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Abstract

The Michaelis-Menten scheme has played a central role in our understanding of bio-

chemical processes. It has long been understood how this scheme can be used to approxi-

mate the dynamics of irreversible enzymatic reactions. However, a similar approximation

in the case of networks, where the product of one reaction can act as an enzyme in another,

has not been fully developed. In this thesis such an approximation is developed for a class

of coupled enzymatic networks where the individual interactions are of Michaelis-Menten

type. In addition, sufficient conditions for the validity of the total Quasi-Steady State

Assumption (tQSSA), obtained in a single protein case by Borghans, de Boer, and Segel

are extended to sufficient conditions that guarantee the validity of the tQSSA for a large

class of enzymatic networks. The resulting reduced equations approximate a network’s

dynamics and involve only protein concentrations. This significantly reduces the number

of equations necessary to model such systems. The validity of this approximation is proved

using geometric singular perturbation theory and results about matrix differentiation. The

ideas used in deriving the approximating equations are quite general, and can be used to

systematize other model reductions.

This thesis also examines a particular class of non-linear dynamical systems that ap-

pear frequently as models of biological networks. The non-linearity in these systems model

the interaction of network elements and take the form of sigmoidal functions. It is shown

that, in certain limits, these equations can be approximated by piecewise linear dynamical

systems. These approximations are naturally determined by the structure of the origi-

nal system and can again be justified using geometric singular perturbation theory. The

validity of both reductions is demonstrated in a number of biologically inspired example

networks.
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Chapter 0
Introduction and motivation

Biology is increasingly being viewed by mathematicians as a new playground, a new field to

explore. Advances in experimental technologies allow for the acquisition of large amounts

of data describing numerous aspects of different organisms. These data suggest that to

describe even a tiny living cell, we need enormous amounts of information. Mathematics has

helped us understand the structure and function of the interacting processes within a cell.

Mathematicians have also gained significantly from their interactions with biologists. Many

biological phenomena could not be described neatly by existing mathematical theories. This

lead to the development of new branches of mathematics. Biology therefore, has taken the

role played by physics a century ago [1].

The broad aim for mathematicians would be to build a connection between the known

laws of physics and biological observations. We are far away from this goal presently,

and it may not be achievable if taken in a literal sense. However, a lot of work has been

done to allow us to ask questions relevant to biology so that they can be addressed using

mathematical techniques. In the words of Uri Alon “observing the activities in a living

1



cell is like watching a dance. Proteins, enzymes, genes, etc, assemble together when they

are needed; they perform their job with utmost efficiency in presence of cellular noise, and

when their work is done they so effortlessly disassemble or inactivate or get busy in some

other job” [2]. Nontrivial theories are required to explain these phenomena. How do cells

function in the way they do? Is their action efficient? How do they manage to overcome

the noise that accompany all the processes within a cell? How does information get passed

between cells and generations? The list of questions goes on.

This thesis is a modest attempt to further develop the mathematical theories used for

understanding cell mechanism. One such theory investigates so called Molecular Interaction

Networks. This theory assumes that cells can be described as containers full of fluid.

Biomolecules like proteins, enzymes, etc., are tiny particles floating in this liquid body.

The behavior of the cell can then be studied by modeling the outcome of collisions between

these molecules. If one wants to understand the function of proteins and enzymes in the

life span of the cell then one needs to study their interactions, and hence the importance

of Protein Interaction Networks (PIN).

Depending on the question, one uses different types of mathematical tools to analyze

models of PINs. For example, an ideal aim of a study of PINs (or in fact any Molecular

Interaction Network) would be to come up with a description of the position of each and

every molecule at any given time. Considering the fact that even a single gram of any

substance contains on the order of 1023 molecules, this goal is clearly not achievable.

A simpler question is to describe the behavior of certain averages for the different

types of molecules in the system. Assuming that for all the collisions between two types

of molecules, a given percentage will lead to a new product, assuming that temperature,

volume and pressure remain constant, the chemical species are well mixed, then one can

2



write an ordinary differential equation whose solution will be the probability distribution

describing the populations of the different molecules involved. This differential equation is

known as Chemical Master Equation (CME) [19, 29]. However, the CME is very cumber-

some to use because for most practical purposes it turns out to be infinite dimensional. Its

analytical solutions are known only for very few simple reactions [12, 34, 39]. In general,

the CME can only be solved through simulation algorithms like the Stochastic Simulation

Algorithm (SSA) [20, 29] and its variants the slow scale Stochastic Simulation Algorithm

(ssSSA) [4, 8, 56]; and the nested Stochastic Simulation Algorithm (nSSA) [70]. Approxi-

mating the CME by lower dimensional systems is a subject of active research [27, 41, 45, 53].

Another common method to study chemical reactions is through mass action kinetics.

If sufficiently large numbers of molecules are present, it is possible to obtain much simpler

differential equation to approximate the population of various kinds of molecules with high

accuracy. This set of differential equations are related to the set of chemical reactions

through the Law of Mass Action [68, 69]. This law can be applied to obtain an ODE

model directly from the list of reactants and products involved, and a list of possible

reactions. Theoretically, this differential equation can be derived, under the assumption of

the existence of the “macroscopic infinitesimal”, as the mean behavior of the probability

distribution guaranteed by the CME [21, 29]. However, the history of the Law of Mass

Action is much older than the CME, as chemists have been using it for more than a

hundred years [30, 68, 69]

Although the assumptions that allow for a theoretical justification of the Law of Mass

Action are quite stringent, experimental data suggest that even in the noisy, nonhomo-

geneous environment of living cells the Law of Mass Action may do a decent job in de-

scribing the population of chemical species [16, 44, 63]. Encouraged by the experimental
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results and tempted by the relative simplicity of the resulting equations, extensive research

has been done on the analysis of the models of PINs obtained from the Law of Mass

Action [11, 25, 51, 64].

We will focus on one class of such PINs. It is believed that proteins regulate the

activity of each other through activation or inhibition. Such interactions are believed to

be much cheaper than producing a protein from scratch when it is needed and destroying

it when its job is done [2]. The chief feature of the PIN we consider is that proteins and

enzymes activate and deactivate each other through a scheme which is popularly known

as the Michaelis-Menten (MM) reaction, named after Leonor Michaelis and Maud Menten

(1913) [7, 43]. In this reaction an enzyme, E, reacts with a protein, X, resulting in an

intermediate complex, C. In turn, this complex dissociates into an “active” product, X∗,

and the enzyme E. It is frequently assumed that the formation of C is reversible while its

dissociation is not [7, 43, 46].

X + E
k1


k−1

C
k2→ X∗ + E. (1)

The MM reaction became popular because of its simplicity and effective explanation of the

activation and inhibition relations among proteins. In a paper by Goldbeter and Koshland

in 1982, it was shown that, when the total enzyme concentration is much smaller than the

total substrate concentration in reaction (1), the substrate concentration can be modeled by

a particular type of differential equation which is commonly known as the MM differential

equation [11, 24, 52]. The MM differential equation can be obtained in the following way:

If we apply the Law of Mass Action on reaction (1) then, using some natural constraints,

one gets a system of two dimensional autonomous differential equation, say

dX

dt
= f(X,C) and

dC

dt
= g(X,C).

The MM differential equation is obtained by replacing the time derivative of C with zero,
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leading to an algebraic equation for C, i.e. 0 = g(X,C). Solving this equation for C as a

function of X, say C = h(X), and plugging this solution into the differential equation for

X we get
dX

dt
= f(X,h(x)).

The assumption that some of the variables are in steady state, or, equivalently, the

replacement of the derivative of some of variables with zero, is known as the Quasi-Steady

State Assumption (QSSA). In the preceding example, the variable C is in quasi-steady state

with respect to the variable X. The intuitive idea is that before X changes appreciably,

C changes fast and equilibrates. The QSSA therefore posits that, if in the dynamical

system, variables change in very different time scales, then the system can be simplified by

assuming that the fast variables will reach a “local” steady state instantaneously.

Extensive research has been done to study the mathematical logic behind the QSSA.

Heuristic self consistent arguments [6], as well as rigorous theories involving monotone

dynamical systems have been used in the analysis [48]. The most common and intuitive

approach to the problem is through the use of the Geometric Singular Perturbation Theory

(GSPT) [15]. Several application of the GSPT to explain the QSSA exist in the litera-

ture [28, 59, 62]. As the GSPT plays a central role behind the mathematics of this thesis,

it has been reviewed in the first chapter.

The simplicity of the MM reactions and the MM differential equations prompted their

use in systems where MM reactions are not isolated, but embedded in a larger set of

reactions. Such a system would be obtained if, for example, a reaction like

E + Y
k3


k−3

C2
k4→ Ep + Y

is coupled with reaction (1). However, the mathematical basis for the QSSA, which was

needed to derive the MM differential equation, only existed for an isolated MM reaction.
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To the best of our knowledge, no theory exists to justify the use of the MM differential

equations in a general system of coupled MM reactions. A large part of this thesis consists

of a theoretical justification of something similar to QSSA, which is valid for systems of

coupled Michaelis-Menten reactions.

The asymptotic limits, under which QSSA can be assumed on a MM reaction, does

not make sense if we have several simultaneous MM reactions in the system, and the

protein of one MM reaction is behaving like the enzyme for some other reaction. To justify

the QSSA for such a system we will need the proteins to be present in both large and

small amount at the same time, which is obviously absurd [11]. To remedy this situation,

other versions of the QSSA were proposed. (Recall that in the original derivation of MM

differential equation the intermediate complex C was assumed to be in steady state.) Segel

and Slemrod proposed reverse QSSA (rQSSA) where the substrate X was assumed to be

in steady state [59]. However, we are not aware of any study which attempts to extend the

rQSSA to a system of MM reactions.

Another version of QSSA, which is of particular interest to us, is the total QSSA

(tQSSA), proposed by Borghans, et al. in 1996 [6] and later refined by Tzafriri in 2003 [65].

The tQSSA posits that the sum of substrate and the intermediate complex, X + C, is in

steady state. In a recent paper by Ciliberto, et al. an extension of tQSSA was defined for

a system of MM reactions [11]. They also presented simulation results which suggest that

tQSSA might be a very good tool to simplify the dynamical systems in a system of coupled

MM reactions.

This brings us to our main contribution in the field of PINs. In this thesis we have

proved that, the asymptotic limit which implies tQSSA, as obtained by Borghans, et al.

in [6] for the isolated MM reaction (1), can be extended to a system of such reactions.

6



Thus we provide theoretical explanation of the simulation result obtained by Ciliberto, et

al. [11]; also extending significantly the results of Pedersen, et al. [51], who have obtained

results regarding the validity of the tQSSA for a system of two MM reactions. In addition

to that, we have noted that direct use tQSSA leads to an algebraic system of coupled

quadratic equation which can be difficult to solve. We discuss a method to circumvent this

problem.

Closely connected to the PINs are gene interaction networks. As the name suggests,

these network model the expression of gene and their interactions within the cells. Typically

one does not use the Law of Mass Action to model this network. The main reason could

be that the list of reactions are not known in enough detail. Another reason could be

that the copies of gene are not believed to be present in large enough number. The

differential equation models one sees in literature are typically custom made to fit the data.

It is widely believed that gene activity can be approximated by Boolean variables, they

are either ON or OFF. To model this switch like behavior, Hill functions i.e., functions

of type f(x) := xn/(xn + Jn), where n is the Hill coefficient and J is the threshold,

appear more than often in the equations [2, 13, 23, 40, 49, 50, 64]. The problem with the Hill

functions are that they produce highly non-linear differential equations. Several theories

exist to approximate these non-linear differential equations with piecewise-linear differential

equations [9, 22, 33, 54, 55]. The general argument in these studies is that, in the limit

of large Hill coefficient, near the threshold, the non-linear differential equation can be

decomposed into fast and slow variables. Then, using the GSPT one gets a reduced

system which turns out to be linear.

In the last chapter of this thesis we will re-investigate the non-linearity induced by the

Hill functions and will introduce a class of differential equations, which can be approximated
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by a piecewise-linear system. Furthermore, we will see that this reduction is independent

of the Hill coefficient but rather depends on the threshold size. In particular, our linear

approximation will be derived in the asymptotic limit of small threshold.

Outline of the thesis:

This thesis is organized as follows: In Chapter 1 we review the basics of the GSPT. This

theory is the mathematical backbone of the results discussed in this report. In this chapter

we also discuss MM reactions, the meaning of QSSA and its justification using the GSPT,

in detail.

Chapters 2–4 contains our work on PINs. In Chapter 2, the notion of tQSSA for a

single MM reaction is introduced. Various different arguments in support of the tQSSA

have been reviewed. Merits of these arguments have also been discussed. This chapter

also includes a novel justification of the tQSSA for a single MM reaction. In Chapter 3,

a general class of coupled MM reaction is described. The notion of the tQSSA for this

reaction system has been introduced. The problem of coupled quadratic equation by direct

application of the tQSSA and a method to get out of that problem has been discussed. In

Chapter 4, we describe how we can extend the justification of the tQSSA from one MM

reaction to the system of coupled MM reactions.

