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Abstract

In this dissertation, we studied a general equilibrium model for multiphase multicom-

ponent inorganic atmospheric aerosols. We developed the thermodynamic model to

predict the phase transition and multistage growth phenomena of inorganic aerosols.

The thermodynamic equilibrium is given by the minimum of the Gibbs Free Energy

for a system involving an aqueous phase, a gas phase and solid salts. A primal-dual

algorithm for solving the Karush-Kuhn-Tucker conditions is one of the main focus

of the model. We applied an active set and the Newton method to compute the

minimum of energy and determined if solid salts exist or not at the equilibrium.

We presented that the model were set up based on the mass balance equations

and the minimization of the Gibbs Free Energy. We developed a mathematical

framework for modeling solid-liquid equilibrium reactions that was based on the

canonical stoichiometry of the inorganic aerosols. We showed detailed work on how

to model a typical system of inorganic aerosols at equilibrium. We demonstrated how

the active set method was applied in two modeling problems. One was for general

chemical equilibrium problem. Another one was to extend the current modeling

problem to investigate the system at fixed relative humidity.

Numerical results of the model are included to show the efficiency of the algorithm

for the prediction of multiphase multireaction chemical equilibria. We used typical

inorganic aerosol systems for this purpose. One system was the sulfate aerosols

which included ammonium sulfate (NH4)2SO4, sulfuric acid H2SO4 and water H2O.

Another system had two type of aerosols: urban and remote continental. This sys-

tem consisted of water H2O, sulfuric acid H2SO4, nitric acid HNO3, and ammonia

NH3. From the results, we demonstrated that the model was capable of computing
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phase behavior of inorganic aerosols efficiently and rigorously. It also computed the

deliquescent behavior of the system.
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Chapter 1

Introduction

The ability to predict the phase transition in multireaction chemical equilibrium

is desirable in chemical engineering and atmospheric science. For the last three

decades, a series of thermodynamic modules, such as such as Equil [7], Mars [33],

Sequilib [32], Scape [22, 23], Scape2 [21, 27], Equisolv II [18, 19, 20], and

Isorropia [28, 29], has been developed in the atmospheric modeling community to

predict the phase transition and multistage growth phenomena of inorganic aerosols.

These modules calculate the composition of atmospheric aerosols by solving a set of

nonlinear algebraic equations derived from chemical equilibrium relations. One of the

most challenging parts is the prediction of the partitioning of the inorganic aerosol

components between aqueous and solid phases. By relying on a priori and often

incomplete knowledge of the presence of solid phases at a certain relative humidity

and overall composition, these modules may fail to accurately predict the phase

state, composition, and the multistage growth phenomena of inorganic aerosols [5, 6].
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Other thermodynamic models that are based on the minimization of the Gibbs Free

Energy, such as Gfemn [6] and Aim [8, 10, 11, 25, 36], which implicitly predict

phase transition and multistage aerosol growth without any a priori knowledge of

the behavior of inorganic aerosols. Such direct minimization of the Gibbs Free Energy

is computationally intensive and could result in making air quality models unfeasible

[5, 38].

This dissertation describes a primal-dual active set algorithm for the efficient

and accurate prediction of the phase transition and multistage growth phenomena

of inorganic aerosols. The mathematical framework for modeling solid-liquid equi-

librium reactions is based on the canonical stoichiometry of inorganic aerosols. The

canonical form is applied to the model from the analysis of the algebraic structure of

aqueous electrolyte solution system and the Karush-Kuhn-Tucker (KKT) conditions

for the constrained minimization of the Gibbs Free Energy. The concentrations of

solid species in solid-liquid equilibrium are interpreted as the Lagrange multipliers

of dual linear inequality constraints. This primal-dual relation is the key for the

development of our primal-dual active set algorithm.

The principal features of the algorithm can be summarized as following:

• The algorithm applies Newton method to the reduced KKT system of equations

that is projected on an active set of solid phases to find the next primal-dual

approximation of the solution.

• The active set method is used to add/delete salts to/from a working set of

saturated salts until the equilibrium set of solid phases is obtained.
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• The linear inequality constraints are enforced on the dual variables so that

the solution remains dual feasible with respect to the solid constraints, until

an inequality constraint becomes active at an iteration and the active set is

modified by adding a saturated salt into it.

• The concentrations of the saturated salts in the active set are the Lagrange

multipliers of the dual active constraints so that their non-negative charac-

teristic is enforced by deleting a saturated salt from the active set when its

concentration becoming negative.

• A second-order stability criterion is implemented by keeping the reduced Hes-

sian of the Gibbs Free Energy positive definite so that the algorithm converges

to a stable equilibrium (local minimum).

• To avoid the negative values and inaccurate scaling of the concentrations in

the computation, a logarithmic change of variables is performed so that the

concentrations follow a path that is infeasible with respect to the mass bal-

ance constraints in the first few iterations, then converge quadratically to the

minimum of the Gibbs Free Energy.

The structure of this dissertation is the following: Chapter 2 introduces background

knowledge in chemical engineering and mathematics. For the chemical engineering

background, this chapter covers stoichiometric coefficients and equations, chemical

potential, and Gibbs Free Energy. For the mathematics background, it discusses

the Karush-Kuhn-Tucker condition, active set method, and Newton method. These
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concepts are a foundation for the modeling of inorganic aerosol problems. In Chap-

ter 3, the steps of the mathematical modeling of inorganic aerosols are presented. In

Chapter 3, the optimization problem is derived and modified until obtaining a suit-

able formulation from both the chemical and mathematical points of view. Then, in

Section 4, an active set/Newton method is presented for solving this minimization

problem. Numerical results are presented in Chapter 5 to illustrate the efficiency of

the model. Finally, Chapter 6 consists in the conclusions.
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Chapter 2

Background

2.1 Chemical Engineering Concept

2.1.1 Basic Stoichiometric Concepts

Consider the following general reaction

bB + cC + . . .
 sS + tT + . . . , (2.1)

where b, c, s, and t are the stoichiometric coefficients of the species B,C, S, and T

respectively. We define generalized stoichiometric coefficients υi for the above reac-

tion by rewriting it in the following manner:

5



0 = υBB + υCC + . . .+ υSS + υTT + . . . , (2.2)

where

υB = −b, υS = s,

υC = −c, υT = t.
(2.3)

In chemical reaction, the generalized stoichiometric coefficients are defined as

positive quantities for the products and as negative quantities for the reactants.

The coefficients of species that are neither produced nor consumed by the indicated

reaction are taken to be zero. The equation (2.2) can be further generalized as

follows:

∑
i

υiAi = 0, (2.4)

where the sum is taken over all components Ai present in the system.

Example 1 (Single stoichiometric equation)

Let us look at the ionic decomposition of a weak carbonic acid in an aqueous solution:

H2CO3 = 2H+ + CO2−
3

.

Alternately, this equation can be written in stoichiometric form as follow
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−H2CO3 + 2H+ + CO2−
3 = 0, (2.5)

where the stoichiometric coefficients are

υCO2−
3

= 1; υH+ = 2; υH2CO3
= −1.

If we denote:

A1 = H2CO3, A2 = H+, A3 = CO2−
3 ,

then the stoichiometric equation for (2.5) is written in term of a generalized equation

(2.4) as follows:

−A1 + 2A2 + A3 = 0. (2.6)

For the case of multiple simultaneous reactions, equation (2.4) is extended to

S∑
1

υkiAi = 0, k = 1, 2, . . . , R (2.7)

where R is the numbers of reactions. The sum is taken over the total of S component

species Ai present in the system.
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Let us look at an example of sulfate aerosols in the atmosphere where chemical

reactions can take place. We studied how the stoichiometric equations were written

for the system.

Example 2 (simultaneous reactions and stoichiometric coefficient matrix)

Consider an aerosol system of sulfate particles which include three species: ammo-

nium sulfate (NH4)2SO4, sulfuric acid H2SO4 and water H2O. At equilibrium, the

system can possibly form three solids:

A : (NH4)2SO4 Ammonium sulfate,

B : (NH4)3H(SO4)2 Triammonium hydrogen disulphate,

C : (NH4)HSO4 Ammonium hydrogen sulfate.

The chemical reactions which may take place in the system are expressed in term of

the chemical components in Table 2.1.
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Table 2.1: Chemical equilibrium reactions in the sulfate aerosols are summarized be-
low. The first class denotes the decomposition reactions and possible ionic reactions;
the second class describes the reactions with phase changes which may lead to the
solid formation.

• Part I: Decomposition Reactions and other Ionic Reactions in aqueous phase:

H2SO4(l) � H+(aq) + HSO−4 (aq)

HSO−4 (aq) � H+(aq) + SO2−
4 (aq)

(NH4)2SO4(s) � 2NH+
4 (aq) + SO2−

4 (aq)

H2O(l) � H+(aq) + OH−(aq)

NH+
4 (aq) + OH−(aq) � NH3(g) + H2O(l)

• Part II: Composition reactions (solid formation):

2NH+
4 (aq) + SO2−

4 (aq) � (NH4)2SO4(s)

3NH+
4 (aq) + HSO−4 (aq) + SO2−

4 (aq) � (NH4)3H(SO4)2(s)

NH+
4 (aq) + HSO−4 (aq) � NH4HSO4(s)

9



For simplification, we will form the stoichiometric coefficient matrix for Part I

of Table 2.1 first and the whole system at the end of the example.

If we define the chemical components Ai as follows,

A1 = H2SO4, A2 = H+, A3 = HSO−4 ,

A4 = SO2−
4 , A5 = (NH4)2SO4, A6 = NH+

4 ,

A7 = H2O, A8 = OH−, A9 = NH3,

A10 = (NH4)3H(SO4)2, A11 = NH4HSO4,

then the equations for the “Ionic Decomposition Reactions and Ionic Reactions” por-

tion of table (2.1) can expanded from equation (2.7) to the following:



−A1 + A2 + A3 = 0

A2 − A3 + A4 = 0

A4 − A5 + 2A6 = 0

A2 − A7 + A8 = 0

− A6 + A7 − A8 + A9 = 0


(2.8)

System of equations (2.8) is referred as stoichiometric equations where chemical re-

actions are formulated in their component forms instead of as species.

