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Abstract

In this dissertation, we define two new classes of operator algebras; matricial

operator algebras and scattered operator algebras. The C∗-algebras of compact op-

erators play an important role in C∗-algebra theory, and they are widely used in

mathematical physics and quantum mechanics. We define 1-matricial algebras using

a sequence of invertible operators on a Hilbert space, and σ-matricial algebras are

c0-sums of 1-matricial algebras. These operator algebras, in some sense, generalize

the class of C∗-algebras of compact operators to a non-selfadjoint setting. They

possess many properties similar to the properties of the C∗-algebras of compact op-

erators. We present a ‘Wedderburn type’ structure theorem that characterizes the

σ-matricial algebras. We define scattered operator algebras using a composition se-

ries where each consecutive quotient is a 1-matricial algebra. Note that a C∗-algebra

is scattered if and only if it has a composition series where each consecutive quotient

is a C∗-algebra of compact operators. Hence, our definition of scattered operator

algebras is quite natural. We present many results on the structure of the scat-

tered operator algebras and show that they have some properties generalizing the

properties of scattered C∗-algebras. For example, the dual of a scattered operator

algebra has the Radon-Nikodým property and scattered operator algebras are As-

plund spaces. Working with a composition series requires us to develop some tools

for general operator algebras, and in particular, quotient operator algebras. For ex-

ample we utilize frequently the isomorphism theorems and a correspondence theorem

for operator algebras; as well as the results about the structure of the diagonal of a

quotient operator algebra.
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Chapter 1

Introduction

1.1 The Classical Theory

One of the greatest contributors to noncommutative ring theory was Wedderburn.

In 1905, he proved that every simple ring that is finite dimensional over a division

ring is a matrix ring. Later, he had the idea of splitting a ring into two parts;

a part which is called ‘radical’ and the left-over part which is called ‘semisimple’.

He then used matrix rings to classify the semisimple part. Wedderburn’s structure

theorems were formulated for finite dimensional algebras over a field. In the late

1920’s, the Wedderburn theory was extended to noncommutative rings satisfying

chain conditions by Artin. In the 1940’s Jacobson proved results of the Wedderburn-

Artin type for rings without chain conditions. One of his basic tools was what is now

called the ‘Jacobson radical’.
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In Banach algebra theory, there were attempts to find Banach algebra variants

of these results. Kaplansky’s work in 1947 on dual rings and dual Banach algebras

is of great importance [32]. To understand the structure of noncommutative Banach

algebras, he introduced CCR and GCR algebras and examined their structure theory

[33]. In 1954, Bonsall and Goldie defined a new class of Banach algebras called

annihilator algebras which generalize Kaplansky’s dual Banach algebras [13]. In the

late 1950’s, Tomiuk presented the structure theory of complemented Banach algebras

[51].

In C∗-algebra theory, similar endeavors gave rise to the study of a new class called

Type I C∗-algebras. Glimm proved many diverse characterization of these, showing

that in the separable case this class coincides with Kaplansky’s GCR algebras [28].

In light of Glimm’s results, the class of Type I C∗-algebras has sometimes been

considered as the class of reasonable C∗-algebras; this is the class of C∗-algebras

with a tractable representation theory. Some of the subclasses of this class are dual

C∗-algebras and scattered C∗-algebras. We are interested in finding non-selfadjoint

analogues of this theory. However, it seems too ambitious to start with generalizing

Type I C∗-algebras. Hence, we start with first generalizing the dual C∗-algebras (the

C∗-algebras of compact operators) and then generalizing scattered C∗-algebras into

a non-selfadjoint setting.

Let H be a separable infinite dimensional Hilbert space. If we let K(H) denote

the set of all compact operators on a Hilbert space H, then K(H) is a C∗-subalgebra

of B(H) and we call it an elementary C∗-algebra. If A is a C∗-subalgebra of K(H),
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then it is a c0-direct sum of elementary C∗-algebras. These algebras admit char-

acterizations similar to Wedderburn’s theorem; for example, they are exactly the

‘dual’ C∗-algebras (in the sense of Kaplansky [32]) and also annihilator C∗-algebras

[13]. We refer to them as ‘the C∗-algebras of compact operators’ or as ‘annihilator

C∗-algebras’. Indeed, the class of C∗-algebras of compact operators is the simplest

subclass of C∗-algebras; but, it has many beautiful characterizations and a great

importance in C∗-algebra theory. This class of C∗-algebras has applications in many

fields such as mathematical physics, quantum mechanics, the theory of extensions,

KK-theory, Atiyah-Singer index theory, Voiculescu’s theory of approximate equiva-

lence, Brown-Douglas-Fillmore theory, and so on.

In topology, a space is called scattered if it does not contain any perfect subsets.

If K is a compact space, then K is scattered if and only if every Radon measure

on K is atomic [48, Section 19]. To generalize this notion to C∗-algebras, scattered

C∗-algebras were first defined in 1977 by H.E. Jensen [30], and studied by M. L.

Rothwell [46], A. J. Lazar [37], and C. Chu [21] in 1980. A C∗-algebra A is said to

be scattered if every positive functional on A is atomic; equivalently, if every positive

functional on A is the sum of a finite or infinite sequence of pure functionals. Some

recent work by M. Kusuda [36] shows that scattered C∗-algebras are quite connected

to AF C∗-algebras and to the C∗-algebras which have real rank zero; scattered C∗-

algebras are very rich in terms of projections. Of course, this class contains the class

of the C∗-algebras of compact operators.
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1.2 The Non-selfadjoint Setting

A (concrete) operator algebra A is a norm closed subalgebra of B(H), for some

Hilbert space H. Note that this subalgebra is not necessarily selfadjoint. If A is an

operator space and a Banach algebra such that there exists π : A → B(H) which

is a completely isometric isomorphism, then we say that A is an (abstract) operator

algebra. In 1990, Blecher, Ruan, and Sinclair gave an abstract characterization

of operator algebras and showed that every unital abstract operator algebra is a

concrete operator algebra [11]. This result is a fundamental result in the theory

of operator algebras and since then the theory has progressed enormously. One of

the tasks of the researchers in this area is to find non-selfadjoint analogues of the

notions and tools that are available in the C∗-algebra theory. This, together with

the facts mentioned in the previous section, led us to try finding the analogues of the

C∗-algebra of compact operators and scattered C∗-algebras in the theory of operator

algebras.

In a joint work with D. P. Blecher and S. Sharma, we introduced matricial algebras

[3]. We define 1-matricial algebras in terms of matrix units, and σ-matricial algebras

are c0-sums of 1-matricial algebras. The class of 1-matricial algebras possess many

similar properties to the class of C∗-algebras of compact operators. To name a few,

1-matricial algebras are simple and semisimple, they are generated by ‘matrix units’,

they have dense socle, and the spectrum of every element has no nonzero limit points.

For semiprime approximately unital operator algebras, we obtained a ‘Wedderburn

type’ structure theorem which gives many characterizations of σ-matricial algebras.
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This work is presented in Chapter 4.

One of the many nice characterizations of the scattered C∗-algebras is that they

contain a composition series where the consecutive quotients are isometric to K(H)

for some Hilbert space H. This led us to consider generalizing the scattered C∗-

algebras to a non-selfadjoint setting by using a composition series where each con-

secutive quotient is completely isometrically isomorphic to a 1-matricial algebra. In

Chapter 5, we define a composition series for an operator algebra and then define

scattered operator algebras using a composition series where the building blocks are

1-matricial algebras. We show that scattered operator algebras possess some prop-

erties that are similar to the properties of scattered C∗-algebras. For example, the

dual of a scattered operator algebra has the Radon-Nikodým property, and hence a

scattered operator algebra is an Asplund space.

In our attempt at defining scattered operator algebras using a composition series,

we needed to understand the structure of quotient operator algebras, by which we

mean A/J where A is an operator algebra and J is an ideal in A. We needed to

develop some tools to work with general operator algebras, and in particular, with

quotient operator algebras. For example, in Chapter 3, we present the operator

algebra versions of the First, Second, and Third Isomorphism Theorems and the

Correspondence Theorem, which are very useful tools in algebra. We also study the

structure of the diagonal of a quotient operator algebra.

Chapter 3 is joint work with our advisor D. P. Blecher and some of these results

will appear in [2], which also has many other results not in this dissertation. The

initial idea in Chapter 5 was proposed by D. P. Blecher. Most of the results in
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Chapter 5 are due to the author, although Blecher helped the author with many

corrections and some of the more difficult and technical points when we were stuck.

The rest of Chapter 5 is joint work with him, as are the parts of Chapter 4 which

are not in [3]. I thank D. P. Blecher for his continuous guidance and support during

the preparation of this dissertation.
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Chapter 2

Background and Preliminary

Results

2.1 Algebra

For algebraic terms and notations, we follow [41].

An element x in an algebra A is quasi-invertible if 1− x is invertible in A1. We

let qi(A) = {x ∈ A : 1 − x is invertible in A1}. The spectrum of an element x ∈ A

is defined as Sp(x) = {λ ∈ C : λ1 − x has no inverse in A} if A is unital. If A is

not unital, we can define the spectrum of an element as the spectrum of its image

in the unitization A1. Palmer gives a definition of the spectrum in terms of the

quasi-invertible elements of A (see [41, Definition 2.1.5]). The spectral radius of x is

r(x) = sup {|λ| : λ ∈ Sp(x)}.
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The radical (or Jacobson radical) of an algebra A is the intersection of kernels of

the irreducible representations of A, and it is denoted by Rad(A). There are many

characterizations of the Jacobson radical; for example, Rad(A) = {a ∈ A : A1a ⊂

qi(A)}. We refer the reader to Chapter 4 in [41] for other characterizations. The

algebra A is said to be semisimple if Rad(A) = (0), and is said to be Jacobson-radical

if Rad(A) = A.

An algebra A is simple if it does not contain any nontrivial ideals. We say that

the algebra is semiprime if for any ideal J in A, J2 = (0) implies that J = (0).

A semisimple algebra is semiprime since any nil ideal is contained in the Jacobson

radical.

An idempotent e ∈ A is minimal if eAe is a division algebra. An ideal (resp.

left ideal, right ideal) is called minimal if it is minimal among the set of nonzero

ideals (resp. left ideals, right ideals) ordered by inclusion. In a semiprime algebra,

every minimal left (resp. right) ideal of A has the form Ae (resp. eA) for a minimal

idempotent e ∈ A. Conversely, if e ∈ A is a minimal idempotent, then Ae (resp. eA

is a minimal left (resp. right) ideal. Note that in a semiprime Banach algebra the

minimal left (resp. right) ideals are all closed.

A very fundamental structure theorem, which can be attributed to Cartan, Wed-

derburn or Artin, characterizes unital finite dimensional algebras that are semiprime.

Theorem 2.1.1 (Cartan - Wedderburn - Artin Theorem). If A is a unital finite

dimensional algebra over C, then the following are equivalent.

(i) A is semisimple,
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(ii) A is semiprime,

(iii) A ∼= ⊕mk=1Mnk .

Proof. As mentioned earlier, semisimple implies semiprime. Suppose A semiprime.

If A has no nontrivial right ideals then every element is right invertible, so A = C 1

by Gelfand-Mazur Theorem. So, WLOG assume that A has a nontrivial right ideal,

hence a minimal right ideal, hence a minimal idempotent. If (ek) is a maximal set

of mutually orthogonal minimal idempotents in A, set e =
∑

k ek. If e 6= 1 then

the right ideal (1 − e)A contains a minimal idempotent. Indeed, in a semiprime

algebra, the minimal right ideals are of the form fA for an algebraically minimal

idempotent f ∈ A. This is a contradiction to the maximality of (ek), so
∑

k ek = 1.

Hence, B = ⊕nk=1 Ak as right B-modules, where Ak = ekB are minimal right ideals,

and ek are algebraically minimal idempotents. The elementary Schur lemma implies

that HomA(Ai, Aj) = (0) if Ai is not A-isomorphic to Aj, and HomA(Ai) = Di is a

division algebra, so it is congruent to C. Hence, we have:

B ∼= HomB(⊕nk=1Ak)
∼= ⊕mk=1Mnk(Dk) ∼= ⊕mk=1Mnk

for integers nk.

The left socle (resp. right socle) of A is the sum of all minimal left (resp. right)

ideals of A. If the left and right socles coincide, then they form the socle of A,

denoted by AF . Note that if A is semiprime, the left and right socle of A coincide

and A has socle. In this case, AF equals the left ideal, right ideal and the ideal

generated by the set of minimal idempotents of A.
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Let S be a subset of an algebra A. Then, the left annihilator of S in A is

LA(S) = {a ∈ A : ab = 0 for b ∈ A}. The right annihilator of S in A is RA(S) =

{a ∈ A : ba = 0 for b ∈ A}. Sometimes we use the notations R(S) or L(S) instead

of RA(S) or LA(S).

A modular annihilator algebra is a semiprime algebra where each maximal mod-

ular left (resp. right) ideal M satisfies RA(M) 6= (0) (resp. LA(M) 6= (0)). This

is also equivalent to A/AF being a radical algebra. For other (several) equivalent

definitions, we refer the reader to [41, Theorem 8.4.5].

An algebra A is called a Duncan modular annihilator algebra (DMA) if it is

semiprime and satisfies LA(AF ) = RA(AF ) = AJ . Observe that if A is semisimple,

then A is DMA if and only if LA(AF ) = RA(AF ) = (0). Note that a modular an-

nihilator algebra is a DMA algebra. However, the converse is not true; for example,

B(H), where H is an infinite dimensional Hilbert space, is DMA but not a modu-

lar annihilator algebra [41, Section 8.6]. The class of semisimple Duncan modular

annihilator algebras contains the class of Banach algebras where every element has

finite or countable spectrum [41, Theorem 8.6.2]. The converse of this statement is

not true. For example, if A = `∞([0, 1]), then A is a commutative semisimple DMA

algebra and the function f(t) = t has uncountable spectrum.

A Banach algebra A is a right (resp. left) annihilator algebra if R(I) 6= (0)

(resp. L(J) 6= (0)) for any proper closed left ideal I (resp. right ideal J) of A.

An annihilator algebra is both a left and a right annihilator algebra. Kaplansky

studied a class of algebras which he called dual [32], these satisfy R(L(J)) = J and

L(R(I)) = I for J, I as above. Note that dual algebras are annihilator algebras.
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2.2 The C∗-algebras of Compact Operators

A C∗-algebra is an involutive Banach algebra A satisfying the C∗-identity: ‖a∗a‖ =

‖a‖2, for all a ∈ A, where a 7→ a∗ denotes the adjoint on A. By Gelfand’s theorem,

a commutative unital C∗-algebra is ∗-isomorphic to C(K); the algebra of continuous

functions on a compact Hausdorff space K. That is, any commutative unital C∗-

algebra can be regarded as a C(K) algebra for an appropriate K.

An element p in a C∗-algebra is a projection if p = p2 = p∗; or, equivalently, if

p = p2 and ‖p‖ ≤ 1. The partial ordering on projections is p ≤ q ⇔ pq = p⇔ qp = p.

A projection p ∈ A∗∗ is said to be open if it is a weak∗-limit of an increasing net (bt)

of elements in A with 0 ≤ bt ≤ 1. A projection q ∈ A∗∗ is said to be closed if 1 − q

is open. A closed projection p ∈ A∗∗ is said to be compact if there exists a positive

element b ∈ A with ‖b‖ ≤ 1 such that p ≤ b.

A projection p ∈ A∗∗ is open if and only if it is the support projection of a left

(resp. right) ideal J in A. Here, the left (resp. right) ideal is J = A∗∗p ∩ A (resp.

J = pA∗∗ ∩ A), and J⊥⊥ = A∗∗p (resp. J⊥⊥ = pA∗∗). The support projection p of

J is the weak∗-limit of any increasing right cai (resp. left cai) for J . That is, the

support projection is unique. For a two-sided ideal J in A, the support projection

p ∈ A∗∗ is the weak∗-limit of any cai in J and we have J = pA∗∗ ∩ A = A∗∗p ∩ A. If

we quotient the C∗-algebra by the ideal, we get the following embedding:

A/J ⊂ (A/J)∗∗ ∼= A∗∗/J⊥⊥ ∼= A∗∗(1− p).

Let H be a Hilbert space. A bounded operator T on H is called compact if the

11



image of the unit ball of H under T has compact closure in the norm topology of

H. The set K(H) of all compact operators on H is a closed two-sided ideal in B(H)

and is therefore a C∗-algebra itself; we sometimes refer to K(H) as an elementary

C∗-algebra. It is easy to see that K(H) is not unital; but it does contain several finite

rank projections. In fact, K(H) is the norm closure of the set of finite rank operators

on H. Every nonzero projection in K(H) is finite dimensional and is a finite sum of

orthogonal minimal projections [4, Lemma 1.4.1]. Note that K(H) is simple; it does

not contain any nontrivial ideals. A notion that characterizes K(H) is that every

irreducible representation on K(H) is equivalent to the identity representation [4,

Section 1.4].

If A is a C∗-subalgebra of K(H), then there exist Hilbert spaces {Hi}i∈I such

that A is isomorphic to the direct sum ⊕i∈I K(Hi), where the direct sum consists

of elements (Ti) ∈ ΠK(Hi) with ‖Ti‖ → 0 (a ‘c0-direct sum’). We say that A is

a C∗-algebra of compact operators. The C∗-algebras of compact operators admit

characterizations similar to Wedderburn’s theorem. It is known that a C∗-algebra is

an annihilator algebra if and only if it is ‘dual’ in the sense of Kaplansky [32], and

these are precisely the c0-sums of elementary C∗-algebras. Hence, the class of C∗-

algebras of compact operators coincides with the class of annihilator C∗-algebras and

we sometimes refer to them as ‘annihilator C∗-algebras’. This class of C∗-algebras

has several other characterizations; these can be found in Kaplansky’s or Dixmier’s

works (for example [24, Exercise 4.7.20]). We state some of these characterizations.

If A is a C∗-algebra, then the following are equivalent:

(i) There is a faithful ∗-representation π : A → K(H) as compact operators on

12



some Hilbert space H.

(ii) A is ∗-isomorphic to ⊕0
iK(Hi) (a ‘c0-sum’) for Hilbert spaces Hi.

(iii) For every closed left ideal J of A, R(J) 6= (0).

(iv) The sum of minimal left (resp. minimal right) ideals of A is dense in A.

(v) Every closed left (resp. right) ideal J in A is of the form Ae (resp. eA) for a

projection in M(A).

(vi) For every selfadjoint x ∈ A, SpA(x) \ {0} is discrete.

(vii) For fixed a, b ∈ A, the map x 7→ axb is compact.

(viii) A is an ideal in its bidual.

2.3 Scattered C∗-algebras

A topological space X is scattered (or dispersed) if for every closed subset C of X,

the set of isolated points of C is dense in C. Equivalently, X is a scattered space if

no nonempty closed subset of X is dense in itself; for every closed subset C of X,

the closure of the interior of C is not C. Another characterization is that X does not

contain any perfect subsets. For example, X = {0} ∪ { 1
n

: n ∈ N} ∪ {1− 1
n

: n ∈ N}

is scattered. Every discrete space is scattered. Note that 2ω (Cantor’s set) is not

scattered.

In [47], W. Rudin studied the properties of C(K) where K is a compact Hausdorff

space which is scattered. He showed that the linear functionals on C(K) have a very
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simple structure. A. Pelczynski and Z. Semadeni gave several necessary and sufficient

conditions for a compact Hausdorff space K to be scattered in terms of C(K) [44].

To name a few, a compact Hausdorff space K is scattered if and only if

• every continuous image of K is scattered,

• the space K is zero dimensional and 2ω is not a continuous image of K,

• for every separable subspace X of C(K), the space X∗ is separable,

• every linear functional over C(K) is of the form T (x) =
∑∞

n=1 anx(tn), where

(tn) is a fixed sequence of points of K and
∑∞

n=1 |an| <∞.

To generalize this notion to C∗-algebras, H. E. Jensen defined scattered C∗-

algebras in terms of the positive functionals on the C∗-algebra. A C∗-algebra A

is said to be scattered if every positive functional on A is atomic; or equivalently, any

positive functional on A is the sum of a finite or infinite sequence of pure functionals

[30]. Combining some results from [30], [37] and [21], we can state the following

theorem to list some of the characterizations of scattered C∗-algebras.

Theorem 2.3.1. Let A be a C∗-algebra. The following are equivalent.

(i) A is scattered.

(ii) Each nondegenerate representation of A is unitarily equivalent to a subrepre-

sentation of a sum of irreducible representations.

(iii) Each projection in the enveloping von Neumann algebra B majorizes a minimal

projection in B.
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(iv) A has a composition series {Iα} such that each Iα+1/Iα is an elementary C∗-

algebra.

(v) Every selfadjoint element in A has countable spectrum.

(vi) The dual of A has the Radon-Nikodým property.

Note that a Banach space X is said to have the Radon-Nikodým property if for

any finite measure space (Ω,Σ, µ), and any µ-continuous vector measure L : Σ→ X

of bounded total variation, there exists a Bochner integrable function g : Ω → X

such that L(E) =
∫
E
g dµ for all E in Σ. If X has the Radon-Nikodým property,

then it has the Krein-Milman property. That is, every (norm) closed bounded convex

subset of X is the (norm) closed convex hull of its extreme points. The converse is

also true if X is a dual space. A Banach space X has RNP if and only if X is an

Asplund space [50, Theorem 1]. Also, a Banach space X is an Asplund space if and

only if every separable subspace has a separable dual [50].

An element x ∈ A is abelian if the hereditary C∗-subalgebra [xAx]− is commu-

tative. A C∗-algebra is Type I if every quotient of A contains a nonzero abelian

element. A characterization is that A is Type I if and only if it is GCR [5, Section

IV.1]. By [30, Theorem 2.3], a scattered C∗-algebra is Type I.

The existence of projections in C∗-algebras is important for understanding their

structure. In [17], L. G. Brown and G. K. Pedersen showed that several conditions

on the abundance of projections are equivalent. A C∗-algebra is said to have real

rank zero if every selfadjoint element in A1 can be approximated by an invertible

selfadjoint element in A1. Having real rank zero is equivalent to having the following
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properties [15]:

• (FS) The selfadjoint elements with finite spectrum are dense in Asa.