Chapter 5 discusses our results on linear approximations of the differential equations

involving Hill functions. This chapter is essentially independent from Chapter 2–4.

Brief notes on necessary technicalities like the Law of Mass Action, “differentiation

with respect to a matrix variable” have been provided in the appendix. The appendix also

includes some of our other purely mathematical results, which we discovered in the course

of our investigation. These results, however, do not necessarily contribute to the topics in

the main chapters.
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Chapter 1
Geometric Singular Perturbation Theory

(GSPT)

In this chapter I will review the basics of Geometric Singular Perturbation Theory (GSPT)

and present the main theorems along with their interpretations. For the proofs of these

theorems and more detailed expositions on the GSPT, the reader may consult [15, 28, 35, 36,

71] and references therein. In the last section of this chapter I will provide an application of

this theory to obtain a rigorous justification of the Quasi-Steady State Assumption (QSSA)

in a system of two coupled Michaelis–Menten reactions.

9



1.1. THREE MAIN THEOREMS OF THE GSPT

1.1 Three main theorems of the GSPT

Consider a system of ordinary differential equation of the form

dv

dt
= g(u, v, ε), v(0) = v0,

ε
du

dt
= f(u, v, ε), u(0) = u0, (1.1)

where u ∈ Rk and v ∈ Rl with k, l ≥ 1; and u0 ∈ Rk and v0 ∈ Rl are the initial values. The

parameter ε is small and positive (0 < ε � 1). The right hand side functions f and g are

smooth functions such that f(u, v, 0) 6≡ 0, g(u, v, 0) 6≡ 0, and limε→0 εg(u, v, ε) ≡ 0.

The following three theorems, due to Fenichel, say that we can say much about Eq. (1.1)

just by studying it in the limiting case of ε = 0.

Theorem 1.1 (Fenichel [15]) Suppose M0 ⊂ {(u, v) ∈ Rk+l |f(u, v, 0) = 0} is compact,

possibly with boundary, and normally hyperbolic, that is, the eigenvalues λi of the Jacobian

∂f
∂u(u, v, 0)|M0 all satisfy Re(λi) 6= 0. Suppose f and g are smooth. Then for sufficiently

small ε > 0, there exist a manifold Mε, O(ε) close and diffeomorphic to M0 that is locally

invariant under the flow of the system (1.1).

For system (1.1), for ε = 0, suppose that the normally hyperbolic manifold M0 ⊂

{(u, v) ∈ Rk+l |f(u, v, 0) = 0} has an l + m dimensional stable manifold W s(M0) and an

l + n dimensional unstable manifold W u(M0), with m + n = k. In other words, suppose

that the Jacobian ∂f
∂u(u, v, 0)|M0 has m eigenvalues λi with Re(λi) < 0 and n eigenvalues

λj with Re(λj) > 0. Then we have the Fenichel’s second theorem.

Theorem 1.2 (Fenichel [15]) Suppose M0 ⊂ {(u, v) ∈ Rk+l |f(u, v, 0) = 0} is compact,

possibly with boundary, and normally hyperbolic, that is, the eigenvalues λi of the Jacobian

10



1.1. THREE MAIN THEOREMS OF THE GSPT

∂f
∂u(u, v, 0)|M0 all satisfy Re(λi) 6= 0. Suppose f and g are smooth. Then for sufficiently

small ε > 0, there exist manifolds W s(Mε) and W u(Mε) that are O(ε) close and diffeo-

morphic to W s(M0) and W u(M0), respectively, and that are locally invariant under the

flow of the system (1.1).

Let x · t denote the new point under the flow, described by Eq. (1.1), after time t,

starting from the initial value x. Also, let ∆ be a neighborhood of Mε, and for all V ⊂ ∆

define

V ·∆ t := {x · t |x ∈ V and x · [0, t] ⊂ ∆} .

The third theorem is the following.

Theorem 1.3 (Fenichel [15]) Suppose M0 ⊂ {(u, v) ∈ Rk+l |f(u, v, 0) = 0} is compact,

possibly with boundary, and normally hyperbolic and suppose f and g are smooth. Then

for every vε ∈ Mε, 0 < ε � 1, there exist manifolds W s(vε) ⊂ W s(Mε) and W u(vε) ⊂

W u(Mε) that are O(ε) close and diffeomorphic to W s(v0) and W u(v0), respectively. The

families {Wu,s(vε) | vε ∈Mε} are invariant in the sense that

Ws(vε) ·∆ t ⊂ Ws(vε ·∆ t) if vε · r ∈ ∆ for all r ∈ [0, t], and

Wu(vε) ·∆ t ⊂ Wu(vε ·∆ t) if vε · r ∈ ∆ for all r ∈ [t, 0].

Interpretation of the above theorems

The basic ideas behind these theorems can be illustrated by assuming, for simplicity, that

M0 :=
{

(u, v) ∈ Rk×l | f(u, v, 0) = 0
}
,

11



1.1. THREE MAIN THEOREMS OF THE GSPT

and M0 is normally hyperbolic and stable, that is, the eigenvalues λi of the Jacobian

∂f
∂u(u, v, 0)|M0 all satisfy Re(λi) < 0. Then, for ε sufficiently small, the solutions of Eq. (1.1)

follow an initial transient, which can be approximated by

dv

ds
= 0, v(0) = v0,

du

ds
= f(u, v, 0), u(0) = u0, (1.2a)

where t = εs. After this transient, the solutions are O(ε) close to the solutions of the

reduced differential-algebraic system

dv

dt
= g(u, v, 0), v(0) = v0,

0 = f(u, v, 0). (1.2b)

More precisely there is an invariant, slow manifold Mε, O(ε) close to M0. Solutions of

Eq. (1.1) are attracted toM0 exponentially fast, and can be approximated by concatenating

the fast transient described by Eq. (1.2a), and the solution of the reduced Eq. (1.2b) (see

Fig (1.1) for an illustrative example).

The slow manifold, M0, consists of the fixed points of Eq. (1.2a). The condition that

the eigenvalues, λi, of the Jacobian ∂f
∂u(u, v, 0)|M0 all satisfy Re(λi) < 0 implies that these

fixed points are stable .

Note that v is constant in Eq. (1.2a) and only changes in Eq. (1.2b). Another way of

saying the same thing would be that v only changes on the time scale t and is essentially

constant on the time scale s. Furthermore, u is an independent variable on the time scale

s but in the time scale t, it plays an indirect role (because, in principle, 0 = f(u, v, 0) can

be solved for u and plugged into g(u, v, 0) to make Eq. (1.2b) a closed form equation in

v only). This difference between the time scales in which u and v change is also loosely

referred as existence of separation of time scales. In the beginning v stays approximately

12
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Figure 1.1: The solid line represents the exact solution of the system ε dx
dt

= −(x− ε), dy
dt

= −y,
with ε = 0.03 and the initial value (the little cirle at top-right corner) x(0) = 1, y(0) = 0.8
. Here M0 := {(x, y) |x = 0} and Mε := {(x, y) |x = ε} (the vertical dotted-dashed line).
The horizontal dashed line represents the solution of dx

ds
= −x, dy

ds
= 0, with initial value

x(0) = 1, y(0) = 0.8. The vertical dotted line on y axis beginning at the solid dot and ending at
the origin represents the soltuion of the system 0 = −x, dy

dt
= −y, initial value y(0) = 0.8 . The

triple arrow denotes fast dynamics because those are on the time scale s = t/ε.

constant while u is changing, and later u stops playing an explicit role in the dynamics,

and v starts changing on the slower time scale t. Because of this separation, I will refer to

u as the fast variable and v as the slow variable.

In applications, dynamical system do not in general have the form of Eq. (1.1). Signif-

icant effort can go into the search for a proper change or scaling of coordinates so that the

given equation take the form of Eq. (1.1). There are frequently no exact rules to obtain

such scalings, and the work may involve calculated guesses. However, finding such a scaling

is half the job. The other half of the effort goes into verifying that the manifold M0 is

normally hyperbolic and stable.

In the next section we will see how the GSPT can be used to get a rigorous justification

of the QSSA in a system of two coupled Michaelis Menten reactions.
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1.2. EXAMPLE APPLICATION

1.2 Example application

Derivation of Michaelis Menten (MM) type differential equation

The Michaelis-Menten (MM) scheme is a fundamental building block of many models of

protein interactions [7, 43]. The following diagram represents two MM reactions working

in opposite directions. One contributes to the activation of a protein while the other works

towards deactivation.

X + E
k1
�
k−1

XE
k2−→ Xp + E, Xp + F

k3
�
k−3

XpF
k4−→ X + F. (1.3)

The symbols X and Xp represent unphosphorylated and phosphorylated proteins; and E

and F represent the enzymes participating in the phosphorylation and dephosphorylation

processes, respectively. In the first reaction, the substrate, X, binds with the enzyme, E,

to produce an intermediate complex, XE. This intermediate complex later dissociates into

the phosphorylated form of the substrate, Xp, and the enzyme molecule. We also assume

that the formation of XE is reversible while its dissociation is not (It is possible to build

a theory even when the breaking down of XE is reversible [26, 66], but we will not cover

that direction here.) Similarly, in the second reaction the enzyme, F , works to reverse

the effect of the first reaction. It catalyzes the conversion of Xp back to X through the

formation of another intermediate complex, XpF . The symbols k1, k−1, k2, k3, k−3 and k4

are the reaction rate constants. This phosphorylation/dephosphorylation process is also

known as a Goldbeter-Koshland (GK) switch [11, 24, 52] or a futile cycle [3].

The MM differential equation is a simplified model for tracking the time evolution of

the concentration of the protein in the reactions (1.3). Let

x := [X], c1 := [XE], e := [E], xp := [xp], c2 := [xpF ], f := [F ],

14



1.2. EXAMPLE APPLICATION

where any symbol enclosed in square brackets denotes its molar concentration. The fol-

lowing differential equation is known as the MM differential equation [11, 13, 46].

dx

dt
= k2f0

x0 − x
km1 + x0 − x

− k4e0
x

km2 + x
, (1.4)

where km1 := (k2 + k−1)/k1 and km2 := (k4 + k−3)/k3 are known as Michaelis Menten

constants; and x0, e0 and f0 are total concentrations of substrate and respective enzymes

in the MM reaction scheme (1.3).

In this section, using the GSPT, we will show that, if we assume the validity of the

Law of Mass Action for reactions (1.3), and if the total concentrations of both the enzymes

are very small compared to the total concentration of the substrate, i.e., if e0 � x0 and

f0 � x0; and if the total concentrations of the two enzymes are of the same order, i.e. if

e0 ≈ f0, then Eq. (1.4) is a valid model of reactions (1.3). More precisely, we will show

that Eq. (1.4) is a valid reduction of the equations that describe reactions (1.3) assuming

the Law of Mass Action.

The reader may refer to the Appendix A for a quick tutorial on the Law of Mass

Action or may consult references like [30]. The application of the Law of Mass Action to

reaction (1.3) yields the following set of differential equations:

dx

dt
= −k1xe+ k−1c1 + k4c2,

dxp
dt

= −k3xpf + k−3c2 + k2c1,

dc1

dt
= k1xe− (k−1 + k2)c1,

dc2

dt
= k3xpf − (k−3 + k4)c2, (1.5)

de

dt
= −k1xe+ (k−1 + k2)c1,

df

dt
= −k3xpf + (k−3 + k4)c2.

Eq. (1.5) is generally studied with the following initial conditions,

x(0) = x0, e(0) = e0, f(0) = f0, xp(0) = c1(0) = c2(0) = 0.

This choice means that their are no intermediate complexes at the beginning of reactions.

15



1.2. EXAMPLE APPLICATION

By the very nature of reaction scheme, this dynamical system has the following constraints:

e(t) + c1(t) ≡ e0, f(t) + c2(t) ≡ f0, x(t) + xp(t) + c1(t) + c2(t) ≡ x0, t ≥ 0. (1.6)

It is easy to check that these constraints are consistent with the initial conditions and with

Eq. (1.5). Using Eq (1.6), we can eliminate a number of variables in Eq. (1.5) to obtain

dx

dt
= −k1ex0 + (k1x+ k−1)c1 + k4c2,

dc1

dt
= k1e0x− (k1x+ k−1 + k2)c1, (1.7)

dc2

dt
= k3(x0 − x− c1 − c2)(f0 − c2)− (k−3 + k4)c2.

Suppose Eq. (1.7) evolves so that before x changes considerably, c1 and c2 change fast

and equilibrate. Then Eq. (1.7) can be replaced by the simpler equation

dx

dt
= −k1ex0 + (k1x+ k−1)c1 + k4c2, (1.8a)

0 = k1e0x− (k1x+ k−1 + k2)c1, (1.8b)

0 = k3(x0 − x− c1 − c2)(f0 − c2)− (k−3 + k4)c2. (1.8c)

This replacement of the derivative of c1 and c2 with 0, i.e., the reduction from Eq. (1.7)

to Eq. (1.8), holds under what is known as Quasi-Steady State Assumption(QSSA) [59].