The stoichiometric coefficient matrix of the equation system (2.8) will be:

10





−1 1 1 0 0 0 0 0 0

0 1 −1 1 0 0 0 0 0

0 0 0 1 −1 2 0 0 0

0 1 0 0 0 0 −1 1 0

0 0 0 0 0 −1 1 −1 1


(2.9)

Similarly, by adding Part II of the Table 2.1, the stoichiometric coefficient ma-

trix of the whole system is:



−1 1 1 0 0 0 0 0 0 0 0

0 1 −1 1 0 0 0 0 0 0 0

0 0 0 1 −1 2 0 0 0 0 0

0 1 0 0 0 0 −1 1 0 0 0

0 0 0 0 0 −1 1 −1 1 0 0

0 0 0 −1 1 −2 0 0 0 0 0

0 0 −1 −1 0 −3 0 0 0 1 0

0 0 −1 0 0 −1 0 0 0 0 1



(2.10)
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2.1.2 Chemical Potential And Standard States

The basic criterion for the establishment of chemical reaction equilibrium is that

∑
i

υiµi = 0, (2.11)

where the µi are the chemical potentials of the various species in the reaction mixture.

If r numbers of reactions occur in the system and equilibrium is established with

respect to each of these reactions, it is required that

∑
i

υikµi = 0 where k = 1, 2, . . . , r. (2.12)

The chemical potential µi of species i is related to its activity ai by

µi = µ0
i +RT ln ai, (2.13)

where R is the gas constant,

T is the absolute temperature,

µ0
i is the standard chemical potential of species i in a reference state where its activity

is taken as unity.

The choice of the standard state is based primarily on experimental data and

reproducibility. The temperature of the standard state is the same as that of the

system under investigation.
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2.1.3 The Equilibrium Constant and Its Relation to Gibbs

Free Energy

The equilibrium criteria for given chemical reaction is that the Gibbs Free Energy

4G change associated with the progress of the reaction be zero.

4G =
∑
i

υiµi = 0. (2.14)

Furthermore, the standard Gibbs Free Energy4G0 change for a reaction refers to

the process wherein the reaction proceeds isothermally, starting with stoichiometric

quantities of reactants each in its standard state of unit activity and ending with

products each at unit activity. In general, it is nonzero and given by

4G0 =
∑
i

υiµ
0
i . (2.15)

Subtracting the equation (2.15) from the equation (2.14) gives

4G−4G0 =
∑
i

υi
(
µi − µ0

i

)
. (2.16)

Equation (2.16) can be rewritten in term of the activities in equation (2.13) as

follows:

4G−4G0 = RT
∑
i

νi ln ai = RT ln

(∏
i

avii

)
. (2.17)
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When the system reaches equilibrium stage, we have 4G = 0. Equation (2.17)

becomes:

4G0 = −RT ln

(∏
i

avii

)
. (2.18)

We defined the equilibrium constant Ka at temperature T as follows:

Ka =
∏
i

avii , (2.19)

where the subscript “a” is used to emphasize that the equilibrium constant is written

in relation with the activities.

Thus, from equation (2.18), and equation (2.19), the relation of Gibbs Free Energy

and the equilibrium constant is given by:

Ka = e−4G
0/RT . (2.20)

Example 3 (Equilibrium Constant)

Let us consider a general chemical reaction of the form:

bB + cC + . . .
 sS + tT + . . . ,

From equation(2.17), we have:

4G−4G0 = RT ln

(∏
i

avii

)
= RT ln

[
asSa

t
T . . .

abBa
c
C . . .

]
. (2.21)
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At equilibrium, we have 4G = 0. Equation (2.21) becomes:

4G0 = −RT lnKa, (2.22)

where Ka =
asSa

t
T . . .

abBa
c
C . . .

is the equilibrium constant.

2.2 Numerical Optimization concept

2.2.1 Karush-Kuhn-Tucker Condition

Consider a nonlinear optimization problems (NLP) of the form

minimize
x∈Rn

f(x), (2.23a)

subject to h(x) = 0, (2.23b)

g(x) ≤ 0, (2.23c)

where the function f : Rn → R is the objective functional, the functions h : Rn →

Rm and g : Rn → Rp describe the equality and inequality constraints respectively.

Definition 2.2.1 (Feasible Set)

The feasible set is the set of points that satisfy the equality and inequality constraints

of the NLP.

F := { x ∈ Rn| h(x) = 0, g(x) ≤ 0 } . (2.24)

15



The elements of the feasible set f are referred to as feasible points. In terms of

the feasible set, the NLP (2.23) can be written in the more compact form

minimize
F

f(x).

The Lagrangian functional L := Rn × Rm × Rp → R associated with the NLP

(2.23) is defined

L(x, λ, µ) := f(x) + λTh(x) + µTg(x). (2.25)

Definition 2.2.2 (Active Set and Working Set)

Let x ∈ F , the active set Iac(x) at x is the set of active inequality constraints at x

Iac(x) := {1 ≤ i ≤ p | gi(x) = 0}. (2.26)

Its complement Iia(x) := {i, . . . , p} \ Iac(x) is referred to as the set of inactive

inequality constraints.

Let E(x) be the equality constraint set.

E(x) := {1 ≤ i ≤ m | hi(x) = 0}. (2.27)

The working set is defined as the union of equality constraint set and active set.

W(x) := E(x) ∪ Iac(x). (2.28)

16



Definition 2.2.3 (Linear Independence Constraint Qualification)

Let Iac(x∗) be the set of active inequality constraints at x∗ and x∗ ∈ F . Then, the

Linear Independence Constraint Qualification (LICQ) is satisfied at x∗ if the set of

active constraint gradients,

{∇h1(x∗), . . . ,∇hm(x∗),∇gi(x∗), i ∈ Iac(x∗)} , (2.29)

is linearly independent.

Theorem 2.2.4 (Karush-Kuhn-Tucker conditions)

Assume that x∗ ∈ F is the local solution of the NLP (2.23) and that the LICQ is

satisfied at x∗. Then, there exist Lagrange multipliers λ∗ ∈ Rm and µ∗ ∈ Rp such

that the following conditions hold true at (x∗, λ∗, µ∗)

∇xL (x∗, λ∗, µ∗) = 0, (2.30a)

hi(x
∗) = 0, 1 ≤ i ≤ m, (2.30b)

gi(x
∗) ≤ 0, 1 ≤ i ≤ p, (2.30c)

µ∗i ≥ 0, 1 ≤ i ≤ p, (2.30d)

µ∗i gi(x
∗) = 0, 1 ≤ i ≤ p. (2.30e)

The Karush-Kuhn-Tucker (KKT) conditions are also referred to as the first order

optimality conditions. The proof of the KKT theorem (2.30) can be found in many

standard textbook. The condition µ∗i gi(x
∗) = 0, is called the complementary condi-

tion since it essentially says that at least one of the µ∗ or gi(x
∗) must be zero for

17



each i = 1, 2, . . . , p. The complementary condition is sometime written in the form

µTg(x) = 0

Definition 2.2.5 (Strick Complementary Condition)

Let x∗ ∈ F be a local solution of the NLP (2.23) and λ∗, µ∗ be the Lagrange multi-

pliers satisfying the KKT conditions (2.30). Then, the strict complementarity holds

true if

µ∗i > 0 , i ∈ Iac(x∗).

2.2.2 Active Set Method

Consider solving the NLP:

minimize
x∈Rn

f(x), (2.31a)

subject to h(x) = 0, (2.31b)

g(x) ≤ 0. (2.31c)

The idea of the active set method is trying to solve the above NLP by only consid-

ering the equality constraints. First, the inequality constraints are partitioned into

two group: an equality constraint group and an inequality constraint group. The in-

equality constraints will not be involved during the main calculation and are simply

ignored.

The necessary conditions (KKT conditions) for the NLP problem are:

18



∇xL (x∗, λ∗, µ∗) = ∇f(x) + λT∇h(x) + µT∇g(x) = 0, (2.32a)

hi(x
∗) = 0, 1 ≤ i ≤ m, (2.32b)

gi(x
∗) ≤ 0, 1 ≤ i ≤ p, (2.32c)

µ∗i ≥ 0, 1 ≤ i ≤ p, (2.32d)

µ∗i gi(x
∗) = 0, 1 ≤ i ≤ p. (2.32e)

Let Iac(x) and Iia(x) denote the active and inactive set of f(x) as in defini-

tion(2.26). The KKT conditions (2.32) can be written in term of the active set:

∇xL (x∗, λ∗, µ∗) = ∇f(x∗) + λT∇h(x∗) + µT∇g(x∗) = 0, (2.33a)

hi(x
∗) = 0, 1 ≤ i ≤ m (2.33b)

gi(x
∗) = 0, i ∈ Iac(x), (2.33c)

µ∗i ≥ 0, i ∈ Iac(x), (2.33d)

gi(x
∗) < 0, i ∈ Iia(x), (2.33e)

µ∗i = 0, i ∈ Iia(x). (2.33f)

Let us look at the following active set optimization problem where we only take

the equality constraints of the NLP into account and ignore the inequality con-

straints:
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minimize
x∈Rn

f(x), (2.34a)

subject to hi(x) = 0, 1 ≤ i ≤ m, (2.34b)

gi(x) = 0, i ∈ Iac(x). (2.34c)

Next, we take the KKT conditions of (2.34) and compare them to the conditions

of the NLP:

∇xL (x∗, λ∗1, λ
∗
2) = ∇f(x∗) + λT∇h(x∗) + µT∇g(x∗) = 0, (2.35a)

hi(x
∗) = 0, 1 ≤ i ≤ m, (2.35b)

gi(x
∗) = 0, i ∈ Iac(x). (2.35c)

We observe that the the first three KKT condition of the NLP (2.33) and the

active set optimization problem (2.35) are the same. The remaining condition guar-

antee that the inactive constraints are satisfied, the Lagrange multipliers are positive

and the complementary condition is preserved. Therefore, the solutions of the active

set optimization problem are also the solution of the one of the NLP provided that

the last tree KKT condition of the NLP problem are satisfied. This observation is

essentially the main idea of the active set method.