• (HP) Every nonzero HSA has an approximate identity consisting of projections.

• (IP) if p, q ∈ A∗∗ are mutually orthogonal projections where p is compact and

q is closed, then there is a projection r ∈ A such that p ≤ r ≤ 1− q.

Note that having real rank zero is the noncommutative analogue of being totally

disconnected. Indeed, for the commutative case; for C0(X) where X is locally com-

pact and Hausdorff, C0(X) has real rank zero if and only if X is totally disconnected.

If C(K) is scattered where K is a compact Hausdorff space, we know that it has real

rank zero. However, the converse is not true in general. For example, C(2ω) has real

rank zero but it is not scattered.

Recently, M. Kusuda studied scattered C∗-algebras ([35] and [36]) in connection

to being AF, being Type I or having real rank zero. He showed that a C∗-algebra

is scattered if and only if every C∗-subalgebra of A is AF, and if and only if every

C∗-subalgebra of A has real rank zero [36, Theorem 2.3].

2.4 Operator Algebras

An operator space is a norm closed subspace X of B(H), the bounded operators

on a Hilbert space H. Besides a vector space structure, an operator space has a

norm structure. The space of n × n matrices over X, Mn(X), inherits a norm ‖.‖n
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via the identification Mn(X) ⊂ Mn(B(H)) ∼= B(H(n)) isometrically, where H(n)

denotes the Hilbert space direct sum of n copies of H. If T : X → Y is a linear

map between operator spaces, for n ∈ N, we define Tn : Mn(X) → Mn(Y ) by

Tn([xij]) = [T (xij)], for [xij] ∈Mn(X). We say that the map T is completely bounded

if ‖T‖cb
def
= supn ‖Tn‖ is finite and T is completely contractive if ‖T‖cb ≤ 1. The map

T is said to be a complete isometry if each Tn is an isometry, and a complete quotient

map if each Tn is a quotient map (that is, each Tn takes the open ball of Mn(X) onto

the open ball of Mn(Y )).

A (concrete) operator algebra A is a norm closed subalgebra of B(H), for some

Hilbert space H. Note that this subalgebra is not necessarily selfadjoint. Observe

that any operator algebra is an operator space and a Banach algebra. Conversely, if

A is both an operator space and a Banach algebra, then A is an (abstract) operator

algebra if there exists a Hilbert space H and a completely isometric homomorphism

π : A → B(H). We identify any two operator algebras A and B as the “same” if

there exists an algebra isomorphism π : A → B which is a complete isometry, in

which case we write ‘A ∼= B completely isometrically isomorphically’.

We say that the operator algebra is unital if A contains the identity IH of B(H).

However, we will mostly focus on operator algebras that are approximately unital.

A left (resp. right) approximate identity for A is a net {et} in A such that eta→ a

(resp. aet → a), for all a ∈ A. A bounded approximate identity (bai) is a bounded

two-sided approximate identity. A contractive approximate identity (cai) is a two-

sided approximate identity {et} with ‖et‖ ≤ 1. We say that A is an approximately

unital operator algebra if it contains a cai. Since every C∗-algebra has a cai, the class
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of approximately unital operator algebras contains the class of C∗-algebras.

If A is an operator algebra which does not contain an identity, then there is a

natural way to adjoin a unit to the algebra. We call this the unitization A1 of A,

and A1 is a unital operator algebra containing A as an ideal with codimension one.

To construct A1, we regard A as a subalgebra of B(H) for some Hilbert space H,

and then take A1 = span{A, IH}. Note that, up to completely isometric isomor-

phisms, this unitization does not depend on the embedding A ⊂ B(H) [7, Corollary

2.1.15]. Meyer gives a very useful extension principle. If A ⊂ B(H) is not unital

and A1 = span{A, IH}, then every contractive (resp. completely contractive) homo-

morphism π : A → B(K) extends to a contractive (resp. completely contractive)

homomorphism π0 : A1 → B(K), where π0 is defined by π0(a+λIH) = π(a)+λIK [7,

Theorem 2.1.13]. Note that if A is already unital, then there is essentially a unique

unital operator algebra containing A completely isometrically as a codimension 1

ideal. In fact, this unitization is the ∞-direct sum A⊕∞ C.

In C∗-algebra theory, one often passes to the second dual, as A∗∗ is a von Neumann

algebra and one has more tools to study von Neumann algebras. For similar purposes,

it is important to study the second dual of a nonselfadjoint operator algebra. If A

is an operator algebra, then A∗∗ is also an operator algebra (for details about the

Arens product, we refer the reader to [7, Section 2.5]). Indeed, there exist a Hilbert

space H, and a completely isometric homomorphism π : A→ B(H) whose (unique)

w∗-continuous extension π̃ : A∗∗ → B(H) is a completely isometric homomorphism.

In this case, A∗∗ ∼= π̃(A∗∗) = π(A)
w∗

[7, Corollary 2.5.6]. The multiplier algebra of

A can be defined as M(A) = {η ∈ A∗∗ : ηA ⊂ A and Aη ⊂ A} [7, Section 2.6].
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A right (resp. left) ideal in an operator algebra A is a closed subspace J of A such

that Ja ⊂ J (resp. aJ ⊂ J), for all a ∈ A. The one-sided ideals are operator algebras

as well. We use the term ideal for a two-sided ideal, that is, a closed subspace which

is both a right and a left ideal. One-sided ideals in general operator algebras do not

necessarily contain one-sided approximate identities. A subspace J of A is an r-ideal

(resp. `-ideal) if J is a closed right ideal (resp. left ideal) with a left (resp. right)

contractive approximate identity.

Note that if J is a closed two-sided ideal of an operator algebra A, then the

quotient algebra A/J is an operator algebra. That is, there exist a Hilbert space

H and a completely isometric isomorphism π : A/J → B(H) [7, Proposition 2.3.4].

This fact can be easily seen as a corollary of the BRS theorem which is due to Blecher,

Ruan and Sinclair [7, 2.3.2].

A projection in A will always mean an orthogonal projection. A projection is

∗-minimal if it dominates no nontrivial projection in A. We say that the projection

p in A is algebraically minimal if pAp = C p. Clearly, an algebraically minimal

projection is ∗-minimal. In certain algebras the converse is true too, but this is not

common.

A hereditary subalgebra (HSA) of an operator algebra A is an approximately

unital subalgebra D of A such that DAD ⊂ A. These are also the subalgebras of the

form pA∗∗p∩A for an open projection p ∈ A∗∗; we say that p is the support projection

of D. Note that the cai of D converges weak∗ to p. The HSA D is one-dimensional

if and only if its support projection p ∈ A∗∗ is algebraically minimal.
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If S is a subset of a C∗-algebra B, then C∗B(S) denotes the C∗-subalgebra of

B generated by S (that is, the smallest C∗-subalgebra of B containing S). A C∗-

cover of an operator algebra A is a pair (B, j) consisting of a C∗-algebra B and a

completely isometric homomorphism j : A → B, such that j(A) generates B as a

C∗-algebra; C∗B(j(A)) = B. If (B, j) and (B′, j′) are two C∗-covers of A, then we

say that (B, j) ≤ (B′, j′) if and only if there is a ∗-homomorphism π : B → B′ such

that π ◦ j′ = j. Such a ∗-homomorphism π is automatically surjective and unique.

If π is also one-to-one (and therefore a ∗-isomorphism), then we say that (B, j) is

A-isomorphic to (B′, j′). This is an equivalence relation and we let C(A) to be the set

of equivalence classes of C∗-covers of A. Then, this set has a largest element which

is called the maximal C∗-algebra (or maximal C∗-cover) of A, denoted as C*
max(A).

By [7, Proposition 2.4.2], the maximal C∗-algebra exists and it has the following

universal property: if π : A → D is any completely contractive homomorphism

into a C∗-algebra D, then there exists a (necessarily unique) ∗-homomorphism π̃ :

C*
max(A)→ D such that π̃ ◦ j = π. The smallest element in the set C(A) is called the

C∗-envelope of A and it is denoted as C∗e (A). The C∗-envelope of A is the quotient

of any C∗-cover of A by a closed two-sided ideal. In particular, C∗e (A) ∼= C*
max(A)/I

where I is an ideal in C*
max(A).
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Chapter 3

Quotient Operator Algebras

The Correspondence Theorem and the First, Second, and Third Isomorphism Theo-

rems are very useful tools in algebra. In this chapter, we present the operator algebra

versions of these theorems. One of our goals is to understand the structure of quo-

tient operator algebras and these theorems will be our tools while investigating the

properties of quotient operator algebras. We will make frequent use of them while

working with composition series of operator algebras in Chapter 5.

In this dissertation, the operator algebras are assumed to be approximately unital

unless otherwise stated.
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3.1 Isomorphism Theorems for Operator Algebras

An ideal of an operator algebra A is a closed two-sided ideal in A. We say that the

ideal is approximately unital if it contains a contractive approximate identity (cai).

It is a well-known fact that if J is an ideal of an operator algebra A, then the quotient

algebra A/J is isometrically isomorphic to an operator algebra. An important result

about the quotient operator algebras, known as the Factor Theorem, can be found

in Chapter 2 of [7]. We include this result here for the reader’s convenience.

Theorem 3.1.1 (Factor Theorem). If u : A → B is a completely bounded homo-

morphism between operator algebras, and if J is an ideal in A contained in Ker(u),

then the canonical map ũ : A/J → B is also completely bounded with ‖ũ‖cb = ‖u‖cb.

If J = Ker(u), then u is a complete quotient map if and only if ũ is a completely

isometric isomorphism.

We first present the Correspondence Theorem.

Theorem 3.1.2 (Correspondence Theorem). Let A be a Banach algebra and J be

an ideal in A. Every closed subalgebra of A/J is of the form I/J , where I is a closed

subalgebra of A with J ⊂ I ⊂ A. Also, every ideal of A/J is of the form I/J , where

I is an ideal of A with J ⊂ I ⊂ A.

Proof. Let K be a closed subalgebra of A/J and let I = {a ∈ A : a + J ∈ K}. If

x ∈ J , then x + J = 0A/J ∈ K, and hence x ∈ I. That is, J ⊂ I. Clearly, I is

a subalgebra of A. To see that I is closed, let (at) be a net in I that converges to
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a ∈ A. Then,

‖(at + J)− (a+ J)‖A/J = ‖(at − a) + J‖A/J ≤ ‖at − a‖A → 0.

Hence, at + J → a + J and a + J ∈ K since K is closed. Therefore, a ∈ I. Thus, I

is a closed subalgebra of A. Since K = I/J by definition, we have proved the first

assertion.

Now, let K be a proper ideal of A/J and let I = {a ∈ A : a+ J ∈ K}. We only

need to prove that I is an ideal in A.

Let x ∈ A and a ∈ I. Then x+ J ∈ A/J and a+ J ∈ A/J . So, (x+ J)(a+ J) =

xa + J ∈ K since K is an ideal in A/J . That is, xa ∈ I. Similarly, ax ∈ I. By the

first part of our proof, I is closed. Thus, I is a closed two-sided ideal in A.

The following result is well-known; we include it here for the sake of completeness.

We omit the quite easy proof.

Theorem 3.1.3 (First Isomorphism Theorem). Let u : A → B be a complete quo-

tient map which is a homomorphism between operator algebras. Then, Ker(u) is an

ideal in A and Im(u) is a closed subalgebra of B. Moreover, A/Ker(u) ∼= Im(u) com-

pletely isometrically isomorphically. In particular, if u is surjective, then A/Ker(u) ∼=

B completely isometrically isomorphically. Conversely, every ideal of A is of the form

Ker(u) for a complete quotient map u : A→ B, where A and B are operator algebras.

When we need to work with the quotient of two quotient operator algebras, the

Second Isomorphism Theorem gives us a simplified quotient.
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Theorem 3.1.4 (Second Isomorphism Theorem). Let A be an approximately unital

operator algebra, J be an ideal in A and I be an ideal in J . Then, (A/I)/(J/I) ∼= A/J

completely isometrically isomorphically.

Proof. Define a map u : (A/I)→ (A/J) by u(a+ I) = a+ J . This is a well-defined

map with Ker(u) = J/I. Notice that u is completely bounded;

‖u‖cb = sup {‖[u(ai,j + I)]‖n : ‖[ai,j + I]‖n ≤ 1, n ∈ N} ≤ 1.

Indeed, ‖u‖ = sup {‖a+ J‖ : ‖a+ I‖ ≤ 1}. If ‖a+ I‖ ≤ 1, then ‖a+ J‖ ≤ 1 since

I ⊂ J . Hence, ‖u‖ ≤ 1. Similar argument works for each un; that is, u is a completely

contractive map.

Let x+ J be in the open ball of A/J . Since ‖x+ J‖ < 1, there exists j ∈ J such

that ‖x+ j‖ < 1. Now, x + j + I ∈ A/I and ‖x+ j + I‖ ≤ ‖x+ j‖ < 1. That is,

x+ j is in the open ball of A/I. Since u(x+ j+ I) = x+ j+ J = x+ J , we conclude

that u maps the open ball of A/I onto the open ball of A/J ; u is a 1-quotient map.

Similar argument shows that u is a complete quotient map.

Let ũ : (A/I)/(J/I) → A/J be the canonical map. By the Factor Theorem,

ũ is a completely isometric isomorphism. Hence, (A/I)/(J/I) ∼= A/J completely

isometrically isomorphically.

Now, we prove the Third Isomorphism Theorem for operator algebras.

Theorem 3.1.5 (Third Isomorphism Theorem). Let A be an approximately unital

operator algebra and J and K be ideals in A, where J has a cai. Then, J/(J ∩K) ∼=
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(J + K)/K completely isometrically isomorphically. In particular, (J + K)/K is

closed.

Proof. Note that by [25, Proposition 2.4], J +K is closed. Define a map u : J/(J ∩

K) → (J + K)/K by u(j + J ∩ K) = j + K. This is a well-defined map and u is

one-to-one since Ker(u) = (0J/(J∩K)). Moreover, u is onto since x+K ∈ (J +K)/K

implies that x = j + k, where j ∈ J, k ∈ K and x+K = j +K = u(j + J ∩K).

Since inf {‖j + k‖ : k ∈ K} ≤ inf {‖j + k‖ : k ∈ J ∩K}, u is a contraction. Let

(et) be the cai for J and let k ∈ K. Then,

‖j + k‖ ≥ ‖etj + etk‖ ≥ ‖etj + J ∩K‖ .

Hence, after taking the limit, we get ‖j + J ∩K‖ ≤ ‖j + k‖. Now, since ‖j +K‖ =

inf {‖j + k‖ : k ∈ K}, we conclude that ‖j + J ∩K‖ ≤ ‖j +K‖. Hence, u is an

isometry. Similarly, u is a complete isometry. Hence, J/(J ∩ K) ∼= (J + K)/K

completely isometrically isomorphically.

Finally, we want to give miscellaneous results about quotient operator algebras.

We start with an algebraic result.

Proposition 3.1.6. Let A be an operator algebra with a bai and I and J be ideals

in A. If A/I ∼= A/J isomorphically as A-bimodules, then I = J .

Proof. First assume that A is unital. Let φ : A/I → A/J be the A-bimodule

isomorphism. Then, φ(1 + I) = x+ J , for some x ∈ A. This implies that φ(a+ I) =

ax + J , for any a ∈ A. If a ∈ I, then ax ∈ J . Since φ is one-to-one, ax − bx ∈ J
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implies a− b ∈ I. Now, since φ is surjective, bx + J = 1 + J , for some b ∈ I. That

is, bx− 1 ∈ J . Hence, x+ J is left invertible in A/J . Similarly, it is right invertible.

Hence,

a ∈ I ⇔ (a+ J)(x+ J) = 0⇔ a+ J = 0⇔ a ∈ J.

Thus, I = J .

If A contains a bai, then its bidual A∗∗ is unital. If φ : A/I → A/J is an A-

bimodule isomorphism, let φ̃ be the unique weak∗-continuous extension. By weak∗-

continuity of π̃, π̃ maps (A/I)∗∗ ∼= A∗∗/I⊥⊥ into (A/J)∗∗ ∼= A∗∗/J⊥⊥. Moreover,

π̃ is an A∗∗-bimodule isomorphism by the separate weak∗-continuity of the Arens

product. Indeed, if η = limt(xt) ∈ A∗∗ and µ = lims (ys + I) ∈ (A/I)∗∗, then

φ̃(ηµ) = φ̃(limt (xt) lims (ys + I)) = limt,s (φ(xtys + I)) = limt,s ((xt)φ(ys + I)) =

η lims (φ(ys + I)) = ηφ̃(µ). Hence, since π̃ : A∗∗/I⊥⊥ → A∗∗/J⊥⊥ is an A∗∗-bimodule

isomorphism and A∗∗ is unital, by the first part of our proof, I⊥⊥ = J⊥⊥. That is,

I = A ∩ I⊥⊥ = A ∩ J⊥⊥ = J .

Remark 3.1.7. Note that the previous proposition is not true for general operator

algebras; the existence of a bai is needed. For example, let A = span(x, y) where

xy = 0. If I = span(x) and J = span(y), then A/I ∼= A/J as A-bimodules, but

I 6= J .

Now, we present a result about the ∞-sum of quotient operator algebras. In the

following result, M ⊕N is the ∞-sum of M and N .

Proposition 3.1.8. Let M and N be closed subalgebras of an operator algebra A. If
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J is an ideal in M and K is an ideal in N , then

(M ⊕N)/(J ⊕K) ∼= (M/J)⊕ (N/K)

completely isometrically isomorphically.

Proof. Let q1 : M →M/J and q2 : N → N/K be the canonical maps. We know that

q1 and q2 are complete quotient maps. Then, q1⊕q2 : (M⊕N)→ (M/J)⊕(N/K) is a

complete quotient map. To see this for n = 1, let (m+J, n+K) be an element in the

open ball of (M/J)⊕ (N/K). Then, ‖m+ J‖ < 1 and ‖n+K‖ < 1. There exist x

and y in the open ball of M and N respectively, such that q1(x) = m+J and q2(y) =

n + K. Since ‖(x, y)‖ = sup {‖x‖ , ‖y‖} < 1 and (q1 ⊕ q2)(x, y) = (m + J, n + K),

q1⊕q2 maps the open ball of M⊕∞N onto the open ball of (M/J)⊕(N/K). Similar

argument works for n > 1.

If (q1 ⊕ q2)(m + n) = 0, then q1(m) = 0 and q2(n) = 0. So, m ∈ J and n ∈ K,

and hence m + n ∈ J ⊕K. Conversely, if m + n ∈ J ⊕K, then m ∈ J and n ∈ K,

so (q1 ⊕ q2)(m + n) = 0. Hence, Ker(q1 ⊕ q2) = J ⊕ K. Therefore, by the factor

theorem, the corresponding map from (M ⊕ N)/(J ⊕ K) to (M/J) ⊕ (N/K) is a

complete isometry.

Remark 3.1.9. Recall that the maximal tensor product of two operator algebras A

and B is an operator algebra. The maximal tensor product, A⊗maxB, is defined to be

the completion of A⊗B in a new norm. If A and B are unital (resp. approximately

unital), then A ⊗max B is unital (resp. approximately unital). More details can be

found in Chapter 6 of [7]. We want to note that if A is an approximately unital
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operator algebra and B is a C∗-algebra, J is an approximately unital ideal in A and

K is an ideal in B, then by [6, Lemma 2.7], we have:

(A⊗max B)/(J ⊗max B) ∼= (A/J)⊗max B,

and

(A⊗max B)/(A⊗max K) ∼= A⊗max (B/K),

completely isometrically.

3.2 Approximately Unital Ideals and Quotient Op-

erator Algebras

When we study the quotient operator algebra A/J , we may get better results if J is

an approximately unital ideal. Hence, in this section, we look at the approximately

unital ideals in A and in A/J . We give the correspondence theorem for approximately

unital ideals and present further results.

First, we want to point out an important fact about projections in the second

dual of a quotient algebra. If J is an approximately unital ideal in A with support

projection p, then (A/J)∗∗ ∼= A∗∗(1 − p). This gives a correspondence between the

projections in A∗∗ and (A/J)∗∗. In one direction, a projection q in A∗∗ corresponds to

the projection q(1− p) in (A/J)∗∗. This map is surjective when considered between

the projections in A∗∗ and (A/J)∗∗. In the other direction, a projection q in (A/J)∗∗ is

mapped to q ∈ A∗∗. This map is one-to-one when considered between the projections.
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However, these two maps are not inverse functions. This fact is quite useful in proving

results about approximately unital ideals.

We begin with the Correspondence Theorem for approximately unital ideals.

Theorem 3.2.1. Let A be an approximately unital operator algebra, I be an ap-

proximately unital ideal in A and J be an approximately unital ideal in I. Then,

I/J is an approximately unital ideal in A/J . Conversely, every approximately unital

ideal of A/J is of the form I/J , where I is an approximately unital ideal in A with

J ⊂ I ⊂ A.

Proof. Clearly, I/J is an ideal in A/J . Since J is approximately unital, by [10,

Proposition 3.1], I/J is approximately unital if and only if I is. Hence, I/J is an

approximately unital ideal in A/J .

To prove the converse assertion, let K be an approximately unital ideal in A/J .

Let I = {x ∈ A : x + J ∈ K}. Then, by definition, I is an ideal in A, J ⊂ I and

K = I/J . Again by [10, Proposition 3.1], I is approximately unital. Hence, I is an

approximately unital ideal in A.

Remark 3.2.2. Note that since [10, Proposition 3.1] is also valid for Arens regular

Banach algebras, the previous result (and Corollary 3.2.4) can be stated for Arens

regular Banach algebras.

We know that semiprimeness and semisimplicity descend to HSAs ([2] and [3]).

We include this result for the sake of completeness; the proof belongs to D. P. Blecher.
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Proposition 3.2.3. If A is a semiprime (resp. semisimple) operator algebra, then

every HSA in A is semiprime (resp. semisimple).

Proof. Let D be a HSA in A. If A is semiprime and if J is an ideal in D with J2 = (0),

then since D is approximately unital, we have JAJ ⊂ JDADJ ⊂ JDJ ⊂ J2 = (0).

Thus, AJA is a nil ideal in A and hence it is zero. That is, J ⊂ DJD ⊂ AJA = (0),

and J = (0).