Then, Eq. (1.8b) and Eq. (1.8c) can be solved for c1 and c2, in terms of x; and the result

can be plugged into Eq. (1.8a). The resulting equation is exactly the MM differential

equation (1.4).

We next use GSPT to get a rigorous reduction of Eq. (1.7), and hence a rigorous

justification of the QSSA. As discussed earlier, to apply the results of GSPT, proper scaling

of variables is necessary to recast the Eq. (1.7) into the form of Eq. (1.1). In general

there is more than one way to scale the variables. Different scalings yield different sets of

rescaled equations, and expressions for ε. Not surprisingly, different reduced equations will
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1.2. EXAMPLE APPLICATION

therefore be obtained in different parameter ranges. The scaling we use here is motivated

by an example in [46] and is one of the earliest and simplest found in the literature. Define

τ := k1e0t, u(τ) :=
x(t)
x0

, v1(τ) :=
c1(t)
e0

, v2(τ) :=
c2(t)
f0

, (1.9)

and

ε1 :=
e0

x0
, ε2 :=

f0

x0
.

With the above change of variables, Eq. (1.7) takes the form

ε1
dv1

dτ
= u− (u+ λ1 + λ3)v1,

ε1
dv2

dτ
= −(α(1− u) + λ4 + λ2)v2 + α(1− u)− ε1αv1(1− v2)− ε2αv2(1− v2),

ε1
du

dτ
= −ε1(u+ (u+ λ1)v1) + ε2λ2v2, (1.10)

where,

λ1 =
k−1

k1x0
, λ2 =

k4

k1x0
, λ3 =

k2

k1x0
, λ4 =

k−3

k1x0
, α =

k3

k1
. (1.11)

Using the notation B := ε2
ε1

= f0
e0

and ε = ε1 in Eq. (1.10) we get

ε
dv1

dτ
= u− (u+ λ1 + λ3)v1,

ε
dv2

dτ
= −(α(1− u) + λ4 + λ2)v2 + α(1− u)− εαv1(1− v2)− εBαv2(1− v2),

du

dτ
= −u+ (u+ λ1)v1 +Bλ2v2. (1.12)

Eq. (1.12) clearly has the form of Eq. (1.1). Hence by the results in the GSPT, after a fast

transient, Eq. (1.12) will follow the dynamics of a simpler system and that simpler system

can be obtained by plugging in ε = 0 in Eq. (1.12). And in the limit ε → 0, Eq. (1.12)

takes the form

0 = u− (u+ λ1 + λ3)v1, (1.13a)

0 = −(α(1− u) + λ4 + λ2)v2 + α(1− u), (1.13b)

du

dτ
= −u+ (u+ λ1)v1 +Bλ2v2. (1.13c)
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Solving for v1 and v2 from the Eqs. (1.13a) and (1.13b), we get

v1 =
u

u+ λ1 + λ3
, v2 =

1− u
(1− u) + λ4+λ2

α

. (1.14)

So, after the fast initial transient the solution of Eq. (1.12) tends to stay close to the slow

manifold

M0 =

{
(u, v1, v2) : u ∈ [0, 1], v1 =

u

u+ λ1 + λ3
, v2 =

1− u
(1− u) + λ4+λ2

α

}
. (1.15)

Using Eq. (1.14) in Eq. (1.13c), we get the following “governing” differential equation near

the manifold M0.
du

dτ
= Bλ2

1− u
λ4+λ2
α + 1− u

− λ3
u

λ1 + λ3 + u
. (1.16)

The above equation is essentially a Michaelis Menten type equation in dimensionless form.

Using the change of variables, as defined in Eq. (1.9), and Eq. (1.11) we see that Eq. (1.16)

becomes Eq. (1.4).

The verification that the slow manifold defined by the first two equations of Eq. (1.13)

is normally hyperbolic and stable is nearly trivial. Let the right side of the first and second

equation of Eq. (1.13) be F (u, v1, v2) and G(u, v1, v2), respectively. i.e. F (u, v1, v2) :=

u− (u+ λ1 + λ3)v1, and G(u, v1, v2) := −(α(1− u) + λ4 + λ2)v2 + α(1− u). Then, clearly

we have

∂[F,G]
∂[v1, v2]

=

 −(u+ λ1 + λ3) 0

0 −(α(1− u) + λ4 + λ2)

 .
The Jacobian is therefore diagonal with negative eigenvalues.

Fig. 1.2 shows the solutions of Eq. (1.12) for two small values of ε. We do indeed observe

that solutions first get quickly attracted to M0 then move on it slowly. The attraction

gets sharper as ε becomes smaller.
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Figure 1.2: Projected solutions of Eq. (1.12) on the u-v1 plane, for two different values of ε.
For the dashed (black) line, ε = 0.1; and for the thick solid (blue) line, ε = 0.05 was used. The
thin solid (red) line is the slow manifold,M0, described by Eq. (1.15). We observe that for small
ε, solutions first get quickly attracted toM0 then move on it slowly. The attraction gets sharper
as ε becomes smaller. Other parameters used: λ1 = λ2 = λ3 = λ4 = α = 1; B = 1 (dashed
(black) line), B = 2 (thick solid (blue) line). Initial value: v1 = 0, v2 = 0, x = 0.9.
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Chapter 2
Introduction of the total Quasi-Steady

States Assumption (tQSSA)

In the last chapter we saw that a classic assumption in the derivation of the MM type

differential equation is that the enzyme concentration is much lower than the substrate

concentration. A weaker requirement was derived in [59], where it was shown that even if

the enzyme concentration is small compared to the sum of substrate concentration and the

Michaelis-Menten constant then the QSSA holds, and the MM type reduction is justified.

Although these conditions hold for a single MM type reaction, i.e. when there is only

one substrate, theoretical justification for the use of MM type differential equations, in

a general network of coupled MM reactions, is yet to be found [6, 11, 65]. Unless we

answer this question, any prediction, made by models created by using of MM differential

equation in a network of enzymatic reactions, will be unreliable. For examples of such

model, see [23, 49, 50, 64].
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As mentioned before, the QSSA plays a major role in the derivation of the MM dif-

ferential equations. Hence, to prove the validity of MM type differential equations, for a

system of coupled MM reactions, one must justify a generalized version of the QSSA that

holds for such a system. Although the QSSA has not been extended directly to a system

of coupled MM reactions, other versions of the QSSA which may be more suitable for the

network have been developed. In this thesis we will extend one such version, namely the

tQSSA, to a system of coupled MM reactions.

The tQSSA was proposed by Borghans, et al. (1996) [6]. The original result was

applicable only to an isolated MM reaction. In this chapter we will discuss the meaning of

the tQSSA, in the way it was first introduced; and we will discuss some other explanations

of tQSSA in terms of GSPT. In Section 2.1, we will describe what we mean by the tQSSA. In

addition, in Section 2.1.1, we will show how we can get around a technical issue of solving

quadratic equations that appear in the reduced equations obtained under the tQSSA.

In Section 2.2, we will study several different justifications of the tQSSA. Section 2.2.1

discusses the results of Borghans, et al. [59]; Section 2.2.2 discusses the justification given

by Tzafriri [65]. We will also discuss some potential issues in the these arguments. In

Section 2.2.3, we will study a more precise proof of the validity of tQSSA, based on GSPT.

Here we follow Khoo and Hegland [37], who gave a rigorous proof of Borghans et al.’s

result [6]. In the last section, Section 2.2.4, we will show that we can also use GSPT to

prove the validity of Tzafriri’s condition as a sufficient condition for the tQSSA [65].
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2.1. MEANING AND EXTENSION OF THE TQSSA

2.1 Meaning and extension of the tQSSA

The Michaelis-Menten (MM) scheme [7, 43] is a fundamental building block of many models

of protein interactions: An enzyme, E, reacts with a protein, X, resulting in an interme-

diate complex, C. In turn, this complex dissociates into a product, Xp, and the enzyme

E. It is frequently assumed that formation of C is reversible while its dissociation is not.

The process is represented by the following sequence of reactions [7, 43, 46]

X + E
k1


k−1

C
k2→ Xp + E. (2.1)

It should be noted that the reaction (2.1) is exactly the first of the two Michaelis-Menten

reaction in Eq. (1.3). The reader may notice the term “isolated” in the name of this section.

We add this term because subsequently we will consider examples where the substrate of

one reaction can act as an enzyme in another. Here the term “isolated” simply means that

there is only one enzyme species and only one substrate species.

For notational convenience we will use variable names to denote both the chemical

species and its concentration. For instance, E denotes both an enzyme and its concentra-

tion. Reaction (2.1) reaction obeys two natural constrains: The total amount of protein

and enzyme remain constant. i.e.

X + C +Xp = XT , and E + C = ET , (2.2)

for positive constants XT and ET . In conjunction with the constraints (2.2), the Law of

Mass Action (see Appendix A) yields the following system of ordinary differential equations

that models reaction (2.1)

dX

dt
= −k1X(ET − C) + k−1C, X(0) = XT ,

dC

dt
= k1X(ET − C)− (k−1 + k2)C, C(0) = 0. (2.3)
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2.1. MEANING AND EXTENSION OF THE TQSSA

In Chapter 1, we studied the derivation of the MM equation. The conclusion was that

when the concentration of the substrate-bound enzyme, C, equilibrates quickly, then sys-

tem (2.3) can be reduced by one dimension and the resulting one dimensional differential

equation was called the MM equation. We say that the QSSA holds if C is quickly at-

tracted to quasi-steady state value, while X changes little during this transient. Sufficient

conditions under which the QSSA is valid have been studied extensively [17, 24, 60]. How-

ever, it has also been observed that the QSSA is too restrictive [6, 65], as mentioned in

the introduction of this chapter. Hence, other less restrictive versions of the QSSA were

proposed.

In particular, the tQSSA was proposed to obtain a reduction that is valid for a wider

range of parameters than the QSSA. The trick used in the tQSSA is to introduce a new

variable X̄ := X + C. Eq. (2.3) can then be rewritten as

dX̄

dt
= −k2C, X̄(0) = XT , (2.4a)

dC

dt
= k1[X̄ET − (X̄ + ET + km)C + C2], C(0) = 0, (2.4b)

where km = (k−1 + k2)/k1 is the Michaelis–Menten constant.

The tQSSA posits that C equilibrates quickly compared to X̄ [6, 65]. Under this as-

sumption we obtain the following differential–algebraic system

dX̄

dt
= −k2C, X̄(0) = XT , (2.5a)

0 = k1[X̄ET − (X̄ + ET + km)C + C2]. (2.5b)

Solving Eq. (2.5b) and noting that only the negative branch of solutions is stable, we can

express C in terms of X̄ to obtain a closed, first order differential equation for X̄,

dX̄

dt
= −k2

(X̄ + ET + km)−
√

(X̄ + ET + km)2 − 4X̄ET
2

, X̄(0) = XT . (2.6)
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Although the reduced equation is given in the X̄, C coordinates, it is easy to revert to

the original variables X,C. Therefore, from Eq. (2.6) one can recover an approximation to

the solution of Eq. (2.3).

2.1.1 Extension of the tQSSA

An essential step in the tQSSA reduction is the solution of the quadratic equation (2.5b).

A direct extension of this approach to networks of chemical reactions typically leads to

a coupled system of quadratic equations (see Eq. (3.18)) [11, 51, 52]. The solution of this

system may not be unique, and generally may need to be obtained numerically. However,

an approach introduced by Bennett, et al. [5], can be used to obtain the desired solution

from a system of linear equations.

In particular, we keep the tQSSA, but look for a reduced equation in the original

coordinates, X,C. Using X̄ = X + C to eliminate X̄ from Eq. (2.5b), we obtain

0 = k1 (X(ET − C)− kmC) . (2.7)

Eq. (2.7) and Eq. (2.5b) are equivalent, but Eq. (2.7) is linear in C, and leads to

C =
XET
km +X

, and X̄ = X +
XET
km +X

.

Using these formulas in Eq. (2.5a), and applying the chain rule gives

∂

∂X

(
X +

XET
km +X

)
dX

dt
= −k2

XET
km +X

=⇒ dX

dt
= −k2

(
1 +

kmET
(km +X)2

)−1 XET
km +X

.