In other words, the active set method approach is to replace the original problem

by the corresponding problem that only has the equality constraints, the active set

problem. Alternatively, suppose an active set was obtained and the corresponding
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equality constrained problem solved. If the other constraints were satisfied and the

Lagrange multipliers turned out to be non-negative, then solution would be correct.

The algorithm of the active set methods is to define at each step, or at each phase,

a set of constraints, known as the working set, that is to be treated as the active

set. The working set is chosen to be a subset of the constraints that are actually

active at the current point, and hence the current point is feasible for the working

set. The algorithm then proceeds to move on the surface defined by the working

set of constraints to an improved point. At this new point the working set may be

changed.

Overall, then, an active set method consists of the following components:

1. Determination of a current working set that is a subset of the current active

constraints, and

2. determine the movement on the surface defined by the working set to an im-

proved point.

There are several methods for determining the movement on the surface de-

fined by the working set. This surface is sometime called the working surface. The

direction of movement is generally determined by first-order or second-order ap-

proximations of the functions at the current point in a manner similar to that for

unconstrained problems. The asymptotic convergence properties of active set meth-

ods depend entirely on the procedure for moving on the working surface. Since near

the solution, the working set is generally equal to the correct active set, and the

process simply moves successively on the surface determined by those constraints.

21



The active set strategy has the following guidelines: The overall scheme is to

develop a systematic method for dropping and adding constraints from the working

set.

• One starts with a given working set and initial guess

• Then one begins minimizing over the corresponding working surface. If new

constraint boundaries are encountered, they may be added to the working set,

but no constraints are dropped from the working set at this stage. Finally,

a point is obtained that minimizes f with respect to the current working set

of constraints. The corresponding Lagrange multipliers are determined. And

if they are all non-negative, the solution is optimal. Otherwise, one or more

constraints with negative Lagrange multipliers are dropped from the working

set.

• The procedure is re-initiated with this new working set, and the objective

function f will strictly decrease on the next step.

Example 4 (Active Set strategies for convex Quadratic Programming prob-

lem)

Let us consider an example of how the primal active set method is applied to the

constrained Quadratic Programming (QP) problem:

minimize
x∈Rn

f(x) :=
1

2
xTBx− xT b, (2.36a)

subject to Cx = c, (2.36b)

Ax ≤ d, (2.36c)
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where f ∈ Rn , B ∈ Rn×n is symmetric positive definite, C ∈ Rm×n, A ∈ Rp×n and

b ∈ Rn, c ∈ Rm, and d ∈ Rp. The inequality constraints Ax ≤ d can be written as

follows

aTi x ≤ di , 1 ≤ i ≤ m. (2.37)

The idea of active set methods is to apply iterative procedure. For a given iterate

x(ν), ν ≥ 0 in feasible set F , we determine the active set

Iac
(
x(ν)
)

= {1 . . . p},

and only consider the corresponding constraints as equality constraints, whereas the

remaining inequality constraints are disregarded.

minimize
x∈Rn

f(x) :=
1

2
xTBx− xT b, (2.38a)

subject to Cx = c, (2.38b)

aTi x = di, i ∈ Iac
(
x(ν)
)
. (2.38c)

The working set is defined

W = Iac
(
x(ν)
)
∪ E

(
x(ν)
)
, (2.39)

where E
(
x(ν)
)

= {1 . . .m}.
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If we denote

p = x(ν) − x, b(ν) = Bx(ν) − b,

the function f(x) in equation (2.38) becomes:

f(x) = f
(
x(ν) − p

)
=

1

2
pTBp−

(
b(ν)
)T
p+ g, (2.40)

where g :=
1

2

(
x(ν)
)T
Bx(ν) − pTx(ν) is a constant term. Since we can drop g from

the objective without changing the solution of the problem, we can write the QP

subproblem to be solved at the (ν + 1) iteration step as follows:

minimize
x∈Rn

f(p) :=
1

2
pTBp−

(
b(ν)
)T
p, (2.41a)

subject to Cp = 0, (2.41b)

aTi p = 0, i ∈ Iac
(
x(ν)
)
. (2.41c)

If we denote the solution of (2.41) to be p(ν) then new iterate x(ν+1) is obtained

as follows

x(ν+1) = x(ν) − ανp(ν) , αν ∈ [0, 1] , (2.42)

where αν is chosen such that x(ν+1) stay feasible. In particular, let us compute the

value of αν. For i ∈ Iac
(
x(ν)
)
, we have from (2.42) that

aTi x
(ν+1) = aTi x

(ν) − ανaTi p(ν) = aTi x
(ν) ≤ di. (2.43)
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Thus the constraints are satisfied regardless the value of αν. Therefore, we only

compute the value of αν for i /∈ Iac
(
x(ν)
)
.

If aTi p
(ν+1) ≥ 0 for i /∈ Iac

(
x(ν)
)
, it follows that

aTi x
(ν+1) = aTi x

(ν) − ανaTi p(ν) ≤ aTi x
(ν) ≤ di. (2.44)

Also, if aTi p
(ν+1) < 0 for i /∈ Iac

(
x(ν)
)
, it have

aTi x
(ν+1) = aTi x

(ν) − ανaTi p(ν) ≤ di, (2.45)

which requires that

αν ≤
aTi x

(ν) − di
aTi p

(ν)
. (2.46)

Consequently, in order to guarantee feasibility, we need to choose αν such that

αν := min

(
1, min

aTi p
(ν)<0, i/∈Iac(x(ν))

aTi x
(ν) − di
aTi p

(ν)

)
. (2.47)

We call the constraints i for which the minimum in (2.47) is achieved the blocking

constraints Ibl.

Ibl
(
p(ν)
)

:=

{
i /∈ Iac

(
x(ν)
)
| aTi p(ν) < 0, min

i/∈Iac(x(ν))

aTi x
(ν) − di
aTi p

(ν)

}
. (2.48)

Note that for i ∈ Ibl
(
p(ν)
)
, we have

aTi x
(ν+1) = aTi x

(ν) − ανaTi p(ν) = di. (2.49)
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If αk < 1, the step along pk was blocked by some constraints that are not in

Iac
(
x(ν)
)

a new active set Iac
(
x(ν+1)

)
is constructed by adding the most restrictive

blocking constraints to Iac
(
x(ν)
)
. The working constraints W is updated accordingly.

We can obtain further information with respect to a proper specification of the set

of active constraints by systematically checking the KKT conditions:

Assume that p(ν) = 0 is the solution of the QP sub-problem (2.41). Since p(ν)

satisfies the KKT conditions associated with that QP problem, there exist Lagrange

multipliers λ(ν) ∈ Rm and µ(ν)i, i ∈ Iac
(
x(ν)
)
, such that the Lagrange KKT condi-

tion ∇xL
(
x(ν), λ(ν), µ(ν)

)
= 0 holds. That is

−b(ν) = −
(
Bx(ν) − b

)
= −

m∑
i

λ
(ν)
i ci −

∑
i∈Iac(x(ν))

µ
(ν)
i ai. (2.50)

If we set

µ
(ν)
i := 0 , i ∈ {1, . . . , p} \ Iac

(
x(ν)
)
, (2.51)

then it is clear that x(ν), λ(ν), and µ(ν) satisfy the first KKT condition with respect

to the original QP problem (2.36).

Since x(ν) is feasible, the second and third KKT conditions also hold true.

We then check the fourth KKT condition in terms of the sign of the multiplier

µ(ν) and proceed as follows:

• for the case µ(ν) ≥ 0 , i ∈ Iac
(
x(ν)
)
, the fourth KKT condition holds true.

Consequently, x(ν) is a strict local minimum, since B is symmetric positive
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definite.

• if µ(ν) < 0 for some j ∈ Iac
(
x(ν)
)
, we remove the constraint corresponding to

the negative multiplier from the active set. In other word, we remove an index

j corresponding to one of the negative multipliers from the current active set

and solve a new sub-problem of (2.41) for the new step. It is shown in ([30])

that this strategy produces a direction p in the subsequent iteration step that is

feasible with respect to the dropped constraint.

2.2.3 Newton Method

The Newton method for univariate case g(x) = 0

For simplicity, we assume the function g(x) = 0 has continuous second derivatives.

Given the starting point x0, the Newton method for finding the solution to the

function g(x) = 0 is to compute an iterative scheme

xk+1 = xk −
g(xk)

g′(xk)
, k = 1, 2, 3 . . . . (2.52)

Note that the iteration is defined only if g
′
(xk) 6= 0 at each step. When g(xk) = 0,

the iteration stops and the solution is achieved.

For a given iterate xk, such that g(xk) 6= 0, let x = xk + p. We compute g(x) as

follows:
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g(x) = g(xk + p) ≈ g(xk) + pg
′
(xk). (2.53)

We compute the value of p such that g(xk) + pg
′
(xk) = 0.

The Newton method for multivariate case g(x) = 0

Let denote

g(x) =



g1(x)

g2(x)

...

gn(x)


, (2.54)

for the system g(x) = 0, i.e

gi(x) = 0, i = 1, 2, . . . , n. (2.55)

We define the Jacobian matrix as follows:

J (x) =



∂g1(x)

∂xj
∂g2(x)

∂xj
...

∂gn(x)

∂xj


. (2.56)

The Newton iterative scheme is given by
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xk+1 = xk + αd,

where we usually set α equal to one and d is the Newton direction, which can be

computed from the first-order approximation of the Taylor series expansion. From

the Taylor series approximation of g at the point xk, we have:

g(xk+1) ≈ g(xk) +∇J (xk)d. (2.57)

We can solve for p when we set the right-hand side of the equation 2.57 to be zero,

provided that the Jacobian matrix J (xk) is non-singular. In general, the first-order

Newton method is stated as follow

xk+1 = xk − (J (xk))
−1 g(xk). (2.58)

The Newton method for minimization problem

Let us consider a minimization problem of a convex function f(x)

minimize
x∈Rn

f(x). (2.59)

The iterative scheme is

xk+1 = xk + αd, (2.60)
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where the value α is usually set equal to one and d is the Newton direction, which

can be computed from the second-order approximation of the Taylor series

f(xk+1) ≈ t(xk) = f(xk) +∇f(xk)(xk+1 − xk) +
1

2
(xk+1 − xk)TH(x)(xk+1 − xk),

(2.61)

where H(x) is the Hessian of f(x). To find the minimum of equation (2.61), we

calculate

∇t(xk) = ∇f(xk) +H(x)(xk+1 − xk), (2.62)

and set ∇t(xk) = 0. We get the following expression

∇f(xk) +H(x)(xk+1 − xk) = 0, (2.63)

or

∇H(x)d = −f(xk), (2.64)

where d is the Newton direction and can be calculated from equation (2.64), provided

that the Hessian matrix is positive definite.
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Chapter 3

Modeling Problems

3.1 Modeling of Inorganic Aerosols

3.1.1 Chemical Equilibrium Formulation of the Problem

Consider a closed system of inorganic aerosol at constant temperature and pressure.

