2
2 − 2

√
−1f1f2 − f 2

3

2(f1 −
√
−1f2)

dz

= f1dz

= φ1

Similarly,

√
−1

2
(1 + g2)hdz =

√
−1

2

f 2
1 − f 2

2 − 2
√
−1f1f2 + f 2

3

2(f1 −
√
−1f2)

dz = f2dz = φ2

On the other hand, by (2.2), for i = 1, 2, 3, we have obtained

dxi = 2 Re(φi).

This implies xi(z)− xi(z0) = 2Re
∫ z
z0
φi, so the assertion (i) holds.

The assertion (ii) is shown by the direct calculations

ds2 = 2(|f1|2 + |f2|2 + |f3|2)|dz|2

=
1

2

(
|1− g2|2 + |1 + g2|2 + 4|g|2

)
|h|2|dz|2

=
1

2

(
(1− g2)(1− g2) + (1 + g2)(1 + g2) + 4|g|2

)
|h|2|dz|2

=
(
1 + |g|2

)2 |h|2|dz|2

If h has a zero at a point p where g is holomorphic, then f1, f2, f3 have a common

zero at p, which contradicts the de�nition [φ1 : φ2 : φ3] = [f1 : f2 : f3]. On the other

15



hand, if g has a pole of order k at a point p, then h has a zero of exact order 2k

at p. It is because otherwise some fi has a pole or fi's have a common zero, which

contradicts the assumption φi = fidz (i = 1, 2, 3) are holomorphic forms and the

de�nition [φ1 : φ2 : φ3] = [f1 : f2 : f3]. Thus, the assertion (iii) holds. Furthermore,

from (iii), we see that the metric ds2 in (ii) is continuous. Q.E.D.

Theorem 2.1.4. (H. Fujimoto, [9])Let M be an open Riemann surface, hdz be a

nonzero holomorphic form and g a nonconstant meromorphic function onM . Assume

that hdz has a zero of order 2k when and only when g has a pole of order k and that

the holomorphic forms φ1, φ2, φ3 de�ned by (2.7) have no real periods. Then, for the

functions x1, x2, x3 de�ned by (2.8), the surface

x = (x1, x2, x3) : M → R3

is a minimal surface immersed in R3 whose classical Gauss map is the map g and

whose induced metric is given by (2.9).

Proof. We shall prove the general case (Rm) of this theorem in Theorem 2.3.3.

Example 2.1.5. We regard a helicoid as Riemann surface C, and by (2.7) it may be

obtained from g = ez and h =
√
−1

2ez
which give us

(φ1, φ2, φ3) = (
−
√
−1

2
sinh z dz,

−1

2
cosh z dz,

√
−1

2
dz).
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Now using (2.8) we compute x = (x1, x2, x3) in the following way.

x1 = 2 Re

∫ z

z0

−
√
−1

2
sinh z dz + x1(z0) = Re

∫ z

z0

−
√
−1

2
(ez − e−z)dz + x1(z0)

=
1

2
Re(−

√
−1ez −

√
−1e−z)

=
1

2
Re[−

√
−1eu(cos v +

√
−1 sin v)−

√
−1e−u(cos v −

√
−1 sin v)]

=
1

2
(eu − e−u) sin v

= sinhu · sin v

x2 = 2 Re

∫ z

z0

−1

2
cosh z dz + x2(z0) = Re

∫ z

z0

−1

2
(ez + e−z)dz + x2(z0)

=
1

2
Re(e−z − ez) =

1

2
Re[e−u(cos v −

√
−1 sin v)− eu(cos v +

√
−1 sin v)]

=
1

2
(e−u − eu) cos v

= − sinhu · cos v

x3 = 2 Re

∫ z

z0

√
−1

2
dz

= Re(
√
−1z)

= Re(
√
−1u− v)

= −v

Thus, we have obtained the helicoid x(u, v) = (sinhu · sin v, − sinhu · cos v, −v).

The following picture shows the graph of the helicoid and more examples.
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Table 2.1: Non-�at complete minimal surfaces immersed in R3

Catenoid Helicoid Enneper's Surface

M = C \ {∞} M = C M = C

g = e
√
−1z, h = −

√
−1

2e
√
−1z g = ez, h =

√
−1

2ez
g = z, h = 1

φ1 = −1
2

sin z dz φ1 = −
√
−1

2
sinh z dz φ1 = 1

2
(1− z2)dz

φ2 = 1
2

cos z dz φ2 = −1
2

cosh z dz φ2 =
√
−1
2

(1 + z2)dz

φ3 = −
√
−1
2
dz φ3 =

√
−1
2
dz φ3 = zdz

x1 = cosu cosh v x1 = sinhu · sin v x1 = u− u3

3
+ uv2

x2 = sinu cosh v x2 = − sinhu · cos v x2 = −v + v3

3
− u2v

x3 = v x3 = −v x3 = u2 − v2

18



2.2 Minimal Surfaces in Rm

Let M be an oriented real 2-dimensional di�erentiable manifold immersed in Rm

and x = (x1, · · · , xm) : M → Rm be an immersion. For a point p ∈ M , take a local

coordinate system (u1, u2) around p which is positively oriented. The tangent plane

of M at p is given by

Tp(M) =

{
λ
∂x

∂u1

∣∣∣
p

+ µ
∂x

∂u2

∣∣∣
p

: λ, µ ∈ R
}

and the normal space of M at p is given by

Np(M) =

{
N :

〈
N,

∂x

∂u1

∣∣∣
p

〉
=

〈
N,

∂x

∂u2

∣∣∣
p

〉
= 0

}
where 〈X, Y 〉 denotes the inner product of vectors X and Y . The metric ds2 on M

induced from the standard metric on Rm is called the �rst fundamental form on M

and given by

ds2 = |dx|2

= 〈dx, dx〉

=

〈
∂x

∂u1

du1 +
∂x

∂u2

du2,
∂x

∂u1

du1 +
∂x

∂u2

du2

〉
= g11du

2
1 + 2g12du1du2 + g22du

2
2

where gij =
〈
∂x
∂ui
, ∂x
∂uj

〉
for 1 ≤ i, j ≤ 2, and the second fundamental form of M

with respect to a unit normal vector N is given by

dσ2 = b11(N)du2
1 + 2b12(N)du1du2 + b22(N)du2

2
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where bij(N) =
〈

∂2x
∂ui∂uj

, N
〉
for 1 ≤ i, j ≤ 2 .

Then the mean curvature of M for the normal direction N at p is de�ned by

Hp(N) =
g11b22(N) + g22b11(N)− 2g12b12(N)

2(g11g22 − g2
12)

.

Definition 2.2.1. A surface M is called a minimal surface in Rm if Hp(N) = 0 for

all p ∈M and N ∈ Np(M).

Definition 2.2.2. A local coordinate system (u1, u2) on an open set U inM is called

isothermal on U if ds2 can be represented as

ds2 = λ2(du2
1 + du2

2)

for a positive smooth function λ on U . This means that λ2 := g11 = g22 and g12 = 0.

Theorem 2.2.3. (S. S. Chern, [3]) For every surface M, there is a system of isother-

mal local coordinates whose domains cover the whole M.

Propositon 2.2.4. (H. Fujimoto, [9]) For an oriented surface M with a metric ds2,

if we take two positively oriented isothermal local coordinate (x, y) and (u, v), then

w = u+
√
−1v is a holomorphic function in z = x+

√
−1y on the common domain.

Proof. By assumption, there exists a positive di�erentiable function λ such that

du2 + dv2 = λ2(dx2 + dy2). Then, we have

du2 + dv2 = λ2(dx2 + dy2)

⇐⇒ (uxdx+ uydy)2 + (vxdx+ vydy)2 = λ2(dx2 + dy2)

⇐⇒ (u2
x + v2

x)dx
2 + 2(uxuy + vxvy)dxdy + (u2

y + v2
y)dy

2 = λ2(dx2 + dy2)

⇐⇒ A := u2
x + v2

x = u2
y + v2

y, uxuy + vxvy = 0
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This means that the Jacobi matrix

J :=

 ux vx

uy vy


satis�es the identity

J tJ =

 u2
x + v2

x uxuy + vxvy

uxuy + vxvy u2
y + v2

y

 =

 u2
x + v2

x 0

0 u2
x + v2

x

 = A I2

where I2 is the unit matrix of degree 2. We then have J−1 = 1
A
tJ and

J−1 =
1

det(J)

 vy −vx

−uy ux

 =
1

A

 ux uy

vx vy

 .

On the other hand, since [det(J)]2 = det(J tJ) = det(A I2) = A2 and det(J) > 0, we

have det(J) = A. These imply that ux = vy and uy = −vx. Therefore, the function

w = u+
√
−1v is holomorphic in z. Q.E.D.

Let x = (x1, · · · , xm) : M → Rm be an oriented surface with a Riemannian metric

ds2. With each isothermal local coordinate (u, v), we associate the complex function

z = u+
√
−1v. Let z̄ = u−

√
−1v. Notice that

u =
z + z̄

2
and v =

z − z̄
2
√
−1

.

Then, x(u, v) = (x1(u, v), · · · , xm(u, v)) may be written as

x(z, z̄) = (x1(z, z̄), x2(z, z̄), · · · , xm(z, z̄)).

By Proposition 2.2.4, we can see that the surface M has a complex structure, and

these complex valued functions de�ne holomorphic local coordinates on M . Thus,
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we may regard M as a Riemann surface. By the use of complex di�erentiations

∂xi
∂z

=
1

2

(
∂xi
∂u
−
√
−1

∂xi
∂v

)
and

∂xi
∂z̄

=
1

2

(
∂xi
∂u

+
√
−1

∂xi
∂v

)
we have ∣∣∣∣∂xi∂z

∣∣∣∣2 =
1

4

∣∣∣∣∂xi∂u
−
√
−1

∂xi
∂v

∣∣∣∣2 =
1

4

[(
∂xi
∂u

)2

+

(
∂xi
∂v

)2
]
.

From this property, we obtain that∣∣∣∣∂x1

∂z

∣∣∣∣2 + · · ·+
∣∣∣∣∂xm∂z

∣∣∣∣2 =
1

4

m∑
i=1

[(
∂xi
∂u

)2

+

(
∂xi
∂v

)2
]

=
1

4

[〈
∂x

∂u
,
∂x

∂u

〉
+

〈
∂x

∂v
,
∂x

∂v

〉]
=

1

2

〈
∂x

∂u
,
∂x

∂u

〉 (2.10)

and

|dz|2 = dz · dz̄ = (du+
√
−1dv)(du−

√
−1dv) = du2 + dv2.

Then, by (2.10) we may rewrite

ds2 = λ2(du2 + dv2)

=

〈
∂x

∂u
,
∂x

∂u

〉
(du2 + dv2)

= 2

(∣∣∣∣∂x1

∂z

∣∣∣∣2 +

∣∣∣∣∂x2

∂z

∣∣∣∣2 + · · ·+
∣∣∣∣∂xm∂z

∣∣∣∣2
)
|dz|2.

Let λ2
z = 2

(∣∣∂x1
∂z

∣∣2 +
∣∣∂x2
∂z

∣∣2 + · · ·+
∣∣∂xm
∂z

∣∣2). Then M may be considered as a Rie-

mann surface with a metric ds2 = λ2
z|dz|2 where λz is a positive C∞ function in terms

of a holomorphic local coordinate z.
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We denote by ∆ = ∂2

∂u2
+ ∂2

∂v2
, the Laplacian in terms of the holomorphic local

coordinate z = u+
√
−1v.

Proposition 2.2.5. (H. Fujimoto, [9]) For each isothermal local coordinate (u, v),

we have the following property:

(i) 〈∆x,X〉 = 0 for each X ∈ Tp(M)

(ii) 〈∆x,N〉 = 2λ2H(N) for each N ∈ Np(M)

Proof. By the assumption, we have

λ2 =

〈
∂x

∂u
,
∂x

∂u

〉
=

〈
∂x

∂v
,
∂x

∂v

〉
,

〈
∂x

∂u
,
∂x

∂v

〉
= 0

De�erentiating these identities, we have〈
∂2x

∂u2
,
∂x

∂u

〉
=

〈
∂2x

∂u∂v
,
∂x

∂v

〉
,

〈
∂2x

∂v∂u
,
∂x

∂v

〉
+

〈
∂x

∂u
,
∂2x

∂v2

〉
= 0

These imply〈
∆x,

∂x

∂u

〉
=

〈
∂2x

∂u2
,
∂x

∂u

〉
+

〈
∂2x

∂v2
,
∂x

∂u

〉
=

〈
∂2x

∂v∂u
,
∂x

∂v

〉
+

〈
∂x

∂u
,
∂2x

∂v2

〉
= 0

By similar method, we have 〈
∆x,

∂x

∂v

〉
= 0

Since∂x
∂u

and ∂x
∂v

generate the tangent plane, we write Tp(M) = {a∂x
∂u

+ b∂x
∂v
| a, b ∈ R}.

For each X = a∂x
∂u

+ b∂x
∂v
∈ Tp(M) we have

〈∆x,X〉 =

〈
∆x, a

∂x

∂u
+ b

∂x

∂v

〉
= a

〈
∆x,

∂x

∂u

〉
+ b

〈
∆x,

∂x

∂v

〉
= 0

as desired in (i). On the other hand, for every normal vector N to M it holds that

H(N) =
b11(N) + b22(N)

2λ2
=

〈
∂2x
∂u2
, N
〉

+
〈
∂2x
∂v2
, N
〉

2λ2
=
〈∆x,N〉

2λ2
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because λ2 = g11 = g22 and g12 = 0. This shows (ii). Q.E.D

Theorem 2.2.6. (H. Fujimoto, [9]) Let x = (x1, · · · , xm) : M → Rm be a surface

immersed in Rm, which is considered as a Riemann surface as above. Then, M is

minimal if and only if each xi is a harmonic function on M , namely,

∆xi =

(
∂2

∂u2
+

∂2

∂v2

)
xi = 0

for every holomorphic local coordinate z = u+
√
−1v.

Proof. ⇒) Assume that M is a minimal surface. Then, by de�nition H(N) = 0.

Now we apply proposition 2.2.5 to get

〈∆x,N〉 = 2λ2H(N) = 0.

Since each N ∈ Np(M) is not equal to the zero vector, we have ∆xi = 0. Thus, each

xi is a harmonic function on M .