(2.8a)

The reduced Eq. (2.8a) was obtained under the assumption that there is no significant

change in X̄ = X+C during the rapid equilibration. After equilibration, C = XET /(km+

X) (See Fig. 2.1). Therefore, the initial value for Eq. (2.8a), denote by X̂(0), can be
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Figure 2.1: Proper choice of the initial values of the reduced system. The empty circle at X̄ = 1, C = 0,
represents the initial value for the full system. The solid dot is the initial value of the reduced system. The
dash-dotted (red) line represents the attracting slow manifold. (a) The solid curve represents the numerical
solution of Eq. (2.4). The solution rapidly converges to the manifold, and evolves slowly along the manifold
after this transient. The dashed line satisfies X̄ = XT . The solid dot at the intersection of the dashed line
and the slow manifold represents the projection of the initial condition onto the slow manifold given by
Eq. (2.5b). Thus X̄(0) = XT is the proper initial condition for the reduced system (2.6). (b) The solid line
represents the numerical solution of Eq. (2.3). After a quick transient, the solution again converges to the
slow manifold. However, since the initial transient is not orthogonal to the X axis, the initial conditions
do not project vertically onto the slow manifold. Instead, the initial transient follows the line X +C = XT
(dashed), and the intersection of this line and the slow manifold represents the proper choice of the initial
value for Eq. (2.8a). (c) Comparison of solutions of Eq. (2.3) and the reduced system (2.8a). The graph in
the inset offers a magnified view of the boxed region, showing the quick transient to the slow manifold. We
used: XT = ET = k1 = k2 = 1, k−1 = 3, which, using Eq. (2.8b), gives the initial condition for the reduced
system, X̂(0) = 0.83.

obtained from the initial values X(0), C(0) using

X̂ (0) +
ET X̂ (0)
X̂ (0) + km

= X(0) + C(0) = XT . (2.8b)

Fig. 2.1c) shows that the solutions of the full system (2.3) and the reduced system (2.8a)

are close when initial conditions are mapped correctly.

The tQSSA implies that Eq. (2.4) can be approximated by Eq. (2.5). Therefore, to

explore the conditions under which Eq. (2.8a) is a valid reduction of Eq. (2.3) we need

to investigate the parameter regime in which the transition from Eq. (2.4) to Eq. (2.5) is

justified. In the next section we will review some of the well known results guaranteeing

the tQSSA.
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2.2 Sufficient conditions for the validity of tQSSA

2.2.1 Results of Borghans’s et al. [6]

In this subsection we will outline the arguments used by Borghans’s et al. in [6] to justify

the tQSSA on an isolated MM reaction. Recall that tQSSA in this case simply means an

approximation of Eq. (2.4) with Eq. (2.5).

To estimate the range of validity of the tQSSA one estimates the time scale of the fast

transient and the slow transient. With fast(slow) time scale we mean, the time scale on

which the fast(slow) variables change.

The first step is to estimate the fast time scale in which C changes, say tC . Underlying

assumptions are: (1) X̄ does not change significantly till C gets sucked in near the slow

manifold. In the calculation of tC we will replace the right hand side of Eq. (2.4a) with

0; (2) the second assumption is that C begins from an initial value of zero and remains

relatively small. The implication of this assumption is that we can ignore any terms like

C2 (Ignoring the C2 term is also sometime referred as Padè approximation). With this

assumption one can approximate the Eq. (2.4) in the fast time scale with

dX̄

dt
= 0,

dC

dt
= k1[XTET − (XT + ET + km)C]. (2.9)

The right hand side of Eq. (2.9) is linear in C and the coefficient of C is k1(XT + ET +

km). Thus, in some sense, one can say that in Eq. (2.9), C changes in the time scale of

1/(k1(XT + ET + km)) and this is what one calls the fast time scale, i.e.

tC =
1

k1(XT + ET + km)
.

To estimate the slow time scale tX̄ , we calculate the maximum change of X̄ divided by the
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maximum rate of change of total substrate after the fast transient. This can roughly set to

be XT /|dX̄/dt|max and with the quasi equilibrium value of C from Eq. (2.9), one obtains

tX̄ =
XT

|dX̄/dt|max
=
XT + ET + km

k2ET

After obtaining tC and tX̄ , Borghans’s et al. argue that a necessary and sufficient condition

for the validity of tQSSA is

ε =
tC
tX̄

=
k2

k1

ET
(XT + ET + km)2

� 1. (2.10)

In later sections (see Sections 2.2.3 and 4.2.1) we will see that one can arrive at the same

conclusion by using the GSPT.

2.2.2 Results on tQSSA obtained by Tzafriri [65]

In [65], the author produced another argument to go from Eq. (2.4) to Eq. (2.5). Tzafriri’s

argument is similar to Borghans’s argument, except that no assumption of Padè approxi-

mation is required. By using

C±(X̄) :=
(X̄ + ET + km)±

√
(X̄ + ET + km)2 − 4ET X̄

2
(2.11)

as the roots of the quadratic equation: k1[X̄ET − (X̄ + ET + km)C + C2] = 0, we can

rewrite the Eq. (2.4) as

dX̄

dt
= −k2C, X̄(0) = XT , (2.12a)

dC

dt
= k1(C − C+(X̄))(C − C−(X̄)), C(0) = 0. (2.12b)

Under the assumptions that C is the fast variable and X̄ is the slow variable, one can

assume that in the fast initial transient there has not been any significant change in X̄.

Hence, we can replace X̄ with XT in Eq. (2.12b) to get

dC

dt
= k1(C − C+(XT ))(C − C−(XT )).
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This is a Riccati equation and it can be solved analytically [57] to get

Ci(t) := C−(XT )
1− e−t/tC

1− C−(XT )
C+(XT )e

−t/tC

where tC is defined as

tC :=
1

k1 [C+(XT )− C−(XT )]
=

1
k1

√
(XT + ET + km)2 − 4ETXT

. (2.13)

Then, the author of [65] argued that a sufficient condition for the validity of tQSSA can

be obtained by requiring that the fractional decrease of X̄(t) during the initial transient

should be small,i.e.
XT − X̄(t)

XT
≤ k2Ci(t)

XT
t� 1.

And because the duration of the initial transient is of the order tC , one gets a new sufficient

condition of the validity of tQSSA by plugging in t = tC in the above equation

ε :=
k2C−(XT )

XT
tC � 1 (2.14)

where C−(.) and tC are defined in Eqs. (2.11) and (2.13), respectively. One can also write

Eq.(2.14) as

ε :=
tC
tX̄
� 1, where tX̄ :=

XT

k2C−(XT )
(2.15)

can be interpreted as the time scale for the slow variable.

Remark: It should be noted that the self-consistent approach used by Borghans, et al.

and Tzafriri, though intuitive, is somewhat heuristic. In the next two subsections we will

see the use of GSPT to obtain rigorous proofs of the above claims. The first one proves

Borgans’ result and the second one proves Tzafriri’s result.

Another limitation of the above self-consistency approaches is that they only seem to

work for an isolated Michaelis-Menten reaction and not for a system of simultaneous MM

reactions. In other words it is not obvious how to use a self-consistency approach when

dealing with more than two independent variables.
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2.2.3 Khoo and Hegland’s proof for tQSSA using GSPT [37]

As we discussed in Chapter 1, to apply the results of the GSPT on any dynamical system,

one frequently needs to rescale the variables, so that the given differential equation takes

the form as in Eq. (1.1). In [37], the authors worked with the following scaling. Using

tC =
1

k1(XT + ET + km)
, tX̄ =

XT + ET + km
k2ET

, ε =
tC
TX̄

=
k2

k1

ET
(XT + ET + km)2

,

(2.16)

the scaled variables are defined as

τ =
t

tC
, x̄(τ) =

X̄(t)
XT

, c(τ) =
C(t)
γ

, where γ =
XTET

XT + ET + km
.

With these new variables Eq. (2.4) takes the form

dx̄

dτ
= −εc,

dc

dτ
= x̄− XT x̄+ ET + km

XT + ET + km
c+

XTET
(XT + ET + km)2

c2.

This equation can be rescaled further, so that it will fit directly into the form of Eq. (1.1),

by a new time T = τ/ε.

dx̄

dT
= −c,

ε
dc

dT
= x̄− XT x̄+ ET + km

XT + ET + km
c+

XTET
(XT + ET + km)2

c2.

Therefore the results of the GSPT implies that ε� 1, where ε is defined in Eq. (2.16), is a

sufficient condition for the validity of tQSSA. As we mentioned earlier, this is exactly the

same condition claimed by Borghans, et al.
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2.2.4 Validity of Tzafriri’s claim using the GSPT

As discussed in Section 2.2.2, Tzafriri argued in [65] that the condition

ε :=
tC
tX̄
� 1 (2.17)

is a valid condition for reduction from Eq. (2.4) to Eq. (2.5), where tC and tX̄ were defined

as:

tX̄ :=
XT

k2C−(XT )
, tC :=

1
k1 [C+(XT )− C−(XT )]

=
1

k1

√
(XT + ET + km)2 − 4ETXT

,

(2.18)

where

C±(XT ) :=
(XT + ET + km)±

√
(XT + ET + km)2 − 4ETXT

2
.

However, the self consistent argument used by Tzafriri can be made rigorous by using

the techniques of the GSPT. And that is what we will do in this section. Once again,

variables will be scaled appropriately to recast the Eq. (2.4) into a form of Eq. (1.1). Using

C− as short for C−(XT ) we define the new variables as

τ :=
t

tC
, x̄(τ) :=

X̄(t)
XT

, c(τ) :=
C(t)
C−

. (2.19)

Let

r :=
4ETXT

(ET + km +XT )2
.

Then, by the definition of ε, tC , tX̄ and r we note that ε and r can be reformulated into the

form

ε =
tC
tX̄

=
k2

k1XT

1−
√

1− r√
1− r

, and r = 1− 1(
1 + εk1XTk2

)2 . (2.20)
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Recasting Eq. (2.4) in term of the new variables, as defined in Eq. (2.19), and using

Eq. (2.20) we get

dx̄

dτ
= −c,

ε
dc

dτ
= ε

k1XT

k2
c2 −

[
(ET + km +XT x̄)

(ET + km +XT )
√

1− r

]
c+

r

4(
√

1− r − (1− r))
x̄. (2.21)

We see that Eq. (2.21) has the structure of Eq. (1.1). Hence the results of the GSPT can

be applied for small ε. For two cases it will be meaningful to use the limit ε = 0.

Case 1: Suppose εk1XTk2
→ 0 in the limit ε→ 0. Eq. (2.20) then implies that r → 0. Also,

r/(
√

1− r − (1− r)) does not vanish because

lim
r→0

r

(
√

1− r − (1− r))
= lim

r→0

1
−1

2
√

1−r + 1
= 2.

Therefore, in this case, in the limit of small ε we can eliminated the derivative of c as well

as the c2 term from Eq. (2.21).

Case 2: Second case is that εk1XTk2
6→ 0 but εk1XTk2

stays bounded in the limit ε → 0.

Eq. (2.20) then implies that r stays bounded away from one. Hence, in this case too the

right hand side is well defined in the limit of ε→ 0. Though in this case we can not ignore

the c2 term.

Note that the above argument will break down if εk1XTk2
→∞ in the limit ε→ 0 possible

because that would imply that r → 1. In this limit the right hand side of Eq. (2.21) will

be undefined.
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Chapter 3
General description of the network in this

study

We start with an example application of our theory on a real network.

3.1 Analysis of a two-protein network

To illustrate the main ideas used in reducing the corresponding equations, we start with a

concrete example of two interacting proteins.

Fig. 3.1a) is a simplified depiction of the interactions between two regulators of the

G2-to-mitosis phase (G2/M) transition in the eukaryotic cell cycle [49]. Here, Y represents

MPF (M-phase promoting factor, a dimer of Cdc2 and cyclin B) and X represents Wee1 (a

kinase that phosphorylates and deactivates Cdc2 ). The proteins exist in a phosphorylated

state, Xp, Yp, and an unphosphorylated state, X,Y , with the phosphorylated state being

less active. The proteins X and Y deactivate each other, and hence act as antagonists. In
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Figure 3.1: A simplified description of interactions between two regulators of the G2-to-mitosis phase
(G2/M) transition in the eukaryotic cell cycle [49] (See text). (a) X and Y phosphorylate and deactivate
each other. For instance, the protein X exists in a phosphorylated Xp and unphosphorylated X state, and
the conversion X to Xp is catalyzed by Yp. The conversion of Xp to X is catalyzed by the phosphatase
E1. (b) Comparison of the numerical solution of Eq. (3.1) and Eq. (3.8). Here k1 = 5, k−1 = 1, k2 =
1, ET1 = 10, ET2 = 2, XT = 10, YT = 10.1 as in [11]. The initial values for Eq. (3.1) are X(0) = 10, Y (0) =
1.1, Xp(0) = 0, Yp(0) = 9, Cx(0) = 0, Cy(0) = 0, Cex(0) = 0, Cey(0) = 0, E1(0) = 10, E2(0) = 2. The initial

values of the reduced system, X̂p(0) = 0.12, Ŷp(0) = 0.83 are obtained by the projection onto the slow
manifold defined by Eq. (3.7).

this network E1 and E2 represent phosphatases that catalyze the conversion of Xp and Yp

to X and Y, respectively. Each dotted arrow in Fig. 3.1a) is associated with exactly one

MM type reaction in the list of reactions given below. The sources of the arrows act as

enzymes. Therefore, Fig. 3.1a) represents the following network of reactions

Yp +X
k1
�
k−1

Cx
k2−→ Xp + Yp, E1 +Xp

k1
�
k−1

Cex
k2−→ X + E1,

Xp + Y
k1
�
k−1

Cy
k2−→ Yp +Xp, E2 + Yp

k1
�
k−1

Cey
k2−→ Y + E2.