Within this thermodynamic system, the aerosol particles exist in all phases: liquid

(l), gas (g), and solid (s). The mass balance equation yields:

Âlnl + Âgng + Âsns = b̂, (3.1)

where b̂ denotes the feed vector; nα ∈ Rmα , and Âα ∈ Rme×mα denote the concen-

tration vector and coefficient matrix of the species for each phase set α = l, g, s

respectively. The subscripts l, g, s denote the liquid, gas, and solid phases. We de-

note me as the number of chemical species in the system and mα as the number of
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species in phase set α. The Gibbs Free Energy of the system is defined:

G(nl, ng, ns) = nTl µl + nTg µg + nTs µs. (3.2)

When the system reaches the equilibrium state, the Gibbs Free Energy of the

system (3.2) reaches its minimum value. Thus, at equilibrium, we can solve the

multi-phase and multi-reaction of a closed inorganic aerosol system by solving this

minimization problem

min G(nl, ng, ns) = nTl µl + nTg µg + nTs µs, (3.3a)

s. t. nl > 0, ng > 0, ns ≥ 0, (3.3b)

Âlnl + Âgng + Âsns = b̂. (3.3c)

The chemical potential vectors µα, for each phase α = g, l, s, are defined as

followed:

• For the gas phase:

µg = µ0
g +RT log ag, (3.4)

where R is the universal gas constant that has a value R = 8.31446

(
J

molK

)
.

T is the system temperature. µ0
g is the standard chemical potential vector of

gas species at a pressure of 1 atm and the system temperature, and ag is the

activity vector which is defined as:

ag =
f̂g

f̂g,SS
=
f̂g
1

= f̂g, (3.5)

32



where f̂g,SS is the fugacity of the gas species in its standard state. We assume

that the gas in the system are ideal (f̂g,SS = 1). And f̂g is the fugacity vector

of the gas species and is given by

f̂g = ybf̂
0
g = ybγgP, (3.6)

where f̂ 0
g is the fugacity of pure component gas species evaluated at the system

temperature and the total pressure P of the gas mixture, or by the fugacity

coefficient γg.

• For the aqueous phase:

µl = µ0
l +RT log al, (3.7)

where µ0
l is the standard chemical potential vector of the aqueous species at the

system temperature and pressure, and al is the activity vector of the aqueous

phase that is determined by an activity coefficient model.

• For the solid phase:

µs = µ0
s, (3.8)

where µ0
s is the standard chemical potential vector of the aqueous species at

the system temperature and pressure.

Remark 3.1.1

Let us denote R++ be the strictly positive real numbers. Note that the chemical

potential vector µl is also defined as the gradient of the Gibbs Free Energy of the

aqueous phase as follows:

33



µl = ∇Gl(nl), (3.9)

where Gl : Rml
++ → R+.

The first-order homogeneity of Gl is the basis for the relation

Gl(nl) = nTl µl, (3.10)

and the Gibbs-Duhem equations:

∇2Gl(nl)nl = 0, (3.11)

equivalently

(∇µl)nl = 0 or (∇ log al)nl = 0.

The respective Hessian matrices are given by

Hl = ∇2Gl(nl), Hg = diag(1/ng), and Hs = 0.
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3.2 Description of the Problem and Optimality

Conditions

3.2.1 Optimality Conditions and the Karush-Kuhn-Tucker

System

For general purposes, we assume that the aqueous and gas phases are present at

equilibrium, the solution of the chemical equilibrium (3.3) is characterized by the

Karush-Kuhn-Tucker (KKT) system of the first-order necessary optimality condi-

tions:

µl + ÂTl λl = 0, (3.12a)

µg + ÂTg λg = 0, (3.12b)

µs + ÂTs λ ≥ 0, ns ≥ 0, nTs (µs + ÂTs λ) = 0, (3.12c)

Âlnl + Âgng + Âsns = b̂. (3.12d)

The KKT system (3.12) is referred to as the stoichiometric form of the species

in the system at equilibrium. If we break down the aqueous species into compo-

nent bases, we can formulate a computationally more relevant form, the component

stoichiometric form.

Let I be the index set of the species in the system and m := |I|. The index set

I can be split into gas, liquid, and solid phases of the corresponding index set Ig,
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Il, and Is, with mg := |Ig|, ml := |Il|, and ms := |Is|. The element-based formula

matrices in (3.12d) are defined by Âα = (âj)j∈Iα for α = g, l, s.

To ensure the feasibility of solid-liquid and gas-liquid equilibrium reactions in

(3.3), we assume the following:

The species sets Iα, α = g, l, s, in the system are assumed to follow that all the

gas and solid species in the system can be generated as a linear combination of the

aqueous species

range(Âl, Âg, Âs) = range(Âl). (3.13)

In other words, the number of the aqueous species is larger than the number of the

elements (ml > me).

Let mc (≤ me) be the rank of Âl. We denote Ic to be the set mc of components

where the corresponding formula vectors âi) are linear independent. Similarly, we

denote mn and In for noncomponents. Note that Il = Ic ∪ In. The next step is

to select the mc chemical species which play the role of components of the system.

Thus, the set Ic (⊂ Il) is a set of mc aqueous species whose corresponding formula

vectors âj are linearly independent. These species are called the components. Let

Âc := (âi)i∈Ic ∈ Rme×mc be the formula matrix for the components. If mc = me, i.e.,

Âc is of full row rank, then Â−1
c exists; otherwise, the pseudoinverse of Âc is denoted

by

Â−1
c := (ÂTc Âc)

−1ÂTc ∈ Rmc×me .

The vector b̂ ∈ Rme is assumed to belong to range(Âl). Let In be the set of the
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remaining mn = ml −mc aqueous species with the formula matrix Ân := (âi)i∈In ∈

Rme×mn . These species are called the non-components. Let us define

Aα = (aαij) := Â−1
c Âα, for α = c, n, g, s,

the component-based formula matrix for species set α. Notice that Ac = Imc . The

matrices Aα, α = c, n, g, s are also called the canonical stoichiometric matrices as

their rows are formed of the stoichiometric coefficients associated to the canonical

chemical equilibrium reactions :

Xj �
∑
i∈Ic

aαijXi, ∀j ∈ Iα, for α = c, n, g, s. (3.14)

where X denotes species and their components, and aαij are stoichiometric coefficients.

The corresponding canonical equilibrium-constant vector kα = (kαj )j∈Iα is defined by

−RT log kα := ATαµ
0
c − µ0

α, for α = c, n, s, g (3.15)

and expresses the relation between the chemical potentials. Note that log kc = 0.

Let b = Â−1
c b̂ be the component-based feed vector, and nc ∈ Rmc

+ and nn ∈ Rmn
+

be the concentration vector of the components and non-components, respectively.

Remark 3.2.1
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The mass balance equations in (3.1) can be replaced by the component balance equa-

tions

nc + Annn + Agng + Asns = b. (3.16)

Proof. To derive 3.16, let us start with the mass balance equation in (3.1)

Âlnl + Âgng + Âsns = b̂

Â−1
c

(
Âlnl + Âgng + Âsns

)
= Â−1

c b̂ multiply Â−1
c both side

Â−1
c

(
Âcnc + Ânnn + Âgng + Âsns

)
= Â−1

c b̂ since Âlnl = Âcnc + Ânnn

nc + Annn + Agng + Asns = b since Aα := Â−1
c Âα and b = Â−1

c b̂

Remark 3.2.2

The Gibbs Free Energy in the chemical equilibrium equation (3.2) can also be refor-

mulated by replacing the chemical potentials in terms of activities and equilibrium

constants via (3.4),(3.7),(3.8), (3.15), and (3.16):

G(nl, ng, ns) = bTµ0
c +RT

(
nTc log ac

+ nTn (log an + log kn) + nTg (log ag + log kg) + nTs log ks

)
.

Let cf > 0 be a characteristic quantity of the feed vector b (for instance cf = eT b).

Let us define the adimensional feed vector b̃, the adimensional concentration vectors

ñα, and the adimensional Gibbs Free Energy G̃ by
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b̃ =
1

cf

b, ñα =
1

cf

nα, α = c, n, g, s,

G̃ = ñTc log ac + ñTn (log an + log kn) + ñTg (log ag + log kg) + ñTs log ks.

The problem (3.3) can be written in the adimensional canonical stoichiometric form

(dropping the tilde in the notation):

min G(nl, ng, ns) = nTc log ac + nTn (log an + log kn) (3.17a)

+nTg (log ag + log kg) + nTs log ks, (3.17b)

s. t. nl =

 nc

nn

 > 0, ng > 0, ns ≥ 0, (3.17c)

nc + Annn + Agng + Asns = b. (3.17d)

The KKT system of (3.17) can be written in the primal-dual canonical stoichiometric

form:

log ac + λ = 0, (3.18)

log an + ATnλ = − log kn, (3.19)

log ag + ATg λ = − log kg, (3.20)

log ks + ATs λ ≥ 0, ns ≥ 0, (3.21)

nTs (log ks + ATs λ) = 0, (3.22)

nc + Annn + Agng + Asns = b. (3.23)
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Remark 3.2.3

The above KKT system furnishes the mass action laws (3.18)-(3.22) in addition to

the mass balance constraints (3.23). The mass action laws are in a logarithmic form.

An immediate consequence of the logarithmic form is that the mass action laws in

the primal-dual form (3.18)-(3.22) are linear with respect to the dual variable λ.

3.2.2 Chemical Equilibrium Problem at Fixed Relative Hu-

midity

In atmospheric aerosol thermodynamic calculations, the ambient relative humidity

(RH) is usually treated as a known constant.