Now, suppose that A is semisimple and let (ft) be a cai for D. If x ∈ J(D), then

since J(D) is a nondegenerate D-module, by Cohen’s factorization, there exist d ∈ D

and y ∈ J(D) with x = dy. Now, yftad ∈ J(D) for all a ∈ A, since (ft) is a cai for

D. Since J(D) is closed, we have yad ∈ J(D). Thus, r(yad) = rA(dya) = rA(xa) for

all a ∈ A. Hence, x ∈ J(A) = (0). That is, J(D) = (0).

By using the correspondence theorem, we can show that semiprimeness descends

to quotients by approximately unital ideals.

Corollary 3.2.4. If A is a semiprime approximately unital operator algebra and J

is an approximately unital ideal in A, then A/J is semiprime.

Proof. Let K be an ideal in A/J such that K2 = (0)A/J . By Theorem 3.2.1, there

exists an approximately unital ideal I in A such that J ⊂ I ⊂ A and K = I/J .

Since K2 = (I/J)(I/J) = I2/J = (0)A/J , we conclude that I2 = J . Hence, I = J .

That is, K = I/J = (0)A/J and A/J is semiprime.

We will use the following lemma to prove some results about HSA’s and approx-

imately unital ideals. The fact that the intersection of a HSA and an approximately
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unital ideal contains a cai will be useful.

Lemma 3.2.5. Let A be an approximately unital operator algebra, D be a HSA in

A and J be an approximately unital ideal in A. Then, D ∩ J is a HSA in J .

Proof. WLOG, assume that A is unital. Let K = DA be the associated r-ideal for

D in A. Then, K and J are one-sided M -ideals. By [12, Proposition 5.30], J ∩ K

is a one-sided M -ideal. So, J ∩ K is an r-ideal in A and hence in J . Let e and f

be support projections of D and J ; D = eA∗∗e ∩ A and J = fA∗∗ ∩ A = A∗∗f ∩ A.

Then, K = eA∗∗ ∩ A and we claim that J ∩ K = efA∗∗ ∩ A. Indeed, since e, f

are open projections such that ef = fe, ef is an open projection (in a C∗-algebra

containing A). If (et) and (fr) are cais of K and J respectively, then by [8, Corollary

2.4], eset → es with t, for each s, and fpfr → fp with r, for each p. Hence, after

changing the indexing, (etft) is a cai for J ∩ K. Notice that etft → ef and hence

ef ∈ (J ∩K)⊥⊥. That is, ef is the support projection of J ∩K; J ∩K = efA∗∗ ∩A.

Now, if x ∈ D ∩ J , then exe = x and fx = xf = x; that is, efxef = efxf =

efx = ex = x and x ∈ efA∗∗ef ∩ A. If x ∈ efA∗∗ef ∩ A, then efxef = x. Since

xf = x, x ∈ J . Since ef = fe, exe = x and x ∈ D as well. That is, x ∈ D ∩ J .

Thus, D ∩ J = efA∗∗ef ∩ A is a HSA in A with the support projection ef .

We want to note that we will later prove that if D and J in the previous lemma

have positive cais, then D ∩ J has a positive cai as well.

The following result is a correspondence theorem for HSAs.

Theorem 3.2.6. Let A be an approximately unital operator algebra, D be a HSA
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in A and J be an approximately unital ideal in D. Then, D/J is a HSA in A/J .

Conversely, every HSA of A/J is of the form D/J , where D is a HSA in A with

J ⊂ D ⊂ A.

Proof. Clearly, D/J is an inner ideal in A/J . By [10, Proposition 3.1], D/J is

approximately unital since D is. Hence, D/J is a HSA in A/J .

To prove the converse assertion, let K be a HSA in A/J . Let D = {x ∈ A :

x + J ∈ K}. Then, by definition, D is an inner ideal in A, J ⊂ D and K = D/J .

By [10, Proposition 3.1], D is approximately unital if and only if K is. Hence, D is

a HSA in A.

Corollary 3.2.7. Let A be an operator algebra, J be an approximately unital ideal

in A, and D be a HSA in A. If I is an approximately unital ideal in D ∩ J , then

(D ∩ J)/I is a HSA in J/I.

Proof. By Lemma 3.2.5, D∩J is a HSA in J . Now, the result follows from Theorem

3.2.6.

Proposition 3.2.8. If A is an ideal (resp. a HSA) in its bidual and J is an approx-

imately unital ideal in A, then A/J is an ideal (resp. a HSA) in its bidual.

Proof. Assume that A is an ideal in A∗∗. Then, A/J ⊂ (A/J)∗∗ = A∗∗p⊥. Here,

p is the support projection of J and an element a + J ∈ A/J is identified with

âp⊥ ∈ A∗∗p⊥. If a+J ∈ A/J and ηp⊥ ∈ A∗∗p⊥, then âp⊥ηp⊥ = âηp⊥ = b̂p⊥ for some

b + J ∈ A/J , since A is an ideal in A∗∗ and since p is a central projection. That is,

A/J is an ideal in A∗∗p⊥.
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If A is a HSA in A∗∗, and if a + J, b + J ∈ A/J , then for any ηp⊥ ∈ A∗∗p⊥,

âp⊥ηp⊥b̂p⊥ = âηb̂p⊥ = ĉp⊥ for some c + J ∈ A/J . That is, A/J is an inner ideal.

We know that A/J is approximately unital (by [10, Proposition 3.1]); hence, A/J is

a HSA in its bidual.

Finally, we want to point out a result from [9]. If A is an operator algebra

with a cai and J is an approximately unital ideal in A, let qJ : A → A/J is the

canonical quotient map. The open projections in (A/J)∗∗ are exactly the q∗∗J (p) for

open projections p in A∗∗. Indeed, if p is an open projection in A∗∗, then it is the

weak∗ limit of a net (xt) in A with xt = pxtp. Then, q∗∗J (p) is the weak∗ limit of

the net (xt + J) in A/J ; so, q∗∗J (p) is open in (A/J)∗∗. If p is an open projection in

(A/J)∗∗, then it is the support projection of a HSA D′ = q−1
J (D), where D is a HSA

in A. Then, q∗∗J (p) is the support projection of D and hence is open in A∗∗.

We showed that the ideals and HSAs in A/J are exactly the images of the ideals

and HSAs in A, under the quotient map. Moreover, by [9, Corollary 6.3], the r-ideals

in A/J are the images of the r-ideals in A, under the quotient map qJ . An r-ideal

(resp. HSA) in A/J of the form x(A/J) (resp. x(A/J)x) for some x ∈ A with

‖1− x‖ ≤ 1, is the image of an r-ideal (resp. HSA) in A of the form yA (resp. yAy)

for some y ∈ A with ‖1− y‖ ≤ 1.
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3.3 Diagonal of a Quotient Operator Algebra

The diagonal of an operator algebra may give some useful information about the

algebra. Since it is a C∗-algebra sitting inside the given operator algebra, it may be

slightly easier to work with the diagonal to gather information about the operator

algebra. In [3] for example, when the diagonal of an operator algebra is a dual C∗-

algebra, many conclusions can be made about the operator algebra itself, with some

additional conditions of course.

Some results in this section are from [2], which is a joint work with D. P. Blecher.

IfA is an operator algebra, represented as a subalgebra ofB(H), then the diagonal

of A is defined to be the C∗-algebra

∆(A) = {a ∈ A : a∗ ∈ A}.

Note that a∗ is the adjoint of the element a in B(H); and this does not depend

on a particular H. If A is w∗-closed, then ∆(A) is a W ∗-algebra.

An important observation is that a contractive homomorphism from a C∗-algebra

into an operator algebra actually maps into the diagonal of that operator algebra,

and is a ∗-homomorphism [7, 2.1.2].

Proposition 3.3.1. If A and B are operator algebras such that A ∼= B completely

isometrically isomorphically, then ∆(A) ∼= ∆(B) completely isometrically isomorphi-

cally.

Proof. If u : A → B is the complete isometry, then u′ = u|∆(A) : ∆(A) → B maps
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onto ∆(B). That is, u′ : ∆(A)→ ∆(B) is a completely isometric isomorphism.

Proposition 3.3.2. Let A, B be closed subalgebras of B(H). Then, ∆(A ∩ B) =

∆(A) ∩∆(B).

Proof. If x ∈ ∆(A) ∩∆(B), then x ∈ A ∩ B and x∗ ∈ A ∩ B, hence x ∈ ∆(A ∩ B).

Conversely, if x ∈ ∆(A ∩ B), then x∗ ∈ A ∩ B and x, x∗ ∈ A and x, x∗ ∈ B. Hence,

x ∈ ∆(A) ∩∆(B).

We want to understand the diagonal of a HSA or an ideal in A. One case of the

following result was given in [3].

Proposition 3.3.3. Let J be a closed subspace of A such that JAJ ⊂ J . Then,

∆(J) = ∆(A) ∩ J .

Proof. It is trivial that ∆(J) is a subalgebra of ∆(A) ∩ J . Conversely, if JAJ ⊂ J ,

then (∆(A)∩J)∆(A)(∆(A)∩J) ⊂ ∆(A)∩J . So, ∆(A)∩J is a HSA in a C∗-algebra,

and hence it is selfadjoint. Thus, x ∈ ∆(A) ∩ J implies that x∗ ∈ ∆(A) ∩ J ⊂ J .

That is, x ∈ ∆(J).

It is important to point out that the diagonal of an ideal J in A is an ideal in

∆(A) if it is nonzero. Indeed, ∆(J) = ∆(A) ∩ J and ∆(J)∆(A) ⊂ ∆(A) ∩ (JA) ⊂

∆(A) ∩ J = ∆(J). Similarly, since J is a two-sided ideal, ∆(A)∆(J) ⊂ ∆(J). We

sometimes use this fact without any references.

We are interested in understanding the structure of the quotient operator alge-

bras. Hence, we want to understand the structure of the diagonal of a quotient

operator algebra.
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Let A be an operator algebra and J be an ideal in A. Then, ∆(A)/∆(J) is a

C∗-subalgebra of ∆(A/J).

Proposition 3.3.4. Let A be an approximately unital operator algebra and J be an

ideal in A. Then, ∆(A)/∆(J) ⊂ ∆(A/J) completely isometrically.

Proof. Let u : A→ A/J be the canonical complete quotient map defined as u(x) =

x + J . The restriction of u to ∆(A) ⊂ A, u′, is a complete contraction. By the

observation mentioned earlier, since u′ is a contractive homomorphism, it maps into

∆(A/J). Hence, we have a completely contractive map u′ = u|∆(A) : ∆(A) →

∆(A/J), where Ker(u′) = ∆(A) ∩ J = ∆(J). Since ∆(A) is a C∗-algebra, ∆(J) is

an approximately unital ideal in ∆(A). Since approximately unital ideals in (unital)

operator algebras are M -ideals, and hence are proximinal (see e.g. [7, Section 4.8]

or [29]), u′(Ball(∆(A))) = Ball(∆(A/J)). Here, Ball(A) denotes the open ball of

A. Similarly for all matrix levels. That is, u′ is a complete quotient map. Hence,

∆(A)/∆(J) ⊂ ∆(A/J) completely isometrically.

For any operator algebra A, the diagonal ∆(A) acts nondegenerately on A if and

only if A has a positive cai, and if and only if 1∆(A)⊥⊥ = 1A∗∗ . The latter is equivalent

to 1A∗∗ ∈ ∆(A)⊥⊥. Hence, we may use the statements ‘∆(A) acts nondegenerately

on A’ and ‘A has a positive cai’ interchangeably.

If ∆(A) acts nondegenerately on A, then this does not imply that for any ideal

J of A, ∆(J) acts nondegenerately on J . To see this, take any approximately unital

operator algebra J such that ∆(J) does not act nondegenerately on J . Then, J is

an ideal in A = M(J), and ∆(A) acts nondegenerately on A. However, if ∆(A) acts
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nondegenerately on A, then we can conclude that ∆(A/J) acts nondegenerately on

A/J .

Proposition 3.3.5. Let J be an ideal in an operator algebra A. If A has a positive

cai, then A/J has a positive cai.

Proof. Let (et) be a positive cai for A. Then, q(et) ∈ ∆(A/J)+, where q : A→ A/J

is the canonical quotient map. Indeed, by the fact we mentioned at the beginning

of this section q maps into ∆(A/J) and since each et is positive, q(et) is positive.

Now, it is easy to see that q(et) is a positive cai for A/J ; ‖q(et)‖ ≤ ‖et‖ ≤ 1 and

q(et)(x+ J) = q(etx)→ q(x) = x+ J , for each x+ J ∈ A/J .

We prove a lemma about the diagonal of an ideal that contains a positive cai.

Lemma 3.3.6. Let A be an approximately unital operator algebra and J be an ideal

in A that contains a positive cai. Then, ∆(A)+J is closed and ∆(J)⊥⊥ = ∆(A)⊥⊥∩

J⊥⊥.

Proof. We know that ∆(J) = ∆(A)∩J is an ideal in ∆(A). The proof of [12, Lemma

5.2.9] shows that if ∆(A) + J is closed, or equivalently by appendix A.1.5 there, if

∆(A)⊥⊥ + J⊥⊥ is closed, then (∆(A)∩ J)⊥⊥ = (∆(A)⊥ + J⊥)⊥ = ∆(A)⊥⊥ ∩ J⊥⊥. If

J has a positive cai, then the proof of [25, Proposition 2.4] shows that ∆(A) + J is

closed. Hence, ∆(J)⊥⊥ = ∆(A)⊥⊥ ∩ J⊥⊥.

Under additional conditions, we can identify the second dual of the diagonal of a

quotient algebra with the second dual of the quotient of the diagonals.
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Proposition 3.3.7. Let A be an approximately unital operator algebra such that

∆(A∗∗) = ∆(A)∗∗. If J is an ideal in A that contains a positive cai, then ∆(J⊥⊥) =

∆(J)⊥⊥ and ∆((A/J)∗∗) = (∆(A)/∆(J))∗∗.

Proof. By Lemma 3.3.6, ∆(J)⊥⊥ = ∆(A)⊥⊥ ∩ J⊥⊥. That is, ∆(J)⊥⊥ = ∆(A∗∗) ∩

J⊥⊥ = ∆(J⊥⊥) since J⊥⊥ is an ideal in A∗∗. Let p ∈ A∗∗ be the support projection

of J . Then,

∆((A/J)∗∗) = ∆(A∗∗(1− p)) = ∆(A∗∗)(1− p) = ∆(A)∗∗(1− p) = (∆(A)/∆(J))∗∗.

We want to point out that if A is a HSA in its bidual and if it has positive cai,

then the condition of the Proposition 3.3.7 is satisfied [2]; hence, the conclusion is

valid for such operator algebras (for example, for σ-matricial algebras which will be

defined in Chapter 4). In this case, we also get a corollary about the diagonal of

A/J .

Corollary 3.3.8. Let A be an operator algebra with a positive cai that is a HSA in its

bidual. If J is an ideal in A that contains a positive cai, then ∆(A/J) = ∆(A)/∆(J).

Proof. Since A is a HSA in its bidual and it contains a positive cai, we have ∆(A∗∗) =

∆(A)∗∗ [2]. Also, A/J is a HSA in its bidual (A/J)∗∗ by Proposition 3.2.8 and it has

a positive cai by Proposition 3.3.5. Hence, ∆((A/J)∗∗) = ∆(A/J)∗∗ [2]. Moreover,

since A/J is a HSA in its bidual, it is nc-discrete [2] and hence, ∆(A/J) is an

annihilator C∗-algebra. We know by Proposition 3.3.4 that ∆(A)/∆(J) ⊂ ∆(A/J)

completely isometrically; that is, ∆(A)/∆(J) is an annihilator C∗-algebra as well.
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Using Proposition 3.3.7, we have (∆(A)/∆(J))∗∗ = ∆((A/J)∗∗) = ∆(A/J)∗∗. Hence,

∆(A)/∆(J) = ∆(A/J).

Now, we present a result about the intersection of a HSA and an approximately

unital ideal. If the HSA and the ideal contain positive cais, then the intersection

contains a positive cai.

Proposition 3.3.9. Let A be an approximately unital operator algebra, D be a HSA

in A and J be an approximately unital ideal in A. Then,

(D ∩ J)⊥⊥ = D⊥⊥ ∩ J⊥⊥ and ∆(D ∩ J)⊥⊥ = ∆(D)⊥⊥ ∩∆(J)⊥⊥.

If D and J have positive cais, then D ∩ J has a positive cai as well.

Proof. Let d and p be the support projections of D and J , respectively. Notice that

dp = pd = dpd ∈ D⊥⊥ ∩ J⊥⊥. We know by Lemma 3.2.5 that D ∩ J is a HSA in

J , and its support projection is dpd ∈ J∗∗. Hence, D⊥⊥ ∩ J⊥⊥ = dA∗∗d ∩ pA∗∗p =

dpdA∗∗dpd = dpA∗∗pd = dJ∗∗d = d(pJ∗∗p)d = dpdJ∗∗dpd = (D ∩ J)⊥⊥.

It is easy to see that ∆(D ∩ J) = ∆(D) ∩∆(J). Hence, ∆(D ∩ J)⊥⊥ = (∆(D) ∩

∆(J))⊥⊥. Since ∆(D) is a HSA in ∆(A) and ∆(J) is an approximately unital ideal

in ∆(A), by the first part of our proof, we can conclude that (∆(D) ∩ ∆(J))⊥⊥ =

∆(D)⊥⊥ ∩∆(J)⊥⊥. That is, ∆(D ∩ J)⊥⊥ = ∆(D)⊥⊥ ∩∆(J)⊥⊥.

Now, suppose that D and J have positive cais. We have;

1(D∩J)⊥⊥ = 1D⊥⊥∩J⊥⊥ = 1D⊥⊥1J⊥⊥ ∈ ∆(D)⊥⊥ ∩∆(J)⊥⊥ = ∆(D ∩ J)⊥⊥.

That is, 1(D∩J)⊥⊥ ∈ ∆(D ∩ J)⊥⊥. Hence, D ∩ J has a positive cai.
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3.4 Irreducible Representations of Operator

Algebras

In this section, we want to work with irreducible representation of operator algebras

and give some results about extensions and restrictions of irreducible representations.

Similar to the C∗-algebra theory, irreducible representations of the operator algebra

A restrict to irreducible representations of an approximately unital ideal J . Also,

irreducible representations of the approximately unital ideal extend to irreducible

representations of the operator algebra. We also give such a correspondence for

irreducible representations of the quotient algebras (by approximately unital ideals).

A representation of an operator algebra A on a Hilbert space H is a completely

contractive homomorphism π : A → B(H). We say that π is nondegenerate if

[π(A)H] = H; which is equivalent to saying that H is a nondegenerate A-module.

Also, this is equivalent to saying that π(et) → IH strongly, if (et) is a cai for A ([7,

add])

Definition 3.4.1. Let A be an approximately unital operator algebra and π : A→

B(H) be a representation of A. A closed subspace K of H is said to be π-reducing

if both K and K⊥ are invariant under π. We say that π is irreducible if H does not

contain any nontrivial π-reducing subspaces.

Note that K is π-reducing if and only if π(a) commutes with PK⊥ for any a ∈ A

(see [7, p109]). Note also that every irreducible representation is nondegenerate.

We want to point out the important fact about the irreducible representations
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on A and on C*
max(A). Every irreducible representation of A extends (uniquely)

to an irreducible representation of C*
max(A) [7, Proposition 2.4.2]. Moreover, every

irreducible representation of C*
max(A) restricts to an irreducible representation of A;

if PK⊥ commutes with T ∈ π(A), then it commutes with T ∗ ∈ π(A)∗.

We say that a vector η ∈ H is cyclic if [π(A)η] = H. If π : A → B(H) is

a nondegenerate representation and if every nonzero vector in H is cyclic, then π

is irreducible. Indeed, if K is a π-reducing subspace of H and 0 6= η ∈ K, then

π(A)η ⊂ π(A)K ⊂ K and since K is closed, H = [π(A)η] ⊂ K. Hence, π does not

have nontrivial reducing subspaces.

When an irreducible representation of a C∗-algebra is restricted to an ideal, this

restriction is an irreducible representation of the ideal. Conversely, every irreducible

representation of an ideal extends uniquely to an irreducible representation of the

C∗-algebra [40, Theorem 5.5.1]. We prove that the same holds for irreducible repre-

sentations of operator algebras and approximately unital ideals.

Proposition 3.4.2. Let π : A→ B(H) be an irreducible representation and J be an

approximately unital ideal in A. The restriction of π to J is irreducible. Furthermore,

every irreducible representation of J extends uniquely to an irreducible representation

of A.

Proof. Let I = C*
max(J); I is an ideal in C*

max(A). Since π̃, the extension of π to

C*
max(A), is irreducible, π̃|I is irreducible. Hence, the restriction of π̃|I to J , which

is π|J , is irreducible.
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Moreover, if ρ is an irreducible representation of J , then it extends to an irre-

ducible representation ρ̃ on I and that extends uniquely to an irreducible represen-

tation of C*
max(A). This last irreducible representation restricts to an irreducible

representation of A which equals ρ when restricted to J . Hence, ρ is a restriction of

an irreducible representation of A.

Now, we want to prove a result about the irreducible representations of quotient

operator algebras.

Proposition 3.4.3. Let π : A → B(H) be an irreducible representation and J be

an approximately unital ideal contained in Ker(π). Then π̃ : A/J → B(H) defined

by π̃(a + J) = π(a) for any a ∈ A, is an irreducible representation of A/J . Every

irreducible representation of A/J arises in this way.

Proof. Let π̃ : A/J → B(H) be defined as π̃(a + J) = π(a). Then, by the Factor

Theorem, ‖π̃‖cb = ‖π‖cb. That is, π̃ is completely contractive. By definition of π̃,

M is a π̃-reducing subspace of H if and only if it is π-reducing as well. Hence, π̃ is

irreducible if and only if π is irreducible.

For a HSA D in A, we can not say that every irreducible representation of D

extends to an irreducible representation of A. As a simple example, let

D =


 x 0

0 0

 : x ∈ C

 and A = M2.

Then, π : D → C, where π([aij]) = a11 is an irreducible representation but this

does not extend to an irreducible representation from M2 to C; as such an extension

would correspond to an ideal of M2; however, M2 has no nontrivial ideals.
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We present a special case where C*
max(A) is simple. The representations are

automatically completely isometric in this case.