⇐) Assume that each xi is a harmonic function on M . Then, by de�nition, each

∆xi = 0. By Proposition 2.2.5, we have 0 = ∆x = 2λ2H(N). Since λ2 6= 0, we have

H(N) = 0. Therefore, M is a minimal surface. Q.E.D.

Corollary 2.2.7. (H. Fujimoto, [9]) There exists no compact minimal surface with-

out boundary in Rm.

Proof. For a minimal surface x = (x1, · · · , xm) : M → Rm immersed in Rm, if M is

compact, then each xi takes the maximum value at a point in M . By the maximum

principle of harmonic functions, xi is a constant. This is impossible because x is an
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immersion. Q.E.D.

By the uniformization theorem, a simply connected Riemann surface is confor-

mally equivalent to either the sphere S2, the complex plane C, or the unit disk

∆ = {z : |z| < 1}. Because of Corollary 2.2.7. the �rst case is excluded, and we

obtain the following corollary.

Corollary 2.2.8. For a minimal surface x = (x1, · · · , xm) : M → Rm immersed in

Rm, ifM is simply connected, thenM is conformally equivalent to the complex plane

or the unit disk.

2.3 The Generalized Gauss Map of Minimal Sur-

faces in Rm

First, we consider the set of all oriented 2-dimensional planes in Rm which con-

tain the origin and denote it by G2,Rm . To clarify the set G2,Rm , we regard it as a

subspace of the (m − 1)-dimensional complex projective space Pm−1(C) as follow-

ing. To each P ∈ G2,Rm , taking a positively oriented basis {X, Y } of P such that

|X| = |Y |, 〈X, Y 〉 = 0, we assign the point Φ(P ) = π(X −
√
−1Y ) where π denotes

the cannonical projection of Cm \ {0} onto Pm−1(C), namely, the map which maps

each P = (w1, · · · , wm) 6= (0, · · · , 0) to the equivalence class

[w1 : · · · : wm] := {(cw1, · · · , cwm)| c ∈ C \ {0}}.
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For another positive basis {X̃, Ỹ } of P satisfying |X̃| = |Ỹ | and
〈
X̃, Ỹ

〉
= 0, we can

�nd a real number θ such that

X̃ = r(X cos θ + Y sin θ)

Ỹ = r(−X sin θ + Y cos θ)

where r := |X̃|/|X| = |Ỹ |/|Y |. Therefore, we can write

X̃ −
√
−1Ỹ = reiθ(X −

√
−1Y ).

This shows that the value Φ(P ) does not depend on the choice of a positive basis of

P but only on P . Since

〈
X −

√
−1Y, X −

√
−1Y

〉
= |X|2 − 2

√
−1 〈X, Y 〉 − |Y |2 = 0,

we have w2
1 + · · ·+ w2

m = 0 via Φ. Thus, Φ(P ) is contained in the quadric

Qn−2(C) := {[w1 : · · · : wm]| w2
1 + · · ·+ w2

m = 0} ⊂ Pm−1(C).

Conversely, take an arbitrary point Q ∈ Qn−2(C). If we choose some W ∈ Cm \ {0}

with π(W ) = Q and write W = X −
√
−1Y with real vectors X and Y , then X

and Y satisfy the conditions |X| = |Y |, 〈X, Y 〉 = 0. It is easily seen that there

is a unique oriented 2-dimensional plane W such that Φ(W ) = Q. This shows that

Φ is bijective. Therefore, in the following sections, there will be no confusion if we

identify the set of all oriented 2-dimensional planes in Rm, G2,Rm , with Qn−2(C).

Now, we consider a surface x = (x1, · · · , xm) : M → Rm immersed in Rm. For

each point p ∈ M , the oriented tangent plane Tp(M) is canonically identi�ed with

an element of G2,Rm after the parallel translation which maps p to the origin.
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Definition 2.3.1. The (generalized) Gauss map of a surface M is identi�ed as the

map of M into Qn−2(C) which maps each point p ∈M to Φ(Tp(M)).

Figure 2.3: The Generalized Gauss Map

For a positively oriented isothermal local coordinate (u, v), the vectors

X =
∂x

∂u
, Y =

∂x

∂v

give a positive basis of Tp(M) satisfying the conditions |X| = |Y |, 〈X, Y 〉 = 0.

Therefore, the Gauss map G is locally given by

G = π(X −
√
−1Y ) =

[
∂x1

∂z
: · · · : ∂xm

∂z

]
(2.11)

where z = u +
√
−1v. Take a reduced representation G =

(
∂x1
∂z
, · · · , ∂xm

∂z

)
. Then we

have

ds2 = 2

(∣∣∣∣∂x1

∂z

∣∣∣∣2 +

∣∣∣∣∂x2

∂z

∣∣∣∣2 + · · ·+
∣∣∣∣∂xm∂z

∣∣∣∣2
)
|dz|2 = 2|G|2|dz|2
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We may write G = [φ1 : · · · : φm] with globally de�ned holomorphic 1-forms φi =

∂xi
∂z
dz, 1 ≤ i ≤ m.

Proposition 2.3.2. (H. Fujimoto, [9]) A surface x = (x1, · · · , xm) : M → Rm is

minimal if and only if the Gauss map G : M → Pm−1(C) is holomorphic.

Proof.⇒) Assume thatM is minimal. Then, from ∂x
∂z

= 1
2

(
∂x
∂u
−
√
−1∂x

∂v

)
and ∂x

∂z̄
=

1
2

(
∂x
∂u

+
√
−1∂x

∂v

)
we have

∂

∂z̄

(
∂x

∂z

)
=

1

2

[
1

2

∂

∂u

(
∂x

∂u
−
√
−1

∂x

∂v

)
+

1

2

√
−1

∂

∂v

(
∂x

∂u
−
√
−1

∂x

∂v

)]
=

1

4
∆x = 0

by Theorem 2.2.6. This shows that ∂x
∂z

satis�es Cauchy-Riemann equation. Hence,

the Gauss map G is holomorphic.

⇐) Assume that G is holomorphic. For a holomorphic local coordinate z we set

fi = ∂xi
∂z

(1 ≤ i ≤ m). After a suitable change of indices, we may assume that fm

has no zero. Since fi
fm

are holomorphic, we have

1

4
∆xi =

∂

∂z̄

(
∂xi
∂z

)
=

∂

∂z̄

(
fi
fm
· fm

)
=

[
∂

∂z̄

(
fi
fm

)]
fm +

fi
fm

[
∂fm
∂z̄

]
=

fi
fm

[
∂fm
∂z̄

]
= fi ·

1

fm

[
∂fm
∂z̄

]
for i = 1, 2, · · · ,m. Write

1

fm

[
∂fm
∂z̄

]
= h1 +

√
−1h2

with real-valued functions h1, h2. Then we have

∆xi = 4·fi ·
1

fm

[
∂fm
∂z̄

]
= 4·∂xi

∂z
·(h1+

√
−1h2) = 4· 1

2

(
∂x

∂u
−
√
−1

∂x

∂v

)
·(h1+

√
−1h2)

Take the real parts of both sides of the above equation to see

∆x = 2

(
∂x

∂u
h1 +

∂x

∂v
h2

)
∈ Tp(M).
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According to Proposition 2.2.5. (i), we obtain 〈∆x, ∆x〉 = 0 because ∆x ∈ Tp(M)

by the above. Thus, we get ∆x = 0. This implies that M is a minimal surface by

Theorem 2.2.6. Q.E.D.

We say that a holomorphic form φ on a Riemann surface M has no real period if

Re

∫
γ

φ = 0

for every closed curve γ in M .

Since

dxi =
∂xi
∂z

dz +
∂xi
∂z̄

dz̄

=
1

2

(
∂xi
∂u
−
√
−1

∂xi
∂v

)
(du+

√
−1dv) +

1

2

(
∂xi
∂u

+
√
−1

∂xi
∂v

)
(du−

√
−1dv)

=
∂xi
∂u

du+
∂xi
∂v

dv

= 2 Re

[
1

2

(
∂xi
∂u
−
√
−1

∂xi
∂v

)
(du+

√
−1dv)

]
= 2 Re

(
∂xi
∂z

dz

)
= 2 Re(φi),

(2.12)

we have

xi(z) = 2 Re

∫
γzz0

φi + xi(z0)

for a piecewise smooth curve γzz0 in M joining z0 and z. If φ has no real period, then

the quantity

x(z) = 2 Re

∫
γzz0

φ+ x(z0)
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depends only on z, and so x is a well-de�ned function of z on M , which we denote

by

x(z) = 2 Re

∫ z

z0

φ+ x(z0)

from here on. Related to Proposition 2.3.2, we state here the following construction

theorem of minimal surfaces.

Theorem 2.3.3. (H. Fujimoto, [9]) Let M be an open Riemann surface and let

φ1, φ2, · · · , φm be holomorphic forms on M such that they have no common zero, no

real periods and locally satisfy the identity(
∂x1

∂z

)2

+

(
∂x2

∂z

)2

+ · · ·+
(
∂xm
∂z

)2

= 0 (2.13)

for holomorphic functions ∂xi
∂z

with φi = ∂xi
∂z
dz. Set

xi = 2 Re

∫ z

z0

φi + xi(z0)

for an arbitrarily �xed point z0 ofM . Then, the surface x = (x1, · · · , xm) : M → Rm

is a minimal surface immersed in Rm such that the Gauss map is the map G =[
∂x1
∂z

: · · · : ∂xm
∂z

]
: M → Qm−2(C) and the induced metric is given by

ds2 = 2

(∣∣∣∣∂x1

∂z

∣∣∣∣2 +

∣∣∣∣∂x2

∂z

∣∣∣∣2 + · · ·+
∣∣∣∣∂xm∂z

∣∣∣∣2
)
|dz|2.

Proof. By the assumption, the xi are well-de�ned single-valued functions on M .
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Consider the map x = (x1, · · · , xm) : M → Rm. By (2.13) we have〈
∂x

∂u
,
∂x

∂u

〉
− 2
√
−1

〈
∂x

∂u
,
∂x

∂v

〉
−
〈
∂x

∂v
,
∂x

∂v

〉
=

〈
∂x

∂u
−
√
−1

∂x

∂v
,
∂x

∂u
−
√
−1

∂x

∂v

〉
=

〈
2
∂x

∂z
, 2

∂x

∂z

〉
= 4

[(
∂x1

∂z

)2

+

(
∂x2

∂z

)2

+ · · ·+
(
∂xm
∂z

)2
]

= 0

for z = u+
√
−1v. This gives that〈

∂x

∂u
,
∂x

∂u

〉
=

〈
∂x

∂v
,
∂x

∂v

〉
,

〈
∂x

∂u
,
∂x

∂v

〉
= 0

Moreover, By (2.10)

∑
i<j

∣∣∣∣∂(xi, xj)

∂(u, v)

∣∣∣∣2 =

〈
∂x

∂u
,
∂x

∂u

〉〈
∂x

∂v
,
∂x

∂v

〉
−
〈
∂x

∂u
,
∂x

∂v

〉2

=

〈
∂x

∂u
,
∂x

∂u

〉2

= 4

(∣∣∣∣∂x1

∂z

∣∣∣∣2 +

∣∣∣∣∂x2

∂z

∣∣∣∣2 + · · ·+
∣∣∣∣∂xm∂z

∣∣∣∣2
)2

> 0

Hence, x is an immersion. Then, the induced metric is given by

ds2 =

〈
∂x

∂u
,
∂x

∂u

〉
(du2 + dv2) = 2

(∣∣∣∣∂x1

∂z

∣∣∣∣2 +

∣∣∣∣∂x2

∂z

∣∣∣∣2 + · · ·+
∣∣∣∣∂xm∂z

∣∣∣∣2
)
|dz|2

and (u, v) gives a system of isothermal coordinates for the induced metric ds2. On

the other hand, by (2.11) the Gauss map G of M is given by G =
[
∂x1
∂z

: · · · : ∂xm
∂z

]
with holomorphic functions ∂xi

∂z
, and so holomorphic. According to Proposition 2.3.2,

the surface M is a minimal surface. Q.E.D.
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Let M be a Riemann surface with a metric ds2 which is conformal, namely rep-

resented as

ds2 = λ2
z|dz|2

with a positive C∞ function λz in term of a holomorphic local coordinate z.

Definition 2.3.4. For each point p ∈ M we de�ne the Gaussian Curvature of M at

p by

Kds2 = −∆ lnλz
λ2
z

For a minimal surface M immersed in Rm consider the system of holomorphic func-

tions G = (f1, · · · , fm) and set |G| = (|f1|2 + · · ·+ |fm|2)
1/2

for fi = ∂xi
∂z
. From the

de�nition of Gaussian curvature, we get

Kds2 = − 2

|G|2
∂2

∂z̄∂z
ln |G| = − 1

|G|6

(∑
i<j

∣∣fif ′j − fjf ′i∣∣2
)

(2.14)

This implies that the Gaussian curvature of a minimal surface is always nonpositive.

Definition 2.3.5. A surface with a metric ds2 = λ2
z|dz|2 is called to be �at if the

Gaussian curvature Kds2 vanishes identically.

If a minimal surface is �at, then (2.14) implies that (fi/fi0)
′ = 0, 1 ≤ i ≤ m for

some i0 with fi0 6≡ 0, which means fi/fi0 is constant. Therefore, the Gauss map G is

a constant.

2.4 Completeness of Minimal Surfaces

We will prove the Main Theorem of this paper using the Completeness of Minimal

Surfaces, so we shall explain it in this section.
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Definition 2.4.1. A divergent curve on a Riemann manifold M is a di�erentiable

map γ : [0, 1) → M such that for every compact subset K ⊂ M there exist a

t0 ∈ (0, 1) with γ(t) 6∈ K for all t > t0. That is, γ leaves every compact subset of M .

Definition 2.4.2. Riemann manifold M is said to be complete if every divergent

curve γ : [0, 1)→M has unbounded length.

Definition 2.4.3. A divergent curve on a minimal surface x : M → Rm is a contin-

uous map Γ : [0, 1)→ Rm of the form Γ = x ◦ γ where γ : [0, 1)→ M is a divergent

curve on the Riemann mani�od M endowed with the metric of Rm via the mapping

x.