Definition 3.2.1 (Relative humidity)

Relative humidity (RH) is the ratio of the partial pressure of water vapor pw to the

equilibrium vapor pressure of water p0
w at the same temperature.

RH =
pw
p0
w

, (3.24)

where RH is expressed in the 0 to 1 scale.

Remark 3.2.4

From the definition of log aH2O(g) in (3.5) and log kH2O(g) in (3.15), it follows that

log aH2O(g) + log kH2O(g) = log pw − log p0
w = log RH, with RH =

RH100

100
.
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Let the gas/particle partitioning of the total amount of H2O be

nH2O(total) = nH2O(g) + nH2O(pm), (3.25)

where the subscript pm denotes the particulate matter, i.e. the water under particulate

form.

The total feed vector b is split into the non-water quantity b̄ and the water

quantity as follows:

b = b̄+ nH2O(total)aH2O, (3.26)

where aH2O is the formula vector for H2O. Let Īg = Ig \ {H2O(g)} be the index set

of gas species excluding the water vapor, and n̄g = (ng,j)j∈Īg and Āg = (ag,j)j∈Īg

be the corresponding concentration vector and formula matrix, respectively. Then,

by combining (3.25) and (3.26) with the relations Agng = Āgn̄g + nH2O(g)aH2O and

nTg (log ag + log kg) = n̄Tg (log āg + log k̄g) +nH2O(g) log RH, the (adimensional) compo-

nent balance equations in (3.17) can be written as

nc + Annn + Āgn̄g + Asns = b̄+ nH2O(pm)aH2O,

and the (adimensional) Gibbs Free Energy in (3.17) can be written as
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G(nl, n̄g, ns, nH2O(pm)) = nTc log ac + nTn (log an + log kn)

+ n̄Tg (log āg + log k̄g) + nTs log ks − nH2O(pm) log RH

+ nH2O(total) log RH,

where the last term nH2O(total) log RH is a fixed quantity for a known relative humidity.

So, it can be disregarded. The chemical equilibrium problem gives

min G(nl, n̄g, ns, nH2O(pm)) = nTc log ac + nTn (log an + log kn) (3.27a)

+n̄Tg (log āg + log k̄g) + nTs log ks − nH2O(pm) log RH, (3.27b)

s. t. nl =

 nc

nn

 > 0, ng > 0, ns ≥ 0, nH2O(pm) > 0 (3.27c)

nc + Annn + Āgn̄g − nH2O(pm)aH2O + Asns = b̄. (3.27d)

The KKT system for the chemical equilibrium problem (3.27) can be written in the

primal-dual canonical stoichiometric form:
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log ac + λ = 0, (3.28)

log an + ATnλ = − log kn, (3.29)

log āg + ĀTg λ = − log k̄g, (3.30)

log RH + aTH2Oλ = 0, (3.31)

log ks + ATs λ ≥ 0, ns ≥ 0, (3.32)

nTs (log ks + ATs λ) = 0, (3.33)

nc + Annn + Āgn̄g − nH2O(pm)aH2O + Asns = b̄. (3.34)

Remark 3.2.5

In atmospheric aerosol models such as Sequilib, Scape2, Equisolv II, and Isor-

ropia, the amount of the water partitioned in the particle phase is assumed to be

equal to the aqueous water content nl,w, i.e. nH2O(pm) = nl,w, by neglecting the part

of nH2O(pm) that is dissociated into electrolytes via

H2O(aq) 
 2H+ + OH−.

The aqueous water content nl,w is usually predicted using an empirical relationship

(Zdanovskii, Robinson, and Stokes equation, Zsr [34]). The limitations of this em-

pirical method are the additional needs of the saturated molarities of electrolytes

according to the relative humidity. For this reason, there are thermodynamic incon-

sistency within the specific activity coefficient model that is used to predict the activity

of the aqueous phase.

For simplification purpose, let us drop the bar in the variables relative to the gas
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phase and replace n̄g by ng, etc.

In the KKT system of the primal-dual canonical stoichiometric form (3.28)-(3.34),

the primal variables nH2O(pm) and ns occur only in the mass balance constraints

(3.34). They can be viewed respectively as the multipliers of the saturation con-

straints (3.31) and (3.32) on the dual variable λ, thus will be eliminated by applying

the so-called null-space method for the solution of (3.28)-(3.34). This observation is

the key for the development of the primal-dual active set algorithm detailed in the

next section.
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Chapter 4

Methods and Algorithm

4.1 Phase Stability Criterion and Active Set

A primal-dual solution of the KKT system (3.18)-(3.23) or (3.28)-(3.34), generally

non-unique, is called a KKT point. Also, this solution may not be a local minimizer

of the Gibbs Free Energy. It is necessary to perform a phase stability analysis to

determine whether a postulated KKT point is thermodynamically stable with respect

to any perturbation in nl, ng and ns.

Denote (n†l , n
†
g, n

†
s, λ
†) to be the a KKT point of (3.18)-(3.23) or (3.28)-(3.34).

Let

Ī†s := {i ∈ Is : n†s,i > 0}, (4.1)

and m̄s := |Ī†s |. It is important to note that Ī†s is a priori unknown. In order to

perform the phase stability analysis, the following second order sufficient condition
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is assumed to hold:

pTHp > 0, for all nonzero vector p such that Āp = 0, (4.2)

where H = ∇2
nl,ng ,ns

G(n†l , n
†
g, n

†
s) is the Hessian matrix of the Gibbs Free Energy of

the system, Ā = [Al, Ag, Ās] and Ās := (asi )i∈Ī†s .

Moreover, the following assumptions are made for the system:

(H1) The formula matrix Ās ∈ Rmc×m̄s is assumed to be of full column rank with

m̄s ≤ mc. This assumption is consistent with the chemical relation called Gibbs

phase rule, see for instance (K. Denbig [12]), giving an a priori estimate for

the number of phases existing at the equilibrium. The full rank assumption

implies the feasibility for the dual solution λ† with respect to the saturation

constraints

log k̄s + ĀTs λ
† = 0, with k̄s = (ks,i)i∈Ī†s .

The above constraints are extracted from the complementary slackness condi-

tions (3.22) or (3.33).

(H2) The formula vectors of solids that actually precipitated in the system (asi )i∈Ī†s

were assumed to be linearly independent (linear independent constraints qual-

ification, see also A. F. Izmailov and M. V. Solodov [17] for instance).
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(H3) The strict complementary condition holds, i.e. log ks + ATs λ ≥ 0, ns ≥ 0,

nTs (log ks+A
T
s λ) = 0 (equivalent to (3.32) (3.33)), but also ns+(log ks+A

T
s λ) >

0 (i.e. ns and (log ks + ATs λ) are not simultaneously zero).

4.2 Inertia Theory

Recall that the inertia of a symmetric matrix is an ordered set of three integers

(i+, i−, io), where i+ is the number of positive eigenvalues, i− the number of negative

eigenvalues, and i0 the number of zero eigenvalues.

For a general matrix A ∈ Rm×n, let ZA ∈ Rn×(n−m) denote a null space matrix

of A (i.e. a matrix such that AZA = 0). The relationship (4.2) is also equivalent to

requiring the so-called KKT matrix

K =

 H ĀT

Ā 0

 ,

to have a certain inertia. This is the subject of the next theorem.

Theorem 4.2.1

Under assumptions (H1) and (H2) and if (4.2) is satisfied, the KKT matrix K is

invertible.

Proof. Based on an inertia result of Gould [16], we have

inertia(K) = inertia(ZT
ĀHZĀ) + (mc,mc, 0), (4.3)
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where ZĀ is a null-space matrix for Ā. Then (4.2) implies

inertia(K) = (ml +mg + m̄s,mc, 0). (4.4)

The matrix K is thus invertible.

Solving (3.18)-(3.23) or (3.28)-(3.34) may not be easy, it is mainly because of the

combinatorial aspect of the KKT system, or more precisely by the complementary

slackness conditions (3.22) or (3.33). The problem is not only to determine the

concentrations but also to guess the optimal active set of solids (in the “dual” sense)

Ī†s := { j ∈ Is : log ks,j + aTs,jλ
† = 0 }. (4.5)

Under assumption (H3) that the strictly complementary slackness condition holds,

Ī†s is equal to the “primal” set defined in (4.1), i.e., Ī†s := {i ∈ Is : n†s,i > 0}. The

set of solid salts actually precipitated at equilibrium, or the complementary solid set

of Ī†s , is denoted as follows:

Ĩ†s := Is \ Ī†s = { j ∈ Is : log ks,j + aTs,jλ
† > 0 }. (4.6)

It identifies the set of salts that are subsaturated with the aqueous solution. Under

assumption (H3) again, the set Ĩ†s is equal to Ĩ†s = {i ∈ Is : n†s,i = 0}, the set of

possible solid salts that are not precipitated at equilibrium.

Based on a guess of the optimal active set of solid phases (4.5), the KKT system

(3.18)-(3.23) or (3.28)-(3.34) can be transformed into a system of nonlinear equations,

which is much more computationally tractable. Let us define
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Ās := (asj)j∈Ī†s , Ãs := (asj)j∈Ĩ†s , n̄s := (ns,j)j∈Ī†s , and ñs := (ns,j)j∈Ĩ†s .

The exact solution of the chemical equilibrium problem (3.27) can be computed from

the KKT conditions as follow:

log ac + λ = 0, (4.7)

log an + ATnλ = − log kn, (4.8)

log ag + ATg λ = − log kg, (4.9)

log RH + aTH2Oλ = 0, (4.10)

log k̄s + ĀTs λ = 0, n̄s > 0, (4.11)

log k̃s + ÃTs λ > 0, ñs = 0, (4.12)

nc + Annn + Agng − nH2O(pm)aH2O + Āsn̄s = b̄, (4.13)

where the complementary slackness conditions (3.32) and (3.33) are split into the

equalities (4.11) and the strict inequalities (4.12), according to the optimal active

and inactive sets of solid phases, Ī†s and Ĩ†s , respectively.

Let us simplify the notations by denoting

Āλ = (−aH2O, Ās)
T , m̄λ = m̄s + 1, b̄λ = (log RH,− log k̄Ts )T .