To simplify the exposition, we have assumed some homogeneity in the rates. Since the total

concentration of proteins and enzymes is assumed fixed, the system obeys the following set
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of constraints

XT = X(t) +Xp(t) + Cx(t) + Cy(t) + Cex(t),

ET1 = Cex(t) + E1(t),

YT = Y (t) + Yp(t) + Cx(t) + Cy(t) + Cey(t),

ET2 = Cey(t) + E2(t)

for t ≥ 0, where XT , YT , E
T
1 , E

T
2 are constant and represent the total concentrations of the

respective proteins and enzymes. Along with these constraints the concentrations of the

ten species in the reaction evolve according to

dXp

dt
= −k1 (YT − Yp − Cx − Cy − Cey)︸ ︷︷ ︸

=Y

Xp − k1Xp (ET1 − Cex)︸ ︷︷ ︸
=E1

+k−1C
e
x + (k−1 + k2)Cy + k2Cx,

dYp
dt

= −k1 (XT −Xp − Cx − Cy − Cex)︸ ︷︷ ︸
=X

Yp − k1Yp (ET2 − Cey)︸ ︷︷ ︸
=E2

+k−1C
e
y + (k−1 + k2)Cx + k2Cy,

dCx
dt

= k1 (XT −Xp − Cx − Cy − Cex)︸ ︷︷ ︸
=X

Yp − (k−1 + k2)Cx, (3.1)

dCy
dt

= k1 (YT − Yp − Cx − Cy − Cey)︸ ︷︷ ︸
=Y

Xp − (k−1 + k2)Cy,

dCex
dt

= k1Xp (ET1 − Cex)︸ ︷︷ ︸
=E1

−(k−1 + k2)Cex,

dCey
dt

= k1Yp (ET2 − Cey)︸ ︷︷ ︸
=E2

−(k−1 + k2)Cey ,

with initial values

Cx(0) = 0, Cy(0) = 0, Cex(0) = 0, Cey(0) = 0. (3.2)

The initial values of Xp and Yp are some arbitrary positive numbers.
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Following the approach in the previous chapter, we reduce Eq. (3.1) to a two-dimensional

system. Assuming the validity of the tQSSA, we obtain an approximating differential–

algebraic system. Solving the algebraic equations, which are linear in the original coordi-

nates, leads to a closed, reduced system of ODEs. The parameter regime for the validity

of the tQSSA will be discussed in the next chapter.

3.1.1 New coordinates and reduction under the tQSSA

To extend the tQSSA we define a new set of variables by adding the concentration of the

free state of a species to the concentrations of all intermediate complexes formed by that

particular species as reactant [11],

X̄p := Xp + Cy + Cex,

Ȳp := Yp + Cx + Cey .

(3.3)

Under the tQSSA, the intermediate complexes equilibrate quickly compared to the

variables X̄p and Ȳp. In the coordinates defined by Eq. (3.3), Eq. (3.1) takes the form

dX̄p

dt
= k2Cx − k2C

e
x, (3.4a)

dȲp
dt

= k2Cy − k2C
e
y , (3.4b)

0 = k1(XT − X̄p − Cx)(Ȳp − Cx − Cey)− (k−1 + k2)Cx, (3.4c)

0 = k1(YT − Ȳp − Cy)(X̄p − Cy − Cex)− (k−1 + k2)Cy, (3.4d)

0 = k1(X̄p − Cy − Cex)(ET1 − Cex)− (k−1 + k2)Cex, (3.4e)

0 = k1(Ȳp − Cx − Cey)(ET2 − Cey)− (k−1 + k2)Cey . (3.4f)

Solving the coupled system of quadratic equations (3.4c-3.4f) in terms of X̄p, Ȳp appears

to be possible only numerically, as it is equivalent to finding the roots of a degree 16
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polynomial [11]. However, since we are interested in the dynamics of Xp and Yp, we can

proceed as in the previous chapter (see Section 2.1.1): Using Eq. (3.3) in (3.4c-3.4f) gives a

linear system in Cx, Cy, C
e
x, C

e
y . Defining km := (k−1 + k2)/k1, this system can be written

in matrix form as

Yp + km Yp Yp 0

Xp Xp + km 0 Xp

0 0 Xp + km 0

0 0 0 Yp + km





Cx

Cy

Cex

Cey


=



Yp(XT −Xp)

Xp(YT − Yp)

XpE
T
1

YpE
T
2


. (3.5)

The coefficient matrix above is invertible and Eq. (3.5) can be solved to obtain Cx,Cy,Cex,Cey

as functions ofXp,Yp. Denoting the resulting solutions as Cx(Xp, Yp),Cy(Xp, Yp), Cex(Xp, Yp),

Cey(Xp, Yp) and using them in Eqs.(3.4a-3.4b) we obtain the following

d

dt

 X̄p

Ȳp

 = k2

 Cx(Xp, Yp)− Cex(Xp, Yp)

Cy(Xp, Yp)− Cey(Xp, Yp)

 .
Reverting to the original coordinates, Xp and Yp, and using the chain rule gives a closed

system

d

dt

 Xp + Cy(Xp, Yp) + Cex(Xp, Yp)

Yp + Cx(Xp, Yp) + Cey(Xp, Yp)

 = k2

 Cx(Xp, Yp)− Cex(Xp, Yp)

Cy(Xp, Yp)− Cey(Xp, Yp)

 =⇒

 1 + ∂Cy
∂Xp

+ ∂Cex
∂Xp

∂Cy
∂Yp

+ ∂Cex
∂Yp

∂Cx
∂Xp

+ ∂Cey
∂Xp

1 + ∂Cx
∂Yp

+ ∂Cey
∂Yp

 d

dt

 Xp

Yp

 = k2

 Cx(Xp, Yp)− Cex(Xp, Yp)

Cy(Xp, Yp)− Cey(Xp, Yp)

 .
(3.6)

The initial values of Eq. (3.6) are determined by projecting the initial values, given by

Eq. (3.2), onto the slow manifold. Unfortunately, they can be expressed only implicitly.

The reduction from Eq. (3.1) to Eq. (3.6) was obtained under the assumption that X̄p =

Xp + Cy + Cex and Ȳp = Yp + Cx + Cey are slow variables, and hence constant during the
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transient to the slow manifold. Therefore the projections of the initial conditions onto the

slow manifold, X̂p(0) and Ŷp(0), are related to the original initial conditions as

X̂p(0) + Cy(X̂p(0), Ŷp(0)) + Cex(X̂p(0), Ŷp(0)) = Xp(0) + Cy(0) + Cex(0) = XT ,

Ŷp(0) + Cx(X̂p(0), Ŷp(0)) + Cey(X̂p(0), Ŷp(0)) = Yp(0) + Cx(0) + Cey(0) = YT .

(3.7)

We have therefore shown that, if the tQSSA holds, and if the coefficient matrix on the

left hand side of Eq. (3.6) is invertible, then

d

dt

 Xp

Yp

 = k2

 1 + ∂Cy
∂Xp

+ ∂Cex
∂Xp

∂Cy
∂Yp

+ ∂Cex
∂Yp

∂Cx
∂Xp

+ ∂Cey
∂Xp

1 + ∂Cx
∂Yp

+ ∂Cey
∂Yp


−1  Cx(Xp, Yp)− Cex(Xp, Yp)

Cy(Xp, Yp)− Cey(Xp, Yp)

 ,
(3.8)

with initial value obtained by solving Eq. (3.7), is a valid approximation of Eq. (3.1).

Fig. 3.1b) shows that the solutions of the two systems are indeed close, after an initial

transient.

3.1.2 Comparison of our reduction with MM differential equations

Lets compare Eq. (3.8) with the equation one generally sees in the literature to model

the network discussed in this section. For example, in [64] the following system of MM

differential equations has been used.

dXp

dt
= k2Yp

XT −Xp

km +XT −Xp
− k2E

T
1

Xp

km +Xp
, (3.9a)

dYp
dt

= k2Xp
YT − Yp

km + YT − Yp
− k2E

T
2

Yp
km + Yp

. (3.9b)

In Fig. 3.2 we compare the right hand side of Eq. (3.9a) and the first coordinate of the right

hand side of Eq. (3.8). The difference in two functions strongly suggests that the use of MM

Menten differentials equation on a system of coupled MM reactions is not consistent with
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Figure 3.2: (a),(b): Plot of the the first coordinate of the right hand side of Eq. (3.8) from two different
viewing angles. (c) Plot of the right hand side of Eq. (3.9a). The viewing angle for subfigures (b) and (c)
are same. All the parameters are same as in Fig. 3.1. The difference in shape of (b) and (c) suggest that
Eq. (3.9) is not consistent with the Law of Mass Action.

the Law of Mass Action. In particular, Eq. (3.9a) has sigmoidal shape where as Eq. (3.8)

do not.

3.2 The general problem

In this section we describe a general class of protein interaction networks to which the

reduction schemes described in the previous section can be applied. We again assume that

the proteins interact via MM type reactions, and obtain a reduction under the generalized

tQSSA [11]. We will follow the steps that lead to the reduced systems in the previous

section: After describing the model and the conserved quantities, we recast the equations

in terms of the “total” protein concentrations (cf. Section 3.1.1). Under a generalized

tQSSA, these equations can be reduced to an differential-algebraic system. We show that

the algebraic part of the system is linear in the original coordinates (cf. sections 2.1.1

and 3.1.1), so that the reduced system can be described by a differential equation with
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3.2. THE GENERAL PROBLEM

Figure 3.3: A section of the network illustrating the terminology used in describing protein interaction
networks. Each shaded region represents a node and encompasses either an enzyme or a single protein that
is part of an MM type reaction. Each dotted arrow represents an edge in the network. The solid arrows
represent transitions within the nodes, and do not define an edge in the network.

dimension equal to the number of interacting proteins.

Other examples of biologically motivated network that to which this scheme can be

applied can be found in [10, 13, 23, 32, 49, 50, 61, 64].

3.2.1 Description of the network

The network of reaction we consider can be described in terms of nodes and edges. The

nodes represent enzymes as well as proteins, while the edges represent the catalytic effect

one species has on another. Proteins are assumed to come in two states, phosphorylated and

unphosphorylated. Both states are represented by a single node in this network. Fig. 3.3

and the following description make these definitions precise.
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3.2. THE GENERAL PROBLEM

In a network of n interacting proteins, and n associated enzymes, we define the follow-

ing:

Nodes: The two types of nodes in this network represent proteins (P-type nodes) and

enzymes (E-type nodes). Each protein can exist in either an active or inactive form. The

inactive form of the ith protein is denoted by Ui, and the active form by Pi. The ith

P-type node is formed by grouping together Ui and Pi. In addition there are n species of

enzymes, Ei, which exist in only one state.

Edges: All edges in the network are directed, and represent the catalytic effect of a

species in a MM type reaction. There are two types of edges: PP-type edges connect two

P-type nodes, while EP-type edges connect E-type nodes to P-type nodes. In particular,

a PP-type edge from node i to node j represents the following MM type reaction in which

Pi catalyzes the conversion of Uj to the active form Pj ,

Pi + Uj

k1
ij

�
k−1
ij

CUij
k2
ij−→ Pj + Pi. (3.10a)

Note that autocatalysis is possible. The rate constants k1
i,j , k

−1
i,j , k

2
i,j , associated to each

edge, can be grouped into weighted “connectivity matrices”

K1 =
[
k1
ij

]
n×n

, K−1 =
[
k−1
ij

]
n×n

, K2 =
[
k2
ij

]
n×n

.

In the absence of an edge, that is, when Pi does not catalyze the phosphorylation of Uj ,

the corresponding (i, j)-th entry in K1,K−1, and K2 is set to zero.

EP-type edges are similar to PP-type edges, with enzymes acting as catalysts. To each

pair of enzyme, Ei, and protein, Pj , we associate three rate constants l1i,j , l
−1
i,j , l

2
i,j of the

corresponding reaction in which Ei is a catalyst in the conversion of Pj into Uj ,

Ei + Pj

l1ij
�
l−1
ij

CEij
l2ij−→ Uj + Ei. (3.10b)
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The rate constants can again be arranged into matrices

L1 =
[
l1ij

]
n×n

, L−1 =
[
l−1
ij

]
n×n

, L2 =
[
l2ij

]
n×n

,

with zero entries again denoting the absence of interactions.