Definition 2.4.4. A minimal surface x : M → Rm immersed in Rm is said to be

complete if every divergent curve Γ : [0, 1)→ Rm on x has unbounded length.

Example 2.4.5. The helicoid in Example 2.3.4.

x(u, v) = (sinhu · sin v, − sinhu · cos v, −v)

obtained from g = ez and h =
√
−1

2ez
is a non-�at complete minimal surface.

Proof. By 2.3.3. we have ds2 = (1 + |g|2)
2 |h|2|dz|2. Then the length of a curve γ is

de�ned as

d(γ) =

∫
γ

(
1 + |g|2

)
|h||dz|.

where γ : [0, 1) → M, t → γ(t) is a di�eomorphism. The only way a curve can be

divergent here is when it tends to ∞. As the curve γ(t) tends to ∞,∫
γ

(
1 + |g|2

)
|h||dz| =

∫
γ

(1 + |ez|2) · 1

2|ez|
|dz| = 1

2

∫
γ

(
1

|ez|
+ |ez|

)
|dz|
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tends to ∞. Thus d(γ) is unbounded. Therefore, we conclude the helicoid is com-

plete. As a matter of fact, all helicoid are complete minimal surfaces. Q.E.D.

Now we consider a doubly periodic Scherk's surface in R3. Let M̃ = C \

{1,−1,
√
−1,−

√
−1}, g̃ = z, and h̃ = 4

z4−1
. Then

(φ̃1, φ̃2, φ̃3) =

(
−2

z2 + 1
dz,

2
√
−1

z2 − 1
dz,

4z

z4 − 1
dz

)
.

But then x̃ = 2 Re
∫
φ̃ is not well de�ned because the 1-form φ̃i, i = 1, 2, 3 have real

periods on M̃ as we see the picture below. To solve this, we de�neM as the universal

covering of M̃ , and we take g and h as the lifts of g̃ and h̃ to M , respectively. Thus,

x̃ = 2 Re
∫
φ̃ is well de�ned.

Figure 2.4: The graph of a doubly periodic Scherk's surface in R3

As we have seen in example of the doubly periodic Scherk's surface, sometimes

we need to deal with surfaces x̃ : M̃ → R3 which is de�ned on Riemann surfaces M̃ ,
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where a simpley connected manifold M of the same dimension as M̃ is regarded as

the universal covering of M̃ . Any minimal surfaces x̃ : M̃ → R3 can be lifted from

M̃ to M as a minimal surface x : M → R3, and we shall see that x is complete if

and only if x̃ is complete.

If M̃ is a Riemann surface with conformal structure c̃, then π−1 induces a con-

formal sturcture c on M such that the projection map π : (M, c)→ (M̃, c̃) becomes

a holomorphic mapping of the Riemann surface (M, c) onto the Riemann surface

(M̃, c̃). Consequently if x̃ : M̃ → R3 is a minimal surface with M̃ as parameter

domain, and if π : M → M̃ is the universal map, then x := x̃ ◦π : M → R3 de�nes a

minimal surface. We call this map the universal covering of the minimal surface x̃.

Note that x is regular if and only if x̃ is regular, and the images of the Gauss maps

G of M and the image of the Gauss maps G̃ of M̃ coincide.

Proposition 2.4.6. (U.Dierkes, S.Hildebrandt, and F.Sauvigny, [17]) A minimal sur-

face x̃ : M̃ → R3 is complete if and only if its universal covering x : M → R3 is

complete.

Proof. ⇐) Suppose that x is complete. We consider an arbitrary divergent curve Γ̃

on x̃. Lifting Γ̃ to the covering surface x, we obtain a divergent curve Γ on x which

must have in�nite length as x is complete. Since π : M → M̃ is a local isometry, it

follows that Γ̃ has in�nite length, and we conclude that x̃ is complete.

⇒) Now Suppose that x̃ is complete. Consider an arbirary divergent curve Γ on x

given by Γ = x◦γ, γ : [0, 1)→M . Let Γ̃ := x̃◦ γ̃ be the curve on x̃ with γ̃ = π◦γ on
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M̃ . Then, we have Γ̃ := x̃◦ γ̃ = x̃◦π◦γ = x◦γ = Γ. We have to show that the length

of Γ is in�nite. If γ̃ is divergent on M̃ , then by de�nition Γ̃ is divergent on x̃, so the

completeness of x̃ implies that Γ̃ has in�nite lengh, and hence Γ has in�nite length

since π is locally an isometry. On the other hand, if γ̃ is not divergent, then there is

a compact subset K of M̃ and a sequence of parameter values tn in [0, 1) converging

to 1 such that γ̃(tn) belongs to K for all n. We may assume that the points γ̃(tn)

converges to a point p̃ ∈ M̃ . Then we choose a chart ϕ : U → R2 around p̃ such that

ϕ(p̃) = 0, and that π−1(U) is the disjoint union of open sheets Vi. Since the branch

points are isolated, there is an ε > 0 such that Ωε := Bε(0) \Bε/2(0) is contained in

ϕ(U) and that the metric ofM is positive de�nite on ϕ−1(Ωε). Since the points γ̃(tn)

converge to p̃, almost all of them belong to the compact set ϕ−1
(
Bε/2(0)

)
. Since γ is

divergent on the universal coveringM , the points γ(tn) are distributed over in�nitely

many sheets Vi. From this fact we infer that the path ϕ◦ γ̃ has to cross Ωε an in�nite

number of times. This implys that the length of γ̃ is in�nite. Hence the length of γ

is in�nite via π, so is Γ.
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Chapter 3

Theory of Holomorphic Curves

3.1 Holomorphic Curves

Let f be a holomorphic curve in Pn(C) de�ned on an open Rieman surface M ,

which means a nonconstant holomorphic map of M into Pn(C). For a �xed system

of homogeneous coordinates [w0 : · · · : wn] we set

Vi := {[w0 : · · · : wn] : wi 6= 0}, 1 ≤ i ≤ q.

Then, every z0 ∈M has a neighborhood U of z0 such that f(U) ⊂ Vi for some i and

f has a representation

f = [f0 : · · · : fi−1 : 1 : fi+1 : · · · : fn]

on U with holomorphic functions f0, · · · , fi−1, fi+1, · · · , fn.

Definition 3.1.1. For an open subset U of M we call a representation f = [f0 :
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· · · : fn] to be a reduced representation of f on U if f0, · · · , fn are holomorphic

functions on U and have no common zero. We de�ne the reduced representation as

F = (f0, · · · , fn) in Cn+1.

As stated above, every holpomorphic map ofM into Pn(C) has reduced represen-

tation on some neighborhood of each point in M . Let f = [f0 : · · · : fn] be a reduced

representation of f . Then, for an arbitrary nowhere zero holomorphic function h,

f = [f0h : · · · : fnh] is also a reduced representatioin of f . Conversely, for every

reduced representation f = [g0 : · · · : gn] of f , each gi can be written as gi = hfi

with a nowhere zero holomorphic function h.

Definition 3.1.2. For a nonzero meromorphic function h onM , we de�ne the divisor

νh of h as a map of M into the set of integers such that for z0 ∈M

νh(z0) =



m if h has a zero of order m at z0,

−m if h has a pole of order m at z0,

0 otherwise.

We now take n+ 1 holomorphic functions f0, · · · , fn on M at least one of which

does not vanish identically. Take a nonzero holomorphic function g such that νg(z0) =

min{νfi(z0) : fi 6≡ 0, 0 ≤ i ≤ n} for z0 ∈M . Then, fi/g (0 ≤ i ≤ n) are holomorphic

functions without common zeros. We can de�ne a holomorphic map f with a reduced

representation f = [f0/g : · · · : fn/g], which we call the holomorphic curve de�ned

by f0, · · · , fn.

Definition 3.1.3. Let a0, a1, · · · , an ∈ C be scalars not all equal to 0. Then the set
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H consisting of all homogeneous coordinates [w0 : w1 : · · · : wn] in Pn(C) such that

a0w0 +a1w1 + · · ·+anwn = 0 is a subspace of one dimension less than the demension

of Pn(C) is called a hyperplane in Pn(C). In other words,

H = {[w0 : w1 : · · · : wn] : a0w0 + a1w1 + · · ·+ anwn = 0}.

Take a holomorphic map f of M into Pn(C) and a hyperplane H in Pn(C) not

including the image f(M) of f . For each point z ∈M choosing a reduced representa-

tion f = [f0 : · · · : fn] or F = (f0, · · · , fn) on a neighborhood on U of z, we consider

the holomorphic function F (H) := a0f0 + · · ·+ anfn on U . Since νF (H) depends only

on f and H, we can de�ne νF (H) on M , which we call pull-back of H considered as

a divisor.

Proposition 3.1.4. (H. Fujimoto, [9])Every holomorphic map f of an open Riemann

surface M into Pn(C) has a reduced representation on M .

Proof. Set Hi := {wi = 0} (0 ≤ i ≤ n) for a �xed system of homogeneous coordi-

nates [w0 : · · · : wn]. Changing indices if necessary, we may assume that f(M) 6⊂ H0,

and so νF (H0) is well-de�ned. Then there is a nonzero holomorphic function g such

that νg = νF (H0). On the other hand, we can take an open covering {Uk : k ∈ I}

of M such that f has a reduced representation f = [fk0 : · · · : fkn] on each Uk.

Then, νg = νfk0 . Let gki := g
fk0
· fki (0 ≤ i ≤ n), which is holomorphic on Uk.

If Ukλ := Uk ∩ Uλ 6= φ, then there is a nowhere zero holomorphic function h with

fλi = hfki (0 ≤ i ≤ n) on Ukλ. We have

gki =
gfki
fk0

=
ghfki
hfk0

=
gfλi
fλ0

= gλi

on Ukλ for each i. Therefore, we can de�ne the function gi on M which equals gki
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on each Uk. For these functions, f = [g0 : · · · : gn] is a reduced representation of M .

Q.E.D.

Now, we consider k arbitrarily given holomorphic functions f0, · · · , fk on M . For

a holomorphic local coordinate z on an open subset U of M , we denote by (f
(l)
i )z, or

simply by f
(l)
i , l-th derivative of fi with respect to z, where we set (f

(0)
i )z := fi. By

de�nition, the Wronskian of f0, · · · , fk is given by

W (f0, · · · , fk) ≡ Wz(f0, · · · , fk) := det
(

(f
(l)
i )z : 0 ≤ i, l ≤ k

)
.

Proposition 3.1.5. (H. Fujimoto, [9])For two holomorphic local coordinate z and ζ,

it holds that

Wζ(f0, · · · , fk) ≡ Wz(f0, · · · , fk)
(
dz

dζ

)k(k+1)/2

.

Proof. Set F = (f0, · · · , fk) and
(
F (l)
)
z

=
(

(f
(l)
0 )z, · · · , (f (l)

k )z

)
. Then, we have

Wζ(f0, · · · , fk) = det
(
t(F (0))ζ ,

t (F (1))ζ , · · · ,t (F (k))ζ
)

= det

(
t(F (0))z,

t (F (1))z
dz

dζ
, · · · ,t (F (k))z

(
dz

dζ

)k)

= det
(
t(F (0))z,

t (F (1))z, · · · ,t (F (k))z
)(dz

dζ

)(
dz

dζ

)2

· · ·
(
dz

dζ

)k
= Wz(f0, · · · , fk)

(
dz

dζ

)k(k+1)/2

where tF (l) denotes the transpose of the vector F (l). Q.E.D

The following proposition is a well-known property, so we will not prove it.
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Proposition 3.1.6. For holomorphic functions f0, · · · , fk on M , the following con-

ditions are equivalent:

(i) f0, · · · , fk are linearly dependent over C

(ii) Wz(f0, · · · , fk) ≡ 0 for some (or all) holomorphic local coordinate z.

Definition 3.1.7. A holomorphic map f of M into Pn(C) is said to be (linearly)

non-degenerate if the image of f is not included in any hyperplane in Pn(C). If

f = [f0 : · · · : fn] is non-degenerate, then f0, · · · , fn are linearly independent over C.

3.2 The Associated Curves

Let f be a linearly non-degenerate holomorphic map of ∆(R) := {z : |z| < R}(⊂ C)

into Pn(C) where 0 < R ≤ ∞. Take a reduced representation F = (f0, · · · , fn) of f

with P(F ) = f where P is the canonical projection of Cn+1\{0} onto Pn(C). Denote

the k-th derivative of F by F (k) and de�ne

Fk = F (0) ∧ · · · ∧ F (k) : ∆(R)→
k+1∧

Cn+1

for k = 0, 1, · · · , n. Evidently, Fn+1 ≡ 0. Note that F0 = F . Take a basis

{E0, · · · , En} of Cn+1. Then the set {Ei0 ∧ · · · ∧ Eik : 0 ≤ i0 < · · · < ik ≤ n}

gives a basis of
∧k+1 Cn+1. Then we see that

Fk =
∑

0≤i0<···<ik≤n

W (fi0 , · · · , fik)Ei0 ∧ · · · ∧ Eik (3.1)

and

|Fk|2 =
∑

0≤i0<···<ik≤n

|W (fi0 , · · · , fik)|2
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where W (fi0 , · · · , fik) is the Wronskian of fi0 , · · · , fik . If f = [f0 : · · · : fn] is non-

degenerate, then f0, · · · , fn are linearly independent over C. Therefore, by (3.1) and

Proposition 3.1.6 we have Fk 6≡ 0 for 0 ≤ k ≤ n− 1.

Let

P :
k+1∧

Cn+1 \ {0} → P(
k+1∧

Cn+1 \ {0}) ⊂ PNk(C)

be the canonical projection where Nk = n+1Ck+1 − 1 = (n+1)!
(n−k)!(k+1)!

− 1.

Definition 3.2.1. The curve fk := P(Fk) : ∆(R)→ PNk(C), k = 0, 1, · · · , n is called

the k-th associated curve of f . Note that f0 = P(F0) = P(F ) = f .

Let ωk be the Fubini-Study form on PNk(C), and let Ωk = (fk)∗ωk, k = 0, 1, · · · , n,

be the pullback via the k-th associated curve. Then

Ωk = ddc ln |Fk|2 =

√
−1

2π

|Fk−1|2|Fk+1|2

|Fk|4
dz ∧ dz ≥ 0

for 0 ≤ k ≤ n, and by convention F−1 ≡ 1. Note that Ω0 = ddc ln |F |2, and Ωn ≡ 0

since Fn+1 ≡ 0. It follows that

Ric Ωk : = ddc ln

(
|Fk−1|2|Fk+1|2

|Fk|4

)
= ddc ln |Fk−1|2 + ddc ln |Fk+1|2 − 2ddc ln |Fk|2

= Ωk−1 + Ωk+1 − 2Ωk.