Proposition 3.4.4. Let A be an operator algebra such that C*
max(A) is simple. Then,

any representation of A is completely isometric. Moreover, A does not have any

nontrivial approximately unital ideals.

Proof. If π is a completely contractive homomorphism on A, then π extends to

C*
max(A) and the kernel of π is (0) since C*

max(A) is simple. That is, the extension

of π is completely isometric. Hence, π is completely isometric. Now, let J be an

approximately unital ideal in A and q : A→ A/J be the canonical quotient map. By

the first part of the proof, q is a complete isometry and hence J = (0) or J = A.
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Chapter 4

Matricial Algebras

The C∗-algebras of compact operators play an important role in operator theory and

there are several characterizations of this class; some of these characterizations are

given in Chapter 2. For example, these are the C∗-algebras that are ideals in their

second duals. We want to define a new class of operator algebras that may play a

similar role in the theory of non-selfadjoint operator algebras. Many results in this

chapter are from [3], which is a joint work of the author with D. P. Blecher and S.

Sharma; for those results, the proofs are not included.

4.1 Matricial Algebras

Note that, in this chapter, we only consider separable approximately unital operator

algebras.

Definition 4.1.1. We say that an operator algebra A is matricial if it contains a
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full set of matrix units {Tij}, whose span is dense in A. Hence, TijTkl = δjkTil,

where δjk is the Kronecker delta. Let qk = Tkk. We say that a matricial operator

algebra is 1-matricial if ‖qk‖ = 1, for all k; that is, if and only if all qk are orthogonal

projections.

We will focus on 1-matricial operator algebras. We will consider two 1-matricial

algebras as the same if there is a completely isometric isomorphism between them.

We are only interested in the separable algebras, and in this case we prefer using

the following equivalent description of 1-matricial algebras. Consider a (finite or

infinite) sequence T1, T2, . . . of invertible operators on a Hilbert space K, with T1 = I.

Set H = `2 ⊗2 K = K(∞) = K ⊕2 K ⊕2 . . . (in the finite sequence case, H = K(n)).

Define Tij = Eij ⊗ T−1
i Tj ∈ B(H), for i, j ∈ N. Let A be the closure of the span of

the Tij. Notice that TijTkl = δjkTil, so that Tij are matrix units for A. Let qk = Tkk,

then ‖qk‖ = 1 for all k. Then, A is a 1-matricial algebra, and all separable or finite

dimensional 1-matricial algebras arise in this way.

Definition 4.1.2. A σ-matricial algebra is a c0-direct sum of 1-matricial algebras.

Since we consider the separable case only, this sum will be a countable (or finite)

direct sum.

We want to present some results about 1-matricial algebras. We start with a

lemma that summarizes basic properties of 1-matricial algebras.

Lemma 4.1.3. Any 1-matricial algebra A is approximately unital, topologically sim-

ple, hence semisimple and semiprime, and is a compact modular annihilator operator
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algebra. It is a HSA in its bidual, so has the unique Hahn-Banach extension prop-

erty in [8, Theorem 2.10]. It also has dense socle, with the qk algebraically minimal

projections with A = ⊕ckqkA = ⊕rkAqk. The canonical representation of A on Aq1 is

faithful and irreducible, so that A is a primitive Banach algebra.

Note that since a 1-matricial algebra A has the unique Hahn Banach extension

property, the dual A∗ has the Radon-Nikodým property. Moreover, A∗∗ is a rigid

extension of A (that is, there exists only one completely contractive map from A∗∗

to itself extending the identity map on A).

Corollary 4.1.4. A 1-matricial algebra A is a right (resp. left, two-sided) ideal in

its bidual iff q1A (resp. Aq1, q1A and Aq1) is reflexive.

An operator algebra A is left or right essential if the left or right multiplication

by an element in A induces a bicontinuous injection of A in B(A). Note that the

existence of a bai implies that A is left and right essential. If (qk)
∞
k=1 are elements in a

normed algebra A, then we say that
∑

k qk = 1 strictly if
∑

k qka = a and
∑

k aqk = a

for all a ∈ A, with the convergence in the sense of nets (indexed by finite subsets

of N). The following gives a characterization of 1-matricial algebras in terms of the

existence of a certain family of algebraically minimal idempotents or projections.

Theorem 4.1.5. If A is a topologically simple left or right essential operator algebra

with a sequence of nonzero algebraically minimal idempotents (qk) with qjqk = 0 for

j 6= k, and
∑

k qk = 1 strictly, then A is similar to a 1-matricial algebra. If further

the qk are projections, then A is unitarily isomorphic to a 1-matricial algebra.
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For infinite dimensional 1-matricial algebras, being completely isometric to K(`2)

is equivalent to being topologically isomorphic to a C∗-algebra, or also equivalent to

{‖Tk‖
∥∥T−1

k

∥∥} being bounded [3, Lemma 4.7].

An operator algebra is called a subcompact 1-matricial algebra if it is (completely

isometrically isomorphic to) a 1-matricial algebra with the space K in the definition

of a 1-matricial algebra (the alternative definition given after Definition 4.1.1) being

finite dimensional. Subcompact 1-matricial algebras are subalgebras of K(`2); and

they are two-sided ideals in their biduals (which is not necessarily true for all 1-

matricial algebras).

Lemma 4.1.6. A 1-matricial algebra A is subcompact iff A is completely isometri-

cally isomorphic to a subalgebra of K(`2), and if and only if its C∗-envelope is an

annihilator C∗-algebra. In this case, A is an ideal in its bidual, and qkA (resp. Aqk)

is linearly completely isomorphic to a row (resp. column) Hilbert space. Here, qk

is as in Definition 4.1.1. Indeed, if a 1-matricial algebra A is bicontinuously (resp.

isometrically) isomorphic to a subalgebra of K(`2), then A is bicontinuously (resp.

isometrically) isomorphic to a subcompact 1-matricial algebra.

Now, we present some examples.

Example 4.1.7. Let K = `2
2 and Tk =

 k 0

0 1/k

. Notice that Tij =

 j/i 0

0 i/j


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and Tii =

 1 0

0 1

. An element x in A looks like:

x =



α11T11 α12T12 α13T13 . . .

α21T21 α22T22 α23T23 . . .

α31T31 α32T32 α33T23 . . .

...
...

...
. . .


.

That is,

x =



α11

 1 0

0 1

 α12

 2 0

0 1
2

 α13

 3 0

0 1
3

 . . .

α21

 1
2

0

0 2

 α22

 1 0

0 1

 α23

 3
2

0

0 2
3

 . . .

α31

 1
3

0

0 3

 α32

 2
3

0

0 3
2

 α33

 1 0

0 1

 . . .

...
...

...
. . .



.

Hence,

x =



 α11 0

0 α11


 2α12 0

0 1
2
α12


 3α13 0

0 1
3
α13

 . . .

 1
2
α21 0

0 2α21


 α22 0

0 α22


 3

2
α23 0

0 2
3
α23

 . . .

 1
3
α31 0

0 3α31


 2

3
α32 0

0 3
2
α32


 α33 0

0 α33

 · · ·

...
...

...
. . .



.
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Since (αij) were arbitrary, we can change the coefficients in the matrix;

x =



 α11 0

0 α11


 α12 0

0 1
4
α12


 α13 0

0 1
9
α13

 · · ·

 α21 0

0 4α21


 α22 0

0 α22


 α23 0

0 4
9
α23

 · · ·

 α31 0

0 9α31


 α32 0

0 9
4
α32


 α33 0

0 α33

 · · ·

...
...

...
. . .



.

After canonical shuffling, we get:

x =





α11 α12 α13 · · ·

α21 α22 α23 · · ·

α31 α32 α33 · · ·
...

...
...

. . .


 0 · · ·

...
. . .



 0 · · ·
...

. . .




α11
1
4
α12

1
9
α13 · · ·

4α21 α22
4
9
α23 · · ·

9α31
9
4
α32 α33 · · ·

...
...

...
. . .





.

To have a better understanding of the elements of A, let a = [αij] and x =

[αijTij] ∈ A. Then, after canonical shuffling, the algebra A looks like:

A =


 a 0

0 S−1aS

 : a, S−1aS ∈ K(`2)

 ,

where S = diag{1, 1
4
, 1

9
, 1

16
. . . }. Hence, A is a subcompact 1-matricial algebra. More-

over, A is an ideal in its bidual but it is not isomorphic to K(`2) as Banach algebras
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by [3, Lemma 4.7]. Also, A is not an annihilator algebra by [41, Theorem 8.7.12],

since (q1A)∗ is not isomorphic to Aq1 via the canonical pairing.

Example 4.1.8. Let K = `2 and Tk = Ekk + 1
k
I. That is,

Tk = diag

{
1

k
,

1

k
, · · · 1

k
,
k + 1

k
,

1

k
,

1

k
, · · ·

}
.

Here, q1A ∼= c0 by [3, Lemma 4.12] and q1A is not reflexive. Note that T−1
k has

k in all diagonal entries but one; and that entry is k
k+1

, which is positive and less

than k. It follows that Aq1 is a column Hilbert space; that is, Aq1 is reflexive. By

Corollary 4.1.4, A is a left ideal in its bidual, but it is not a right ideal in its bidual.

This is interesting since any C∗-algebra which is a left ideal in its bidual is also a

right ideal in its bidual. Moreover, this algebra is not an annihilator algebra by [41,

Theorem 8.7.12], since (q1A)∗ is not isomorphic to Aq1. Also, by Lemma 4.1.6, A is

not subcompact and A is not bicontinuously isomorphic to a subalgebra of K(`2).

Example 4.1.9. LetA be the 1-matricial algebra generated by Tk = I−
∑k

i=1

(
1− i

k

)
Eii.

That is,

T1 =



1 0 0 · · ·

0 1 0 · · ·

0 0 1 · · ·
...

...
...

. . .


, T2 =



1/2 0 0 · · ·

0 1 0 · · ·

0 0 1 · · ·
...

...
...

. . .


,

T3 =



1/3 0 0 · · ·

0 2/3 0 · · ·

0 0 1 · · ·
...

...
...

. . .


, T4 =



1/4 0 0 · · ·

0 2/4 0 · · ·

0 0 3/4 · · ·
...

...
...

. . .


, etc.
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Notice that ‖Tk‖ = 1 and
∥∥T−1

k

∥∥ = k; ‖Tk‖
∥∥T−1

k

∥∥ = k. Since {‖Tk‖
∥∥T−1

k

∥∥} is

not bounded, A is not subcompact by [3, Lemma 4.7].

Let x = [αijTij] be an element in A. For k ≤ `, we have;

T−1
k T` =

k∑
i=1

(
k

`
− 1)Ei,i +

`−k∑
j=1

(
k + j

`
− 1)Ek+j,k+j + I.

In other words, for k ≤ `, the k`-entry of the matrix Tk` is a diagonal matrix where

the first `−1 entries in the diagonal are k
`

and the rest of the elements in the diagonal

are 1.

That is,

x =



α11T11 α12T12 α13T13 . . .

α21T21 α22T22 α23T23 . . .

α31T31 α32T32 α33T23 . . .

...
...

...
. . .


,

where , for k ≤ `, Tk` = Ek` ⊗ diag{

`−1︷ ︸︸ ︷
k

`
,
k

`
, · · · , k

`
, 1, 1, · · · }.

After canonical shuffling, x can be viewed as a block diagonal matrix where the

blocks B1, B2, · · · , Bk, · · · are of the form;

B1 =



1α11
1
2
α12

1
3
α13

1
4
α14 · · ·

2α21 1α22
2
3
α23

2
4
α24 · · ·

3α31
3
2
α32 1α33

3
4
α34 · · ·

4α41
4
2
α42

4
3
α43 1α44 · · ·

...
...

...
...

. . .


,
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B2 =



1α11 1α12
2
3
α13

2
4
α14 · · ·

1α21 1α22
2
3
α23

2
4
α24 · · ·

3
2
α31

3
2
α32 1α33

3
4
α34 · · ·

4
2
α41

4
2
α42

4
3
α43 1α44 · · ·

...
...

...
...

. . .


,

B3 =



1α11 1α12 1α13
3
4
α14 · · ·

1α21 1α22 1α23
3
4
α24 · · ·

1α31 1α32 1α33
3
4
α34 · · ·

4
3
α41

4
3
α42

4
3
α43 1α44 · · ·

...
...

...
...

. . .


, etc.

We can write each block asBk = S−1
k aSk, where Sk = diag{

k︷ ︸︸ ︷
1, 1, . . . 1, k

k+1
, k
k+2

, . . . },

and a = [αij] ∈ K(`2). That is,

A =
{

diag
{
S1aS

−1
1 , S2aS

−1
2 , · · · , SkaS−1

k , · · ·
}

: a ∈ K(`2)
}
.

Following the same arguments in [49, Example 4.2.11], we conclude that C∗(A) =

c1
o ⊗min K(`2). Thus, the C∗-envelope of A is not an annihilator C∗-algebra.

For an operator algebra A, let f be the join of all the algebraically minimal

projections in A. Then, h-soc(A) is the HSA with support projection f ; that is,

h-soc(A) = fA∗∗f ∩ A (more details can be found in [3, Section 4]).

Theorem 4.1.10. Let A be a semiprime operator algebra. Then h-soc(A) is a σ-

matricial algebra.
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Hence, any semiprime operator algebra contains a canonical σ-matricial algebra;

namely, h-soc(A).

Remark 4.1.11. Let D be a HSA in an operator algebra A. If e is an idempotent in

D, then e is algebraically minimal in D if and only if e is algebraically minimal in

A. Indeed, if e is algebraically minimal in D, then for a ∈ A, eae = e(eae)e = λe for

some λ ∈ C. That is, e is algebraically minimal in A as well.

Remark 4.1.12. We believe that if D is a HSA in A, then h-soc(D) = h-soc(A) ∩D.

Also, if J is an ideal in A then h-soc(D ∩ J) = D ∩ h-soc(J). We hope to present

the details of these soon.

Note that if A is a σ-matricial algebra, then the r-ideals, `-ideals, and HSAs of

A are of a very nice form; J = ⊕ck∈EfkA or J = ⊕rk∈EAfk [3, Proposition 4.25].

Moreover, every HSA in a 1-matricial algebra (resp. in a σ-matricial algebra) is a

1-matricial algebra (resp. σ-matricial algebra) [3, Corollary 4.26]. Furthermore, the

quotients of σ-matricial algebras by approximately unital ideals are σ-matricial.

Proposition 4.1.13. Let A be a σ-matricial algebra and J be an approximately

unital ideal in A. Then, A/J is a σ-matricial algebra.

Proof. Notice that the only approximately unital closed two-sided ideals of A are

blocks consisting of 1-matricial algebras. If A is a σ-matricial algebra such that A =

⊕0Ak, where Ak are 1-matricial algebras, let J be an ideal in A. Set Jk = J ∩Ak; for

each k, JkA ⊂ J∩Ak = Jk and Jk is an ideal in Ak. We claim that J = ⊕0
kJk. Indeed,

if x ∈ J ⊂ ⊕0
kAk, then x = (xk) where xk ∈ J ∩ Ak and hence x = (xk) ∈ ⊕0

kJk. If

(xk) ∈ ⊕0
kJk, then for each k, xk ∈ J ∩ Ak. So, x = (xk) ∈ J . Since Ak is simple by
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Lemma 4.1.3, for each k, we have Jk = (0) or Jk = Ak. If J 6= (0), then there exists

k such that Jk = Ak. So, J consists of blocks where each block is (0) or is Ak. If we

look at the quotient algebra B = A/J , then B consists of blocks where each block is

(0) (if Jk = Ak) or is Ak (if Jk = (0)). Hence, A/J consists of blocks of 1-matricial

algebras and it is a σ-matricial algebra.

We know that the center ofMn is trivial. The same is true for 1-matricial algebras.

Proposition 4.1.14. Let A be a 1-matricial algebra. The center of A is trivial.

Proof. Let x be a nonzero element in Z(A), the center of A, and let {qk} be the

family of mutually orthogonal algebraically minimal projections as in the definition

of matricial algebras. Since qixqj = xqiqj = 0 for i 6= j, all the off-diagonal entries of

x are zero. Moreover, since each qk is algebraically minimal, qkxqk = λkqk gives the

diagonal entries. Since A is not unital, x is not a multiple of the identity. Take the

matrix T ∈ A with T = q1 + T12 (T12 is as in the definition of matricial algebras).

Then, xT ∈ A is a matrix where the 1-2 entry is λ1T12 and Tx ∈ A is a matrix where

the 1-2 entry is 0. That is, λ1 = 0. Similarly, we can show that each λk = 0. Hence,

x = 0 and Z(A) is trivial.

We say that an operator algebra is nc-discrete if it satisfies the equivalent condi-

tions in the following result.

Proposition 4.1.15. For an approximately unital operator algebra A, the following

are equivalent.

(i) Every open projection e in A∗∗ is also closed (in the sense that 1− e is open).
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(ii) The open projections in A∗∗ are exactly the projections in M(A).

(iii) Every r-ideal (resp. `-ideal) J of A is of the form eA (resp. Ae) for a projection

e ∈M(A).

(iv) The left (resp. right) annihilator of every nontrivial r-ideal (`-ideal) of A is a

nontrivial `-ideal (resp. r-ideal).

(v) Every HSA of A is of the form eAe for a projection e ∈M(A).

If any of these hold, then ∆(A) is an annihilator C∗-algebra.

A nice property of nc-discrete operator algebras is that they are somewhat similar

to Kaplansky’s dual algebras; the ‘left (resp.) right annihilator’ operation is a lattice

anti-isomorphism between the lattices of one-sided M -ideals of A [3, Corollary 2.11].

An approximately unital operator algebra A which is an `-ideal in its bidual is nc-

discrete. Moreover, every projection in the second dual of such an operator algebra

is open and is in M(A) [3, Proposition 2.12].

We say that an operator algebra is ∆-dual if ∆(A) is an annihilator C∗-algebra

and ∆(A) acts nondegenerately on A.

In regards to the relation between being ∆-dual and nc-discrete, we want to

mention that being ∆-dual is far from implying nc-discrete. For example, the disk

algebra A(D) is ∆-dual but not nc-dicrete. However, under some conditions, being

nc-discrete implies being ∆-dual.

Corollary 4.1.16. Let A be an approximately unital operator algebra which is nc-

discrete. The following are equivalent.
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(i) A is ∆-dual.

(ii) ∆(A) acts nondegenerately on A.

(iii) Every nonzero projection in M(A) dominates a nonzero positive element in A.

(iv) If p is a nonzero projection in M(A), then there exists a with pap selfadjoint.

(v) 1A∗∗ ∈ ∆(A)⊥⊥.

It is important to note that σ-matricial algebras are ∆-dual [3, Proposition 4.14].

That is, σ-matricial algebras are nc-discrete and ∆-dual; however, Example 4.1.20

shows that the converse is not true.

We now consider a class of algebras which are a commutative variant of matricial

operator algebras, and are ideals in their biduals.

Proposition 4.1.17. Let A be a commutative operator algebra with no nonzero

annihilators in A, and possessing a sequence of nonzero algebraically minimal idem-

potents (qk) with qjqk = 0, for j 6= k, and
∑

k Aqk = A. Then, A is a semisimple

annihilator algebra with dense socle, and A is an ideal in its bidual. If further the

qk are projections (resp.
∑

k qk = 1 strictly), and if A is left essential, then A ∼= c0

isometrically (resp. A ∼= c0 isomorphically).

In case of uniform algebras (which are commutative), we prove that being nc-

discrete implies being isomorphic to c0.

Proposition 4.1.18. Let A be an approximately unital function algebra. If A is

nc-discrete, then A is isomorphic to c0(I), for some set I.
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Proof. We will prove the unital case; the approximately unital case is in [2]. Suppose

that A is a unital function algebra. If A is nc-discrete, then ∆(A) is an annihila-

tor C∗-algebra. Hence, there exist minimal idempotents (qk) in ∆(A) such that∑
k qk∆(A) = ∆(A). Since ∆(A) acts nondegenerately on A, we get

∑
k qkA = A.

We will prove that each qj is algebraically minimal in A. Notice that Aqj is

a unital function algebra with the unit qj. If J is an r-ideal in Aqj with support

projection p 6= 0, then J is an r-ideal in A and p ∈ M(A) = A. Since J = Jqj, we

have p ∈ Aqj and consequently p ≤ qj. But since p ∈ ∆(A), p ≤ qj implies that

p = qj. That is, J = Aqj. Hence, Aqj is a unital function algebra that does not have

any nontrivial r-ideals. Note that every nontrivial uniform algebra contains proper

closed ideals with cai (for example, the ideals associated with Choquet boundary

points). Therefore, Aqj is one dimensional; Aqj = C qj. We conclude that every qj

is algebraically minimal in A.

Now, A =
∑

C qk = ∆(A). Hence, A is an annihilator C∗-algebra. Since A is

commutative as well, A is isomorphic to c0(I), for some set I.

Remark 4.1.19. If A is a function algebra which is nc-discrete, then ∆(A∗∗) = ∆(A)∗∗.

Hence, every projection in A∗∗ is in A and every projection is both open and closed.

Every projection is both open and closed in all unital finite dimensional algebras and

also in all 1-matricial algebras. However, this property alone does not characterize

the 1-matricial algebras.

We present an example of a commutative operator algebra which is ∆-dual and

nc-discrete, but not σ-matricial.
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Example 4.1.20. Let ek = [1 : 1]⊗[−k : k+1] =

−k k + 1

−k k + 1

 and fk = [(k+1)/k :

1] ⊗ [k : −k] =

k + 1 −(k + 1)

k −k

, which are idempotents in M2. Consider the

idempotents

q2k = 0⊕ . . .⊕ 0⊕ ek ⊕ 0⊕ . . .

and

q2k+1 = 0⊕ . . .⊕ 0⊕ fk ⊕ 0⊕ . . . ,

inside B = M2 ⊕∞M2 ⊕∞ . . . .

Let A be the closure of the span of these idempotents (qk). Then A has a cai and

it may be viewed as a subspace of K(`2).

Notice that A is a commutative algebra since the idempotents qk commute;

qjqk = qkqj = 0, for each j 6= k. By Proposition 4.1.17, A is an ideal in its bidual.