These definitions imply that the active form of one protein always catalyzes the produc-

tion of the active form of another protein. This assumption excludes certain interactions

(see Section 3.2.7 for an example). However, the reduction is easiest to describe under

these assumptions, and this setting does include a lot, if not all, of the enzymatic network

considered in literature.

For notational convenience we define U = [U1, U2, . . . , Un]t, P = [P1, P2, . . . , Pn]t, and

E = [E1, E2, . . . , En]t, and arrange intermediate complexes into matrices,

CU =



CU11

CU21

...

CUn1

CU12

CU22

...

CUn2

. . .

CU1n

CU2n
...

CUnn


, CE =



CE11

CE21

...

CEn1

CE12

CE22

...

CEn2

. . .

CE1n

CE2n
...

CEnn


.

Initially all intermediate complexes are assumed to start at zero concentration. Therefore,

any intermediate complex corresponding to a reaction that has zero rates, will remain at

zero concentration for all time.

For instance, in the case of the two protein example discussed in Section 3.1,

we have

CU =

 0

Cy

Cy

0

 , CE =

 Cex

0

0

Cey

 , U =

 X

Y

 , P =

 Xp

Yp

 , E =

 E1

E2

 ,
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K1 =


k1

k1

 , K−1 =


k−1

k−1

 , K2 =


k2

k2

 ,
L1 =

 l1

l1

 , L−1 =

 l−1

l−1

 , L2 =

 l2

l2

 .

3.2.2 Inherent constraints on this network

Assuming that the system is isolated from the environment implies that the total concen-

tration of each enzyme, ETi , remains constant. Therefore,

Ei +
n∑
s=1

CEis = ETi , i ∈ {1, 2, ..., n}. (3.11a)

Similarly, for each protein the total concentration, UTi , of its inactive and active form, and

the intermediate complexes is constant,

Ui + Pi +

(
n∑
s=1

CUis +
n∑
r=1

CUri − CUii

)
+

n∑
r=1

CEri = UTi , i ∈ {1, 2, ..., n}. (3.11b)

Let

Vn = [ 1 1 . . . 1 ]t︸ ︷︷ ︸
n times

, ET = [ ET1 ET2 . . . ETn ]t, and UT = [ UT1 UT2 . . . UTn ]t,

and denote the n × n identity matrix by In. In addition, we use the Hadamard product

of matrices, denoted by ∗, to simplify notation1. Constraints (3.11) can now be written

concisely in matrix form

ET = E + CEVn,

UT = U + P + CUVn + CtUVn − (In ∗ CU )Vn + CtEVn.

1For instance, the Hadamard product of matrices A =

»
a b
c d

–
, and B =

»
e f
g h

–
, is A ∗ B =»

ae bf
cg dh

–
.
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3.2.3 ODE associated with this network

Applying the Law of Mass Action to the system of reactions described by (3.10a-3.10b)

yields a (2n2 + n) dimensional dynamical system,

dPi
dt

=
n∑
s=1

(
− k1

isPiUs + (k−1
is + k2

is)C
U
is

)

+
n∑
r=1

(
k2
riC

U
ri − l1riErPi + l−1

ri C
E
ri

)
, Pi(0) = p0

i ,

dCUij
dt

= k1
ijPiUj − (k−1

ij + k2
ij)C

U
ij , CUij (0) = 0. (3.12)

dCEij
dt

= l1ijEiPj − (l−1
ij + l2ij)C

E
ij , CEij (0) = 0,

Due to the constraints (3.11a,3.11b), Ui, Ei, are affine linear function of Pi, CUij , C
E
ij and

can be used to close Eq. (3.12). Our aim is to reduce this 2n2 + n dimensional system to

an n dimensional system involving only Pi.

3.2.4 The total substrate coordinates

In this section we generalize the change of variables to the “total” protein concentrations.

These variables will act as the slow variables in our differential equations. Let

P̄i := Pi +
n∑
s=1

CUis +
n∑
r=1

CEri , i ∈ {1, 2, ..., n}, (3.13)

so that Eq. (3.12) takes the form

dP̄i
dt

=
∑n

r=1 k
2
riC

U
ri −

∑n
r=1 l

2
riC

E
ri , (3.14a)

dCUij
dt

= k1
ijPiUj − (k−1

ij + k2
ij)C

U
ij , (3.14b)

dCEij
dt

= l1ijEiPj − (l−1
ij + l2ij)C

E
ij . (3.14c)
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To close this system we use Eqs. (3.11a,3.11b) with Eq. (3.13), to obtain

Ui = UTi − Pi −
n∑
s=1

CUis −
n∑
r=1

(
CUri + CEri

)
+ CUii

= UTi − P̄i −
n∑
r=1

CUri + CUii ,

Ei = ETi −
n∑
s=1

CEis , (3.15)

Pi = P̄i −
n∑
s=1

CUis −
n∑
r=1

CEri .

Defining P̄ := (P̄1, P̄2, ..., P̄n)t, Eq. (3.13) can be written in vector form as P̄ = P +CUVn+

CtEVn, and Eqs. (3.14) and (3.15) can be written in matrix form as

dP̄

dt
= (K2 ∗ CU )tVn − (L2 ∗ CE)tVn, (3.16a)

dCU
dt

= K1 ∗ (PU t)− (K−1 +K2) ∗ CU , (3.16b)

dCE
dt

= L1 ∗ (EP t)− (L−1 + L2) ∗ CE , (3.16c)

where

U = UT − P − CUVn − CtUVn − CtEVn + (In ∗ CU )Vn

= UT − P̄ − CtUVn + (In ∗ CU )Vn, (3.17a)

E = ET − CEVn, (3.17b)

P = P̄ − CUVn − CtEVn. (3.17c)

Eqs. (3.14–3.15) and (3.16–3.17) are different representations of the same set of reactions.

Both forms are helpful in understanding different properties of the dynamics: Eq. (3.14–

3.15) will be used to examine the conditions under which separation of time scales holds,

while Eq. (3.16-3.17) will be used to prove the attractivity of the slow manifold and obtain

the reduced equations.
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3.2.5 The tQSSA and the resulting reduced equations

The general form of the tQSSA states that the intermediate complexes, CU and CE , equi-

librate faster than P̄ . This assumption implies that, after a fast transient, Eq. (3.16) can

be approximated by the differential-algebraic system

dP̄

dt
=(K2 ∗ CU )tVn − (L2 ∗ CE)tVn, (3.18a)

0 =K1 ∗ (PU t)− (K−1 +K2) ∗ CU , (3.18b)

0 =L1 ∗ (EP t)− (L−1 + L2) ∗ CE . (3.18c)

In particular, according to GSPT (see Chapter 1), if the slow manifold

M0 =

(P̄ , CU , CE)
∣∣∣∣ 0 = K1 ∗ (PU t)− (K−1 +K2) ∗ CU ;

0 = L1 ∗ (EP t)− (L−1 + L2) ∗ CE

 (3.19)

is normally hyperbolic and stable, then the solutions of Eq. (3.16) are attracted to and

shadow solutions on M0. Later on we will show that the above slow manifold is always

normally hyperbolic and stable (see Section 4.1).

If we consider the system (3.18b,c) entry-wise then it consists of 2n2 coupled quadratic

equations in 2n2+n variables, namely the entries of P̄ , CU , CE (note that U,E are functions

of P̄ , CU , CE). As discussed in Section 3.1.1, we can avoid solving coupled quadratic

equations by seeking a solution in terms of P instead of P̄ . Using Eq. (3.17a,b) we eliminate

E,U from Eqs. (3.18b,c) to obtain

K1 ∗
[
P
(
V t
nC

t
U + V t

nCU − V t
n(In ∗ CU )

)
+ PV t

nCE
]

+ (K−1 +K2) ∗ CU

= K1 ∗
[
P
(
U tT − P t

)]
, (3.20a)

L1 ∗
(
CE
(
VnP

t
))

+ (L−1 + L2) ∗ CE = L1 ∗
(
ETP

t
)
. (3.20b)

Although complicated, Eq. (3.20) is linear in the entries of CU and CE . The following

Lemma, proved in Section 3.2.6, shows that the equations are also solvable.
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Lemma 3.2.1 Suppose K1 = [k1
ij ], K−1 = [k−1

ij ], K2 = [k2
ij ], L1 = [l1ij ], L−1 = [l−1

ij ],

L2 = [l2ij ] ∈ Rn×n are real matrices with non-negative entries. Furthermore, assume that

for any pair i, j ∈ {1, 2, ..., n} either k1
ij = k−1

ij = k2
ij = 0, or all these coefficients are

positive, and similarly for the coefficients l1ij , l
−1
ij , and l2ij. If UT , ET , P ∈ Rn×1

+ are real

vectors with positive entries, and Vn = [1 1 · · · 1]t is a vector of size n, then Eq. (3.20) has

a unique solution for CU , CE ∈ Rn×n in terms of P .

We denote the solution of Eq. (3.20), guaranteed through Lemma 3.2.1, by C̃U (P ), C̃E(P ).

This solution can be used to close Eq. (3.18a), by using Eq. (3.17c) to obtain

dP̄

dt
=

dP

dt
+
d

dt

(
C̃U (P )Vn

)
+
d

dt

(
C̃E(P )tVn

)
=

[
I +

∂

∂P

(
C̃U (P )Vn

)
+

∂

∂P

(
C̃E(P )tVn

)] dP
dt

(3.21)

With Eq. (3.18a), this leads to a closed system in P ,[
I +

∂

∂P

(
C̃U (P )Vn

)
+

∂

∂P

(
C̃E(P )tVn

)] dP
dt

= (K2 ∗ C̃U (P ))tVn − (L2 ∗ C̃E(P ))tVn.

(3.22)

The initial value of Eq. (3.22), denoted by P̂ (0), must be chosen as the projection of the

initial value P (0) of Eq. (3.12), onto the manifold M0. The reduction is obtained under

the assumption that during the initial transient there has not been any significant change

in P̄ = P + CUVn + CtEVn. Therefore the projection, P̂ (0), of the initial conditions onto

the slow manifold is related to the original initial conditions, U(0), P (0), CU (0), CE(0), by

P̂ (0) + C̃U (P̂ (0))Vn + C̃tE(P̂ (0))Vn = P (0) + CU (0)Vn + CtE(0)Vn = P (0).

In summary, if tQSSA is valid, then Eq. (3.22) is a reduction of Eq. (3.12).
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3.2.6 Proof of Lemma 3.2.1

Note that the unknowns in Eq. (3.20) are matrices and the structure of the equation is some-

what similar to a Lyapunov equation, AX+XB = C, where the matrices A,B,C are known

and X is unknown. A standard approach to solving Lyapunov equations is to vectorize the

matrices (see [31]), resulting in an equation of the type
[
(Im ⊗A) + (Bt ⊗ In)

]
vec (X) =

vec (C) (see Appendix B for the definition of term vectorize and the vec operator and the

hat ˆ operator). Proving solvability then essentially reduces to proving the non-singularity

of the coefficient matrix
[
(Im ⊗A) + (Bt ⊗ In)

]
. We will use this approach to show the

solvability of Eq. (3.20).

In the proof of this Lemma we first assume that all possible reactions occur at nonzero

rates so that all entries in the matrices K1,K2,K−1, L1, L2, and L−1 are strictly positive.

The result is then generalized to the case when some reaction rates are zero, so that not

all reactions occur.

Note that Eq. (3.20b) is uncoupled from Eq. (3.20a). (The notations and terms used

below are described in Appendix B.) Using Theorems B.1 and B.2, we vectorize Eq. (3.20b)

to obtain

vec
[
L1 ∗

(
CE
(
VnP

t
))

+ (L−1 + L2) ∗ CE
]

= vec
[
L1 ∗

(
CE
(
VnP

t
))]

+ vec [(L−1 + L2) ∗ CE ]

= L̂1 vec
[
CE
(
VnP

t
)]

+ (L̂−1 + L̂2) vec (CE)

= L̂1

(
PV t

n ⊗ In
)

vec (CE) + (L̂−1 + L̂2) vec (CE)

=
[
L̂1

(
PV t

n ⊗ In
)

+ (L̂−1 + L̂2)
]

vec (CE). (3.23)

The following lemma shows that the matrix multiplying vec (CE) in this equation is in-

vertible.
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Lemma 3.2.2 If A,B ∈ Rn2×n2

+ are diagonal matrices with positive entries on the diago-

nal, Y ∈ Rn×1
+ is a column vector with positive entries , Vn = [1 1 · · · 1]t is a column vector

of size n, and In is the n× n identity matrix, then the n2 × n2 matrix

D = A
(
Y V t

n ⊗ In
)

+B

is invertible.

Proof: Invertibility of D is equivalent to invertibility of B−1D. Therefore, it is sufficient

to prove the result with B = In2×n2 =: I, so that D = A
(
Y V t

n ⊗ In
)

+ I. We will show

that A
(
Y V t

n ⊗ In
)

can not have −1 as an eigenvalue. Since I commute with every matrix,

it will follow that D cannot have 0 as an eigenvalue and we will be done. Let

A =



A1

A2

. . .