Let H = {[z0 : · · · : zn]| a0z0 + · · · + anzn = 0} be a hyperplane in Pn(C) with

a2
0 + · · ·+ a2

n = 1. Take a basis {E0, · · · , En} of Cn+1. Then the set

{Ei0 ∧ · · · ∧ Eik : 0 ≤ i0 < · · · < ik ≤ n}
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gives a basis of
∧k+1 Cn+1. We de�ne

Fk(H) =
∑

0≤i1<···<ik≤n

( ∑
i0 6=i1,···in

ai0W (fi0 , · · · , fik)

)
Ei1 ∧ · · · ∧ Eik .

Then

F0(H) = a0f0 + · · ·+ anfn = F (H).

Note that

|Fk(H)|2 =
∑

0≤i1<···<ik≤n

∑
i0 6=i1,···in

ai0W (fi0 , · · · , fik) 2.

and

|F (H)|2 = |a0f0 + · · ·+ anfn|2.

Definition 3.2.2.

|Fk(H)(z)|
|Fk(z)|

is said to be the projective distance from the k-th associated curve fk(z) to the

hyperplane H.

Definition 3.2.3. We de�ne the k-th contact function of f for H by

φk(H) :=
|Fk(H)|2

|Fk|2
.

Then φ0(H) = |F (H)|2
|F |2 and φn(H) =

|W (f0,··· ,fn)|2
∑n
i=0 |ai|2

|Fn|2 = |W (f0,··· ,fn)|2
|Fn|2 = 1. Note

that 0 ≤ φk(H) ≤ φk+1(H) ≤ 1 for 0 ≤ k ≤ n− 1.

3.3 Results in Nevanlinna Theory

We shall introduce a few portions of the Nevalinna Theory in order to enforce the

proof of the Main Theorem.
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Definition 3.3.1. Let f be a meromorphic function on ∆(R), where 0 ≤ R ≤ ∞

and let r < R. Denote the number of poles of f on the closed disc ∆(R) by nf (r,∞),

counting multiplicity. We then de�ne the counting function Nf (r,∞) to be

Nf (r,∞) =

∫ r

0

nf (t,∞)− nf (0,∞)

t
dt+ nf (0,∞) ln r,

here nf (0,∞) is the multiplicity if f has a pole at z = 0. For each complex number

a, we then de�ne the counting function Nf (r, a) to be

Nf (r, a) = N 1
f−a

(r,∞).

Definition 3.3.2. The Nevanlinna's proximity function mf (r,∞) is de�ned by

mf (r,∞) =
1

2π

∫ 2π

0

ln+ |f(reiθ)|dθ

where ln+ x = max{0, lnx}. For any complex number a, the poximity function

mf (r, a) of f with respect to a is then de�ned by

mf (r, a) = m 1
f−a

(r,∞).

Definition 3.3.3. The Nevanlinna's characteristic function of f is de�ned by

Tf (r) = mf (r,∞) +Nf (r,∞).

Here, Tf (r) measures the growth of f .

Example 3.3.4. (K.S. Charak [27]) Consider the rational function

f(z) =
P (z)

Q(z)
=

anz
n + an−1z

n−1 + · · ·+ a0

bmzm + bm−1zm−1 + · · ·+ b0

, an, bm 6= 0.
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Distingquish the following two cases:

Case 1. When m ≥ n. In this case lim|z|→∞ f(z) is �nite, so there is a positive real

number r0 such that nf (r,∞) = m for all r ≥ r0. Thus

Nf (r,∞) =

∫ r0

0

nf (t,∞)− nf (0,∞)

t
dt+

∫ r

r0

nf (t,∞)− nf (0,∞)

t
dt+ nf (0,∞) ln r

= (m− nf (0,∞)) (ln r − ln r0) + nf (0,∞) ln r +O(1)

= m ln r −m ln r0 + nf (0,∞) ln r0 +O(1)

= m ln r +O(1)

Next, note that for polynomial P (z) = anz
n + an−1z

n−1 + · · ·+ a0 with an 6= 0, given

positive ε there is an r0 > 0 such that for all r = |z| > r0 we have

(1− ε)|an|rn ≤ |P (z)| ≤ (1 + ε)|an|rn.

Thus, for all r ≥ r0 we can assume that |P (z)| = |an|rn(1 + o(1)) and |Q(z)| =

|bm|rm(1 + o(1)). This implies that ln+ |f | = O(1), and so mf (r,∞) = O(1). Hence

in this case

Tf (r) = m ln r +O(1) = O(ln r).

Case 2. When m < n. by the same arguments used in Case 1 we get

Tf (r) = T 1
f
(r) +O(1) = n ln r +O(1) = O(ln r).

Thus for a rational function f we have Tf (r) = O(ln r). Also, the converse of this

statement holds. That is, if f is a meromorphic function with Tf (r) = O(ln r), then

f is a rational function. Furthermore, by letting m = 0 and n = 0, we have that

Tf (r) = O(1) if and only if f is constant.
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Example 3.3.5. (K.S. Charak [27]) Consider f(z) = ez. Then for all r we have

mf (r,∞) =
1

2π

∫ 2π

0

ln+ |ereiθ |dθ

=
1

2π

∫ 2π

0

ln+ er cos θdθ

=
1

2π

∫ π
2

−π
2

r cos θdθ

=
r

π
.

Since ez is an entire function, for all r Nf (r,∞) = 0 and so

Tf (r) =
r

π
.

Theorem 3.3.6. (Nevanlinna's First Main Theorem) Let f be a non-constant mero-

morphic function on ∆(R), R ≤ ∞. Then, for any r (0 ≤ r < R) and a ∈ C

Tf (r) = mf (r, a) +Nf (r, a) +O(1)

or

Tf (r) = T 1
f−a

(r) +O(1)

holds. This theorem implies Nf (r, a) ≤ Tf (r).

Example 3.3.7. Consider the function in Example 3.3.5. If a = 0, then by the same

arguments in Example 3.3.5. we have

mf (r, 0) = m 1
f
(r,∞) =

r

π
and Nf (r, 0) = N 1

f
(r,∞) = 0.

for all r. Thus we get Tf (r) = r
π

= mf (r, 0) +Nf (r, 0) = T 1
f
(r). Therefore, the result

in Theorem 3.3.6 holds. In this case, letting r →∞ the Nevanlinna's First Main The-

orem tells us in a sense that f is close to 0 on the left half plane and close to∞ on the
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Figure 3.1: Color Wheel Graph of

f(z) = ez

en.wikipedia.org/wiki/Exponential_function

right half plane. We can see this fact from

the Color Wheel Graph of the exponential func-

tion f(z) = ez on the right. The transi-

tion from dark to light colors shows that the

magnitude of the exponential function is in-

creasing to the right. The periodic horizon-

tal bands indicate that the exponential function

is periodic in the imaginary part of its argu-

ment.

Now we de�ne N̄f (r, a) in the same way as

Nf (r, a) but without taking multiplicity into ac-

count.

Theorem 3.3.8. (Nevanlinna's Second Main Theorem) Let f be a non-constant

meromorphic function on ∆(R), R ≤ ∞, and let a1, · · · , aq be distinct complex

numbers in C ∪ {∞}. Then, the inequality

(q − 2)Tf (r) ≤exc
q∑
j=1

N̄f (r, aj) + S(r, f)

holds where S(r, f) is the small error term and ≤exc means that the inequality holds

for all r ∈ [0,∞) outside of a set of �nite Lebesgue measure.

Following are some of the known estimates of S(r, f).

Theorem 3.3.9. (W.K. Hayman [28], K.S. Charak [27]) Let f be a non-constant

meromorphic function |z| < R ≤ +∞. Then
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(a) if R = +∞,

S(r, f) = O(ln+ Tf (r)) + o(ln r)

as r →∞ through all values if f is of �nite order, and as r →∞ outside a set E of

�nite linear measure otherwise.

(b) if 0 < R < +∞,

S(r, f) = O
(

ln+ Tf (r)) + ln
1

R− r

)
as r →∞ outside a set E with

∫
E

dr
R−r < +∞.

As an immediate deduction from Theorem 3.3.9, we have

Theorem 3.3.10. (W.K. Hayman [28], K.S. Charak [27]) Let f be a non-constant

meromorphic function |z| < R ≤ +∞. Then

S(r, f)

Tf (r)
→ 0 as r → R, (3.2)

with the following provisos:

(a) if R = +∞ and f is of �nite order, then (3.2) holds without any restriction.

(b) if R = +∞ and f is of in�nite order, then (3.2) holds as r →∞ outside a set

E of �nite length.

(c) if R = +∞ and

lim inf
r→R

Tf (r)

ln( 1
R−r )

= +∞,

then (3.2) holds as r → R through a suittable sequence of values of r.

From Theorem 3.3.10 we see that S(r, f) is the small error term with the property

that S(r, f) = o(Tf (r)) as r →∞. Let ε > 0. Then by replacing o(Tf (r)) by ε Tf (r)
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we can restate the inequality

(q − 2− ε)Tf (r) ≤exc
q∑
j=1

N̄f (r, aj) as r → R.

Definition 3.3.11. We say that q hyperplanes in Pn(C) are in general position if for

1 ≤ k ≤ n, k hyperplanes of them intersect in an (n− k)-dimensional plane, and for

k > n, any k hyperplanes of them have empty intersection. In other words, q hyper-

planes are in general position if any subset of k normal vectors of the q hyperplanes

is linearly independent whenever 1 ≤ k ≤ n.

Theorem 3.3.12. (M. Ru [24], Cartan's Second Main Theorem with Truncated

Counting Functions) Let H1, · · · , Hq be hyperplanes in Pn(C) in general position.

Let f : C → Pn(C) be a linearly non-degnerate holomorphic curve. Then, the

inequality

(q − (n+ 1))Tf (r) ≤exc
q∑
j=1

N
(n)
f (r,Hj) +O(ln+ Tf (r)) + o(ln r)

holds where ≤exc means that the inequality holds for all r ∈ [0,∞) outside of a set

of �nite Lebesgue measure.

As we see before, S(r, f) = O(ln+ Tf (r)) + o(ln r) is the small error term with the

property that S(r, f) → o(Tf (r)) as r → ∞. Thus by replacing o(Tf (r)) by ε Tf (r)

we can restate the inequality

(q − (n+ 1)− ε)Tf (r) ≤exc
q∑
j=1

N
(n)
f (r,Hj).
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Chapter 4

Previous Studies of the Unicity

Results

The uniqueness theory mainly studies conditions under which there exists essen-

tially only one function. Here we shall introduce two types of unicity theorems.

4.1 Unicity Theorem for meromorpic functions of C

The Finnish mathematician Rolf Nevanlinna is the person who made the decisive

contribution to the development of the theory of value distribution by introducing

the charicteristic function Tf (r) for the meromorphic function f and proved the �rst

unicity theorem for meromorpic functions in 1926. The theorem is as follows:
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Theorem 4.1.1. (R. Nevanlinna [2], 1926) If two non-constant meromorphic func-

tions f, g : C → P1(C) have the same inverse images ignoring multiplicities for �ve

distinct complex values, then f ≡ g.

Proof. Suppose that f 6≡ g. Let a1, · · · , aq be distinct complex numbers in P1(C)

and de�ne χ = f − g. We apply Nevanlinna's Second Main Theorem to f and g.

Then, for ε > 0 we have

(q − 2− ε)Tf (r) ≤exc
q∑
j=1

N̄f (r, aj) (4.1)

(q − 2− ε)Tg(r) ≤exc
q∑
j=1

N̄g(r, aj) (4.2)

as r →∞. Let T (r) = Tf (r) +Tg(r). Since f
−1(aj) = g−1(aj) for j = 1, · · · , q, there

exists a z such that f(z) = aj = g(z) for each j. From this, we get the equation

χ(z) = f(z)−g(z) = 0. Now by combining (4.1) and (4.2) and applying Nevanlinna's

First Main Theorem, we can get the inequality

(q − 2− ε)T (r) ≤exc
q∑
j=1

(
N̄f (r, aj) + N̄g(r, aj)

)
≤exc 2 Nχ(r, 0)

≤exc 2 Tχ(r)

≤exc 2 T (r)

This is equivalent to

(q − 4− ε)T (r) ≤exc 0.

From this we obtain q ≤ 4 + ε, which contradicts the assumption q = 5. Therefore,

f ≡ g. Q.E.D.
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This theorem, tells that any non-constant meromorphic functions can be uniquely

determined by �ve values. However, the `�ve' in the theorem cannot be reduced to

`four'. For example, ez and e−z share four values which are 0, 1, −1, and ∞, but

they are not identical.

Hirotaka Fujimoto, in 1975, extended Nevanlinna's result to non-degenerate holo-

morphic curves f, g : C → Pn(C). During the four decades following 1975, this

problem has been studied intensively by H. Fujimoto, W. Stoll, L. Smiley, S. Ji, M.

Ru, S.D. Quang, Z.H. Chen, Q.M. Yan and other mathematicians. In 1983, Smiley

considered holomorphic maps f, g : C → Pn(C) which share 3n + 2 hyperplanes in

Pn(C) without counting multiplicity and proved the following theorem.

Theorem 4.1.3. (L. Smiley [11], 1983) Let f, g : C → Pn(C) be linearly non-

degenerate meromorphic mappings. Assume that there are q hyperplanes H1, · · · , Hq

in Pn(C) located in general position satisfying

(i) f−1(Hj) = g−1(Hj) for all 1 ≤ j ≤ q,

(ii) f−1(Hi) ∩ f−1(Hj) = φ for all 1 ≤ i < j ≤ q ,

(iii) f = g on

q⋃
j=1

f−1(Hj).

If q ≥ 3n+ 2, then f ≡ g.