Hence, by [3, Proposition 2.12], A is nc-discrete. That is, ∆(A) is an annihilator

C∗-algebra. Since ∆(A) acts nondegenerately on A , A is also ∆-dual. However, A is

not isomorphic to a σ-matricial algebra. Notice that the algebraically minimal idem-

potents in A are not uniformly bounded, which is the case in c0. Hence, A can’t be

isomorphic to c0. Here, we have
∑

k qkA =
∑

k Aqk = A. However, the idempotents

do not satisfy the condition
∑

k qk = 1 strictly, which characterizes algebras that are

isomorphic or similar to a σ-matricial algebra by Theorem 4.1.5.

This example illustrates that a semisimple approximately unital algebra which is

dual in the sense of Kaplansky [33] need not be isomorphic to a σ-matricial algebra.
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To see that A is dual in the sense of Kaplansky, we will look at the closed ideals

of A since A is commutative. Let J be a closed ideal in A. We will prove that

R(L(J)) = J . The inclusion J ⊂ R(L(J)) is easy since x ∈ J and b ∈ L(J) implies

that bx = 0, hence L(J)x = 0. To prove the other inclusion by contradiction,

assume that there is qk ∈ R(L(J)) such that qk /∈ J . That is, L(J)qk = 0, but

qk /∈ J . The latter implies that qkJ = 0, which in turn implies that qk ∈ L(J). This

is a contradiction to L(J)qk = 0 since L(J) is itself a two sided ideal in A. This

proves that {k : qk ∈ J} = {k : qk ∈ R(L(J))}. Remember that A is defined to be

the closure of the span of the (qk). So every closed ideal is the closure of the span

of the qk that are contained in the ideal. That is, J = span{qk : qk ∈ J}. Hence, for

every closed ideal J in A, R(L(J)) = J . That is, A is a dual algebra. Therefore, we

can conclude that being semisimple and dual (in the sense of Kaplansky) does not

imply being σ-matricial or being isomorphic to a σ-matricial algebra.

Another point about this example is that it illustrates the necessity of the minimal

projection condition in [3, Theorem 4.19]. The socle of A is dense, but A is not

isomorphic to a σ-matricial algebra. To see that the minimal projection condition is

not satisfied, look at qkAqk = Aqk which contains a nontrivial idempotent.

Finally, we want to make an attempt to generalize the notion of having real

rank zero to operator algebras. Since having real rank zero is defined in terms of the

selfadjoint elements (which are already in ∆(A)), we want to work with the case that

∆(A) is large enough. Recall from Chapter 2 that a C∗-algebra has real rank zero if

and only if it has property (HP) (that is, every HSA in A has a cai of projections), if

and only if it has property (FS) (that is, the elements with finite spectrum are dense
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in Asa).

Definition 4.1.21. Let A be an operator algebra with a positive cai; or equivalently,

assume that ∆(A) acts nondegenerately on A. We say that A has real rank zero if

the invertible selfadjoint elements are dense in A1
sa.

This definition is equivalent to ∆(A) being a C∗-algebra with real rank zero since

A has positive cai and Asa = ∆(A)sa.

We say that an operator algebra has property (HP ′) if every HSA in A that

contains a positive cai contains a cai consisting of projections.

Proposition 4.1.22. Let A be an operator algebra with a positive cai. The following

are equivalent.

(i) A has real rank zero.

(ii) ∆(A) has real rank zero.

(iii) A has property (FS).

(iv) A has property (HP ′).

Proof. Clearly (i)⇔ (i)⇔ (iii). If A has real rank zero and D is a HSA in A with

positive cai, then ∆(D) is a nonzero HSA in ∆(A) by Proposition 3.3.3, and hence

contains a cai of projections. This cai of projections is also a cai for D since ∆(D)

acts nondegenerately on D. Conversely, assume that A has property (HP ′). If D is

a HSA in ∆(A), then it has a positive cai. Let p ∈ ∆(A)∗∗ be the support projection

of D; D = p∆(A)∗∗p ∩ ∆(A). Let D′ = pA∗∗p ∩ A. Then, D′ is a HSA in A with
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support projection p ∈ A∗∗ and it contains a cai of projections by assumption. This

cai of projections is contained in D and it is a cai for D as well. Hence, ∆(A) has

real rank zero.

Example 4.1.23. If A is a σ-matricial algebra, then it has real rank zero. Clearly,

every σ-matricial algebra contains a cai of projections, and every HSA in A (being a

σ-matricial algebra itself) contains a cai of projections.

We say that the operator algebra A has property (IP) if for any mutually or-

thogonal projections p, q in A∗∗, where p is compact and q is closed, there exists a

projection r ∈ A such that p ≤ r ≤ 1 − q. A C∗-algebra has real rank zero if and

only if it has property (IP) [15, Theorem 1].

Proposition 4.1.24. Let A be an algebra with positive cai such that ∆(A)∗∗ =

∆(A∗∗). Then, A has real rank zero if and only if A has property (IP).

Proof. Since ∆(A)∗∗ = ∆(A∗∗), p, q ∈ A∗∗ if and only if p, q ∈ ∆(A∗∗) = ∆(A)∗∗.

Since ∆(A) is a C∗-algebra, it has real rank zero if and only if it has (IP) by [15,

Theorem1].

Notice that if A is σ-matricial, then ∆(A)∗∗ = ∆(A∗∗) (for example by Lemma

4.3.2 that will be presented later in this chapter). That is, σ-matricial algebras have

this interpolation property (IP).

Remark 4.1.25. In our attempt of generalizing the notion of having real rank zero, the

notion becomes equivalent to ∆(A) having real rank zero and we may not say much

about the operator algebra structure of A. If A is an operator algebra with a cai, let
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FA = {a ∈ A : ‖1− a‖ ≤ 1}. In [9], Blecher and Read investigated the properties

of FA and showed that R+FA is an analogue of the positive cone in a C∗-algebra.

That is, RFA may be a good candidate to generalize Asa; the selfadjoint elements in

a C∗-algebra. We conjecture that, in order to say more about the operator algebra

structure, the following may be a better definition: ‘We say that A has real rank

zero if the invertible elements in RFA are dense in RFA’. Of course, to study the

consequences of this definition, one needs to study the properties of RFA first.

4.2 A Wedderburn Type Structure Theorem

In this section, we give a ‘Wedderburn type’ structure theorem for σ-matricial alge-

bras.

As mentioned in the previous section, σ-matricial algebras are nc-dicrete and ∆-

dual, but these two terms alone do not characterize σ-matricial algebras. Also, every

projection in a σ-matricial algebra is both open and closed; again, this alone does

not characterize the σ-matricial algebras. The following theorem lists the charac-

terizations of σ-matricial algebras in terms of the existence of algebraically minimal

projections, existence of minimal right ideals, being ∆-dual and being nc-discrete.

This theorem is basically [3, Theorem 4.18], we add some new equivalent conditions.

An operator algebra is said to have Property (M) if every nonzero projection in

A dominates a nonzero algebraically minimal projection in A. We will study this

property in more details in the next section.

Theorem 4.2.1. Let A be an approximately unital semiprime operator algebra. The

62



following are equivalent.

(i) A is completely isometrically isomorphic to a σ-matricial algebra.

(ii) A is the closure of
∑

k qkA for mutually orthogonal algebraically minimal pro-

jections qk ∈ A.

(iii) A is the closure of the joint span of the minimal right ideals which are also

r-ideals (these are the qA, for algebraically minimal projections q ∈ A).

(iv) A is ∆-dual, and every ∗-minimal projection in A is algebraically minimal.

(v) A is ∆-dual, and A has Property (M).

(vi) A is nc-discrete, and every nonzero projection in M(A) dominates a nonzero

algebraically minimal projection in A.

(vii) A is nc-discrete, and every nonzero HSA D in A containing no nonzero pro-

jections of A except possibly an identity for D is one-dimensional.

(viii) A is a HSA in its bidual and every HSA D in A with dim(D) > 1 contains a

nonzero projection which is not an identity for D.

(ix) Every projection in A∗∗ is both open and closed, A has a positive cai and has

Property (M).

(x) A is a HSA in its bidual and A∗∗ has Property (M).

Proof. The equivalences of (i)−(vii) are given in [3, Theorem 4.18]. The equivalence

of those with (viii) is given in [2].If (i) holds, then A every projection in A∗∗ is both
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open and closed by Lemma 4.3.2. By the equivalence of (i) and (v), we know that

A has a positive cai and it has Property (M). That is, (i) implies (ix). If every

projection in A∗∗ is open and closed, then A is nc-discrete and ∆(A) is an annihilator

C∗-algebra by Proposition 4.1.15. That is, (ix) implies (v). The equivalence of (i)

and (x) follows from Proposition 4.3.15 and Theorem 4.3.17 (which will be presented

in the next section) and the fact that (i) implies that A is a HSA in its bidual.

One may ask whether we need A to be semiprime in the hypothesis. In fact,

we need this condition. For example, if A is the algebra of upper triangular 2 × 2

matrices, then it is not semiprime. Notice that A is nc-discrete and satisfies (vi)

in Theorem 4.2.1. It is also ∆-dual and satisfies some other conditions listed in

Theorem 4.2.1. However, A is not a σ-matricial algebra since any finite dimensional

σ-matricial algebra is of the form Mn (or c0-sum of some copies of Mn).

We want to mention that in [3, Theorem 4.19], we presented another ‘Wedderburn

type’ structure theorem. That theorem shows that, under certain conditions, being

σ-matricial is equivalent to being compact or being a modular annihilator algebra.

4.3 The Second Duals of Matricial Algebras

We want to understand the second duals of matricial algebras. We start with second

duals of 1-matricial algebras and we will present some facts about the second duals

of σ-matricial algebras as well.

In the case of 1-matricial algebras, the second duals have a quite simple form.
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Lemma 4.3.1. If A is a 1-matricial algebra defined by a system of matrix units

{Tij} in B(K(∞)) (as in Definition 4.1.1), then

A∗∗ = {T ∈ B(K∞) : qiTqj ∈ CTij,∀i, j}.

Thus, A∗∗ is the collection of infinite matrices [βijT
−1
i Tj], for scalars βij, which are

bounded operators on K(∞).

Every projection in the second dual of a σ-matricial algebra is open and closed.

Lemma 4.3.2. Let A be a σ-matricial algebra. If p is a projection in A∗∗, then

p ∈M(A) and p ∈M(∆(A)), and thus is open. Hence, A is nc-discrete. Also,

∆(A∗∗) = ∆(A)∗∗ = M(∆(A)) = ∆(M(A)).

This result states that if A is σ-matricial, then ∆(A∗∗) = ∆(A)∗∗. Note that this

also follows from the fact that σ-matricial algebras have positive cai and are HSAs

in their biduals [2].

It is well known that K(H) is an ideal in its bidual B(H). In fact, it is the unique

closed two-sided ideal of B(H) if H is separable, and it is contained in every closed

two-sided ideal of B(H) if H is not separable. We have a similar result for 1-matricial

algebras; any closed two-sided ideal of the bidual contains the 1-matricial algebra.

Proposition 4.3.3. Let A be a 1-matricial algebra and J be a nonzero closed ideal

of A∗∗. Then, A ⊂ J .

Proof. Let J be a nonzero closed ideal in A∗∗. If 0 6= T ∈ J , then qjTqk = βjkTjk 6= 0

for some j, k, since T is not zero. Hence, βjkTjk ∈ J since J is an ideal. Thus, Tpq ∈ J

for all p, q, since these are matrix units. That is, A ⊂ J .
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Remark 4.3.4. Following the previous result, we want to remark on the relation

between ∆(A) and ∆(J). Since A is 1-matricial, ∆(A) is an annihilator C∗-algebra.

If ∆(J) 6= (0), then since J is a closed ideal in A∗∗, by Proposition 3.3.3, ∆(J) is a

nonzero closed ideal in ∆(A∗∗) = ∆(A)∗∗. If M is an ideal in ∆(J), then M is an

ideal in ∆(A)∗∗. Since ∆(A) is a c0-sum of elementary C∗-algebras, M consists of

blocks where each block is either a block of ∆(A) or it is a bidual of a block of ∆(A).

We want to prove that the second dual of a σ-matricial algebra is semisimple and

DMA. First, we present a lemma that proves that the ∞-sum of semisimple Banach

algebras is semisimple.

Lemma 4.3.5. If {Ak} is a family of semisimple Banach algebras, then ⊕∞k Ak is

semisimple.

Proof. Let B = ⊕∞k Ak and x = (xk) ∈ Rad(B). First assume that B is unital; as

a consequence, each Ak is unital. By [41, Theorem 4.3.6], a characterization of the

Jacobson radical states that Rad(B) = {a ∈ B : Ba ⊂ qi(B)}. That is, we know that

yx ∈ qi(B), for each y ∈ B. Let yk ∈ Ak; and set y = (0, 0, · · · , yk, 0, · · · ) ∈ B. Since

yx ∈ qi(B), there exists a z ∈ B such that yx+z = yxz. That is, ykxk+zk = ykxkzk.

Hence, ykxk is quasi-invertible in Ak. Thus, for each k, xk ∈ Rad(Ak) = (0). That

is, x = 0.

If B is not unital, then let B1 be the unitization of B and let x = (xk) ∈ Rad(B) =

{a ∈ B : B1a ⊂ qi(B)}. Let yk + µkek ∈ A1
k and set y = (0, 0, · · · , yk, 0, · · · ) ∈ B.

Since (y+µkek)x ∈ qi(B), we have (yk +µkek)xk ∈ qi(Ak) and hence A1
kxk ⊂ qi(Ak).

That is, for each k, xk ∈ Rad(Ak) = (0). Hence, x = 0 and Rad(B) = (0).
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Note that this lemma gives us an immediate corollary about the c0-sum of a

family of Banach algebras.

Corollary 4.3.6. If {Ak} is a family of semisimple Banach algebras, then ⊕0
kAk is

semisimple.

Proof. Since ⊕0
kAk is an ideal in ⊕∞k Ak and since semisimplicity is a property that

descends to ideals, the result follows from Lemma 4.3.5.

Proposition 4.3.7. Let A be a σ-matricial algebra. Then, A∗∗ is semisimple.

Proof. First, suppose that A is a 1-matricial algebra. We know that Rad(A∗∗) is a

closed ideal in A∗∗. Assume that Rad(A∗∗) 6= (0). Then, by Proposition 4.3.3, A ⊂

Rad(A∗∗). We know by [22, Proposition 2.6.25] that Rad(A∗∗) ∩ A ⊂ Rad(A). Note

that A is semisimple; that is, Rad(A) = (0) and as a consequence, Rad(A∗∗)∩A = (0).

This contradicts to the fact that A ⊂ Rad(A∗∗). Hence, Rad(A∗∗) = (0) and A∗∗ is

semisimple.

If A is σ-matricial, then it is the c0-sum of 1-matricial algebras and hence A∗∗

is the ∞-sum of the second duals of those 1-matricial algebras. By the first part of

our proof, each of those second duals is semisimple. Now, by Lemma 4.3.5, A∗∗ is

semisimple.

Lemma 4.3.8. Let {Ak} be a family of semisimple DMA algebras. Then, ⊕∞k Ak is

DMA.

Proof. Let B = ⊕∞k Ak and x ∈ LA(BF ). Let ek be an algebraically minimal idem-

potent in Ak. Then, (0, 0, . . . , ek, 0, . . .) is an algebraically minimal idempotent in B
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and hence x(0, 0, . . . , ek, 0, . . .) = (0). That is, xkek = 0. Since this is true for any

algebraically minimal idempotent in Ak, xk ∈ LA((Ak)F ) = (0). That is, xk = 0

for each k and hence x = (0). Similarly, RA(AF ) = (0). Since B is semisimple by

Lemma 4.3.5, we conclude that B is DMA.

Proposition 4.3.9. Let A be a σ-matricial algebra. Then, A∗∗ is DMA.

Proof. First, assume that A is 1-matricial. Let B = A∗∗ = {T ∈ B(K∞) : qiTqj ∈

CTij,∀i, j} and BF be the socle of B. We know by Proposition 4.3.7 that B is

semisimple. If T ∈ LA(BF ), then for every minimal projection p in B, Tp = 0. In

particular, since qi is a minimal projection in B, Tqi = 0, for all i. Hence, qiTqj = 0,

for all i, j. Hence, T = 0. That is, LA(BF ) = (0). Similarly, RA(BF ) = (0). Hence,

B = A∗∗ is DMA.

If A is σ-matricial, then A is a c0-sum of 1-matricial algebras Ak say. Then, A∗∗

is the infinity sum of the second duals of these 1-matricial algebras; A∗∗ = ⊕∞k A∗∗k .

By the first part of our proof, each A∗∗k is DMA. Moreover, each A∗∗k is semisimple

by Lemma 4.3.7. Hence, A∗∗ is DMA by Lemma 4.3.8.

Definition 4.3.10. We say that an operator algebra A has Property (M) if every

nonzero projection in A dominates a nonzero algebraically minimal projection in A.

Remark 4.3.11. If A has Property (M), then every ∗-minimal projection in A is

algebraically minimal. Indeed, if p is ∗-minimal, then it majorizes an algebraically

minimal projection q ∈ A and since p is ∗-minimal, p = q.

We know that σ-matricial algebras have Property (M). Also, they have the prop-

erty that for every nonzero projection p ∈ A, there exists an algebraically minimal
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projection q ∈ A such that pq 6= 0. We show that these two conditions are equivalent.

Proposition 4.3.12. Let A be an approximately unital algebra. Then, A has Prop-

erty (M) if and only if for every nonzero projection p ∈ A, there exists an algebraically

minimal projection q ∈ A such that pq 6= 0.

Proof. One direction is clear. For the other implication, let p be a nonzero projection

in A. Then, by our assumption, there exists an an algebraically minimal projection

q such that pq 6= 0. This implies that for all x ∈ A, (pqp)x(pqp) = pq(pxp)qp =

p(λq)p = λpqp for some λ ∈ C. Hence, 1
t
pqp is an algebraically minimal projection

for some t > 0. Since 1
t
pqp ≤ p, the proof is complete.

It is important to note that Property (M) descends to HSAs.

Proposition 4.3.13. Let A be an operator algebra that has Property (M). Then any

HSA of A has Property (M).

Proof. Let D be a HSA in A. If p is a nonzero projection in D, then it is a projection

in A, and dominates a nonzero algebraically minimal projection q in A. Then, p ≥ q

implies that pqp = qp = q ∈ D since D is a HSA. Also, q is algebraically minimal

in D by Remark 4.1.11; so, p majorizes an algebraically minimal projection in D.

Hence, D has Property (M).

Remark 4.3.14. We want to point out that Property (M) does not descend to the

quotients A/J . To see this, let A = C0((0, 3))⊕ C and let J = {f ∈ A : f |[1,2] = 0}.

Then A has Property (M) since the only projection in A, (0, 1), is algebraically
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minimal. However, A/J ∼= C([1, 2]) ⊕ C does not have this property; χ[1,2] is a

projection that does not dominate any algebraically minimal projections.

Now, we give some results about σ-matricial algebras and Property (M).

Proposition 4.3.15. Let A be a σ-matricial algebra. Then, A∗∗ has Property (M).

Proof. Let p be a projection in A∗∗. By Theorem 4.2.1, p is open and closed and

also p ∈ M(A) since A is nc-discrete. Hence, by Theorem 4.2.1, there exists an

algebraically minimal projection q in A such that q ≤ p. Since A is a HSA in A∗∗, q

is algebraically minimal in A∗∗ as well by Remark 4.1.11.

Remark 4.3.16. If A is an approximately unital operator algebra, then the alge-

braically minimal projections in M(A) are exactly the algebraically minimal projec-

tions in A. Indeed, if p is algebraically minimal in A, then it is algebraically minimal

in M(A) by Remark 4.1.11. If p is a nonzero algebraically minimal projection in

M(A), then pAp 6= (0) by weak∗-density. So, pAp = C p ⊂ A since A is an ideal

in M(A). Hence, p ∈ A. If further A is an ideal in its bidual, then we can replace

M(A) above by A∗∗.

Theorem 4.3.17. Let A be a semiprime approximately unital operator algebra that

is a HSA in its bidual. If A∗∗ (or M(A)) has Property (M), then A is σ-matricial.

Proof. If A is a HSA in its bidual, then it is nc-discrete [2]. If M(A) has Property (M)

and if p is a nonzero projection in M(A), then it dominates a nonzero algebraically

minimal projection q ∈ M(A). By Remark 4.3.16, q is an algebraically minimal

projection in A. Hence, by Theorem 4.2.1 (vi), A is σ-matricial.
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If A∗∗ has Property (M) and if p is a nonzero projection in M(A), then it domi-

nates a nonzero algebraically minimal projection q ∈ A∗∗. Since A is nc-discrete and

q is open, q ∈M(A). Hence, M(A) has Property (M) and the proof follows from the

first part.

Hence, we have the another characterization of σ-matricial algebras, which was

given as the last item in Theorem 4.2.1; A is a HSA in its bidual and A∗∗ has Property

(M).

4.4 Characterizations of the C∗-algebras of

Compact Operators

We gave several characterizations of the C∗-algebras of compact operators in Chapter

2. Now, we want to give a characterization in terms of all closed left ideals being

A-complemented.

An interesting question is whether every approximately unital operator algebra

with the property that all closed right ideals have a left cai (similarly for left ideals),

is a C∗-algebra. The following result is [3, Theorem 5.1] and it gives a partial answer

to this question.

Theorem 4.4.1. Let A be a semisimple approximately unital operator algebra. The

following are equivalent:

(i) Every minimal right ideal of A has a left cai (or equivalently equals pA for a
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projection p ∈ A).

(ii) Every algebraically minimal idempotent in A has range projection in A.

If any of these hold, and if A has dense socle, then A is completely isometrically

isomorphic to an annihilator C∗-algebra.

Definition 4.4.2. We say that a left ideal in A is A-complemented if it is the range

of a bounded idempotent left A-module map. We say that the left ideals in A are

uniformly A-complemented if there exists K > 0 such that ‖p‖ ≤ K for every such

idempotent p.

The following result is from [3].

Corollary 4.4.3. Let A be a semisimple approximately unital operator algebra such

that every closed left ideal in A is contractively A-complemented; or equivalently,

equals J = Ap for a projection p ∈ M(A). Then, A is completely isometrically

isomorphic to an annihilator C∗-algebra.