The “dual” saturation constraints (4.10) and (4.11) are combined to form the dual

linear equality constraint
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Āλλ = b̄λ. (4.14)

The feasibility of (4.14) requires Āλ to be of full row rank, implying that Ās must

be of full column rank and that aH2O /∈ range(Ās). Notice that the latter is always

true if the solid salts do not contain hydrated water.

The dual variable λ that satisfies (4.14) can be expressed in terms of a reduced

variable η via

λ = λ∗ + ZĀλη,

where ZĀλ is a null-space matrix of Āλ and λ∗ is a particular solution of (4.14). The

primal variables nH2O(pm) and n̄s are viewed as the multiplier of the combined dual

equality constraint (4.14). Replacing λ by the reduced variable η and projecting

the KKT system (4.7)-(4.13) onto the null-space ZĀλ to eliminate (nH2O(pm), n̄s),

gives the following reduced KKT system of the primal-dual canonical stoichiometric

equations :

log ac + ZĀλη = −λ∗, (4.15)

log an + ATnZĀλη = − log kn − ATnλ∗, (4.16)

log ag + ATg ZĀλη = − log kg − ATg λ∗, (4.17)

ZT
Āλ
nc + ZT

Āλ
Annn + ZT

Āλ
Agng = ZT

Āλ
b̄. (4.18)
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Once the solution (nc, nn, ng, η) of the reduced system (4.15)-(4.18) is known, one

can compute the primal variables nH2O(pm) > 0 and n̄s > 0, from the mass-balance

equations (4.13) via

 nH2O(pm)

n̄s

 =
(
ĀTλ
)−1 (

b̄− nc − Annn − Agng
)
, (4.19)

where
(
ĀTλ
)−1

is the left pseudoinverse of ĀTλ . From now on, let us denote by n̄s

the union of n̄s and nH2O(pm). Note that the set of all possible active sets grows

exponentially with ms, the number of all possible solid salts considered.

4.3 Primal-Dual Active Set Method

In order to solve (3.18)-(3.23) or (3.28)-(3.34), a primal-dual algorithm is presented,

based on the active-set strategy that makes a sequence of sets converging to the

optimal active set of solid phases. This sequence of the so-called active sets, denoted

by Īs, is defined in the “dual” sense as it was done for the optimal active set Ī†s in

(4.5) as follow

Īs := { j ∈ Is : log ks,j + aTs,jλ = 0 }, (4.20)

where the dual variable λ, together with the primal variable (nl, ng, ns) consists of

a sequence of iterates that converges to the primal-dual solution (n†l , n
†
g, n

†
s, λ
†) of

the KKT system (3.28)-(3.34). By the definition (4.20), Īs is the set of the linear
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inequalities (3.32) becoming active at λ. Starting as an approximation of Ī†s , a priori

unknown, the set Īs is expected to converge quickly to the optimal active set Ī†s as

soon as λ is in a neighborhood of λ†. The complementary solid set of Īs, denoted by

Ĩs, is the set of the linear inequalities (3.32) being inactive at λ, i.e.,

Ĩs := Is \ Īs = { j ∈ Is : log ks,j + aTs,jλ > 0 }. (4.21)

In our active-set algorithm, the sequence of the dual variable λ is required to satisfy

the active constraints in Īs as equalities, i.e.,

log ks,j + aTs,jλ = 0, ∀j ∈ Īs, (4.22)

and stay feasible with respect to the inequality constraints that are inactive, i.e.,

log ks,j + aTs,jλ ≥ 0, ∀j ∈ Ĩs. (4.23)

The principle of the algorithm is the following. The dual feasibility condition of

inequalities (4.23) enforces the dual variables to remain feasible with respect to the

inequality constraints, until the saturation is reached at an iteration and the inequal-

ity constraint is set to be active and is added into the active set. The dual feasibility

condition of equalities (4.22) enforces every active constraint to remain active, until

the corresponding primal variable ns,j becomes negative at a certain iteration and

the corresponding equality constraint is set to be inactive and becomes an inequality.

Thus the corresponding salt is removed from the active set.
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The problem is to construct a sequence of active sets which converges to Ī†s . The

active set strategy is the following. Along the process of applying the active-set

strategy, the KKT system (3.28)-(3.34) is first projected onto the current active set

Īs to form a reduced KKT system of the form similar to that of (4.15)-(4.18) with

the particular solution λ∗ of (4.14) being the current dual variable λ.

Then one Newton iteration is applied to the reduced system to find the next

primal-dual approximation (nl, ng, λ) of the solution, where the new estimate of λ is

updated from the current one by stepping along a null-space direction defined by ZĀλ .

The displacement along this direction is restricted to a certain length so that λ stays

feasible with respect to (4.23). Finally, the next active set Īs is obtained by adding

constraints that are encountered by the new λ and the KKT system (3.28)-(3.34) is

projected onto the new active set. Once the sequence of (nl, ng, λ) has converged to

a solution of the reduced KKT system, the concentrations n̄s of the saturated salts in

the active set are computed via equation (4.19). Since n̄s is viewed as the Lagrange

multipliers of the dual active constraints (4.22), its non-negativeness is enforced by

removing a saturated salt from the active set Īs when its concentration becomes

negative. The above process continues until the equilibrium set of solid phases Ī†s is

obtained.

For the moment, let us disregard the fact that n̄s must remain non-negative,

and simply apply the Newton method to the reduced KKT system to compute a

displacement, denoted by (pnl , png , pλ), in (nl, ng, λ). We set pλ = ZĀλpη for a certain

η, and λ must satisfy (4.22). This reduced KKT system, projected on Īs, is the

following symmetric indefinite system:
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
Hl 0 ATzl

0 Hg ATzg

Azl Azg 0




pl

pg

pη

 =


bl

bg

bη

 , (4.24)

where

Hl = ∇(log al), Hg = ∇(log ag) = diag (1/ng),

Azl = ZT
Āλ
Al, Azg = ZT

Āλ
Ag,

and

bl = − log kl − log al − ATl λ,

bg = − log kg − log ag − ATg λ,

bη = ZT
Āλ

(
b̄− Alnl − Agng

)
.

Note that Azl is of full rank. Let

Ĩg := { j ∈ Ig : ZT
Āλ
agj = 0 }, (4.25)

Īg := Ig \ Ĩg, m̄g := |Īg|, (4.26)

Āg := (agj )j∈Īg , Āzg := ZT
Āλ
Āg. (4.27)

Note that Āzg is of full rank and we have then

AzgP = (Āzg, 0), (4.28)

where P is a permutation matrix.

The displacement in λ is obtained from pη as a displacement in the null-space,

defined by pλ = ZĀλpη. A new estimate of the solution of the KKT system (3.28)-

(3.34) is then obtained by
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n+
l = nl + α pl, (4.29a)

n+
g = ng + α pg, (4.29b)

λ+ = λ+ α pλ. (4.29c)

The parameter α is a steplength computed by

α = min(ᾱ, αmax),

where αmax is a fixed upper bound on the steplength and ᾱ is the maximum fea-

sible steplength that can be taken along the direction pλ. The parameter αmax is

usually taken to be 1; it can also be adjusted to ensure that a merit function is

sufficiently reduced so that the primal-dual method converges globally, see e.g. [14].

The maximum feasible steplength ᾱ is computed by using a ratio test

ᾱ = min

{
log ks,j + aTs,jλ

−aTs,jpλ
: aTs,jpλ < 0, j /∈ Īs

}
, (4.30)

so that the new estimate λ+ stays feasible with respect to the inequality constraints

(4.23), i.e. log k̃s + ÃTs λ
+ ≥ 0. A step α is called restricted if α < αmax, i.e, a

constraint is encountered by λ+ in the line-search. Otherwise, the step is referred to

as unrestricted. As λ+ is updated along a null-space direction, it satisfies naturally

(4.22).

The updates of the active sets are now described, starting with the addition of

constraints into the active set. The initial active-set Ī0
s is required to only contain
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constraints that are active at λ0. By the feasibility arguments (4.14), the associated

matrix Ā0
s is of full rank, so is Ā0

λ. Let Pa denote the index set of constraints that

are encountered by λ+ in the line-search at a Newton iteration, i.e.,

Pa = { j /∈ Īs : aTs,jpλ < 0, log ks,j + aTs,jλ
+ = 0 }.

Note that Pa may be the empty set. The new active set is then defined by

Ī+
s = Īs ∪ Īas ,

where Īas ⊆ Pa is required to satisfy

Pa 6= ∅ implies Īas 6= ∅. (4.31)

The implication of (4.31) is that if new constraints are encountered in the line-search,

at least one of them must be added, and also that no all the constraints encountered

need to be active. In practice, exactly one new constraint is added at one time.

Since λ+ satisfies all the constraints in Ī+
s , by the feasibility arguments (4.14), the

associated matrix Ā+
s must have full rank, so does Ā+

λ , see also [15].

On the other hand, the choice of a rule for removing constraints from the active-

set is now detailed. As described before, the solution (nl, ng, λ) is computed by

Newton’s method and the constraints encountered by λ in the line-search are added

to the active set Īs, until the sequence of Newton iterates (nl, ng, λ) converges to
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a solution of the reduced KKT system (4.15)-(4.18) which satisfies the inequality

constraints. The concentrations n̄s are then computed and the set

Pd = { j ∈ Īs : ns,j < 0 }

is identified. If Pd 6= ∅, the new active set is defined by

Ī+
s = Īs \ Īds ,

where Īds ⊆ Pd is required to satisfy

Pd 6= ∅ implies Īds 6= ∅. (4.32)

The implication of (4.32) is that if solid salts have negative concentrations, at least

one of them must be removed, and also that no all the solid salts having negative

concentrations need to be inactive. In practice, only one constraint is removed at

one time. The KKT system is then projected on the new active set and a new loop

of Newton iterations is restarted until convergence is achieved.

If Pd = ∅, a feasible solution of (3.28)-(3.34) is reached, and the algorithm stops.

This active set/Newton algorithm is summarized in the next section.

4.4 Active Set Method algorithms

The principal features of the algorithm can be summarized as following:
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• The algorithm applies Newton method to the reduced KKT system of equations

that is projected on an active set of solid phases to find the next primal-dual

approximation of the solution.