Proof. Suppose that f 6≡ g. Fix reduced (global) representations F = (f0, · · · , fn)

with Tfi(r) ≤ Tf (r) and G := (g0, · · · , gn) with Tgi(r) ≤ Tg(r) such that f = P(F )

and g = P(G) where P denotes the canonical projection of Cn\{0} onto Pn(C). Since

f 6≡ g, there exist indices 1 ≤ i, j ≤ q such that χ = F (Hi)G(Hj)−G(Hi)F (Hj) 6≡ 0.
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We now apply Cartan's Second Main Theorem to f and g. Then, for ε > 0 we have

(q − (n+ 1)− ε)Tf (r) ≤exc
q∑
j=1

N
(n)
f (r,Hj) (4.3)

(q − (n+ 1)− ε)Tg(r) ≤exc
q∑
j=1

N (n)
g (r,Hj) (4.4)

as r → ∞. Let T (r) = Tf (r) + Tg(r). Then, by combining (4.3) and (4.4), we can

get the inequality

(q − (n+ 1)− ε)T (r) ≤exc
q∑
j=1

(
N

(n)
f (r,Hj) +N (n)

g (r,Hj)
)

≤exc n
q∑
j=1

(
N̄f (r,Hj) + N̄g(r,Hj)

)
If F (Hi)(z0) = 0, then z0 ∈

⋃q
j=1 f

−1(Hi), so f(z0) = g(z0) by the assumption

(iii), and hence χ(z0) = 0. Also, note that F (Hj)(z0) 6= 0 for all j 6= i, so∑q
j=1 N̄f (r,Hj) ≤ Nχ(r, 0). Similarly,

∑q
j=1 N̄g(r,Hj) ≤ Nχ(r, 0). By these, together

with by Nevanlinna's First Main Theorem, Nχ(r, 0) ≤ Tχ(r) ≤ T (r), implies

(q − (n+ 1)− ε)T (r) ≤exc 2n Nχ(r, 0)

≤exc 2n Tχ(r)

≤exc 2n T (r)

This is equivalent to

(q − (3n+ 1)− ε)T (r) ≤exc 0.

From this we obtain q ≤ 3n + 1 + ε, which contradicts the assumption q ≥ 3n + 2.

Therefore, f ≡ g. Q.E.D.

In 2009, Z.H. Chen and Q.M. Yan [14] improved Smiley's result for q ≥ 3n + 2
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to 2n+ 3 with the same assumption.

Theorem 4.1.4. (Z.H. Chen and Q.M. Yan [14], 2009) Let f and g be two linearly

non-degenerate holomorphic maps of C into Pn(C) over C and letH1, · · · , Hq(q ≥ 2n)

be hyperplanes in Pn(C) in general position. Assume that

(i) f−1(Hj) = g−1(Hj) for all 1 ≤ j ≤ q,

(ii) f−1(Hi) ∩ f−1(Hj) = φ for all 1 ≤ i < j ≤ q,

(iii )f = g on
⋃q
j=1 f

−1(Hj).

If q ≥ 2n+ 3, then f ≡ g.

In 2012, H. Giang, L. Quynh and S. Quang [15] generalized previous results by

changing the condition (ii) to a more general one using the auxiliary function

χ =

q∑
i=1

[
F (Hi)G(Hσ(i))−G(Hi)F (Hσ(i))

]
6≡ 0

Their theorem is stated as follows:

Theorem 4.1.5. (H. Giang, L. Quynh and S. Quang [15], 2012) Let f and g be

two linearly non-degenerate holomorphic maps of C into Pn(C) and let H1, · · · , Hq

(q ≥ 2n) be hyperplanes in Pn(C) in general position. Assume that for a positive

integer k with 1 ≤ k ≤ n,

(i) f−1(Hj) = g−1(Hj) for all 1 ≤ j ≤ q,

(ii) f−1(
⋂k+1
j=1 Hij) = φ for all 1 ≤ i1 < · · · < ik+1 ≤ q,

(iii )f = g on

q⋃
j=1

f−1(Hj).

If q ≥ (n+ 1)k + n+ 2, then f ≡ g.

Also in 2012, after [15] was published, using the same auxiliary function

χ =

q∑
i=1

[
F (Hi)G(Hσ(i))−G(Hi)F (Hσ(i))

]
6≡ 0,
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F. Lü [16] reduced the number of hyperplanes in the theorem of Giang, Quynh and

Quang to

q ≥
√

1 + 8k + 1

2
n+ k +

√
1 + 8k + 2

4
,

which is derived from q < q−2k+2kn
2kn

[q−(n+1)]. A multitude of unicity theorems have

been proved, but only those theorems that are relevant to this thesis were mentioned

here.

4.2 Unicity Theorem for Gauss Maps of complete

Minimal Surfaces

Hirotaka Fujimoto is the �rst person who used the above technique to prove the

unicity theorem for Gauss maps of minimal surfaces immersed in Rm. He also showed

that generalized Gauss maps of complete minimal surfaces in Rm are holomorphic

curves in Pm−1(C), so many value-distribution-theoretic properties of holomorphic

curves in the complex projective space could be used. The following theorem is his

�rst unicity theorem submitted in 1992, which is for Gauss maps of minimal surfaces

immersed in R3.

Theorem 4.2.1. (H. Fujimoto [8], submitted in 1992) Let x := (x1, x2, x3) : M →

R3 and x̃ := (x̃1, x̃2, x̃3) : M̃ → R3 be two non-�at minimal surfaces immersed in

R3 and assume that there is a conformal di�eomorphism Φ of M onto M̃ . Consider

the maps f := π ◦ G and g := π ◦ G̃ ◦ Φ where π is the stereographic projection and

G and G̃ are the Gauss maps of M and M̃ respectively. Suppose that there are q

distinct points α1, α2, · · · , αq such that f−1(αj) = g−1(αj) for 1 ≤ j ≤ q.
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(a) If q ≥ 7 and either M or M̃ is complete, then f ≡ g.

(b) If q ≥ 6 and both of M or M̃ are complete and have �nite total curvature, then

f ≡ g.

Since it will take several pages to prove this theorem completely, we just give the

outline of this proof. The proving process is very similar to the process of proving

our Main Theorem.

Outline of the proof of (a) in Theorem 4.2.1. First, suppose that f 6≡ g in

order to get a contradiction, and assume that αq =∞.

Second, we de�ne a pseudo-metric dη2 and show that dη2 is continuous on M and

has strictly negative curvature on the set {dη2 6= 0}. dη2 is de�ned as follows: Set

λ :=

(
q∏
j=1

|f, αj| ln
(

a0

|f, αj|2

))−1+ε

, λ̃ :=

(
q∏
j=1

|g, αj| ln
(

a0

|g, αj|2

))−1+ε

for a0 > 0 and ε with q − 4 > qε > 0 and de�ne

dη2 := |f, g|2λλ̃ f ′

1 + |f |2
g′

1 + |g|2
|dz|2

outside the set E :=
⋃q
j=1 f

−1(αj) and dη
2 = 0 on E where |·, ·| is the cordal distance

between two complex values.

Third, we apply Ahlfors-schwartz Lemma for dη2 in order to get

dη2 ≤ C
4R2

(R2 − |z|2)2
|dz|2 (4.5)

for a constant C.

Fourth, we assume thatM is complete, and we considerM as open Riemann surfaces

with induced metric ds2 = |h|2(1 + |f |2)(1 + |g|2)|dz|2 from R3 where h is a nowhere

zero holomorphic function.

56



Fifth, we take some δ with q − 6 > qδ > 0, set

τ :=
2

q − 4− qδ
< 1 for q ≥ 7,

and de�ne the pseudo-metric dσ2 by

dσ2 := |h|
2

1−τ

( ∏q−1
j=1(|f − αj||g − αj|)1−δ

|f − g|2|f ′||g′|
∏q−1

j=1(1 + |αj|2)1−δ

) τ
1−τ

|dz|2 (4.6)

which does not depend on a choice of holomorphic local coordinate z and so well-

de�ned on M ′ := M \D where

D := {z ∈M : f ′(z) = 0, g′(z) = 0, or f(z) = g(z) = αj for some j}.

Note that dσ2 is �at on M ′.

Sixth, take an arbitrary point z inM ′. Since dσ2 is �at onM ′, we can take R (≤ ∞)

such that there is a holomorphic map B : ∆(R)→M ′ with B(0) = z which is a local

isometry with respect to the standard metric on ∆(R) and the metric dσ2 on M ′.

Then the pseudo-metric B∗dη2 on ∆(R) also has strictly negative curvature. Since

there is no metric with strictly negative curvature on C, we have necessarily R <∞.

Seventh, we choose a point a with |a| = R such that for the line segment

La : w = ta (0 ≤ t < 1),

the image Γa of La by B tends to the boundary of M ′ as t tends to 1. Then choosing

the suitable δ in the de�nition τ , we can actually show that Γa tends to the boundary

of M as t→ 1.

Eighth, Since B is a local isometry, we may take the coordinate w as a holomorphic

local coordinate on M ′ and we may write dσ2 = |dw|2. Then, from (4.6) we obtain

|h|2 =

(
|f − g|2|f ′||g′|

∏q−1
j=1(1 + |αj|2)1−δ∏q−1

j=1(|f − αj||g − αj|)1−δ

)τ

.
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Ninth, by (4.5) with ε = δ/2 we have the inequality

ds2 = |h|2(1 + |f |2)(1 + |g|2)|dz|2

≤ C ′

(
|f, g|2|f ′||g′|λλ̃

(1 + |f |2)(1 + |g|2)

)τ

|dw|2

≤ C

(
2R

R2 − |w|2

)2τ

|dw|2

Finally, we calculate the length of Γa∫
Γa

ds =

∫
La

B∗ds ≤ C

∫ R

0

(
2R

R2 − |w|2

)τ
|dw| <∞ since τ < 1,

which contradicts the assumption of completeness of M . Therefore, we have neces-

sarily f = g. Q.E.D.

Fujimoto, in his paper [8], gave an example which shows that the number seven

in (a) is the best possible number. Here is an example:

Take a number α with α 6= 0, 1,−1 and consider the homomorphic functions

h(z) :=
1

z(z − α)(αz − 1)
, g(z) = z

and the universal covering surface M of C \ {0, α, 1/α}. Then by the Enneper-

Weierstrass representations we can construct a minimal surface x = (x1, x2, x3)

using the following formulas:

x1 := 2 Re

∫ z

0

(1− g2)hdz, x2 := 2 Re

∫ z

0

√
−1(1 + g2)hdz, x3 := 2 Re

∫ z

0

ghdz

As we have seen in chapter 2, the map g is the classical Gauss map of M . It is

easily seen that M is complete (the proof is similar to Example 2.4.5.). We can also

construct another minimal surface x = (x̃1, x̃2, x̃3) in a similar manner from

h(z) :=
1

z(z − α)(αz − 1)
, g̃(z) =

1

z
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Since M̃ is isometric with M , the identity map Φ : z ∈ M → z ∈ M̃ is a conformal

di�eomorphism. For the classical Gauss maps g and g̃, we have g−1(αj) = g̃−1(αj)

for six values

α1 := 0, α2 :=∞, α3 := α, α4 :=
1

α
, α5 := 1, α6 := −1.

However, g 6≡ g̃. Hence, the number seven in Theorem 4.1.1. cannot be reduced to

six.

In 1993, Fujimoto [10] generalized Theorem 4.2.1 into Rm. The generalized the-

orem is stated as follows.

Theorem 4.2.2. (H. Fujimoto [10], 1993) Let x := (x1, · · · , xm) : M → Rm and

x̃ := (x̃1, · · · , x̃m) : M̃ → Rm be two oriented non-�at complete minimal surfaces

immersed in Rm and let G : M → Pm−1(C) and G̃ : M̃ → Pm−1(C) be their gener-

alized Gauss maps. Assume that there is a conformal di�eomorphism Φ of M onto

M̃ . Then the Gauss map of the minimal surface x̃ ◦ Φ : M → Rm is given by G̃ ◦ Φ.

Consider the holomorphic maps f = G : M → Pm−1(C), g = G̃ ◦ Φ : M → Pm−1(C).

Assume that there exist hyperplanes H1, · · · , Hq in Pm−1(C) located in general po-

sition such that

(i) f−1(Hj) = g−1(Hj) for every j = 1, · · · , q,

(ii) f = g on

q⋃
j=1

f−1(Hj).

If q > m2 +m(m− 1)/2, then f ≡ g.

The unicity theorem for meromorphic functions in the value distribution theory

has been improved for several decades by many mathematicians, but there has been

no improvement of the unicity theorem for Gauss maps in the minimal surface theory
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since Theorem 4.2.2 was published. Thus we are going to improve upon the theorem

through this thesis.

4.3 Comparison of the Unicity Theorem for holo-

morphic curves of C and the Unicity Theorem

for Gauss Maps of Complete Minimal Surfaces

In order to get some idea to make an improvement of Theorem 4.2.2, we now

compare the recent unicity theorem for holomorphic maps on C to the recent unicity

theorem for Gauss maps on complete minimal Surface M . See the table below.

Table 4.1: Comparison of the Recent Results of Unicity Theorems

Holomorphic Curves f, g : C→ Pn(C) Gauss maps f, g : M → Pn(C)

with f−1(Hi ∩Hj) 6= φ without with f−1(Hi ∩Hj) 6= φ without

q > 2n+ 2 q > (n+ 1)2 (No result q > (n+ 1)2 + n(n+1)
2

(Chen and Yan [14], (Giang, Quynh, and in the previous studies) (Fujimoto [10], 1993)

2009) Quang [15], 2012)

with f−1
(⋂k+1

j=1 Hij

)
6= φ with f−1

(⋂k+1
j=1 Hij

)
6= φ

q > (n+ 1) + 2knq
q−2k+2kn

q > (n+ 1) + 2knq
q−2k+2kn

+ n(n+1)
2

(F. Lü [16], 2012) (The result in this thesis, 2016)

60



As we see the table above, the unicity theorem for holomorphic curves and the

unicity theorm for Gauss maps are very related and the term n(n+ 1)/2 is the key.
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Chapter 5

The Auxiliary Function and the Main

Lemma

5.1 The Auxiliary Function

In this section, we construct a (new) auxiliary function, similar to the auxil-

iary function used in Chen-Yan [14] (see also [15] or [16]), which will be used later.