An


, Y =



y1

y2

...

yn


,

where Ai ∈ Rn×n
+ , i ∈ {1, 2, ..., n} are diagonal matrices, and yi ∈ R+. Now

Y V t
n ⊗ In =



y1

y2

...

yn

y1

y2

...

yn

...

y1

y2

...

yn


⊗ In =



y1In

y2In
...

ynIn

y1In

y2In
...

ynIn

...

y1In

y2In
...

ynIn


.

This implies that

A
(
Y V t

n ⊗ In
)

=



y1A1

y2A2

...

ynAn

y1A1

y2A2

...

ynAn

...

y1A1

y2A2

...

ynAn


. (3.24)
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Suppose λ is an eigenvalue of A
(
Y V t

n ⊗ In
)
, and

X̄ =



X1

X2

...

Xn


,

Xi ∈ Cn×1, i ∈ {1, 2, ..., n} is one corresponding eigenvector. Using Eq. (3.24) we have

y1A1

y2A2

...

ynAn

y1A1

y2A2

...

ynAn

...

y1A1

y2A2

...

ynAn





X1

X2

...

Xn


= λ



X1

X2

...

Xn


.

This implies that for all k ∈ {1, 2, ..., n},

y1A1k

y2A2k

...

ynAnk

y1A1k

y2A2k

...

ynAnk

...

y1A1k

y2A2k

...

ynAnk





X1k

X2k

...

Xnk


= λ



X1k

X2k

...

Xnk


, (3.25)

where Aik is (k, k)-th entry in the matrix Ai, and Xik is the kth entry in the vector Xi.

Therefore, if λ is an eigenvalue of A
(
Y V t

n ⊗ In
)

then it must be an eigenvalue of one of

its n× n principal submatrices which have the form of the coefficient matrix in Eq. (3.25)

and whose eigenvalues we know are either zero or
∑n

i=1 yiAik (see reason in the footnote2).

Hence λ can not be −1, and hence D cannot have a zero eigenvalue. �

2We have 26664
y1A1k

y2A2k

...
ynAnk

y1A1k

y2A2k

...
ynAnk

...

y1A1k

y2A2k

...
ynAnk

37775
t 26664

1
1
...
1

37775 =

nX
i=1

yiAik

26664
1
1
...
1

37775 .
Since the coefficient matrix in the above equation is rank one,

Pn
i=1 yiAik is the only non-zero eigenvalue.
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This settles the problem of solvablity of CE in Eq. (3.20b). We can use this solution

to eliminate CE from Eq. (3.20a). Rewriting Eq. (3.20a) with all the known terms on the

right hand side we obtain

K1 ∗
[
P
(
V t
nC

t
U + V t

nCU − V t
n(In ∗ CU )

)]
+ (K−1 +K2) ∗ CU

= K1 ∗
[
P
(
U tT − P t

)]
−K1 ∗

[
PV t

nCE
]
. (3.26)

We can write

vec
[
P
(
V t
nC

t
U + V t

nCU − V t
n(In ∗ CU )

)]
= (In ⊗ P ) vec

[
V t
nC

t
U + V t

nCU − V t
n(In ∗ CU )

]
.

(3.27)

Since (CUVn)t is a row vector, we have vec [(CUVn)t] = vec (CUVn). Therefore, using

Theorems B.1 and B.2 we get

vec (V t
nC

t
U ) = vec (CUVn) = (V t

n ⊗ In) vec (CU ),

vec (V t
nCU ) = (In ⊗ V t

n) vec (CU ),

vec
(
V t
n(In ∗ CU )

)
= (In ⊗ V t

n) vec (In ∗ CU ) = (In ⊗ V t
n)În vec (CU ).

Plugging these in Eq. (3.27) we get

vec
[
P
(
V t
nC

t
U + V t

nCU − V t
n(In ∗ CU )

)]
= (In ⊗ P )

[
(V t
n ⊗ In) + (In ⊗ V t

n)− (In ⊗ V t
n)În

]
vec (CU )

=
[
(In ⊗ P )(V t

n ⊗ In) + (In ⊗ PV t
n)− (In ⊗ PV t

n)În
]

vec (CU ).

The vectorized form of the left hand side of Eq. (3.26) is[
K̂1

{
(In ⊗ P )(V t

n ⊗ In) + (In ⊗ PV t
n)− (In ⊗ PV t

n)În
}

+ (K̂−1 + K̂−1)
]

vec (CU ).

The following Lemma shows that the matrix mutliplying vec (CU ) in this expression is

invertible.
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Lemma 3.2.3 If A,B ∈ Rn2×n2

+ are diagonal matrices with positive entries on the diago-

nal, Y ∈ Rn×1
+ is a column vector with positive entries, Vn = [1 1 · · · 1]t is a column vector

of size n, then the n2 × n2 matrix

D = A
(

(In ⊗ Y )
(
V t
n ⊗ In

)
+
(
In ⊗ Y V t

n

)
−
(
In ⊗ Y V t

n

)
În

)
+B

is invertible.

Proof: The invertibility of D is equivalent to invertibility of A−1D. We can therefore

assume that A = In2 . Now

(
In ⊗ Y

)(
V t
n ⊗ In

)

=



y1

...

yn

0

...

0

. . .

0

...

0

y1

...

yn

0

...

0

. . .

0

...

0

. . .

y1

...

yn

0

...

0

. . .

0

...

0

0

...

0

y1

...

yn

. . .

0

...

0

0

...

0

y1

...

yn

. . .

0

...

0

. . .

0

...

0

y1

...

yn

. . .

0

...

0

. . .

. . .

0

...

0

0

...

0

. . .

y1

...

yn

0

...

0

0

...

0

. . .

y1

...

yn

. . .

0

...

0

0

...

0

. . .

y1

...

yn



,
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and

(
In ⊗ Y V t

n

)

=



y1

...

yn

y1

...

yn

. . .

y1

...

yn

y1

...

yn

y1

...

yn

. . .

y1

...

yn

. . .

y1

...

yn

y1

...

yn

. . .

y1

...

yn



.

So,

(
In ⊗ Y V t

n

)
(In2 − În)

=



0

...

0

y1

.

..

yn

. . .

y1

.

..

yn

y1

...

yn

0

...

0

. . .

y1

...

yn

. . .

y1

...

yn

y1

...

yn

. . .

0

...

0



,
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and

(In ⊗ Y )
(
V t
n ⊗ In

)
+
(
In ⊗ Y V t

n

)
−
(
In ⊗ Y V t

n

)
În

=



y1

...

yn

y1

...

yn

. . .

y1

...

yn

y1

...

yn

0

...

0

. . .

0

...

0

. . .

y1

...

yn

0

...

0

. . .

0

...

0

0

...

0

y1

...

yn

. . .

0

...

0

y1

...

yn

y1

...

yn

. . .

y1

...

yn

. . .

0

...

0

y1

...

yn

. . .

0

...

0

. . .

0

...

0

0

...

0

. . .

y1

...

yn

0

...

0

0

...

0

. . .

y1

...

yn

. . .

y1

...

yn

y1

...

yn

. . .

y1

...

yn



.

Clearly, its sufficient to show the invertibility of D with y1 = y2 = ... = yn = 1. We
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examine

D −B =



1

...

1

1

...

1

. . .

1

...

1

1

...

1

0

...

0

. . .

0

...

0

. . .

1

...

1

0

...

0

. . .

0

...

0

0

...

0

1

...

1

. . .

0

...

0

1

...

1

1

...

1

. . .

1

...

1

. . .

0

...

0

1

...

1

. . .

0

...

0

. . .

0

...

0

0

...

0

. . .

1

...

1

0

...

0

0

...

0

. . .

1

...

1

. . .

1

...

1

1

...

1

. . .

1

...

1



.

Now let

V =
[

v11 . . . v1n v21 . . . v2n . . . vn1 . . . vnn

]t
be an eigenvector of D corresponding to a zero eigenvalue. We aim to show that V = 0.

Let

B = diag
[
b11 · · · b1n b21 · · · b2n · · · bn1 · · · bnn

]
.

Then for each i, j ∈ {1, 2, ..., n},

n∑
s=1

vis +
n∑
r=1
r 6=i

vri

︸ ︷︷ ︸
:=−λi

= −bijvij . (3.28)

Note that the left hand side of this equation, which we denote by −λi, is independent of
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j. Hence, for all i, j ∈ {1, 2, ..., n} we obtain vij = λi
bij

. Using this observation in Eq. (3.28)

we get

n∑
s=1

λi
bis

+
n∑
r=1
r 6=i

λr
bri

= −λi, ∀ i ∈ {1, 2, ..., n}.

This equality can be written in matrix form as

1 +
∑n

s=1
1
b1s

1
b21

. . . 1
bn1

1
b12

1 +
∑n

s=1
1
b2s

. . . 1
bn2

. . .

1
b1n

1
b2n

. . . 1 +
∑n

s=1
1
bns





λ1

λ2

...

λn


= 0

The coefficient matrix is diagonally dominant along the columns, and hence invertible.

This implies that λi = 0, and so vij = 0. �

Lemmas 3.2.2 and 3.2.3 together complete the proof of Lemma 3.2.1 for the case when

all the entries in the connectivity matrices are strictly positive. This proof can be extended

to general connectivity matrices, as stated in the Lemma 3.2.1 in the following way.

Suppose that some of the entries in the connectivity matrix are zero. Let,

IK = [IK(i, j)]ni,j=1 such that IK(i, j) =


1 if k1

ij , k
−1
ij , k

2
ij are nonzero,

0 if k1
ij = k−1

ij = k2
ij = 0,

(3.29a)

IL = [IL(i, j)]ni,j=1 such that IL(i, j) =


1 if l1ij , l

−1
ij , l

2
ij are nonzero,

0 if l1ij = l−1
ij = l2ij = 0.

(3.29b)

Hence IK and IL are the unweighted connectivity matrices of the reaction network. The

matrices of intermediate variables, corresponding to existing connections, now have the
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Figure 3.4: A hypothetical network for which the reduction described in sections 3.2.4–3.2.5 leads to a
differential–algebraic system of equations. The concentrations of the intermediate complexes appear in a
nonlinear way in the resulting algebraic equations. A further reduction to a form involving only the protein
concentrations is therefore not apparent.

form

CIKU = IK ∗ CU CILE = IL ∗ CL. (3.30)

Replacing CU with CIKU and CE with CIEE in Eq. (3.20), one can easily check that the

solution of the non-zero entries of CIKU and CIEE does not depend on the zero entries of K1,

K2, K−1, L1, L2, L−1. This observation completes the proof of Lemma 3.2.1.

3.2.7 An example network where the above reduction scheme fails

We end this chapter by pointing out that not all enzymatic networks belong to the class we

described. For example, our full reduction scheme does not work for the network depicted

in Fig. 3.4.

This network is a slight modification of the network in Fig. 3.1a). Although the tQSSA

can still be justified (we will see that in the next chapter), the algebraic part of the reduced
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equations cannot be solved using our approach. These equations have the form

0 = (XT −Xp − Cex − Cx − Cy)︸ ︷︷ ︸
=X

(YT − Y − Cy − Cx − Cey)︸ ︷︷ ︸
=Yp

−kmCx,

0 = Xp (YT − Y − Cy − Cx − Cey)︸ ︷︷ ︸
=Yp

−kmCy,

0 = (ET1 − Cex)Xp − kmCex,

0 = (ET2 − Cey)Y − kmCey ,

which has to be solved for Cx, Cy, Cex, C
e
y in terms of Xp, Y . Immediately we run into

problems because the first equation in the above algebraic system is quadratic in the

unknown variables.

To determine whether the reduction scheme described in this chapter is applicable to

a given network one can follow these guidelines:

For each protein exactly one of its form, either phosphorylated or unphosphorylated, can

act as enzyme. Lets label this form of the proteins to be active and the form that is not

acting as enzyme to be inactive. Then, if for each protein, the active form is acting as

enzymes to convert only the inactive form of other proteins into their active form, then

the present reduction scheme is applicable.
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Chapter 4
Validity of tQSSA in a network

In the last chapter we built a hypothetical network and described the corresponding mean-

ing of tQSSA. In addition to that we showed what simplification one can get if tQSSA is

assumed. To make the story more complete the natural question is when can one assume

the tQSSA. This is the question that we address in this chapter.

The method we use is very much the same as the one used in the derivation of Michaelis-

Menten equation for an isolated MM reaction in Section 1.2. The original equations will

be scaled in such a way that the theorems of GSPT can be applied. Another technical

issue that we will deal here is to show that the manifold, on which the dynamics is being

reduced to, is asymptotically stable. One should note that it is necessary to show this if

one wishes to apply the GSPT.