• The active set method is used to add/delete salts to/from a working set of

saturated salts until the equilibrium set of solid phases is obtained.

• The linear inequality constraints are enforced on the dual variables so that

the solution remains dual feasible with respect to the solid constraints, until

an inequality constraint becomes active at an iteration and the active set is

modified by adding a saturated salt into it.

• The concentrations of the saturated salts in the active set are the Lagrange

multipliers of the dual active constraints so that their non-negative charac-

teristic is enforced by deleting a saturated salt from the active set when its

concentration becoming negative.

• A second-order stability criterion is implemented by keeping the reduced Hes-

sian of the Gibbs Free Energy positive definite so that the algorithm converges

to a stable equilibrium (local minimum).

• To avoid the negative values and inaccurate scaling of the concentrations in

the computation, a logarithmic change of variables is performed so that the

concentrations follow a path that is infeasible with respect to the mass balance

constraints in the first few iterations. After that, it converges quadratically to

the minimum of the Gibbs Free Energy.
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Remark 4.4.1

In comparison with other thermodynamic models, this algorithm neither assumes

nH2O(pm) = nl,w, nor uses the Zsr relationship in its prediction of the amount of the

water partitioned in the particulate phase at a fixed relative humidity.
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Table 4.1: Active set/Newton method: summary of the algorithm.

Step 0. Initial n0
l , n

0
g, λ

0 and Īs are given;

Step 1. Compute the reduced Newton direction (pl, pg, pλ)

by solving (4.24);

Step 2. Compute the steplength ᾱ with (4.30);

Step 3. Update n+
l , n

+
g and λ+ with (4.29);

Step 4. Test if the Newton method converged;

(a) If no, consider the steplength ᾱ:

- if ᾱ < 1 (restricted step),

update Ī+
s = Īs ∪ {i} and go to (1);

- if ᾱ ≥ 1 (unrestricted step), go to (1).
(b) If yes, compute the primal variables

n̄+
s and n+

H20 with (4.19):

- If n̄+
s , n

+
H20 ≥ 0, Stop;

- If ∃j ∈ {1, . . . , ns} such that n̄+
s,j < 0,

update Ī+
s = Īs\{j} and go to (1)
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4.5 Computation of Newton Direction

Consider the linear KKT system (4.24) and define the associated KKT matrix

K̄ =


Hl 0 ATzl

0 Hg ATzg

Azl Azg 0

 .

First note that the Hessian matrix of the gas phase Hg = diag(1/ng) is positive

definite with inverse H−1
g = diag(ng).

Lemma 4.5.1

The condition (4.4) is equivalent to

inertia(K̄) = (ml +mg,mzc, 0), (4.33)

where

mzc = mc − m̄λ.

Proof. The proof is a direct consequence of (4.3) applied to the matrix K̄.

Let Āzg and ATzl have the following QR factorizations:

Āzg = (Qg Q̃g)

 Rg

0

 = QgRg, ATzl = (Ql Q̃l)

 Rl

0

 = QlRl,
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where (Qg Q̃g) and (Ql Q̃l) are orthogonal matrices with

Qg ∈ Rmzc×m̄g , Q̃g ∈ Rmzc×(mzc−m̄g), Ql ∈ Rml×mzc , Q̃l ∈ Rml×(ml−mzc),

and Rg ∈ Rm̄g×m̄g and Rl ∈ Rmzc×mzc are nonsingular.

Theorem 4.5.1

The condition (4.2), together with the assumptions (H1) (H2), is equivalent to

ZT
Azl
HlZAzl > 0, (4.34)

Z̃T
Azl
HlZ̃Azl +R−Tg H̄gR

−1
g > 0, (4.35)

where Z̃Azl = QlR
−T
l Qg and H̄g = diag(1/ngj )j∈Īg . Conditions (4.34) and (4.35) are

sufficient conditions for the system (4.24) to be solvable.

Proof. The following proof is a constructive proof that also emphasize the solution

method of (4.24) and the computation of the Newton direction.

The range-space method is applied to eliminate pg from (4.24), giving

 Hl ATzl

Azl −Sg


 pl

pη

 =

 bl

cη

 , (4.36)

where cη = bη − AzgH
−1
g bg and Sg = AzgH

−1
g ATzg is the Schur complement. Once

(4.36) is solved, pg can be easily obtained from pη via

pg = H−1
g (bg − ATzgpη). (4.37)
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Let

K̃ =

 Hl ATzl

Azl −Sg

 .

Lemma 4.5.2

Relationship (4.33) is equivalent to

inertia(K̃) = (ml,mzc, 0). (4.38)

Proof. The inertia relation, see for instance [16], leads to

inertia(K̄) = inertia(Hg) + inertia(K̃),

and the conclusion holds since inertia(Hg) = (mg, 0, 0).

Let us turn to the solution of (4.36). It follows from (4.28) that

Sg = AzgH
−1
g ATzg = AzgPP

TH−1
g PP TATzg = ĀzgH̄

−1
g ĀTzg.

Then, the inertia of Sg is given by

inertia(Sg) =

 (m̄g, 0,mzc − m̄g), if mzc ≥ m̄g,

(mzc, 0, 0), otherwise.
(4.39)

The condition (4.39) implies that Sg is positive definite only if the number of satu-

rated salts becomes larger than the number of components subtracted by the number
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of “active” gas species (m̄s ≥ mc− m̄g); otherwise, Sg is positive semi-definite. Note

that Hl is singular, due to the Gibbs-Duhem relation (3.11).

For the solution of the system (4.36), the nullity of Sg has to be eliminated

first. Consider the QR factorization of Azg. Then it is easy to see that the Schur

complement Sg has the block structure

Sg = (Qg Q̃g)

 RgH̄
−1
g RT

g 0

0 0


 QT

g

Q̃T
g

 .

Lemma 4.5.3

By defining pη1 = QT
g pη and pη2 = Q̃T

g pη, the linear system (4.36) is equivalent to

solving

 Hl + Sl ATzlQ̃g

Q̃T
gAzl 0


 pl

pη2

 =

 cl

Q̃T
g cη

 , (4.40)

where

cl = bl + ATzlQgR
−T
g H̄gR

−1
g QT

g cη, (4.41)

Sl = ATzlQgR
−T
g H̄gR

−1
g QT

gAzl. (4.42)

Proof. Let
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V =

 Iml 0

0 Q

 .

Hence

V T K̃V =

 Hl ATzlQ

QTAzl −QTSgQ

 =


Hl ATzlQg ATzlQ̃g

QT
gAzl −RgH̄

−1
g RT

g 0

Q̃T
gAzl 0 0

 . (4.43)

The system (4.36) is multiplied by V T from the left on both sides and (4.43) is used

to write the resulting system as a 3 × 3 block system. With symmetrically block

rows and columns permutations, the resulting linear system is:


−RgH̄

−1
g RT

g QT
gAzl 0

ATzlQg Hl ATzlQ̃g

0 Q̃T
gAzl 0




pη1

pl

pη2

 =


QT
g cη

bl

Q̃T
g cη

 . (4.44)

Since −RgH̄
−1
g RT

g , the (1, 1) block matrix system, is non-singular, the range-space

method is applied to eliminate pη1 from (4.44). Thus, equations (4.40) - (4.42) are

achieved.

Note that, with the definitions in Lemma 4.5.3, pη is obtained from

pη = (Qg Q̃g)

 pη1

pη2

 = Qgpη1 + Q̃gpη2 . (4.45)
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Once (4.40) is solved, the direction pη1 can easily be obtained from pl via

pη1 = −R−Tg H̄gR
−1
g QT

g (cη − Azlpl). (4.46)

Then let us define the matrix K̈ of the linear system (4.40) by

K̈ =

 Hl + Sl ATzlQ̃g

Q̃T
gAzl 0

 . (4.47)

A stability analysis for the solvability of the system (4.40) is performed in the next

lemma.

Lemma 4.5.4

The condition (4.38) is equivalent to the condition

ZT
l (Hl + Sl)Zl > 0, (4.48)

where Zl ∈ Rml×(ml−mzc+m̄g) is a null-space matrix of Q̃T
gAzl. Under condition (4.33)

or (4.48), the linear system (4.40) is solvable.

Proof. Relationship (4.3) leads to

inertia(K̃) = inertia(−RgH̄
−1
g RT

g ) + inertia(K̈).

Since RgH̄
−1
g RT

g > 0, relationship (4.38) implies that
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inertia(K̈) = (ml,mzc − m̄g, 0). (4.49)

The Schur complement Sl in (4.47) is positive semidefinite. Since Q̃T
gAzl ∈ R(mzc−m̄g)×ml

in (4.47) is of full rank mzc − m̄g by (4.3), we have

inertia(K̈) = inertia(ZT
l (Hl + Sl)Zl) + (mzc − m̄g,mzc − m̄g, 0),

Relationship (4.49) implies that

inertia(ZT
l (Hl + Sl)Zl) = (ml −mzc + m̄g, 0, 0)

which is equivalent to (4.48). Thus, the desired conclusion is achieved.

A particular matrix Zl is now considered. To construct Zl, let us consider the

QR factorization of ATzl. Then, we have

Azl = RT
l Q

T
l , A−1

zl = QlR
−T
l ,

where A−1
zl is the right pseudoinverse of Azl, i.e. AzlA

−1
zl = Imzc . The matrix Zl is

defined as the following null-space matrix of Q̃T
gAzl:

Zl = (ZAzl , Z̃Azl),
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where

ZAzl = Q̃l, Z̃Azl = A−1
zl Qg = QlR

−T
l Qg.

Note that

ZT
l Zl =

 Q̃T
l

QT
gR
−1
l QT

l

 (Q̃l QlR
−T
l Qg) =

 Iml−mzc 0

0 QT
gR
−1
l R−Tl Qg

 .

From the condition (4.48), we have

0 < ZT
Azl

(Hl + Sl)ZAzl = ZT
Azl
HlZAzl + ZT

Azl
SlZAzl ,

0 < Z̃T
Azl

(Hl + Sl)Z̃Azl = Z̃T
Azl
HlZ̃Azl + Z̃T

Azl
SlZ̃Azl .