Let M be a simply connected Riemann surface and f, g : M → Pn(C) be two

linearly non-degenerate holomorphic maps. Fix a reduced (global) representations

F = (f0, · · · , fn) and G := (g0, · · · , gn), i.e. f = P(F ), g = P(G) where P denotes

the canonical projection of Cn \ {0} onto Pn(C) and f0, · · · , fn (resp. g0, · · · , gn) are

holomorphic functions on M without common zeros such that Tfi(r) ≤ Tf (r) and

Tgi(r) ≤ Tg(r). For a hyperplane H = {[z0 : · · · : zn]|a0z0 + · · ·+anzn = 0} in Pn(C),

we de�ne
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F (H) := a0f0 + · · ·+ anfn and G(H) := a0g0 + · · ·+ angn.

Assume that f 6≡ g on M , and let H1, · · · , Hq be hyperplanes in general position in

Pn(C). We de�ne an equivalence relation on L := {1, · · · , q} as i ∼ j if and only

if F (Hi)
G(Hi)

− F (Hj)

G(Hj)
≡ 0. Set {L1, · · · , Ls} = L/ ∼. Since f 6≡ g and H1, · · · , Hq

are in general position, we have that #(Lk) ≤ n for all k = {1, · · · , s} where

#(Lk) is the number of elements in Lk. Without loss of generality, we assume that

Lk := {ik−1 + 1, ik−1 + 2, · · · , ik} for 1 ≤ k ≤ s, where 1 < i1 < · · · < is = q, i.e.

F (H1)

G(H1)
≡ F (H2)

G(H2)
≡ · · · ≡ F (Hi1)

G(Hi1)︸ ︷︷ ︸
L1 group

6≡ F (Hi1+1)

G(Hi1+1)
≡ F (Hi1+2)

G(Hi1+2)
≡ · · · ≡ F (Hi2)

G(Hi2)︸ ︷︷ ︸
L2 group

6≡ F (Hi2+1)

G(Hi2+1)
≡ F (Hi2+2)

G(Hi2+2)
≡ · · · = F (Hi3)

G(Hi3)︸ ︷︷ ︸
L3 group

6≡ · · · 6≡
F (His−1+1)

G(His−1+1)
≡ · · · ≡ F (His)

G(His)︸ ︷︷ ︸
Ls group

.

De�ne the map σ : {1, · · · , q} → {1, · · · , q} by

σ(i) =


i+ n if i+ n ≤ q,

i+ n− q if i+ n > q.

Then obviously σ is bijective and |σ(i)− i| ≥ n assuming q ≥ 2n. This implies that

i and σ(i) belong two distinct sets of {L1, · · · , Ls}, so

F (Hi)

G(Hi)
−
F (Hσ(i))

G(Hσ(i))
6≡ 0.

Let χi := F (Hi)G(Hσ(i))−G(Hi)F (Hσ(i)). Then χi 6≡ 0. De�ne

χ :=

q∏
i=1

χi =

q∏
i=1

[F (Hi)G(Hσ(i))−G(Hi)F (Hσ(i))] 6≡ 0. (5.1)
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For a nonzero meromorphic function h on M , we de�ne the divisor νh of h as a map

of M into the set of integers such that for z0 ∈M

νh(z0) =



m if h has a zero of order m at z0,

−m if h has a pole of order m at z0,

0 otherwise.

We note that νf(H)(z) is the intersection multiplicity of the images of f and the

hyperplane H at f(z).

Lemma 5.1.1. (F. Lü [16], see also [14] and [15]) Let f, g : M → Pn(C) be two

linearly nondegenerate holomorphic mappings. Let H1, · · · , Hq be hyperplanes in

Pn(C) located in general position with q ≥ 2n such that

(i) f−1(Hj) = g−1(Hj) for every j = 1, · · · , q,

(ii)
⋂k+1
j=1 f

−1(Hij) = ∅ for any {i1, · · · , ik+1} ⊂ {1, · · · , q},

(iii) f = g on

q⋃
j=1

f−1(Hj).

Then the following holds on the domain of each holomorphic local coordinate z of M :

νχ(z) ≥
(
q − 2k + 2kn

2kn

) q∑
j=1

(
νnF (Hj)

(z) + νnG(Hj)
(z)
)

where νnF (Hj)
(z) = min{n, νF (Hj)(z)}.

Proof. If z 6∈
⋃q
j=1 f

−1(Hj), then νF (Hj)(z) = 0, so this lemma is obviously true.

Thus, we only need to consider the case when z ∈
⋃q
j=1 f

−1(Hj). Let J = {j :

F (Hj)(z) = 0, 1 ≤ j ≤ q} and denote by #(J) the number of elements of J . Then,

#(J) ≤ k by the assumption (ii). If j ∈ J , then z is a zero of F (Hj), and hence z
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is a zero of χj with multiplicity at least min{νF (Hj)(z), νG(Hj)(z)}. We now de�ne

σ−1(J) = {j : σ(j) ∈ J}. If l ∈ {1, · · · , q} \ (J
⋃
σ−1(J)), then z is a zero of χl with

multiplicity at least 1 by the assumption (iii), and so νχl ≥ 1. Therefore,

νχ(z) ≥
∑

j∈J, j∈σ−1(J)

min{νF (Hj)(z), νG(Hj)(z)}+
∑

l∈{1,··· ,q}\(J
⋃
σ−1(J))

νχl

≥
∑

j∈J, j∈σ−1(J)

min{νF (Hj)(z), νG(Hj)(z)}+
∑

l∈{1,··· ,q}\(J
⋃
σ−1(J))

1

≥ 2
∑
j∈J

min{νF (Hj)(z), νG(Hj)(z)}+ q −#(J ∪ σ−1(J))

≥ 2
∑
j∈J

min{νF (Hj)(z), νG(Hj)(z)}+ q − 2k

≥ 2
∑
j∈J

[min{n, νF (Hj)(z)}+ min{n, νG(Hj)(z)} − n] + q − 2k.

= 2
∑
j∈J

[νnF (Hj)
(z) + νnG(Hj)

(z)− n · ν1
F (Hj)

(z)] +
q − 2k

2k
· 2k

≥ 2

q∑
j=1

[νnF (Hj)
(z) + νnG(Hj)

(z)− n · ν1
F (Hj)

(z)]

+
q − 2k

2k

q∑
j=1

[ν1
F (Hj)

(z) + ν1
G(Hj)

(z)]

≥ 2

q∑
j=1

[νnF (Hj)
(z) + νnG(Hj)

(z)] + [
q − 2k

2k
− n]

q∑
j=1

[ν1
F (Hj)

(z) + ν1
G(Hj)

(z)]

≥ 2

q∑
j=1

[νnF (Hj)
(z) + νnG(Hj)

(z)] + [
q − 2k

2kn
− 1]

q∑
j=1

[νnF (Hj)
(z) + νnG(Hj)

(z)]

=

(
q − 2k + 2kn

2kn

) q∑
j=1

(
νnF (Hj)

(z) + νnG(Hj)
(z)
)
,

where, in above, we use the facts that min{a, b} ≥ min{a, n} + min{b, n} − n for

all positive integers a and b, ν1
F (Hj)

(z) = 1 for j ∈ J , as well as k ≥ #(J) ≥∑q
j=1 min{1, νF (Hj)(z)} =

∑q
j=1 ν

1
F (Hj)

(z). This �nishes the proof. Q.E.D.
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Lemma 5.1.2. (M. Ru [21]) Let H1, · · · , Hq be hyperplanes Pn(C) in general position

and let F = (f0, · · · , fn) be the reduced representation of a linearly non-degenerate

holomorphic map f : M → Pn(C). Then the following holds on the domain of each

holomorphic local coordinate z of M :

q∑
j=1

νF (Hj)(z)− νFn(z) ≤
q∑
j=1

νnF (Hj)
(z)

where Fn = W (f0, · · · , fn) which is the Wronskian of f0, · · · , fn.

Proof. If z0 6∈
⋃q
j=1 f

−1(Hj), then νF (Hj)(z0) = 0, so this lemma is obviously true.

Thus, we only need to consider the case when z0 ∈ ∪qj=1f
−1(Hj). Then there are

integers hj ≥ 0 and nowhere vanishing holomorphic function gj in a neighborhood

U of z0 such that

F (Hj) = (z − z0)hjgj for j = 1, · · · , q

Let J = {j : F (Hj)(z0) = 0, 1 ≤ j ≤ q}. Then #(J) ≤ n because H1, · · · , Hq are in

general position. We re-orderH1, · · · , Hq so that the multiplicity hj, 1 ≤ j ≤ q are in

descending order. Without loss of generality, we assume that hj ≥ hj+1 for 1 ≤ j ≤ j1

and hj = 0 for j1 + 1 ≤ j ≤ q where j1 ≤ n. Assume that h1 ≥ h2 ≥ · · · ≥ hj0 ≥ n

for 1 ≤ j0 ≤ j1. Since each F (Hj), 1 ≤ j ≤ q is a linear combination of f0, · · · , fn,

by the property of the wronskian,

Fn = W (f0, · · · , fn) = cW (F (H1), · · · , F (Hn+1)) =

j0∏
j=1

(z − z0)hj−nξ(z)

where ξ(z) is a holomorphic function de�ned on U and c is a constant. Therefore,

νFn(z0) ≥
j0∑
j=1

(hj − n).
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Thus,

q∑
j=1

νF (Hj)(z0)− νFn(z0) =
n∑
j=1

νF (Hj)(z0)− νFn(z0)

≤
n∑
j=1

νF (Hj)(z0)−
j0∑
j=1

(hj − n)

=
n∑

j=j0+1

νF (Hj)(z0) +

j0∑
j=1

[νF (Hj)(z0)− (hj − n)]

=
n∑

j=j0+1

νF (Hj)(z0) +

j0∑
j=1

n

=
n∑
j=1

νnF (Hj)
(z0) =

q∑
j=1

νnF (Hj)
(z0). Q.E.D.

Proposition 5.1.3. The function

|χ|
2kn

q−2k+2kn |FnGn|∏q
j=1 |F (Hj)G(Hj)|

is continuous on the domain of each holomorphic local coordinate z of M , where χ

is de�ned in (5.1).

Proof. Denote by

P :=
|χ|

2kn
q−2k+2kn |FnGn|∏q

j=1 |F (Hj)G(Hj)|

and let E :=
⋃q
j=1 f

−1(Hj). Then P is obviously continuous at z0 for all z0 6∈ E.

Now assume that z0 ∈ E. By Lemma 5.1.1. and Lemma 5.1.2., we get

νP (z0) ≥ 2kn

q − 2k + 2kn
νχ(z0) + νFn(z0) + νGn(z0)−

q∑
j=1

νF (Hj)(z0)−
q∑
j=1

νG(Hj)(z0)

≥
q∑
j=1

(
νnF (Hj)

(z0) + νnG(Hj)
(z0)

)
−

q∑
j=1

νnF (Hj)
(z0)−

q∑
j=1

νnG(Hj)
(z0) = 0.

Therefore, P is continuous. Q.E.D.
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5.2 Pseudo-metric on ∆(R) with Negative Curvature

Let f : ∆(R) → Pn(C) be a linearly non-degenerate holomorphic map where

∆(R) := {z : |z| < R} with 0 < R < ∞. Let H1, · · · , Hq be hyperplanes located

in general position in Pn(C). Min Ru (see M. Ru [19]) constructed a pseudo-metric

Γ =
√
−1

2π
h(z)dz∧dz on ∆(R)\∪qj=1{φ0(Hj) = 0} whose Gauss curvature is less than

or equal to −1, i.e. Ric Γ ≥ Γ (where Ric Γ := ddc lnh), for q ≥ n+ 2 as follows:

Lemma 5.2.1 (M. Ru [19]). Assume q ≥ n+ 2 and 2q
N
< q−(n+1)

n(n+2)
and de�ne

h(z) := c

q∏
j=1

(
1

φ0(Hj)

)βn q∏
j=1

[
n−1∏
p=0

h
βn/λp
p

(N − lnφp(Hj))2βn

]

where hp = |Fp−1|2|Fp+1|2
|Fp|4 , βn = 1∑n−1

p=0 λ
−1
p
, λp = 1

n−p+(n−p)2 2q
N

, and c > 0 is some positive

constant. Let Γ =
√
−1

2π
h(z)dz ∧ dz. Then Ric Γ ≥ Γ on ∆(R) \ ∪{φ0(Hj) = 0}.

(In our case, since hyperplanes H1, · · · , Hq are located in general position, θ = 1 and∑q
j=1 ω(j) = q where θ is the Nochka constant and ω is the Nochka weight.)

Note that, Min Ru (see at the end of the proof of the Main Lemma in [19]) indeed

proved the following slightly stronger result:

Ric Γ ≥ βn

[(
q − (n+ 1)− (n2 + 2n)

2q

N

)
Ω0 +

n−2∑
p=1

2q

N
Ωp +

2q

N
Ωn−1

]
+ Γ. (5.2)

It is obvious that the right-hand side of (5.2) is bigger than Γ because q − (n+ 1)−

(n2 + 2n)2q
N
> 0 by the assumption. We will use (5.2) in our proof.

Noticing that

n−1∏
p=0

h
1
λp
p =

n−1∏
p=0

(
|Fp−1|2|Fp+1|2

|Fp|4

)n−p+(n−p)2 2q
N

= |F0|−2(n+1)−2(n2+2n−1) 2q
N |F1|

8q
N · · · |Fn−1|

8q
N |Fn|2+ 4q

N ,
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|F0| = |F | and φ0(Hj) =
|F (Hj)|2
|F |2 , we get

h(z) := c

[
|F |S(|F1| · · · |Fn−1|)

4q
N |Fn|1+ 2q

N∏q
j=1 |F (Hj)|

∏n−1
p=0

∏q
j=1(N − lnφp(Hj))

]2βn

(5.3)

where S = q − (n+ 1)− (n2 + 2n− 1)2q
N
.