In [51] and [52], Tomiuk studied the structure of complemented Banach algebras,

which are defined below.

Definition 4.4.4. Let A be a Banach algebra and M` be the set of all closed left

ideals of A. We say that A is left complemented if there is a map (called a comple-

mentor) p : J → Jp of M` into itself such that:

(i) J ∩ Jp = (0);
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(ii) J + Jp = A, for all J ∈M`;

(iii) (Jp)p = J , for all J ∈M`;

(iv) J1 ⊂ J2 implies Jp2 ⊂ Jp1 , for all J1, J2 ∈M`.

Of course, the term right complemented is defined symmetrically, in terms of

right ideals. A semisimple left (or right) complemented Banach algebra has dense

socle [51, Lemma 5] and is an annihilator algebra if it contains a bai [52, Corollary

4.3]. Following Tomiuk’s results about complemented Banach algebras, we get the

following corollary.

Corollary 4.4.5. Let A be a semisimple operator algebra with a bai. If A is left

complemented, then A is topologically isomorphic to a sum of K(Hi), for Hilbert

spaces Hi.

Proof. Since A is semisimple and left complemented, A has dense socle and A is

the direct sum of its minimal closed ideals each of which is simple [51, Theorem

4]; A = ⊕iAi. Since A is approximately unital, LA = A and by [52, Corollary 4.2]

each minimal ideal Ai in A = LA is isomorphic to K(Hi) for some Hilbert space Hi.

Hence, A is the direct sum of K(Hi).

Now, we prove that some left complemented operator algebras are annihilator

C∗-algebras.

Theorem 4.4.6. Let A be a semisimple operator algebra with a bai. If A is left

complemented and if the closed left ideals of A are uniformly A-complemented, then

A is completely isomorphic to an annihilator C∗-algebra.
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Proof. By the last corollary, and the fact that A has a bai, so that A = LA, we have

that A is the closure of
∑

i Si, where Si ∼= K(Hi) for some Hilbert space Hi. This

isomorphism is bicontinuous, and in fact completely bicontinuous, since any operator

algebra which is bicontinuously isomorphic to K(H) is completely isomorphic to it.

Also, SiSj = Si ∩ Sj = (0). Since K(Hi) has a bai, so does Si. If (rt) is a bai

for Si with weak∗ limit point ri ∈ A∗∗, then ri is an identity for S⊥⊥i . Note that

rirj = 0 if i 6= j. And S⊥⊥i = A∗∗ri = riA
∗∗, and ri is in the center of A∗∗. By [3,

Lemma 5.2(2)], we also have Si = Ae for an idempotent e ∈ A∗∗ and S⊥⊥i = A∗∗e,

so e = eri = rie = ri. Thus, ri ∈M(A), and Si = Ari.

Since the ideals are uniformly complemented, we know that ‖ri‖ ≤ K for some

K > 0. Then, for any finite J ⊂ I, we have A(
∑

i∈J ri) is complemented too, so

that
∥∥∑

i∈J ri
∥∥ ≤ K. That is, all finite partial sums of

∑
i ri are uniformly bounded.

We can use the similarity trick from [3, Section 4] to get projections. There exists

an invertible operator S such that S−1riS = pi is an orthogonal projection on H for

all i. And B = S−1AS is the closure of the sum of the Bi = S−1SiS. Moreover,

the canonical map ⊕fi Bi → B is an isometric homomorphism with respect to the

∞-norm on the direct sum, since if bi ∈ Bi for i in a finite set J , then

‖
∑
i∈J

bi‖ = ‖
∑
i∈J

pibipi‖ = max
i∈J
‖bi‖.

So, B ∼= ⊕0
iBi completely isometrically isomorphically, hence A ∼= B ∼= ⊕0

iBi
∼=

⊕0
i K(Hi) completely bicontinuously. Hence, A is completely isomorphic to an anni-

hilator C∗-algebra.
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Chapter 5

Scattered Operator Algebras

In this chapter, we define scattered operator algebras and study their structure.

Jensen [30] and Lazar [37] showed that scattered C∗-algebras are built up by using

a composition series where each consecutive quotient is isometric to K(H) for some

Hilbert space H. In the light of this result, we want to define scattered operator

algebras using a composition series where each consecutive quotient is completely

isometrically isomorphic to a 1-matricial algebra. We investigate the structure of

such operator algebras.

We start this chapter by proving some results we haven’t seen in the literature

about scattered C∗-algebras. In the second section, we define composition series for

operator algebras. In section 3, we introduce scattered operator algebras. In section

4, we study operator algebras with a scattered maximal C∗-cover.
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5.1 Scattered C∗-algebras

Recall that a C∗-algebra A is scattered if every positive functional on A is a sum

of a sequence of pure functionals on A [30]. Some characterizations of scattered

C∗-algebras are given in Chapter 2; several others can be found in [30], [37], [35] or

[36].

Remark 5.1.1. Every countable compact Hausdorff space is scattered [39, Corollary

1.5.9]. It is well-known that for a compact Hausdorff space K, K is scattered if and

only if C(K) is scattered; or, if and only if C(K)∗ is separable. Let K be a compact

metric space which is scattered. Assume that K is uncountable. By functional

analysis, if a compact space K is uncountable then C(K)∗ is nonseparable. But

since K is scattered, C(K)∗ separable; we have a contradiction. Hence, if K is

compact scattered, then it is countable. Hence, for a compact metric space K, C(K)

is scattered if and only if K is countable.

Remark 5.1.2. Let K be a locally compact Hausdorff space. The algebraically min-

imal projections in C0(K) correspond to isolated points in K. Notice that χ{x} is

continuous (that is, χ{x} ∈ C0(K)) if and only if x ∈ K is an isolated point. If

χE ∈ C0(K) is a minimal projection, and if y 6= z ∈ E, then by Urysohn’s lemma

for locally compact Hausdorff spaces, there exists f ∈ C0(K) such that f(y) = 1 and

f(z) = 0. Since χE is algebraically minimal, χEfχE = λχE for some λ ∈ C. Then,

χE(y)f(y)χE(y) = 1 = 1χE(y) and λ = 1. But, χE(z)f(z)χE(z) = 0 gives us a con-

tradiction. Hence, E is a singleton. That is, any algebraically minimal projection in

C0(K) is of the form χ{x} for an isolated point x ∈ K. Thus, commutative scattered

C∗-algebras contain algebraically minimal projections.
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Recall that an algebra is a Duncan modular annihilator algebra (DMA) if it is

semiprime and LA(AF ) = RA(AF ) = AJ [41]. If the operator algebra is semisimple,

then A is DMA if and only if LA(AF ) = RA(AF ) = (0). We prove that scattered

C∗-algebras are DMA.

Theorem 5.1.3. If A is a scattered C∗-algebra, then A is DMA.

Proof. Let A be a scattered C∗ algebra. Let I = LA(AF ); notice that this is a closed

ideal in A. Suppose that I 6= (0). If no element of I has spectrum different from (0),

then by [41, Theorem 4.3.6(b)], I ⊂ AJ = (0).

Suppose that there is a selfadjoint element b ∈ I such that Sp(b) 6= (0). Since

Sp(b) is countable and not equal to (0), it contains a nonzero isolated point. The

C∗-algebra generated by the selfadjoint element b is isomorphic to C0(Sp(b) \ {0}).

Since Sp(b) contains a nonzero isolated point w, we get a nonzero projection in C∗(b)

corresponding to w ∈ Sp(b). Notice that C∗(b) ⊂ I. Hence, there exists a nonzero

projection in I. Let E be a maximal family of commuting projections in I and

let C be the closed ∗-algebra generated by E. Since E only contains commuting

projections, C is commutative. Since I is selfadjoint, C is a ∗-subalgebra of I.

We know that the ideals and C∗-subalgebras of scattered C∗-algebras are scattered

[30]. Hence, C is a commutative scattered C∗-algebra. Since commutative scattered

C∗-algebras contain minimal projections (by Remark 5.1.2), there exists a nonzero

algebraically minimal projection e ∈ C. By following the argument of [41, 8.6.2], we

get that the unital C∗-algebra eIe contains no nonzero projections except its identity

e. Hence, the spectrum of each selfadjoint element in eIe is connected. Since eIe is
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a spectral subalgebra of A, each selfadjoint element in eIe has countable spectrum.

That is, if a ∈ eIe is selfadjoint, then Sp(a) is a singleton. Hence, if a ∈ eIe is

a nonzero selfadjoint element, then Sp(a) = {λ}, where λ 6= 0. This means that

every nonzero selfadjoint element a in eIe satisfies a = λe for λ ∈ Sp(a). Since eIe

is a C∗-algebra, any element b ∈ eIe can be written as b = x1 + ix2 where xj are

selfadjoint elements in eIe. This implies that b = λ1e + iλ2e = µe ∈ C e. That is,

eIe = C e. Moreover, for any a ∈ A, eae = e(eae)e ∈ eIe, since I is an ideal in A.

That is, eAe ⊂ eIe = C e. Hence, e is algebraically minimal in A.

Thus, e is a minimal projection which is contained in I. This is a contradiction

since e also belongs to AF . Hence, for every selfadjoint element b ∈ I, Sp(b) = (0).

Notice that I is a two sided ideal in A; b ∈ I implies that bb∗ ∈ I. So, b ∈ I

implies that Sp(bb∗) = (0) and hence bb∗ = 0 by the spectral radius formula. By the

C∗-identity, we get that b = 0. That is, I = (0).

Hence, LA(AF ) = (0). Similarly, RA(AF ) = (0). We conclude that A is DMA.

For commutative C∗-algebras, we want to include the following result about the

C∗-algebra being DMA.

Proposition 5.1.4. Let K be a locally compact and Hausdorff space. Then, C0(K)

is DMA if and only if the isolated points in K are dense in K.

Proof. Let A = C0(K). Assume that the isolated points in K are dense in K and

I = L(AF ) 6= (0). Notice that I is an ideal in A and I does not contain any nonzero
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minimal projections. Moreover, I = {f ∈ C0(K) : f |Ec = 0} where E is a nonempty

open set in K. If w is an isolated point in E, then χ{w} ∈ C0(K) is 0 on Ec. So

χ{w} is a nonzero minimal projection contained in I. This is not possible. Hence,

E is an open subset of K which does not contain any isolated points. So, if x is an

element in E, then x has an open neighborhood E ⊂ K where E does not contain

any isolated points. This is a contradiction to the fact that the isolated points in K

are dense in K. Thus, I = (0).

Now, suppose that A = C0(K) is DMA. Then, L(AF ) = (0). Let J ⊂ K be the

set of all isolated points in K. If J 6= K, then let x ∈ K \ J . Since {x} and J

are disjoint closed subsets of K and {x} is compact, by Urysohn’s lemma for locally

compact Hausdorff spaces, we get a continuous function f ∈ A such that f(x) = 1

and f |J = 0. That is, f(x) = 1 and f(w) = 0 for all isolated points w ∈ K. By

Remark 5.1.2, every minimal projection in C0(K) corresponds to an isolated point

w ∈ K. Hence, fe = 0 for every minimal projection in A. That is, f ∈ L(AF ) = (0).

This is a contradiction. Hence, J = K. That is, the isolated points in K are dense

in K.

Corollary 5.1.5. A commutative scattered C∗-algebra has Property (M).

Proof. Let A = C0(K) be a commutative scattered C∗-algebra where K is a locally

compact Hausdorff space. If p ∈ A is a nonzero projection, then it corresponds to

χE for a set E ⊂ K. Since K is scattered, E contains an isolated point. Indeed, if E

is closed, then the isolated points in E are dense in E. If it is not closed, let x ∈ E;

since K is regular, there exists a neighborhood V of x such that V ⊂ E. Since V
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is closed, the isolated points in V are dense in it. Hence, there exists an isolated

point w ∈ E. Then, q = χ{w} ∈ A is a minimal projection and q ≤ p. Hence, A has

Property (M).

The existence and abundance of projections in a C∗-algebra is important. Scat-

tered C∗-algebras have real rank zero; every HSA in a scattered C∗-algebra contains

a cai of projections, and hence they are very rich in terms of projections. Moreover,

whether the projections in the quotient algebra lift or not is also a problem that has

been studied deeply (see for example [20], [14], [42], and [54]). That is, if J is an ideal

in A and p+J is a projection in A/J , we want to know if p+J lifts to a projection in

A. There are several C∗-algebras with affirmative answers; for example, projections

in the Calkin algebra B(H)/K(H) lift to projections in B(H). However, there are

also many C∗-algebras that do not have this lifting property. If we take A = C([0, 3])

and J = {f ∈ A : f |[0,1]∪[2,3] = 0}, then χ[0,1] is a projection in A/J ∼= C([0, 1]∪ [2, 3])

that does not lift to a projection in A; A does not contain any nontrivial projections.

We note that scattered C∗-algebras have the projection lifting property.

Corollary 5.1.6. Let A be a scattered C∗-algebra and J be an ideal in A. Then, the

projections in A/J lift to projections in A.

Proof. If J and A/J have real rank zero, then projections in A/J lift if and only

if A has real rank zero [16, Theorem 3.14]. If A is scattered; then J and A/J are

scattered by [30, Proposition 2.4]. That is, A, J and A/J have real rank zero (by

[36, Theorem 2.3] for example). Hence, the projections in A/J lift to projections in

A.
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5.2 Composition Series of an Operator Algebra

Out of several equivalent definitions of scattered C∗-algebras, we want to focus on

the definition that uses a composition series where each quotient is an elementary

C∗-algebra. For this reason, we define the composition series of operator algebras

and present some facts that will be used in the coming section.

Blackadar defines the composition series of a C∗-algebra [5, Section IV.1]; analo-

gously, we define the composition series of an operator algebra.

Definition 5.2.1. Let A be an approximately unital operator algebra. We say that A

has a subcomposition series if there exists a family of closed two sided approximately

unital ideals {Iα}, indexed by ordinals α such that I0 = (0), Iα ⊂ Iβ if α < β, and

Iγ = ∪α<γIα if γ is a limit ordinal. If there is a γ such that Iα = Iγ for all α > γ,

then Iγ is the limit of the series. If the limit of the series is A, then the series is

called a composition series for A.

Following Pedersen [43, Section 6.2], we can define the composition series in a

slightly different way.

Definition 5.2.2. Let A be an approximately unital operator algebra. We say that

A has a composition series if there exists a strictly increasing family of closed two

sided approximately unital ideals {Iα}, indexed by a segment {0 ≤ α ≤ β} of the

ordinals such that I0 = (0) and Iβ = A, and for each limit ordinal γ, we have

Iγ = ∪α<γIα.

Note that these two definitions are equivalent. If {Iα} is a composition series as in
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Definition 5.2.2, then for each ordinal α > β, let Iα = A, and then it is a composition

series in the sense of Definition 5.2.1. Conversely, if {Iα} is a composition series as in

Definition 5.2.1, then let β be the smallest ordinal such that Iα = Iβ for each α > β.

Consider the series to be indexed by the segment {0 ≤ α ≤ β}. If Iα0 = Iα0+1 for

an ordinal α0 < β, then there exists an ordinal γ such that Iα0 is properly contained

in Iγ. Indeed, if there does not exist such an ordinal, then Iα0 = Iβ = A and hence

α0 = β. Now, relabel the indexing so that Iα0+1 = Iγ. After the relabeling, the series

{Iα}0≤α≤β is strictly increasing and is a composition series in the sense of Definition

5.2.2. Hence, we can use either definition for the composition series of an operator

algebra.

We remark that if A is a separable operator algebra, then the composition series

must be countable [4, Section 1.5]. Indeed, if A is separable with a strictly increasing

composition series {Iα}0≤α≤β, then for each α, we can choose an element xα ∈ Iα+1

such that ‖xα − z‖ ≥ 1 for all z ∈ Iα. This can be done since the series is strictly

increasing. Hence, if α 6= γ, then ‖xα − xγ‖ ≥ 1 since {Iα} is a well-ordered set of

ideals in A. Since A is separable, {xα : 0 ≤ α < β} must be a countable set. Hence,

β is a countable ordinal.

Note that if A has a composition series {Iα}, then the second dual of A can be

expressed in terms of the second duals of the quotients of the consecutive ideals.

This fact will be useful in the next section. First we present a lemma.

Lemma 5.2.3. If M is a dual operator algebra and qk are mutually orthogonal central

projections in M such that
∑

k qk = 1M , then M ∼= ⊕∞k qkM .
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Proof. Let N be the enveloping von Neumann Algebra for M . Assume that 1N =

1M ∈ M . By von Neumann algebra theory, N ∼= ⊕∞k qkN . Let θ : M → ⊕∞k qkM be

the restriction of this map. Here, θ(x) = (qkx)k ∈ ⊕∞k qkM . Since
∑

k qk = 1M , the

map θ is onto. Hence, it is a complete isometry and M ∼= ⊕∞k qkM .

Now, we prove that if A has a composition series, then A∗∗ is the ∞-sum of the

second duals of the consecutive quotients.

Theorem 5.2.4. Let A be an approximately unital operator algebra with composition

series {Iα}{0≤α≤β}. Then, A∗∗ = ⊕∞α<β(Iα+1/Iα)∗∗.

Proof. First assume that the series is countable with β = ω. Let pk be the support

projection of Ik and let qk = pk+1 − pk. Note that since the series is increasing,

pk ≤ pk+1 for each k. Then, for each k,

(Ik+1/Ik)
∗∗ ∼= I∗∗k+1/I

∗∗
k
∼= (pk+1A

∗∗)/(pkA
∗∗) ∼= (pk+1 − pk)A∗∗ = qkA

∗∗.

SinceA = ∪∞k=0Ik, we know that supk pk = 1A∗∗ . Moreover,
∑n

k=0 qk =
∑n

k=0 (pk+1 − pk) =

pn which converges weak∗ to supk pk = 1A∗∗ . That is,
∑∞

k=0 qk = 1A∗∗ . Now, by

Lemma 5.2.3, A∗∗ = ⊕∞qkA∗∗ = ⊕∞(Ik+1/Ik)
∗∗.

Now, for the general case, assume that the series is indexed by ordinals {0 ≤

α ≤ β}. For each ordinal α, let pα be the support projection of Iα in A∗∗ and let

qα = pα+1 − pα. Then, for each α,

(Iα+1/Iα)∗∗ ∼= (Iα+1)∗∗/(Iα)∗∗ ∼= (pα+1A
∗∗)/(pαA

∗∗) ∼= (pα+1 − pα)A∗∗ = qαA
∗∗.

Since the series is infinite, WLOG we can assume that β is a limit ordinal; for if
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not, then we can choose the smallest limit ordinal β0 > β and let Iα = Iβ for each

α > β. Since Iβ = A, we know that pβ = 1A∗∗ .

Note that ordinals are well-ordered sets, and hence are directed sets; so the projec-

tions above are increasing net of projections, and by the theory of the correspondence

between open projections and ideals, the support projection of Iβ = ∪α<βIα must be

the sup of the support projections of Iα, for α < β. That is, pβ = supα<β pα.

If r is a projection such that r ≥ qα for all α < β, then we want to show that

r ≥ pβ; that is, r ≥ pα for all α < β. We will prove this by transfinite induction. If

γ + 1 is a successor ordinal, then pγ+1 = pγ + qγ+1 ≤ r. If γ is a limit ordinal and if

r ≥ pα for all α < γ, then pγ = supα<γ pα and pγ ≤ r by the inductive hypothesis.

Hence, by transfinite induction, we conclude that if qα ≤ r for all α < β, then pβ ≤ r.

Now, we claim that ⊕∞α<β(qαA
∗∗) = pβA

∗∗. Indeed, ⊕∞α<β(qαA
∗∗) = eA∗∗ where

e = supα<γ qα. So, e ≤ pβ, but by the previous paragraph, we see that e ≥ pβ; that

is, e = pβ. Thus, we have:

⊕∞α<β(Iα+1/Iα)∗∗ ∼= ⊕α<β(qαA
∗∗) = pβA

∗∗ = A∗∗.

If A is an operator algebra that has a composition series, we list some methods

to construct composition series for certain related operator algebras.

Remark 5.2.5. Let {Iα} and {Jα} be countable composition series for approximately

unital operator algebras A and B, respectively. Since A is the limit of the series

{Iα}, there exists an ordinal β such that Iβ = A and Iα = Iβ for all α > β. Similarly,
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there exists µ such that Jµ = B and Jα = Jµ for all α > µ. WLOG, we can assume

that β = µ.

(i) If D is a HSA in A, then Dα = D∩ Iα is a composition series for D. Since Iα is

an ideal in A, each D∩Iα is an ideal in D and is approximately unital by Lemma

3.2.5. If γ is a limit ordinal, then Dγ = D ∩ Iγ = D ∩ ∪α<γIα = ∪α<γD ∩ Iα =

∪α<γDα. Indeed, if x ∈ D ∩ ∪α<γIα, then x = limt xt where xt ∈ Iαt . If (es) is

a cai for D, then esxtes ∈ D ∩ Iαt and x = lims,t esxtes ∈ ∪α<γD ∩ Iα.

(ii) If {Mα}0≤α≤β0 is a composition series for I1, then

{(0) = M0,M1,M2, · · · ,Mβ0 = I1, I2, I3 · · · , Iβ = A}

is a composition series for A. Notice that the length of the new series is different.

(iii) For each ordinal α, let Mα = Iα ⊕∞ Jα. Then, each Mα is an ideal in A⊕∞ B

by Proposition 3.1.8 and is approximately unital since (et, ft) is a cai for Mα if

(et) and (ft) are cais for Iα and Jα, respectively. If γ is a limit ordinal, then

Mγ = ∪α<γMα since ∪α<γIα ⊕∞ ∪α<γJα = ∪α<γIα ⊕∞ Jα.