Taking into account of the definition of Sl in (4.42), we have

ZT
Azl
SlZAzl = ZT

Azl
ATzlQgR

−T
g H̄gR

−1
g QT

gAzlZAzl = 0,

Z̃T
Azl
SlZ̃Azl = QT

gA
−T
zl A

T
zlQgR

−T
g H̄gR

−1
g QT

gAzlA
−1
zl Qg

= R−Tg H̄gR
−1
g > 0.

Thus, (4.48) is equivalent to require that the conditions (4.34) and (4.35) hold and

the conclusion of the theorem holds.

Remark 4.5.1

Note that the condition (4.34), i.e., ZT
Azl
HlZAzl > 0, implies that
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inertia

 Hl ATzl

Azl 0

 = (ml,mzc, 0).

That is, if m̄g = 0, the condition (4.34) alone implies that K has the desire

inertia (4.4). For m̄g > 0, the additional condition (4.35) is required.

From the solvability condition (4.48) that is derived from the above analysis on

the phase stability, the system (4.40) is then solved by the null-space method. To

ensure that the primal-dual algorithm converges to a minimum or stable equilibrium

rather than any other first-order optimality point such as a maximum or a saddle

point, the condition (4.2) is enforced by controlling Hl at each iteration. In other

words, we replace Hl by a modification H̃l so that ZT
l (H̃l+Sl)Zl is sufficiently positive

definite while ZT
l (Hl +Sl)Zl is not sufficiently positive definite. Various methods for

modifying Hl may be found in [30] for instance. Note that

ZT
l (H̃l + Sl)Zl = ZT

l H̃lZl +

 0 0

0 R−Tg H̄gR
−1
g

 . (4.50)

The system (4.40) or, more precisely, the system

 H̃l + Sl ATzlQ̃g

Q̃T
gAzl 0


 pl

pη2

 =

 cl

Q̃T
g cη

 (4.51)

has the solution given by:
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pl = Zl(Z
T
l (H̃l + Sl)Zl)

−1ZT
l

(
cl − (H̃l + Sl)p

∗
l

)
+ p∗l , (4.52)

pη2 =
(
ATzlQ̃g

)−1 (
cl − (H̃l + Sl)pl

)
, (4.53)

where
(
ATzlQ̃g

)−1

is the left pseudoinverse of ATzlQ̃g, given by

(
ATzlQ̃g

)−1

= Q̃T
g (A−1

zl )T , (4.54)

and p∗l is a particular solution of the second equation of (4.51), given by

p∗l = A−1
zl cη. (4.55)

In summary, for the solution of (4.24), the combination of Schur complements

and null-space methods permits to solve successively (4.51) to obtain pl and pη2
.

Then pη1 is obtained from (4.46), giving pη with (4.45) and pλ = ZĀλpη. Finally pg

is obtained with (4.37) to increment all the variables (nl, ng, λ) for next iteration.
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Chapter 5

Results

The primal-dual active set algorithm has been implemented into UHAERO, a gen-

eral thermodynamic model that can predict efficiently and accurately the phase tran-

sition and multistage growth phenomena of inorganic aerosols under a wide range of

atmospheric conditions.

The data input parameters for the model are physical parameters as temperature,

relative humidity, pressure, and the feed vector b̄, as well as stoichiometry matrix

A = [Al, Ag, As].

The Gibbs Free Energy and the activity coefficients are computed with the Ex-

tended UNIQUAC model [35].

Two numerical examples in the multi-stage growth of atmospheric aerosols are

documented here to illustrate the efficiency of the algorithm.
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5.1 Sulfate Aerosols

A sulfate aerosol (NH4)2SO4-H2SO4-H2O is assumed to be diluted in the air. Three

solid phases (A:(NH4)2SO4, B:(NH4)3H(SO4)2, and C:NH4HSO4) may possibly ap-

pear at equilibrium. The chemical reactions which may appear between the chemical

components of the system are given in Table 2.1.

Table 5.1: Chemical equilibrium reactions in the sulfate aerosol. The first class
denotes the vapor-liquid equilibrium; the second class describes the reactions in the
aqueous phase, without phase changes; finally the third class describes the reactions
with phase changes which may lead to the formation of a solid.

• Vapor-Liquid Equilibrium:

H2O(l) � H2O(g)

NH3(l) � NH3(g)

H2SO4(l) � H2SO4(g)

• Speciation Equilibria:

H2SO4(l) � H+(aq) + HSO−4 (aq)

HSO−4 (aq) � H+(aq) + SO2−
4 (aq)

NH3(l) + H2O(l) � NH+
4 (aq) + OH−(aq)

H2O(l) � H+(aq) + OH−(aq)

• Solid-Liquid Equilibria:

(NH4)2SO4(s) � 2NH+
4 (aq) + SO2−

4 (aq)

(NH4)3H(SO4)2(s) � 3NH+
4 (aq) + HSO−4 (aq) + SO2−

4 (aq)

NH4HSO4(s) � NH+
4 (aq) + HSO−4 (aq)
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The vapor-liquid equilibrium reaction expresses the changes between water (l/aq

= liquid/aqueous phase) and water vapor (g=gas phase), in which the relative hu-

midity is a given constant; the speciation equilibria describe the interactions in the

aqueous phase, while the solid-liquid equilibria are the reactions giving birth to a

solid phase. In Figure 5.1, the reconstructed sulfate aerosol phase diagram is illus-

trated. For each weight ratio of the feed vector b̄, the method allows to predict the

existence or non-existence of each solid phase and the weight amount of water in the

aerosol particle due to the instantaneous vapor-liquid equilibrium. The level lines

of the relative humidity show easily that, for high relative humidity, no solid salts

appear at equilibrium.

In Figure 5.2, the evolution of the aerosol particle with the feed vector b̄ corre-

sponding to three solids A, B, and C in Figure 5.1, respectively, are illustrated in

function of the relative humidity RH. For each feed ratios of the aerosol particle, the

figure shows that the phase changes are very accurately tracked by discontinuities in

the trajectory. Figure 5.3 shows the typical Newton iteration in UHAERO.

5.2 Urban and Remote Continental Aerosols

The second example is two types of aerosols: urban and remote continental [28],

consisting of sulfate, nitrate, and ammonium diluted in the air (with the specific ratio

of H2O-H2SO4-HNO3-NH3). Four solid phases (A, B, C, and D) may possibly appear

at equilibrium. They consist of the solids (NH4)2SO4, (NH4)3H(SO4)2, NH4HSO4,

and NH4NO3. Again, the chemical equilibrium reactions which are possible between
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Figure 5.1: Modeling of a sulfate aerosol. Reconstruction of the phase diagram at
25oC with tracking of the presence of each solid phases. For each region of space the
existing phases at equilibrium are represented.
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the chemical components of the system are given in Table 5.2.

In Figures 5.4 and 5.5, the mass ratios of inorganic components and water in

typical urban and remote continental aerosols are given as a function of the relative

humidity. Figures 5.4 and 5.5 illustrate clearly that the phase transitions are accu-

rately tracked without any a priori knowledge of the existing phases. In Figures 5.6

and 5.7, the evolution of solid contents is investigated. For high relative humidity,

no salts appear at the equilibrium. When the humidity decreases, the mass of salts
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Figure 5.2: Modeling of a sulfate aerosol. Evolution of the particle mass in function
of the relative humidity RH. The creation/disappearance of a solid phase appears
through a discontinuity in the derivatives of the trajectories. (f is the feed mole ratio:

n(NH4)2SO4

n(NH4)2SO4 + nH2SO4

and W0 is the amount of inorganic feed).
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increases until reaching a constant value for low relative humidity. The distribution

of solid salts at low relative humidity is totally dependant on the inorganic feed

composition.
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Figure 5.3: Modeling of a sulfate aerosol. Newton iteration at fixed RH = 0.85 in
case of the inorganic feed B:(NH4)3H(SO4)2.
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Table 5.2: Chemical equilibrium reactions in sulfate/nitrate system.

• Vapor-Liquid Equilibrium:

H2O(l) � H2O(g)

NH3(l) � NH3(g)

H2SO4(l) � H2SO4(g)

HNO3(l) � HNO3(g)

• Speciation Equilibria:

HNO3(l) � H+(aq) + NO−3 (aq)

H2SO4(l) � H+(aq) + HSO−4 (aq)

HSO−4 (aq) � H+(aq) + SO2−
4 (aq)

NH3(l) + H2O(l) � NH+
4 (aq) + OH−(aq)

H2O(l) � H+(aq) + OH−(aq)

• Solid-Liquid Equilibria:

(NH4)2SO4(s) � 2NH+
4 (aq) + SO2−

4 (aq)

(NH4)3H(SO4)2(s) � 3NH+
4 (aq) + HSO−4 (aq) + SO2−

4 (aq)

NH4HSO4(s) � NH+
4 (aq) + HSO−4 (aq)

NH4NO3(s) � NH+
4 (aq) + NO−3 (aq)
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Figure 5.4: Deliquescence curve for sulfate/nitrate aerosol. Total SO2−
4 =

9.143µg/m3, total NO−3 = 1.953µg/m3 and total NH+
4 = 3.400µg/m3.
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Figure 5.5: Deliquescence curve for sulfate/nitrate aerosol. Total SO2−
4 =

11.270µg/m3, total NO−3 = 0.145µg/m3 and total NH+
4 = 4.250µg/m3.
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Figure 5.6: Evolution of solid content of aerosol in Figure 5.4. W0 = 14.496µg/m3.
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Figure 5.7: Evolution of solid content of aerosol in Figure 5.5. W0 = 15.665µg/m3.
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Chapter 6

Conclusions

We have developed the modeling of atmospheric inorganic aerosols in the framework

of the canonical stoichiometry. The thermodynamic equilibrium corresponds to the

minimum of the Gibbs Free Energy for a system involving a gas phase, an aqueous

phase, and solid salts is investigated.

A numerical method for the solution of this optimization problem has been stud-

ied. The model is based on an active set/Newton method to take advantage of the

constant chemical potentials for the solid phases.

Numerical results have been presented to show the ability of our algorithm in the

prediction of phase equilibria and its good numerical properties, especially in terms

of convergence rate.
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