Let f, g : ∆(R) := {z : |z| < R}(⊂ C) → Pn(C) be two linearly non-

degenerate holomorphic maps with reduced representations F = (f0, · · · , fn) and

G = (g0, · · · , gn) respectively, where 0 < R <∞. Let H1, · · · , Hq be hyperplanes in

Pn(C) in general position. Denote by

φFk (H) =
|Fk(H)|2

|Fk|2
, φGk (H) =

|Gk(H)|2

|Gk|2

and, according to (5.3), we let

h1 := c

[
|F |S(|F1| · · · |Fn−1|)

4q
N |Fn|1+ 2q

N∏q
j=1 |F (Hj)|

∏n−1
p=0

∏q
j=1(N − lnφFp (Hj))

]2βn

, (5.4)

h2 := c

[
|G|S(|G1| · · · |Gn−1|)

4q
N |Gn|1+ 2q

N∏q
j=1 |G(Hj)|

∏n−1
p=0

∏q
j=1(N − lnφGp (Hj))

]2βn

. (5.5)

Lemma 5.2.2. Assume q ≥ n+ 1, q − (n+ 1)− (n2 + 2n− 1)2q
N
− 2knq

q−2k+2kn
> 0 and

take N such that 2q
N
< q−(n+1)

n(n+2)
. Let Θ =

√
−1

2π
η(z)dz ∧ dz with

η(z) := c

(
|χ(z)|

|F (z)|q|G(z)|q

) 2knβn
q−2k+2kn √

h1(z)h2(z), (5.6)

where χ is the auxiliary function given in (5.1), h1, h2 are given in (5.4) and (5.5)

respectively. Then η(z) is continuous on ∆(R) and Ric Θ ≥ CΘ for some positive
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constant C.

Proof. Plugging h1(z) and h2(z) into η(z), we have

η = c

 (|F ||G|)S−
2knq

q−2k+2kn |χ|
2kn

q−2k+2kn
∏n−1

p=1 (|Fp||Gp|)
4q
N (|Fn||Gn|)1+ 2q

N∏q
j=1(|F (Hj)G(Hj)|)

∏n−1
p=0

∏q
j=1

[
(N − lnφFp (Hj))(N − lnφGp (Hj))

]
βn

.

By Proposition 5.1.3., η(z) is continuous on ∆(R). Now we calculate Ric Θ. Set

Γ1 =
√
−1

2π
h1(z)dz ∧ dz and Γ2 =

√
−1

2π
h2(z)dz ∧ dz where Γ1,Γ2 are given in (5.4) and

(5.5). Using (5.3) (which holds for h1, h2 as well), the assumption

q − (n+ 1)− (n2 + 2n− 1)
2q

N
− 2knq

q − 2k + 2kn
> 0,

and the fact that χ is holomorphic, we have

Ric Θ = ddc ln η(z)

=
1

2
ddc lnh1(z) +

1

2
ddc lnh2(z) +

knβn
q − 2k + 2kn

[
ddc ln |χ|2 − q · ddc(ln |F |2 + ln |G|2)

]
≥ 1

2
Ric Γ1 +

1

2
Ric Γ2 −

knqβn
q − 2k + 2kn

(
ddc ln |F |2 + ddc ln |G|2

)
≥ 1

2
βn

(q − (n+ 1)− (n2 + 2n)
2q

N

)
Ωf

0 +
n−2∑
p=1

2q

N
Ωf
p +

2q

N
Ωf
n−1

+
1

2
Γ1

+
1

2
βn

(q − (n+ 1)− (n2 + 2n)
2q

N

)
Ωg

0 +

n−2∑
p=1

2q

N
Ωg
p +

2q

N
Ωg
n−1

+
1

2
Γ2

− knqβn
q − 2k + 2kn

Ωf
0 −

knqβn
q − 2k + 2kn

Ωg
0

≥ 1

2
βn

[(
q − (n+ 1)− (n2 + 2n)

2q

N
− 2knq

q − 2k + 2kn

)
Ωf

0

]
+

1

2
Γ1

+
1

2
βn

[(
q − (n+ 1)− (n2 + 2n)

2q

N
− 2knq

q − 2k + 2kn

)
Ωg

0

]
+

1

2
Γ2

≥ 1

2
(Γ1 + Γ2) ≥

√
−1

2π

√
h1(z)h2(z)dz ∧ dz
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≥
√
−1

2π
C ′
(

|χ(z)|
|F (z)|q|G(z)|q

) 2knβn
q−2k+2kn √

h1(z)h2(z)dz ∧ dz

= CΘ.

In the last step, we used the fact that |χ(z)| ≤ C ′′|F (z)|q|G(z)|q for some positive

constant C ′′. Q.E.D.

5.3 The Main Lemma

The following Ahlfors-Schwarz lemma is well-known (see M. Ru [20]):

Ahlfors-Schwarz Lemma. Let Γ =
√
−1

2π
h(z)dz∧dz̄ be a continuous pseudo-metric

on ∆(R) whose Gaussian curvature is bounded above by −1 (i.e., RicΓ ≥ Γ). Then,

for all z ∈ ∆(R),

h(z) ≤
(

2R

R2 − |z|2

)2

.

Now we are ready to prove our Main Lemma. Let

ψFj,p =
∑

l 6=i1,··· ,ip

aj,lW (fl, fi1 , · · · , fip) and ψGj,p =
∑

l 6=i1,··· ,ip

aj,lW (gl, gi1 , · · · , gip).

By the assumption that f and g are linearly non-degenerate, ψFj,p and ψGj,p do not

vanish identically, and thus have only isolated zeros since they are both holomorphic.

Note that, from de�nition,

|ψFj,p| < |Fp(Hj)| and |ψGj,p| < |Gp(Hj)|. (5.7)
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Main Lemma. Assume q ≥ n+1, S− 2knq
q−2k+2kn

> 0 with S = q−(n+1)−(n2 +2n−

1)2q
N
, and take N such that 2q

N
< q−(n+1)

n(n+1)
. Then there exists some positive constant

C0 such that, for all z ∈ ∆(R),

|F (z)G(z)|S−
2knq

q−2k+2kn |χ(z)|
2kn

q−2k+2kn |Fn(z)Gn(z)|1+ 2q
N

∏n−1
p=0

∏q
j=1

(
|ψFj,p(z)ψGj,p(z)|

) 4
N∏q

j=1 |F (Hj)(z)G(Hj)(z)|

≤ C0

(
2R

R2 − |z|2

)2[
n(n+1)

2
+
∑n−1
p=0 (n−p)2 2q

N
]

.

Proof. From Lemma 4, we know that η(z) is a continuous map and Ric Θ ≥ CΘ.

Applying the Schwarz lemma for Θ, we get

η(z) ≤ C0

(
2R

R2 − |z|2

)2

. (5.8)

for some constant C0 > 0. On the other hand, from (5.4), (5.5), the de�nition of η,

and the fact that βn = 1∑n−1
p=0 λ

−1
p

= 1∑n−1
p=0 (n−p+(n−p)2 2q

N )
= 1

n(n+1)
2

+
∑n−1
p=0 (n−p)2 2q

N

, we get

η[
n(n+1)

2
+
∑n−1
p=0 (n−p)2 2q

N
]

=
|FG|S−

2knq
q−2k+2kn |χ|

2kn
q−2k+2kn (|F1| · · · |Fn−1||G1| · · · |Gn−1|)

4q
N |FnGn|1+ 2q

N∏q
j=1 |F (Hj)G(Hj)|

∏n−1
p=0

∏q
j=1

[
(N − lnφFp (Hj))(N − lnφGp (Hj))

] .
For a given 2/N > 0, it holds that limx→0 x

2/N(N − lnx) < ∞, so we can set

K := sup0<x≤1 x
2/N(N − lnx). Since 0 < φFp (Hj) < 1 for all p and j, we have, by

using (5.7),

1

N − lnφFp (Hj)
≥ 1

K
φFp (Hj)

2/N =
1

K

|Fp(Hj)|4/N

|Fp|4/N
≥ 1

K

|ψFj,p|4/N

|Fp|4/N
.

Similarly,

1

N − lnφGp (Hj)
≥ 1

K

|ψGj,p|4/N

|Gp|4/N
.
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Hence,

η[
n(n+1)

2
+
∑n−1
p=0 (n−p)2 2q

N
]

≥ C
|FG|S−

2knq
q−2k+2kn |χ|

2kn
q−2k+2kn |FnGn|1+ 2q

N

∏n−1
p=0

∏q
j=1

(
|ψFj,p|4/N |ψGj,p|4/N

)∏q
j=1 |F (Hj)|

∏q
j=1 |G(Hj)|

for some constant C > 0. This, together with (5.8), proves the lemma. Q.E.D.
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Chapter 6

The Main Theorem

6.1 Proof of the Main Theorem

Main Theorem. Assume that both f = G : M → Pm−1(C) and g = G̃ ◦ Φ : M →

Pm−1(C) are linearly non-degenerate (i.e. the images of f and g are not contained

in any linear subspaces of Pm−1(C)) and that there exist hyperplanes H1, · · · , Hq in

Pm−1(C) located in general position and a positive integer k > 0 such that

(i) f−1(Hj) = g−1(Hj) for every j = 1, · · · , q,

(ii)
k+1⋂
j=1

f−1(Hij) = ∅ for any {i1, · · · , ik+1} ⊂ {1, · · · , q},

(iii) f = g on

q⋃
j=1

f−1(Hj).

If q >
(m2 +m+ 4k) +

√
(m2 +m+ 4k)2 + 16k(m− 2)m(m+ 1)

4
, then f ≡ g.
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Proof. First, we let n = m − 1 for simplicity. Then we obtain the equivalent

inequility from the assumption for our q > 0 as the following:

q >
(m2 +m+ 4k) +

√
(m2 +m+ 4k)2 + 16k(m− 2)m(m+ 1)

4

⇔ q >
(n2 + 3n+ 2 + 4k) +

√
(n2 + 3n+ 2 + 4k)2 + 16k(n− 1)(n+ 1)(n+ 2)

4

⇔ q − (n+ 1)− n(n+ 1)

2
− 2knq

q − 2k + 2kn
> 0.

(6.1)

Let x : M → Rm and x̃ : M̃ → Rm be two oriented non-�at minimal surfaces

immersed in Rm and let G = [∂x1
∂z

: · · · : ∂xm
∂z

] : M → Pm−1(C) and G̃ = [∂x̃1
∂z

:

· · · : ∂x̃m
∂z

] : M̃ → Pm−1(C) be their generalized Gauss maps of M and M̃ respec-

tively. Assume that there is a conformal di�eomorphism Φ of M onto M̃ . Then

the induced metric on M and on M̃ from the standard metric on Rm are given

by ds2 = 2
(∣∣∂x1

∂z

∣∣2 + · · ·+
∣∣∂xm
∂z

∣∣2) |dz|2 and ds̃2 = 2
(∣∣∂x̃1

∂z

∣∣2 + · · ·+
∣∣∂x̃m
∂z

∣∣2) |dz|2 re-

spectively. Assume thatM and M̃ are complete with respect to the induced metrics.

Note that we may regard M and M̃ as Riemann surfaces and Φ as a conformal dif-

feomorphism between M and M̃ . Consider the linearly non-degenerate holomorpic

maps

f := G : M → Pn(C) and g := G̃ ◦ Φ : M → Pn(C)

with n = m − 1 and take their reduced (global) representations F := (f0, · · · , fn)

and G := (g0, · · · , gn) respectively with f = P(F ), g = P(G) where P is the

canonical projection of Cn+1 \ {0} onto Pn(C). By Proposition 2.2.2. f0, · · · , fn

(resp. g0, · · · , gn) are holomorphic functions on M without common zeros. Set
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|F |2 =
∣∣∂x1
∂z

∣∣2 + · · ·+
∣∣∂xm
∂z

∣∣2 and |G|2 =
∣∣∂x̃1
∂z

∣∣2 + · · ·+
∣∣∂x̃m
∂z

∣∣2. Then, since G = G̃ ◦Φ,

we can rewrite the (induced) metric by

ds2 = 2|F |2|dz|2 = 2|F ||P−1(f)||dz|2 = 2|F ||P−1(G)||dz|2

= 2|F ||P−1(G̃ ◦ Φ)||dz|2 = 2|F ||P−1(g)||dz|2

= 2|F ||G||dz|2

which is, by the assumption, complete. In order to prove the unicity theorem, we

will use ds2 = 2|F ||G||dz|2 because it has both F and G. We are now ready to

prove the Main Theorem. By taking the universal cover of M and lifting the maps,

if necessary, we can assume that M is simply connected. Then, by the Unifomiza-

tion theorem, the Riemann surface M is conformally equivalent to either C or the

unit-disc ∆ := {z : |z| < 1}.

In the case when M = C, it is known that f ≡ g from [8]. We enclose a proof

here for the sake of completeness. Assume that f 6≡ g. We will use Cartan's Second

Main Theorem to derive a contradiction. To do so, we use some standard notations

in Nevanlinna theory. From Lemma 5.1.1., we get

Nχ(r, 0) ≥
(
q − 2k + 2kn

2kn

) q∑
j=1

(
N

(n)
f (r,Hj) +N (n)

g (r,Hj)
)
,

and, by the First Main Theorem, Nχi(r, 0) ≤ Tf (r) + Tg(r) (by choosing and �xing

the reduced representation F = (f0, · · · , fn) and G = (g0, · · · , gn) of f and g respec-

tively). On the other hand, from H. Cartan's Second Main Theorem, we have that

for ε > 0 and all r (0 ≤ r < R, R ≤ ∞) except for a set E with �nite Lebesgue
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measure, the inequality

(q − (n+ 1)− ε)Tf (r) ≤
q∑
j=1

N
(n)
f (r,Hj) + o(Tf (r))

hols as r →∞. It is also holds for g. Hence, we get

q (Tf (r) + Tg(r)) ≥
q∑
j=1

Nχj(r, 0)

≥ Nχ(r, 0)

≥
(
q − 2k + 2kn

2kn

) q∑
j=1

(
N

(n)
f (r,Hj) +N (n)

g (r,Hj)
)

≥
(
q − 2k + 2kn

2kn

)
(q − (n+ 1)− ε)(Tf (r) + Tg(r))

After simplifying, we have

q ≥
(
q − 2k + 2kn

2kn

)
(q − (n+ 1)) ⇐⇒ q − (n+ 1)− 2knq

q − 2k + 2kn
≤ 0

which gives a contradiction under the assumption (6.1) for our q.

So we only need to consider the case M = ∆ := {z : |z| < 1}. We now have two

linearly non-degenerate holomorphic maps f, g : ∆ → Pn(C). Assume that f 6≡ g.