(iv) If C = C*
max(A), then for each ordinal α, let Mα = C*

max(Iα). Notice that each

Mα is an approximately unital ideal in C*
max(A). Since Iα ⊂ Iα+1 implies that

C*
max(Iα) ⊂ C*

max(Iα+1), the series is increasing. If γ is a limit ordinal, then

Mγ = ∪α<γMα since ∪α<γC*
max(Iα) = C*

max(∪α<γIα). To see that ∪α<γC*
max(Iα)

is a maximal C∗-cover, let π : ∪α<γIα → B(H) be a completely contractive

homomorphism. Then, for each α, the restriction πα of π to Iα is a completely

contractive homomorphism and hence, by the universal property of C*
max(Iα),
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there exists a unique ∗-homomorphism π̃α : C*
max(Iα) → B(H). Define a map

ρ : ∪α<γC*
max(Iα) → B(H) by ρ(x) = π̃α(x) where α is the smallest ordinal

such that x ∈ C*
max(Iα). Notice that for each µ > α, C*

max(Iα) ⊂ C*
max(Iµ)

and hence we have π̃µ(x) = π̃α(x), by the uniqueness of the extensions. To see

that this is a homomorphism, note that if x ∈ C*
max(Iα) and y ∈ C*

max(Iµ), for

α < µ say, then xy ∈ C*
max(Iα) and ρ(xy) = π̃α(xy), since α < µ. By the fact

mentioned above, we have π̃α(xy) = π̃µ(xy) , so that ρ(xy) = π̃µ(xy). Since

π̃µ is a homomorphism, π̃µ(xy) = π̃µ(x)π̃µ(y) = π̃α(x)π̃µ(y) = ρ(x)ρ(y). That

is, ρ(xy) = ρ(x)ρ(y). It is easy to see that ρ is a ∗-homomorphism. Then, the

extension ρ̃ : ∪α<γC*
max(Iα) → B(H) is a ∗-homomorphism as well. Since ρ̃

extends π, ∪α<γC*
max(Iα) has the universal property of the maximal C∗-cover.

5.3 Scattered Operator Algebras

In Chapter 4, we introduced a new class of operator algebras; namely, 1-matricial

operator algebras, to generalize the elementary C∗-algebras to a non-selfadjoint set-

ting. We want to define scattered operator algebras using a composition series where

the building blocks are 1-matricial algebras.

Definition 5.3.1. Let A be an approximately unital operator algebra with a compo-

sition series {Iα}. We say that A is a scattered operator algebra if for each α, Iα+1/Iα

is completely isometrically isomorphic to a 1-matricial algebra. If A is a scattered

operator algebra with such a composition series {Iα}, we say that {Iα} is a scattered

composition series for A.
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Since we are interested in the separable operator algebras, we often assume that

the series is countable, but the general case is almost identical.

Before we investigate the properties of such operator algebras, we want to present

some examples.

Example 5.3.2. The elementary C∗-algebra K(H) is a scattered operator algebra;

for the composition series, take I0 = (0) and I1 = K(H). Hence, any annihilator

C∗-algebra is scattered since annihilator C∗-algebras are c0-sums of elementary C∗-

algebras.

Example 5.3.3. Every scattered C∗-algebra has a composition series of ideals such

that each consecutive quotient is an elementary C∗-algebra [37]. Hence, every scat-

tered C∗-algebra, considered as an operator algebra, is scattered.

Example 5.3.4. If H is an infinite dimensional Hilbert space, then B(H) is not

scattered. Indeed, B(H) is not a type I C∗-algebra if H is infinite dimensional [5,

IV.1.1.5], and any scattered C∗-algebra is a Type I C∗-algebra by [30, Theorem 2.3].

Moreover, the Calkin algebra B(H)/K(H) is not scattered. One way to see this is to

observe that the Calkin algebra is antiliminal and hence not of Type I [5, IV.1.1.6].

Or, assume that the Calkin algebra is scattered, then B(H) is scattered by [30,

Proposition 2.4], which is a contradiction.

Example 5.3.5. Let A be a 1-matricial algebra. Since A is topologically simple, it

does not contain nontrivial closed two-sided ideals. Let I0 = (0) and I1 = A; we get

a composition series for A. That is, A is a scattered operator algebra. Moreover,

every σ-matricial algebra is scattered as a σ-matricial algebra is the c0-sum of 1-

matricial algebras. If A = ⊕0
kAk, then we can get a countable composition series
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Bn = ⊕0
0≤k≤nAk, where each quotient Bn+1/Bn

∼= An+1 is 1-matricial.

Example 5.3.6. Let A be a 1-matricial algebra. Any extension of A in the sense of

[10] by another 1-matricial algebra C is scattered. Such extensions are given by the

Busby invariant; any completely contractive homomorphism τ : C → M(A)/A =

A∗∗/A.

Now, we want to present some results about the structure of scattered operator

algebras.

We proved in Chapter 3 that semiprimeness and semisimplicity descend to HSAs.

Now, we prove that these properties pass to direct limits.

Proposition 5.3.7. Let A be a Banach algebra with no nonzero left annihilators and

{Iα} be an increasing family of approximately unital ideals in A such that A = ∪Iα.

If each Iα is semiprime (resp. semisimple), then A is semiprime (resp. semisimple).

Proof. For each ordinal α, assume that Iα is semiprime. Let J be a nil ideal in A.

Then, for each α, J ∩ Iα is a nil ideal in Iα. Since each Iα is semiprime, J ∩ Iα = (0)

for each α. Notice that this implies that J = (0). Indeed, if x ∈ J and y ∈ Iα, then

xy ∈ J ∩ Iα = (0). That is, xy = 0 for each y ∈ Iα and hence for each y ∈ A. Thus,

x = 0 and J = (0).

Now, suppose that each Iα is semisimple. Notice that J = Rad(A) is an ideal in

A and for each α, J ∩ Iα is an ideal in Iα. Then, for each α, J ∩ Iα = Rad(Iα) by

[41, Theorem 4.3.2] and thus J ∩ Iα = (0). Hence, as in the first paragraph, J = (0)

and A is semisimple.

88



Using this lemma, we prove that scattered operator algebras are semisimple and

semiprime.

Proposition 5.3.8. A scattered operator algebra is semisimple and semiprime.

Proof. Let A be an operator algebra with scattered composition series {Iα}0≤α≤β.

Let Rad(A) be the Jacobson radical of A. We will use transfinite induction to prove

that A is semisimple. For α = 0, I0 = (0) is semisimple. Let α + 1 be a successor

ordinal and assume that Iα is semisimple. Notice that Iα+1/Iα is semisimple since it

is 1-matricial. Then, by [41, Theorem 4.3.2], Rad(Iα+1) = Rad(Iα) = (0), and hence

Iα+1 is semisimple. Let γ be a limit ordinal and assume that Iα is semisimple for each

α < γ. Then, Iγ = ∪α<γIα is semisimple by Proposition 5.3.7. Hence, by transfinite

induction, we conclude that Iα is semisimple for any ordinal α. Since A = Iβ, A is

semisimple, and hence semiprime.

As one would expect, HSAs and approximately unital ideals in a scattered oper-

ator algebra are scattered.

Proposition 5.3.9. Let D be a HSA of a scattered operator algebra A. Then, D is

a scattered operator algebra.

Proof. Let {Iα} be a scattered composition series for A. For each α, let Dα = D∩Iα.

Then, by Remark 5.2.5, {Dα} is a composition series for D. Notice that since

Dα+1 ∩ Iα = Dα, we have

Dα+1/Dα = Dα+1/(Dα+1 ∩ Iα) ∼= (Dα+1 + Iα)/Iα,
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completely isometrically isomorphically. In the last displayed equation, the congru-

ence follows from Theorem 3.1.5. Let Mα+1 = Dα+1 + Iα. Then, since Dα+1 is a

HSA in Iα+1 by Lemma 3.2.5 and since Iα is an approximately unital ideal in Iα+1,

Mα+1 is a HSA in Iα+1. Notice that Iα is an approximately unital ideal in Mα+1.

Hence, Mα+1/Iα is a HSA in Iα+1/Iα by Theorem 3.2.6. Now, by [3, Corollary 4.26],

Mα+1/Iα is 1-matricial. We conclude that Dα+1/Dα is 1-matricial for each α. Hence,

D is scattered.

Remark 5.3.10. We want to note that any C∗-subalgebra of a scattered C∗-algebra is

scattered [36]. However, we can not say that any subalgebra of a scattered operator

algebra is scattered. For example, A = T2, the upper triangular 2× 2 matrices, is a

subalgebra of M2 which is not scattered. To see that A is not scattered, note that A

is not semiprime.

Proposition 5.3.11. Let A be an approximately unital operator algebra. Then, A

is scattered if and only if A1 is scattered.

Proof. Since A is an ideal in A1, if A1 is scattered, then A is scattered by Proposition

5.3.9. Assume that A is scattered with composition series {Iα} where Iβ = A. Each

Iα can be considered as an approximately ideal in A1. Extend this composition

series by defining Iβ+1 = A1. Then, {Iα}0≤α≤β+1 is a composition series for A1 and

Iβ+1/Iβ ∼= C is 1-matricial. Note that we already know that Iα+1/Iα is 1-matricial

for all α < β. Hence, {Iα}0≤α≤β+1 is a scattered composition series for A1.

Example 5.3.12. The previous proposition gives us an interesting example of scat-

tered operator algebras. If A is a σ-matricial algebra, then its unitization A1 is
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scattered.

In the non-selfadjoint case, the simplest scattered operator algebra is a 1-matricial

algebra. A general scattered operator algebra is built up by using a composition series

of 1-matricial operator algebras. Moreover, each operator algebra which is built up

using composition series of scattered operator algebras is again scattered.

Theorem 5.3.13. Let {Iα}0≤α≤β be a strictly increasing family of approximately

unital ideals in A such that A = Iβ = ∪α<βIα. If Iα is scattered for each α < β, then

A is scattered.

Proof. For each α < β, let {J (α)
ρ } be a scattered decomposition series for Iα. For

any successor ordinal α+ 1, consider the composition series {Iα + J
(α+1)
ρ }ρ, which is

a composition series running from Iα to Iα+1. When we extend these series, we get

a new composition series for Iβ:

(0) = I0 ⊂ J
(1)
1 ⊂ J

(1)
2 ⊂ · · · ⊂ I1 = I1 + J

(2)
0

⊂ I1 + J
(2)
1 ⊂ I1 + J

(2)
2 ⊂ · · · ⊂ I2 = I2 + J

(3)
0

⊂ I2 + J
(3)
1 ⊂ I2 + J

(3)
2 ⊂ · · · ⊂ I3 = I3 + J

(4)
0

⊂ · · ·
...

⊂ Iβ.

Now, to see that this composition series is scattered, for notational purposes, consider

I1 and I2 and let Kρ = J
(2)
ρ be the composition series for I2. Then, {I1 + Kρ}ρ
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is a composition series running from I1 to I2. We claim that for each ordinal ρ,

(I1 +Kρ+1)/(I1 +Kρ) is 1-matricial. Notice that

(I1 +Kρ+1)/(I1 +Kρ) = (I1 +Kρ +Kρ+1)/(I1 +Kρ) ∼= Kρ+1/((I1 +Kρ) ∩Kρ+1),

completely isometrically isomorphically, by Theorem 3.1.5. Since (I1 +Kρ)∩Kρ+1 =

(I1∩Kρ+1)+Kρ, we conclude that (I1 +Kρ+1)/(I1 +Kρ) ∼= Kρ+1/((I1∩Kρ+1)+Kρ).

Let q : Kρ+1 → Kρ+1/Kρ be the canonical quotient map. Since I1 ∩Kρ+1 is an

ideal in Kρ+1, q(I1 ∩Kρ+1) is an ideal in Kρ+1/Kρ, which is 1-matricial and hence

simple. That is, q(I1 ∩Kρ+1) = (0)Kρ+1/Kρ or q(I1 ∩Kρ+1) = Kρ+1/Kρ. If the

former case is true, then I1 ∩Kρ+1 ⊂ Kρ. This implies that (I1 +Kρ+1)/(I1 +Kρ) ∼=

Kρ+1/((I1 ∩Kρ+1) +Kρ) = Kρ+1/Kρ is 1-matricial. In the latter case, (I1 ∩Kρ+1) +

Kρ = Kρ+1, and this implies that (I1 +Kρ+1)/(I1 +Kρ) ∼= Kρ+1/((I1∩Kρ+1)+Kρ) =

Kρ+1/Kρ+1
∼= (0). That is {I1 + Kρ}ρ is a composition series running from I1 to I2

where each consecutive quotient is 1-matricial.

Similarly, we can show that each consecutive quotient in {Iα + J
(α+1)
ρ }ρ is 1-

matricial. Hence, the composition series we obtained for Iβ is scattered.

We know that the quotients of scattered C∗ algebras are scattered [30]. We obtain

a similar result for quotients of scattered operator algebras.

Theorem 5.3.14. If A is a scattered operator algebra, then each quotient of A by

an approximately unital ideal is scattered.

Proof. Let {Iα}α≤β be a scattered composition series for A. For α = 0, every quotient

of I0 = (0) is scattered. For a successor ordinal α+ 1, assume that every quotient of
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Iα is scattered and let J be an approximately unital ideal in Iα+1. Since (Iα+J)/J ∼=

Iα/(Iα∩J) by Theorem 3.1.5, (Iα+J)/J is a quotient of Iα and hence it is scattered by

the inductive hypothesis. Let {Kρ}ρ≤α be a scattered composition series running from

(0) to Kα = (Iα + J)/J . Extend this composition series by defining Kα+1 = Iα+1/J .

Notice that

Kα+1/Kα
∼= Iα+1/(Iα + J) ∼= (Iα+1/Iα)/((Iα + J)/Iα).

Since Iα+1/Iα is 1-matricial and hence simple, (Iα + J)/Iα = (0) or (Iα + J)/Iα =

Iα+1/Iα. In the former case, Kα+1/Kα
∼= Iα+1/Iα and it is 1-matricial and we get

a scattered composition series for Iα+1/J . In the latter case, Iα + J = Iα+1 and

Kα+1/Kα
∼= (0) and again we get a scattered composition series for Iα+1/J . Hence,

Iα+1/J is scattered.

Let γ be a limit ordinal and assume that for each α < γ, every quotient of Iα

is scattered. Let J be an approximately unital ideal in Iγ. Then, {J + Iα}α≤γ is a

composition series running from J to Iγ. Hence, {(J+ Iα)/J} is a composition series

running from (0)Iγ/J to Iγ/J . To see that Iγ/J is scattered, let Kα = (J + Iα)/J .

Notice that Kα
∼= Iα/(J ∩ Iα) by Theorem 3.1.4, and Kα is a quotient of Iα and

hence scattered by the inductive hypothesis. So, {Kα} is a composition series for

Iγ/J where each Kα is scattered. Hence, by Theorem 5.3.13, Iγ is scattered.

Hence, by transfinite induction, we conclude that for each ordinal α, any quotient

of Iα by an approximately unital ideal is scattered. Thus, any quotient of A by an

approximately unital ideal is scattered.

This proposition gives us a corollary about the homomorphic images of scattered
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algebras.

Corollary 5.3.15. Let u : A → B be a complete quotient map which is a homo-

morphism between operator algebras. Suppose that Ker(u) contains a cai. If A is

scattered, then Im(u) is scattered. In particular, if u is surjective, then B is scat-

tered.

Proof. The assertions follow from the Theorems 3.1.3 and 5.3.14.

If A is a C∗-algebra and J is any closed two-sided ideal in A, then we know that A

is a scattered C∗-algebra if and only if J and A/J are both scattered [30, Proposition

2.4]. We prove a similar result for scattered operator algebras and approximately

unital ideals.

Theorem 5.3.16. Let A be an operator algebra and J be an approximately unital

ideal in A. Then, A is scattered if and only if J and A/J are scattered.

Proof. Suppose that A is scattered. Then, J is scattered by Proposition 5.3.9 since

J is a HSA in A. Also, A/J is scattered by Theorem 5.3.14.

Conversely, assume that J and A/J are scattered and let {Mα}α≤β be a scattered

composition series for A/J . By Theorem 3.2.1, for each α, Mα = Nα/J , where Nα is

an approximately unital ideal in A such that J ⊂ Nα ⊂ A. Notice that by Theorem

3.1.4,

Mα+1/Mα = (Nα+1/J)/(Nα/J) ∼= Nα+1/Nα,

completely isometrically isomorphically. Hence, each Nα+1/Nα is 1-matricial.
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Since M0 = (0)A/J = J , we conclude that N0 = J . Since Mα ⊂ Mα+1, we have

Nα ⊂ Nα+1. That is, we have an increasing series of approximately unital ideals

J = N0 ⊂ N1 ⊂ N2 ⊂ · · · ⊂ A. If γ is a limit ordinal, then Mγ = ∪α<γMα =

∪α<γNα/J = ∪α<γNα/J . Since Mγ = Nγ/J , we have ∪α<γNα/J = Nγ/J and

Nγ/∪α<γNα
∼= (0) by Theorem 3.1.4. Hence, Nγ = ∪α<γNα. Since Mβ = A/J ,

we have Nβ = A. Hence, {(0), J = N0, N1, N2, · · · , Nβ} is a composition series for

A. Now, let {Jα} be a scattered composition series for the operator algebra J . By

Remark 5.2.5, we get a new composition series of approximately unital ideals;

{(0), J1, J2, · · · , J = N0, N1, N2, · · · , A}.

Since N1/J = N1/N0, Jα+1/Jα, Nα+1/Nα are 1-matricial algebras for each α, we

conclude that A is scattered.

Corollary 5.3.17. Let {Iα} be a composition series for an approximately unital

operator algebra A. If each Iα+1/Iα is scattered, then A is scattered.

Proof. For α = 0, I1/I0
∼= I1 is scattered. Let α+1 be a successor ordinal and assume

that Iα is scattered. Since Iα+1/Iα is scattered by hypothesis, Iα+1 is scattered

by Theorem 5.3.16. Let γ be a limit ordinal and assume that Iα is scattered for

each α < γ. By Theorem 5.3.13, Iγ = ∪α<γIα is scattered. Hence, by transfinite

induction, we can conclude that for each ordinal α, Iα is scattered. Thus, Iβ = A is

scattered.

For an operator algebra A, let f be the join of all the algebraically minimal

projections in A. Then, h-soc(A) is the HSA with support projection f ; that is,
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h-soc(A) = fA∗∗f ∩ A (more details can be found in [3, Section 4]). Observe that

for any semiprime operator algebra A, h-soc(A) is a scattered HSA in A. Also, if

q is an algebraically minimal projection in the center of A, then J = Aq = qA =

qAq = C q is a scattered ideal contained in A. Hence, the existence of algebraically

minimal projections in an operator algebra implies the existence of scattered ideals

or scattered HSAs.

We want to note that any operator algebra contains a unique maximal scattered

ideal.

Theorem 5.3.18. Let A be an approximately unital operator algebra. There exists a

unique maximal scattered ideal K such that A/K has no nontrivial scattered ideals.

Proof. If A has no nontrivial scattered ideals, then the result follows with K = (0).

Note that the sum of any two scattered ideals is closed (since they are approximately

unital) and scattered. Indeed, if I and J are scattered ideals in A, then I/(I ∩ J) ∼=

(I + J)/J by Theorem 3.1.5. By Lemma 3.2.5, I ∩ J is approximately unital and

hence I/(I ∩ J) is scattered by Theorem 5.3.14. Hence, (I + J)/J is scattered by

Corollary 5.3.15. Now, since J and (I + J)/J are scattered, I + J is scattered by

Theorem 5.3.16.

Moreover, if {Iα} is a totally ordered family of scattered ideals , then
∑

α Iα =

∪αIα is scattered by Theorem 5.3.13. Hence, every chain of scattered ideals has an

upper bound.

Let {Iα} be the family of all scattered ideals in A. By Zorn’s lemma, the family

has a maximal element K. Then, K is a maximal scattered ideal in A and A/K does
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not contain any nontrivial scattered ideals. Indeed, if M is a nontrivial scattered ideal

in A/K, we know by Theorem 3.2.1 that M = J/K where J is an approximately

unital ideal in A such that K ⊂ J ⊂ A. Since M and K are scattered, J is scattered

by Theorem 5.3.16. By maximality of K, this implies that J = K.

If A is a 1-matricial operator algebra, then its second dual has a nice form (see

Chapter 4 for details). We want to present some results about the bidual of a

scattered operator algebra. Note that if A has a scattered composition series {Iα},

then A∗∗ = ⊕∞α (Iα+1/Iα)∗∗ by Theorem 5.2.4. That is, the second dual of A is the

∞-sum of the second duals of 1-matricial algebras. First, we prove that the second

dual of a scattered operator algebra is semisimple and semiprime.

Proposition 5.3.19. Let A be a scattered operator algebra. Then, A∗∗ is semisimple.

Proof. We know by Theorem 5.2.4 that A∗∗ = ⊕∞α (Iα+1/Iα)∗∗. By Proposition 4.3.7,

each (Iα+1/Iα)∗∗ is semisimple. Hence, by Lemma 4.3.5, A∗∗ is semisimple.

Proposition 5.3.20. Let A be a scattered operator algebra. Then, A∗∗ is DMA.

Proof. By Theorem 5.2.4, A∗∗ = ⊕∞α (Iα+1/Iα)∗∗. Since the second duals of 1-

matricial algebras are DMA by Proposition 4.3.9 and semisimple by Proposition

4.3.7, we conclude that A∗∗ is DMA by Lemma 4.3.8.

Recall that we say that an operator algebra A has Property (M) if every nonzero

projection in A dominates a nonzero algebraically minimal projection in A.
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Notice that if A is an elementary C∗-algebra then A∗∗ has Property (M). In fact,

by [30, Theorem 2.2], A is a scattered C∗-algebra if and only if A∗∗ has Property (M).

This property appears often in our ‘Wedderburn type’ structure theorem (Theorem

4.2.1), which lists some characterizations of σ-matricial algebras. In Chapter 4, we

showed that the second duals of 1-matricial algebras have Property (M). The second

dual of a scattered operator algebra has Property (M).

Proposition 5.3.21. Let A be a scattered operator algebra. Then, A∗∗ has Property

(M).

Proof. Let A∗∗ = ⊕∞α qαA∗∗ as in the proof of Theorem 5.2.4. If p = (pα) is a nonzero

projection in A∗∗, then there exists an ordinal α which is not a limit ordinal such

that pα 6= 0. Then, pα is a nonzero projection in qαA
∗∗. Notice that qαA

∗∗ ∼=

(Iα+1/Iα)∗∗ is the second dual of a 1-matricial algebra and hence it has Property (M)

by Proposition 4.3.15. There exists an algebraically minimal projection rα ∈ qαA∗∗

such that rα ≤ pα. Let r = (0, 0, · · · , rα, 0, · · · ) ∈ A∗∗. Then r is a projection and

rxr = (0, 0, · · · , rαxαrα, 0, · · · ) = (0, 0, · · · , λαrα, 0, · · · ) ∈ C r, for x ∈ A∗∗. That is,

r is an algebraically minimal projection in A∗∗. Since pr = (0, 0, · · · , pαrα, 0, · · · ) =

(0, 0, · · · , rα, 0, · · · ), r is dominated by p. Hence, A∗∗ has Property (M).