We will derive a contradiction. We will use the notations as being introduced in

the previous sections. Since q − (n + 1) − n(n+1)
2
− 2knq

q−2k+2kn
> 0 and n2 + 2n − 1 +∑n−1

p=0 (n − p)2 = n2 + 2n − 1 + n(n+1)
2

+
∑n−1

p=0 p(p + 1), we can thus choose N > 0

such that

2q
[
n2 + 2n− 1 +

∑n−1
p=0 (n− p)2

]
q − (n+ 1)− n(n+1)

2 − 2knq
q−2k+2kn

< N <
2 + 2q

[
n2 + 2n− 1 + n(n+1)

2 +
∑n−1

p=0 p(p+ 1)
]

q − (n+ 1)− n(n+1)
2 − 2knq

q−2k+2kn

.
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Let ρ = S − [n(n+1)
2

+ 2knq
q−2k+2kn

+ n(n+ 1) q
N

+
n−1∑
p=0

p(p+ 1)
2q

N
] where S = q− (n+

1)− (n2 + 2n− 1)2q
N
. Then

ρ > 0 and
2

ρN
> 1. (6.2)

Moreover, from

N >
2q
[
n2 + 2n− 1 +

∑n−1
p=0 (n− p)2

]
q − (n+ 1)− n(n+1)

2
− 2knq

q−2k+2kn

we get

N [q− (n+ 1)]− 2qn(n+ 2) > N

[
n(n+ 1)

2
+

2knq

q − 2k + 2kn

]
+ 2q

−1 +
n−1∑
p=0

(n− p)2

 > 0

and

q − (n+ 1)− (n2 + 2n− 1)
2q

N
− 2knq

q − 2k + 2kn
>
n(n+ 1)

2
+

2q

N

n−1∑
p=0

(n− p)2 > 0,

and thus

2q

N
<
q − (n+ 1)

n(n+ 2)
and q − (n+ 1)− (n2 + 2n− 1)

2q

N
− 2knq

q − 2k + 2kn
> 0.

Hence we can apply the Main Lemma. To do so, let ρ∗ = 1
ρ
and let

u =

( ∏q
j=1 |F (Hj)G(Hj)|

|χ|
2kn

q−2k+2kn |FnGn|1+2q/N
∏n−1

p=0

∏q
j=1

(
|ψFj,pψGj,p|

)4/N

) ρ∗
2

(6.3)

which, by Proposition 5.2.3., is a strictly positive continuous function (i.e. it has no

zeros) on M ′ = ∆\D where

D := {Fn = 0} ∪ {Gn = 0} ∪j,p {z : ψFj,p(z) = 0 or ψGj,p(z) = 0}.
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Figure 6.1: The relation among M ′, M̃ ′, and ∆(R)

Let π : M̃ ′ → M ′ be the universal covering map of M ′. Then ln(u ◦ π) is a

harmonic function since F (Hj), G(Hj), Fn, Gn, ψ
F
j,p, ψ

G
j,p and χ are all holomorphic

functions and u has no zeros. So we can take a holomorphic function β on M̃ ′ such

that |β| = u ◦ π. Without loss of generality, we may assume that M ′ contains the

origin o of C. Let õ ∈ M̃ ′ denote the point corresponding to o ∈M ′. For each point

p̃ of M̃ ′ we take a continuous curve γp̃ : [0, 1]→M ′ with γp̃(0) = o and γp̃(1) = π(p̃),

which corresponds to the homotopy class of p̃. Set

w = X(p̃) =

∫
γp̃

β(z)dz

where z denotes the holomorphic coordinate on M ′ induced from the holomorphic

global coordinate on M̃ ′ by π. Then X is a single-valued holomorphic function on M̃ ′

satisfying the condition X(õ) = 0 and dX(p̃) 6= 0 for every p̃ ∈ M̃ ′. Furthermore, for
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the metric |β||dz| on M̃ ′ we have the Gaussian curvature K = −∆ ln |β|
|β|2 = −∆ lnu

u2
= 0,

which means that M̃ ′ is �at. Thus, we can choose the largest R(≤ ∞) such that

X maps an open neighborhood U of õ biholomorphically onto an open disc ∆(R)

in C, and consider the map B = π ◦ (X|U)−1 : ∆(R) → M ′ ⊂ ∆. By Liouville's

theorem, R =∞ is impossible. Thus, we conclude that R <∞. Also, by de�nition

of w =
∫
γp̃
β(z)dz, we have

|dw| = |β(z)||dz| = u(z)|dz|. (6.4)

For each a ∈ ∂∆(R) consider the curve

La : w = ta, 0 ≤ t < 1

and the image Γa of La by B. We shall show that there exists a point a0 ∈ ∂∆(R) such

that Γa0 tends to the boundary of M . To this end, we assume the contrary. Then,

for each a ∈ ∂∆(R), there is a sequence {tν : ν = 1, 2, . . . } such that limν→∞ tν = 1

and z0 = limν→∞B(tνa) is in M . Suppose that z0 6∈M ′. Then either Fn(z0) = 0,

Figure 6.2: La0 and its image Γa0 when z0 6∈M ′

Gn(z0) = 0, ψFj,p(z0) = 0, or ψGj,r(z0) = 0. In any one of these cases, there is a
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constant C such that

u ≥ C

|z − z0|
2ρ∗
N

in a neighborhood of z0. Thus,

R =

∫
La

|dw| =
∫

Γa

|dw|
|dz|
|dz| =

∫
Γa

u(z)|dz| ≥ C

∫
Γa

1

|z − z0|
2ρ∗
N

|dz| =∞

since 2ρ∗

N
= 2

ρN
> 1. This is a contradiction because R < ∞. Therefore, we have

z0 ∈M ′. Take a simply connected neighborhood V of z0 which is relatively compact

inM ′. Set C ′ = minz∈V u(z) > 0. Then B(ta) ∈ V (t0 < t < 1) for some t0. In fact, if

not, Γa goes and returns in�nitely often from ∂V to a su�ciently small neighborhood

of z0 and so we get the absurd conclusion

R =

∫
La

|dw| =
∫

Γa

u(z)|dz| ≥ C ′
∫

Γa

|dz| =∞.

Thus we see that limt→1B(ta) = z0. Since π maps each connected component of

π−1(V ) bioholomorphically onto V , there exists the limit

p̃0 = lim
t→1

(X|U)−1(ta) ∈ M̃ ′.

Thus (X|U)−1 has a biholomorphic extension to a neighborhood of a. Since a is

arbitrarily chosen, X maps an open neighborhood Ū biholomorphically onto an open

neighborhood of ∆(R). This contradicts the property of R, i.e.,R is the largest radius

such that X maps an open neighborhood U of õ biholomorphically onto an open disc

∆(R) in C. Therefore, there exists a point a0 ∈ ∂∆(R) such that Γa0 tends to the

boundary of M .
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Figure 6.3: The image Γa0 of La0 tending to the boundary of M

Our goal is to show that Γa0 has �nite length, contradicting the completeness of

the given minimal surface M . From (6.3) and (6.4), we have

|dw| = u(z)|dz| =

( ∏q
j=1 |F (Hj)(z)G(Hj)(z)|

|χ(z)|
2kn

q−2k+2kn |Fn(z)Gn(z)|1+ 2q
N

∏n−1
p=0

∏q
j=1 |ψFj,p(z)ψGj,p(z)| 4N

) ρ∗
2

|dz|.

Let ZF (w) = F (B(w)), ZG(w) = G(B(w)), and let ψZFj,p , ψ
ZG
j,p be de�ned from ZF , ZG

in the same way as ψFj,p, ψ
G
j,p from F,G respectively. Then, because

ZF ∧ Z ′F ∧ · · · ∧ Z
(n)
F = (F ∧ F ′ ∧ · · · ∧ F (n))

(
dz

dw

)n(n+1)
2

,

ZG ∧ Z ′G ∧ · · · ∧ Z
(n)
G = (G ∧G′ ∧ · · · ∧G(n))

(
dz

dw

)n(n+1)
2

,

ψZFj,p = ψFj,p ·
(
dz

dw

) p(p+1)
2

and ψZGj,p = ψGj,p ·
(
dz

dw

) p(p+1)
2

,

it is easy to see that, if we let h = n(n+1)
2

+ n(n+ 1) q
N

+
∑n−1

p=0 p(p+ 1)2q
N
, then

∣∣∣∣dwdz
∣∣∣∣ =


q∏
j=1

|ZF (Hj)ZG(Hj)|

|χ|
2kn

q−2k+2kn |(ZF )n(ZG)n|1+2q/N
∏n−1

p=0

∏q
j=1 |ψ

ZF
j,p ψ

ZG
j,p |4/N


ρ∗
2 [∣∣∣∣ dzdw

∣∣∣∣2h
] ρ∗

2

.
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In other words,

∣∣∣∣dwdz
∣∣∣∣1+ρ∗h

=


q∏
j=1

|ZF (Hj)ZG(Hj)|

|χ|
2kn

q−2k+2kn |(ZF )n(ZG)n|1+2q/N
∏n−1

p=0

∏q
j=1 |ψ

ZF
j,p ψ

ZG
j,p |4/N


ρ∗
2

.

Therefore,

∣∣∣∣dwdz
∣∣∣∣ =

( ∏q
j=1 |ZF (Hj)ZG(Hj)|

|χ|
2kn

q−2k+2kn |(ZF )n(ZG)n|1+2q/N
∏n−1

p=0

∏q
j=1 |ψ

ZF
j,p ψ

ZG
j,p |4/N

) ρ∗
2(1+ρ∗h)

.

Note that ρ∗ = 1
ρ
and

ρ = S −

[
n(n+ 1)

2
+

2knq

q − 2k + 2kn
+ n(n+ 1)

q

N
+

n−1∑
p=0

p(p+ 1)
2q

N

]
,

so

ρ∗

2(1 + ρ∗h)
=

1

2S − 4knq
q−2k+2kn

.

Thus∣∣∣∣dwdz
∣∣∣∣ =

( ∏q
j=1 |ZF (Hj)ZG(Hj)|

|χ|
2kn

q−2k+2kn |(ZF )n(ZG)n|1+2q/N
∏n−1

p=0

∏q
j=1 |ψ

ZF
j,p ψ

ZG
j,p |4/N

) 1

2S− 4knq
q−2k+2kn

.

Now we ready to apply the Main Lemma. Notice that the metric on ∆(R) through

the pull-back of the map B on the induced (complete) metric ds2 = 2|F ||G||dz|2 on

M is given by

B∗ds =
√

2|F (B(w))|
1
2 |G(B(w))|

1
2

∣∣∣∣ dzdw
∣∣∣∣ |dw| = √2|ZF |

1
2 |ZG|

1
2

∣∣∣∣ dzdw
∣∣∣∣ |dw|,

and, from above,

∣∣∣∣ dzdw
∣∣∣∣ =

(
|χ|

2kn
q−2k+2kn |(ZF )n(ZG)n|1+2q/N

∏n−1
p=0

∏q
j=1 |ψ

ZF
j,p ψ

ZG
j,p |4/N∏q

j=1 |ZF (Hj)ZG(Hj)|

) 1

2S− 4knq
q−2k+2kn

.
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Hence,

B∗ds =
√

2 b(w)
1

2S− 4knq
q−2k+2kn |dw|

where

b(w) =
|ZFZG|S−

2knq
q−2k+2kn |χ|

2kn
q−2k+2kn |(ZF )n(ZG)n|1+2q/N

∏n−1
p=0

∏q
j=1 |ψ

ZF
j,p ψ

ZG
j,p |4/N∏q

j=1 |ZF (Hj)ZG(Hj)|
,

and, from the Main Lemma,

√
2b(w)

1

2S− 4knq
q−2k+2kn |dw| ≤ C

(
2R

R2 − |w|2

) 2[n(n+1)
2 +

∑n−1
p=0 (n−p)2 2q

N ]
2S− 4knq

q−2k+2kn |dw|

= C

(
2R

R2 − |w|2

)τ
|dw|,

where τ = [n(n+1)
2

+
∑n−1

p=0 (n − p)2 2q
N

]/[S − 2knq
q−2k+2kn

] and C is a positive constant.

From the condition

N >
2q
[
n2 + 2n− 1 +

∑n−1
p=0 (n− p)2

]
[q − (n+ 1)− n(n+1)

2
− 2knq

q−2k+2kn
]
,

we have τ < 1. Therefore, the length of a divergent path Γa0 is∫
Γa0

ds =

∫
La0

B∗ds ≤ C

∫ R

0

(
2R

R2 − |w|2

)τ
|dw| <∞.

This contradicts the fact that M is complete with the metric ds2 = 2|F ||G||dz|2.

This �nishes the proof. Q.E.D.
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Chapter 7

Conclusion

7.1 Main Point

In this thesis, we answer the question, �At least how many hyperplanes must have

the same inverse images (with counting multiplicities) in order to make two Gauss

maps f and g identical?� Our ultimate goal is to �nd the smallest number q. There

are two main points to take into account in order to achieve this goal.

The �rst main point is to �nd the best auxiliary function χ and to calculate

νχ, which play an essential part in �nding the smallest number q. Fujimoto used

χ := figj − fjgi with χ 6≡ 0 for some distinct indices i, j where fi and gi are

components of F = (f0, · · · , fn) and G = (g0, · · · , gn) respectively, and we used χ :=∏q
i=1[F (Hi)G(Hσ(i))−G(Hi)F (Hσ(i))] with χ 6≡ 0 as the auxiliary function. Thanks

to the auxiliary function, we were able to get a smaller number than Fujimoto's.

Thus, it is shown that �nding the best auxiliary function is a crucial step in achieving
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this goal.

The second main point is to construct a pseudo-metric with a strictly negative

curvature associated with two holomorphic maps, f and g, and the auxiliary function,

χ, in order to apply the Alfors-Schwarz Lemma. Then, we can get the Main Lemma,

which is crucial in proving the Main Theorem.

Therefore, if one was able to �nd a better auxiliary function to get the smallest

number q and construct the pseudo-metric with a strictly negative curvature, the

Main Theorem of this thesis would be improved.

7.2 Future Work

I tried to prove the Main Theorem for the case of �degenerate� maps. We had

�nished all of the other parts of the proof. However, we could not show that the

pseudo-metric is continuous, so we could not apply the Ahlfors-Schwartz Lemma, a

quintessential portion of the proof. Therefore, the result in this thesis is only for the

case of linearly non-degenerate Gauss maps. We hope that an improvement of the

unicity theorem for the case of degenerate Gauss maps will be given in the future.
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