We know that any σ-matricial algebra is a HSA in its bidual. A natural question

to ask is whether scattered algebras are HSAs in their biduals. The following result

shows that if a scattered algebra is a HSA in its bidual, then it is a σ-matricial

algebra.

Theorem 5.3.22. Let A be a scattered operator algebra. If A is a HSA in its bidual,
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then A is σ-matricial.

Proof. Since A is scattered, A is semisimple by Proposition 5.3.8 and A∗∗ has Prop-

erty (M) by Proposition 5.3.21. If A is an HSA in its bidual, then by Theorem 4.3.17,

A is σ-matricial.

Recall the definition of Radon-Nikodým Property (RNP) from Chapter 2. By

[21, Theorem 3], a C∗-algebra A is scattered if and only if the dual A∗ has RNP. We

show that the duals of scattered operator algebras have this property.

Theorem 5.3.23. Let A be a scattered operator algebra. Then the dual A∗ has RNP

and A is an Asplund space.

Proof. Let {Iα} be the scattered composition series for A. For each α, the dual of

Iα+1/Iα has RNP by [3, Lemma 4.4]. Note that A∗ is completely isometric to the

`1-direct sum
∑

k⊕(Iα+1/Iα)∗ . Hence, A∗ has RNP since an `1-direct sum of Banach

spaces with RNP also has this property [21, p. 534]. By [50, Theorem 1], a Banach

space is an Asplund space if and only if its dual has RNP. Hence, A is an Asplund

space.

As mentioned earlier, ∆(A) is a C∗-algebra sitting inside A and we are interested

in understanding the diagonal with the motivation that it can give us further infor-

mation about A. We show that the diagonal of a scattered operator algebra is a

scattered C∗-algebra.

Theorem 5.3.24. Let A be a scattered operator algebra. Then, ∆(A) is a scattered

C∗-algebra.
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Proof. Note that being an Asplund space is hereditary. To see this, recall that a

Banach space X is an Asplund space if and only if every separable subspace of X

has a separable dual [50]. Since ∆(A) is a subalgebra of A and A is an Asplund

space by Theorem 5.3.23, the dual of ∆(A) has RNP. By [21, Theorem 3], the dual

of a C∗-algebra has RNP if and only if it is a scattered C∗-algebra. Hence, ∆(A) is

a scattered C∗-algebra.

We say that an operator algebra A is ∆-scattered if A has a positive cai and ∆(A)

is a scattered C∗-algebra. By Theorem 5.3.24, if A is scattered with a positive cai,

then A is ∆-scattered.

Notice that (by [37, Theorem 2.2]) every selfadjoint element in A has countable

spectrum if and only if ∆(A) is a scattered C∗-algebra. Hence, if every selfadjoint

element in A has countable spectrum and A has a positive cai, then A is ∆-scattered.

Remark 5.3.25. In Chapter 4, we defined the notion of having real rank zero for

operator algebras containing a positive cai. If A is ∆-scattered, then A has real rank

zero and contains a cai of projections. If A is scattered with positive cai, then again,

A contains a cai consisting of projections. In [17], a C∗-algebra is said to have gen-

eralized real rank zero if it has a composition series where each consecutive quotient

has real rank zero. If we generalize this to operator algebras, then a scattered alge-

bra has generalized real rank zero since each consecutive quotient in its composition

series is 1-matricial and hence has real rank zero.

We want to present a result about scattered function algebras.

Proposition 5.3.26. Let A be an approximately unital function algebra. If A is
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scattered, then it is a C∗-algebra.

Proof. We only prove the unital case. Let {Iα} be a scattered composition series for

a unital function algebra A. We know by Theorem 5.2.4 that A∗∗ = ⊕∞(Iα+1/Iα)∗∗.

Notice that each Iα+1/Iα is a function algebra. Indeed, Iα+1/Iα is a semisimple Q-

algebra and hence is isomorphic to {f |E : f ∈ Iα+1} where E is a closed subset of the

maximal ideal space of Iα+1 [23]. Thus, for each α, Iα+1/Iα is an nc-discrete function

algebra. Hence, by Proposition 4.1.18, for each α, Iα+1/Iα ∼= c0(Jα) for some set Jα.

That is, A∗∗ = ⊕∞c0(Jα)∗∗ = ⊕∞`∞(Jα) and A is a C∗-algebra.

In the following result, A⊕B is the∞-direct sum of the operator algebras A and

B.

Proposition 5.3.27. Let A and B be scattered operator algebras. Then, A ⊕ B is

scattered.

Proof. Let {Iα} and {Jα} be the scattered composition series for A and B, respec-

tively. Let Mα = Iα ⊕ Jα. Then, by Remark 5.2.5, {Mα} is a composition series for

A⊕B. By Proposition 3.1.8, we know that

Mα+1/Mα = (Iα+1 ⊕ Jα+1)/(Iα ⊕ Jα) ∼= Iα+1/Iα ⊕ Jα+1/Jα,

completely isometrically isomorphically. Since the ∞-direct sum of two 1-matricial

algebras is 1-matricial, we conclude that A⊕B is scattered.

We now prove that the maximal tensor product of a scattered operator algebra

with a scattered C∗-algebra is scattered.
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Lemma 5.3.28. Let A be a scattered operator algebra and B = K(H) for some

Hilbert space H. Then, A⊗max B is scattered.

Proof. Let {Iα} be a scattered composition series for A. Let Mα = Iα⊗maxB. Then,

{Mα} is a composition series for A⊗max B. By [6, Lemma 2.7], we have;

Mα+1/Mα = (Iα+1 ⊗max B)/(Iα ⊗max B) ∼= (Iα+1/Iα)⊗max B,

completely isometrically. Here Iα+1/Iα is a 1-matricial algebra and B = K(H) is

1-matricial as well.

If M and N are two 1-matricial algebras with matrix units {Eij} and {Fkl},

respectively, then {Eij ⊗ Fkl} are matrix units for M ⊗max N . In other words, the

maximal tensor product of two 1-matricial algebras is 1-matricial. Hence, for each

α, Mα+1/Mα is a 1-matricial algebra. That is, A⊗max B is scattered.

Proposition 5.3.29. Let A be a scattered operator algebra and B be a scattered

C∗-algebra. Then, A⊗max B is scattered.

Proof. Let {Jα} be a scattered composition series for B and for each ordinal α, let

Mα = A⊗max Jα. Then, {Mα} is a composition series for A⊗max B. Also,

Mα+1/Mα = (A⊗max Jα+1)/(A⊗max Jα) ∼= A⊗max (Jα+1/Jα),

by [6, Lemma 2.7]. Since A is scattered and Jα+1/Jα is isometric to K(Hα) for some

Hilbert space Hα, by Lemma 5.3.28, Mα+1/Mα is scattered. Hence, A⊗max B has a

composition series where each consecutive quotient is scattered. By Corollary 5.3.17,

A⊗max B is scattered.
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Finally, we want to comment on the relation between A being scattered and A

having a C∗-cover which is scattered. Unfortunately, if A is scattered, we can’t say

that C*
max(A) is scattered since we do not know much about the maximal C∗-cover

of a 1-matricial algebra.

If A is an operator algebra which is a subalgebra of a scattered C∗-algebra B,

then ∆(A) is a C∗-subalgebra of B and hence ∆(A) is scattered. In particular, if we

know that C∗(A), C∗max(A) or C∗e (A) is scattered, then we can conclude that ∆(A)

is scattered.

If A has a scattered C∗-cover, then the C∗-envelope is a scattered C∗-algebra.

Indeed, the C∗-envelope is a quotient of any C∗-cover B. Since every quotient of

a scattered C∗-algebra is scattered, C∗e (A) is scattered. Hence, if we know that

C*
max(A) is scattered, then C∗e (A) is scattered as well.

Remark 5.3.30. Recall that by [3, Lemma 4.8], a 1-matricial algebra is subcompact

if and only if its C∗-envelope is an annihilator C∗-algebra. We believe that if A is

scattered and C∗e (A) is an annihilator C∗-algebra, then each consecutive quotient in

the scattered composition series is a subcompact 1-matricial algebra. We hope to

present the details soon.

5.4 Maximally Scattered Operator Algebras

In non-selfadjoint operator algebra theory, one often studies the maximal C∗-cover

of A, C*
max(A), to understand some facts about A as C*

max(A) is a C∗-algebra and

one has a lot of tools to unveil the properties of C*
max(A). Consequently, some of
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those properties will give one information about A. With this motivation, we want

to study the case that the maximal C∗-cover of an operator algebra is scattered.

This could be considered as another approach to generalizing the notion of being

scattered to the non-selfadjoint setting.

Definition 5.4.1. We say that an approximately unital operator algebra A is max-

imally scattered (or max-scattered) if C∗max(A) is a scattered C∗-algebra.

We conjecture that a maximally scattered operator algebra is a scattered C∗-

algebra. That is, if C*
max(A) is scattered, our conjecture is that this forces A to be

selfadjoint.

The first implication we get from the definition is that if A is max-scattered, then

∆(A) is scattered. Hence, if A has a positive cai, A is max-scattered implies that

A is ∆-scattered. Moreover, if A is max-scattered, then the C∗-envelope of A is a

scattered C∗-algebra as well since it is a quotient of C*
max(A).

It is easy to see that the approximately unital ideals and quotients of max-

scattered operator algebras are max-scattered.

Proposition 5.4.2. Let A be max-scattered operator algebra and J be an approxi-

mately unital ideal in A. Then, J is max-scattered and A/J is max-scattered.

Proof. Since C∗max(J) is an ideal in C∗max(A), C∗max(J) is scattered. Moreover, by [10,

Lemma 2.7], C∗max(A/J) = C∗max(A)/C∗max(J). Since every quotient of a scattered

C∗-algebra is scattered, C∗max(A/J) is scattered. Hence, A/J is scattered.
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We know that HSAs of scattered operator algebras are scattered Proposition 5.3.9.

However, this is not necessarily true for HSAs of max-scattered operator algebras.

Remark 5.4.3. Let A be an approximately unital operator algebra which is contained

in a C∗-algebra B. Let D be a HSA in A. Then, C*
max(D) (or C∗e (D)) is not

necessarily a HSA in B.

To see this, let

A =


 λI2 x

0 λI2

 ∈M4

 ⊂M4,

and let e = E11 ⊗ I2 =

 I2 0

0 0

 ∈ A. Notice that eAe = C e is a HSA in A.

However, C∗e (eAe) = C e is not a HSA in C∗e (A) = C∗M4
(A) = M4. Moreover, we claim

that C*
max(eAe) is not a HSA in C*

max(A). Indeed, if C e is a HSA in C*
max(A), and if

q : C*
max(A)→ C∗e (A) is the canonical quotient map, then q(C eC*

max(A)C e) ⊂ C e.

However, q(C eC*
max(A)C e) = C eC∗e (A)C e which is not contained in C e. This

example shows that C*
max(D) (resp. C∗e (D)) is not a HSA in C*

max(A) (resp. C∗e (A)).

We conclude that a HSA in a max-scattered operator algebra is not necessarily max-

scattered.

We now prove that if C*
max(A) is an annihilator C∗-algebra, then this forces A to

be self adjoint.

Theorem 5.4.4. Let A be an approximately unital operator algebra. Then, C∗max(A)

is an annihilator C∗-algebra if and only if A is an annihilator C∗-algebra.

Proof. Annihilator C∗-algebras are c0-sums of elementary C∗-algebras. First we show
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that if C*
max(A) is elementary, then A is a C∗-algebra. In general, if C*

max(A) = ⊕0
kBk

where Bk are elementary C∗-algebras, then A = ⊕0
kAk where for each k, C*

max(Ak) =

Bk. To see this, set Ak = A ∩Bk ⊂ Bk. If x ∈ A ⊂ B, then x = (xk) where xk ∈ Bk

and ‖xk‖ → 0. That is, xk ∈ A∩Bk and hence x ∈ ⊕0
kAk. If x ∈ ⊕0

kAk, then x = (xk)

where for each k, xk ∈ A ∩ Bk. That is, x ∈ A. To see that C*
max(Ak) = Bk, let

πk : Ak → B(H) be a completely contractive homomorphism. Then, the extension

π : A→ B(H) where π|Ak = πk and πAj = 0 for any j 6= k, is a completely contractive

homomorphism. Hence, it extends uniquely to a ∗-homomorphism π̃ : B → B(H).

The restriction of π̃ to Bk is a ∗-homomorphism which extends πk. That is, Bk has

the universal property and C*
max(Ak) = Bk.

It follows that each Ak is selfadjoint, and this implies that A = ⊕0
kAk is a C∗-

algebra. So, we assume that C∗max(A) is an elementary C∗-algebra. For simplicity,

assume C∗max(A) = K(`2), the general case is almost identical. Write σ : A→ B(`2)

for the canonical inclusion, or for its canonical extension to C∗max(A). This is an

irreducible representation, since if a projection commutes with A, then it commutes

with C∗max(A) = K(`2), and hence is trivial. By Arveson’s boundary theorem, σ is a

boundary representation of A.

Let θ : A → B(H) be a nondegenerate representation of A, and let K be a

θ(A)-invariant subspace of H. Let ρ be the compression of θ to K. Thus, we can

write

θ(a) =

 ρ(a) V (a)

0 π(a)

 ,
where V and π are some maps on A. Now, K is a C∗max(A)-module and C∗max(A) =
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K(`2). Hence, there exists a unitary U : K → `2 such that ρ(a) = U∗(σ(a)⊗ I∞)U .

Thus,

θ(a) =

 U 0

0 I


∗  σ(a)⊗ I∞ UV (a)

0 π(a)


 U 0

0 I

 .
Since σ is a boundary representation, we can conclude that UV (·) = (0). That is,

V = 0. Hence, K reduces θ. By [7, Theorem 7.2.5(1)], A is a C∗-algebra; that is,

A = C∗max(A) = K(`2).

If C*
max(A) is scattered with a composition series {Jα}, we can’t conclude that A

has a composition series {Iα} where C*
max(Iα) = Jα. On the other hand, if A has a

composition series {Iα}, then {Jα}, where Jα = C*
max(Iα) for each α, is a composition

series for C*
max(A) by Remark 5.2.5. However, if A is scattered (that is, if Iα+1/Iα

is 1-matricial), we can’t conclude that C*
max(A) is a scattered (that is, Jα+1/Jα is

an annihilator C∗-algebra). We can give the following result if such a nice relation

exists.

Proposition 5.4.5. If A has a composition series {Iα} such that {C*
max(Iα)} is a

composition series for C*
max(A) where each consecutive quotient is an annihilator

C∗-algebra, then A is a scattered C∗-algebra.

Proof. We know by [10, Lemma 2.7] that C*
max(Iα+1/Iα) ∼= C*

max(Iα+1)/C*
max(Iα)

and by our hypothesis C*
max(Iα+1)/C*

max(Iα) is an annihilator C∗-algebra. So, by

Theorem 5.4.4, Iα+1/Iα is an annihilator C∗-algebra. Hence, A has a composition

series where for each α, Iα+1/Iα is an annihilator C∗-algebra. This forces A to be

a C∗-algebra. Indeed, notice that A∗∗ = ⊕∞α (Iα+1/Iα)∗∗. Since each Iα+1/Iα is
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an annihilator C∗-algebra, we know that (Iα+1/Iα)∗∗ = ⊕∞i B(Hi) for some Hilbert

spaces Hi and hence A∗∗ is selfadjoint. That is, by [7, Theorem 7.2.5(1)] and [7,

7.2.4], A is selfadjoint. Hence, A is a C∗-algebra with a composition series where

each quotient is an annihilator C∗-algebra; that is, by [30, Proposition 2.6], A is a

scattered C∗-algebra.

We know that a C∗-algebra is scattered if and only if every nondegenerate rep-

resentation on the algebra is unitarily equivalent to a subrepresentation of a sum of

irreducible representations [30]. We prove that the same relation holds for maximally

scattered operator algebras.

Proposition 5.4.6. Let A be an approximately unital operator algebra. Then, A

is max-scattered if and only if every nondegenerate representation on A is unitarily

equivalent to a subrepresentation of a sum of irreducible representations.

Proof. Suppose that every nondegenerate representation on A is unitarily equivalent

to a subrepresentation of a sum of irreducible representations. Let π be a nondegener-

ate representation on C∗max(A). Then, it restricts to a nondegenerate representation

π′ on A. Hence, π′ is equivalent to a subrepresentation of a sum of irreducible

representations on A. Since each nondegenerate representation (resp. irreducible

representation) on A extends to a nondegenerate representation (resp. irreducible

representation) on C∗max(A), we conclude that π is equivalent to a subrepresentation

of a sum of irreducible representations on C∗max(A). Hence, C∗max(A) is scattered.

The proof of the converse statement is almost identical.
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Note that, by the previous result, if A is max-scattered, then the universal rep-

resentation of A is equivalent to a sum of irreducible representations on A.

The following result shows that being max-scattered passes to the maximal tensor

product with a scattered C∗-algebra.

Proposition 5.4.7. Let B be a scattered C∗-algebra and A be a max-scattered oper-

ator algebra. Then, B ⊗max A is max-scattered.

Proof. By [10, Lemma 2.8], C*
max(B ⊗max A) = B ⊗max C*

max(A). Note that, by

Proposition 5.3.29, B ⊗max C*
max(A) is scattered. Hence, B ⊗max A is max-scattered.

There is an important class of C∗-algebras called the Type I C∗-algebras. This

class has a tractable representation theory and therefore at times this class has been

regarded as the class of reasonable C∗-algebras (by Glimm’s results [28]). Type I

C∗-algebras are built up by using elementary C∗-algebras and the structure of Type

I C∗-algebras is clearly understood. Note that there are several characterizations of

Type I C∗-algebras. For example, a C∗-algebra is Type I if it has a composition

series {Iα} such that Iα+1/Iα is liminal for each α. For more details, we refer the

reader to [28] or [5, Section IV.1].

We define Type I operator algebras using the maximal C∗-cover.

Definition 5.4.8. An approximately unital operator algebra A is said to be of Type

I if C*
max(A) is a Type I C∗-algebra.

The class of Type I operator algebras includes the class of max-scattered operator
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algebras, as one would expect. Indeed, any scattered C∗-algebra is of Type I by [30,

Theorem 2.3]. Hence, if A is max-scattered, then C*
max(A) is scattered and of Type

I.

Any ideal and any quotient of a Type I C∗-algebra is again Type I. We have a

similar result for Type I operator algebras. However, note that, by Remark 5.4.3, a

HSA in a Type I operator algebra is not necessarily of Type I.

Proposition 5.4.9. Let A be a Type I operator algebra and J be an approximately

unital ideal in A. Then, J is of Type I and A/J is of Type I.

Proof. Since C∗max(J) is an ideal in C∗max(A), C∗max(J) is of Type I. Moreover, by

[10, Lemma 2.7], C∗max(A/J) = C∗max(A)/C∗max(J). Since every quotient of a Type I

C∗-algebra is Type I, C∗max(A/J) is Type I. Hence, A/J is Type I.

An operator algebra which is built up using a composition series where each

quotient is of Type I is again Type I.

Proposition 5.4.10. Let A be an approximately unital operator algebra with a com-

position series {Iα} such that each Iα+1/Iα is of Type I. Then, A is of Type I.

Proof. Let B = C∗max(A). Then, by Remark 5.2.5, {C*
max(Iα)} is a composition series

for B. Moreover, for each ordinal α, C∗max(Iα+1)/C∗max(Iα) = C∗max(Iα+1/Iα), by [10,

Lemma 2.7]. Since Iα+1/Iα is of Type I, C∗max(Iα+1)/C∗max(Iα) is of Type I. Hence,

by [5, Proposition IV.1.1.11], B is of Type I. That is, A is of Type I.
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Chapter 6

Further Directions

In this dissertation we tried to generalize the notion of scattered C∗-algebras to a

non-selfadjoint setting. We defined scattered operator algebras using a composition

series where each consecutive quotient is completely isometrically isomorphic to a

1-matricial algebra. We presented many results about their structure. Scattered

C∗-algebras have many nice characterizations. In later studies, we hope to find some

characterizations of scattered operator algebras.

By some recent work by M. Kusuda, we see that scattered C∗-algebras are con-

nected to the notion of having real rank zero [36]. This is expected as the notion

of having real rank zero is a noncommutative analogue of the topological notion of

being totally disconnected. Indeed, for a locally compact Hausdorff space K, C0(K)

has real rank zero if and only if K is totally disconnected. A C∗-algebra A is scat-

tered if and only if every C∗-subalgebra of A has real rank zero. This gives a lot

of information on the abundance of the projections in A, and also on the projection
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lifting property. In a future work, we plan to study the non-selfadjoint analogue of

the notion of having real rank zero. We believe that the study of operator algebras

with real rank zero will be somewhat related to our matricial algebras and hence

to scattered operator algebras. We made a tiny attempt on this subject in this

dissertation; however, our conjecture is that there is a better approach.

Approximation plays a fundamental role in mathematics, especially while working

in infinite dimensions. Without the approximation theory, one can say very little

about C∗-algebras (which are infinite dimensional in most cases). Approximation

theory has been used for many of the fundamental results such as Voiculescu’s free

entropy theory, Elliott’s classification program, Choi, Effros and Kirchberg’s work on

nuclear and exact C∗-algebras, and so on. Approximately finite-dimensional (AF)

C∗-algebras have been studied deeply (see for example [18], [19], [26], [27] or [14]).

Scattered C∗-algebras can be characterized as the C∗-algebras for which every C∗-

subalgebra is AF. Another project that we consider is studying approximation theory

for non-selfadjoint operator algebras which may be connected to the work of S. Power

and others on this subject (e.g. in [45]).

Note that we defined matricial algebras using a full set of matrix units. In future,

we hope to study operator algebras generated by a set of matrix units that is not

full. We hope to connect this to the work of S. Power and others (e.g. D. Larson

and K. Davidson).
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