We have divided this chapter into two main part. In the first part we show that the

slow manifold in stable. In the second part we obtain the necessary scaling to frame the

original equation to the form where the theorems of GSPT can be applied.
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4.1 The stability of the slow manifold

In this section we will show that the slow manifoldM0 defined by Eq. (3.19) is always nor-

mally hyperbolic and stable. As we said earlier, this is a necessary requirement because we

intend to use GSPT to justify the validity of the reduction obtained under the generalized

tQSSA. The results of this sections also apply to the slow manifolds that arise in isolated

Michaelis-Menten reaction and the two protein example we discussed in Section 3.1, as

those are particular examples of the general setup.

First we will need some new notations and definitions to simplify the computations.

Suppose that A and B are matrices of dimensions n×k and n× l, respectively. We denote

by [A : B] the n× (k + l) matrix obtained by adjoining B to A. We use this definition to

combine the different coefficient matrices, and let

C := [CU : CtE ], Q1 := [K1 : Lt1], Q2 := [K−1 +K2 : Lt−1 + Lt2].

(Note the t in the subscript of CtE in [CU : CtE ] and similarly in other definitions above.

This t stands for matrix transpose.) We also define

Z :=

 U

E

 , Z̄ :=

 UT − P̄

ET

 , In2n :=

 In

0

 , and V2n =
[

1 1 . . . 1

]
︸ ︷︷ ︸

2n times

t

.

Using this notation the right hand side of Eqs. (3.17a-3.17b) can be written as

Z =

 U

E

 =

 UT − P̄

ET

−
 CtUVn

CEVn

+

 (In ∗ CtU )Vn

0


= Z̄ − CtVn +


 In

0

 ∗ Ct
Vn

= Z̄ − (Ct − In2n ∗ Ct)Vn,
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and Eq. (3.17c) can be written as P = P̄ − CV2n. Therefore, Eqs. (3.16b-3.16c) can be

merged to obtain
dC

dt
= Q1 ∗ (PZt)−Q2 ∗ C︸ ︷︷ ︸

:=F (C)

. (4.1)

The manifold M0, as defined in Eq. (3.19), can now be redefined as

M0 =
{
C ∈ Rn×2n

∣∣ Q1 ∗ (PZt)−Q2 ∗ C = F (C) = 0
}
.

To show thatM0 is normally hyperbolic and stable we need to show that the Jacobian,
∂F

∂C
, evaluated at M0 has eigenvalues with only negative real parts. We will show that

∂F

∂C
has eigenvalues with negative real parts everywhere, and hence at all points of M0, a

fortiori.

The mapping F : Rn×2n → Rn×2n is a matrix valued function of the matrix variables

C. Therefore
∂F

∂C
represents differentiation with respect to a matrix. This operation is

defined by “flattening” a m× n matrix to a mn× 1 vector and taking the gradient. More

precisely, suppose M = [M.1 : M.2 : . . . : M.n] is a m × n matrix, where M.j is the jth

column of M . Then define

vec (M) :=



M.1

M.2

...

M.n


∈ Cmn×1, and M̂ := diag( vec (M)) ∈ Cmn×mn.

(4.2)

Therefore, vec (M) is obtained by stacking the columns of M on top of each other, and M̂

is the mn×mn diagonal matrix whose diagonal entries are given by vec (M).

Suppose G : Cp×q → Cm×n is a matrix valued function with X ∈ Cp×q 7→ G(X) ∈
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Cm×n. Then the derivative of G with respect to X is defined as

∂G

∂X
:=

∂ vec (G)
∂ vec (X)

, (4.3)

where the right hand side is the Jacobian [42]. In the appendix we list some important

properties of these operators which will be used subsequently (see Appendix B).

A direct application of Theorem B.4 yields

∂ F

∂ C
=
∂ vec (F )
∂ vec (C)

= Q̂1
∂ vec (PZt)
∂ vec (C)

− Q̂2
∂ vec (C)
∂ vec (C)

.

We first assume that all the entries in the connectivity matrices are positive, so that

all entries in the matrix C are actual variables. At the end of this section we show how to

remove this assumption.

Replacing ∂ vec (C)/∂ vec (C) with the identity matrix, I2n2 , adding Q̂2 to both side,

using Theorems B.1, B.2,B.3, B.4, and treating P̄ and Z̄ as independent of C we obtain

Q̂2 +
∂ vec (F )
∂ vec (C)

= Q̂1

[
(Z ⊗ In)

∂ vec (P )
∂ vec (C)

+ (I2n ⊗ P )
∂ vec (Zt)
∂ vec (C)

]

= Q̂1

− (Z ⊗ In)
∂ vec (CV2n)
∂ vec (C)

− (I2n ⊗ P )
∂ vec

(((
Ct − In2n ∗ Ct

)
Vn
)t)

∂ vec (C)


= Q̂1

[
− (Z ⊗ In)

∂ vec (CV2n)
∂ vec (C)

− (I2n ⊗ P )
∂ vec

(
V t
nC − V t

n((In2n)t ∗ C)
)

∂ vec (C)

]

= Q̂1

[
− (Z ⊗ In) (V t

2n ⊗ In)
∂ vec (C)
∂ vec (C)

− (I2n ⊗ P )

{
∂ vec (V t

nC)
∂ vec (C)

− ∂ vec (V t
n((In2n)t ∗ C))
∂ vec (C)

}]
= Q̂1

[
−
(
ZV t

2n ⊗ In
)
− (I2n ⊗ P )

{(
I2n ⊗ V t

n

)
−
(
I2n ⊗ V t

n

)
(̂In2n)t

}]
= Q̂1

[
−
(
ZV t

2n ⊗ In
)
−
(
I2n ⊗ PV t

n

)
+
(
I2n ⊗ PV t

n

)
(̂In2n)t

]
= −Q̂1

[(
ZV t

2n ⊗ In
)

+
(
I2n ⊗ PV t

n

) (
I2n2 − (̂In2n)t

)]
.
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Here (̂In2n)t is the matrix obtained by applying the hat operator, defined in Eq. (4.2), to

the transpose of In2n.

This computation shows that the Jacobian matrix of interest has the form

J :=
∂ F

∂ C
= −Q̂1

[(
ZV t

2n ⊗ In
)

+
(
I2n ⊗ PV t

n

)(
I2n2 − (̂In2n)t

)]
− Q̂2. (4.4)

The following Lemma shows that this Jacobian matrix always has eigenvalues with negative

real part.

Lemma 4.1.1 Suppose Z ∈ R2n×1
+ is a 2n dimensional vector with positive entries, Y ∈

Rn×1
+ is an n dimensional vector with positive entries, Λ,Γ ∈ R2n2×2n2

are diagonal matri-

ces with positive entries on the diagonal. Further assume that Rn and R2n are row vectors

of size n and 2n respectively with all entries equal to 1. Then the 2n2 × 2n2 matrix

J = Λ
[
(ZR2n ⊗ In) + (I2n ⊗ Y Rn)

(
I2n2 − (̂In2n)t

)]
+ Γ (4.5)

has eigenvalues with strictly positive real parts.

This Lemma applies to connectivity matrices with strictly positive entries. In Section 4.1.1

we show how to generalize the Lemma to the case when the connectivity matrices contain

zero entries. In this case only the principal submatrix of the Jacobian, J , corresponding to

the positive entries of the connectivity matrices needs to be examined. Since this principal

submatrix contains all the non-zero element of J , the result follows. We therefore obtain

the following corollary.

Corollary 4.1.2 The manifoldM0 defined in Eq. (3.19) is normally hyperbolic and stable.

We first prove the above Lemma under the assumption that K1,K2,K−1, L1, L2, and

L−1 are strictly positive. At the end of this section we show how to generalize the proof

to the case when some of the reactions do not occur.
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First we start with a preliminary lemma.

Lemma 4.1.3 Suppose Z ∈ R2n×1
+ is a 2n dimensional vector with positive entries, Y ∈

Rn×1
+ is an n-dimensional vector with positive entries, and Ψ̂ = [ψ̂ij ], Γ̂ = [γ̂ij ] ∈ Rn×2n

+

real matrices with positive entries. Let λ ∈ C be a complex number with nonpositive real

part. If V = [vij ] ∈ Cn×2n is a complex matrix that satisfies the following system of linear

homogeneous equations,

1
yi

2n∑
s=1

vis +
1
zj

n∑
r=1
r 6=j

vrj =
ψ̂ij
yizj

(λ− γ̂ij) vij ,
1 ≤ i ≤ n,

1 ≤ j ≤ n,
(4.6a)

1
yi

2n∑
s=1

vis +
1
zj

n∑
r=1

vrj =
ψ̂ij
yizj

(λ− γ̂ij) vij ,
1 ≤ i ≤ n,

n+ 1 ≤ j ≤ 2n,
(4.6b)

then V is the zero matrix.

Proof: Let V = [vij ] ∈ Cn×2n satisfy Eq. (4.6). We will show that vij = 0 for all i, j.

Let

Ri :=
2n∑
j=1

vij , 1 ≤ i ≤ n, Cj :=


∑n

i=1
i 6=j

vij , 1 ≤ j ≤ n,

∑n
i=1 vij , n+ 1 ≤ j ≤ 2n.

Then Eq. (4.6) can be written as

1
yi
Ri +

1
zj
Cj =

ψ̂ij
yizj

(λ− γ̂ij) vij ,
1 ≤ i ≤ n,

1 ≤ j ≤ 2n,

Setting aij =
bψij
yizj

(λ− γ̂ij), we have

1
aijyi

Ri +
1

aijzj
Cj = vij , 1 ≤ i ≤ n, 1 ≤ j ≤ 2n. (4.7)
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By summing Eq. (4.7) over i and j separately we obtain the following system of linear

equations in the unknowns {R1, R2, ..., Rn, C1, C2, ..., C2n}

Ri
1
yi

2n∑
j=1

1
aij

+
2n∑
j=1

1
zjaij

Cj = Ri, 1 ≤ i ≤ n, (4.8a)

n∑
i=1

1
yiaij

Ri + Cj
1
zj

n∑
i=1

1
aij

= Cj , 1 ≤ j ≤ 2n (4.8b)

Eq. (4.8) can be written in matrix form as

266666666666666666666664

−1 + 1
y1

P2n
j=1

1
a1j

1
z1a11

. . . 1
z2na1,2n

. . .
...

...

−1 + 1
yn

P2n
j=1

1
anj

1
z1an1

. . . 1
z2nan,2n

1
y1a11

. . . 1
ynan1

−1 + 1
z1

Pn
i=1

1
ai1

...
...

. . .

1
y1a1,2n

. . . 1
ynan2n

−1 + 1
z2n

Pn
i=1

1
ai,2n

377777777777777777777775
| {z }

:=A

266666666666666666666664

R1

R2

...

Rn

C1

C2

...

C2n

377777777777777777777775

= 0.

(4.9)

We next show that the the coefficient matrix, A, is invertible. This will imply that

Ri = Cj = 0, ∀ i, j. This, together with (4.7), will force vij to be zero and we will be done.

To show the non-singularity of A it is sufficient to show the non singularity of the

product of A with a non-singular diagonal matrix

A



y1

. . .

yn

z1

. . .

z2n


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=



−y1 +
∑2n

j=1
1
a1j

1
a11

. . . 1
a1,2n

. . .
...

...

−yn +
∑2n

j=1
1
anj

1
an1

. . . 1
an,2n

1
a11

. . . 1
an1

−z1 +
∑n

i=1
1
ai1

...
...

. . .

1
a1,2n

. . . 1
an2n

−z2n +
∑n

i=1
1

ai,2n



.

︸ ︷︷ ︸
=X

Note that X is a complex symmetric matrix (i.e. X = Xt). To show the non singularity of

X, it is sufficient to show that X has no zero eigenvalue. Assume that α is an eigenvalue

of X and u ∈ R3n a corresponding eigenvector. Break X into two Hermitian matrices,

X =
X +X∗

2︸ ︷︷ ︸
:=S

+i
X −X∗

2i︸ ︷︷ ︸
:=T

= S + iT,

where X∗ is the conjugate transpose of X). Then,

α〈u, u〉 = 〈Xu, u〉 = 〈Su, u〉+ i〈Tu, u〉.

To show that α is not zero, it is sufficient to show that 〈Su, u〉 is not zero for any 0 6= u ∈

R3n. Note that, since S, and T are Hermitian, the terms 〈Su, u〉 and 〈Tu, u〉) are always

real.

But since X is a complex symmetric matrix, Sij = Xij+X̄ji
2 = Xij+X̄ij

2 = Re(Xij),

where Sij , and Xij are the (i, j)-th entries of the matrices S and X respectively, and X̄ij

is the complex conjugate of the complex number Xij , and Re(Xij) is the real part of Xij .
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Therefore,

S =



−y1 +
P2n
j=1Re

1
a1j

Re 1
a11

. . . Re 1
a1,2n

. . .
..
.

..

.

−yn +
P2n
j=1Re

1
anj

Re 1
an1

. . . Re 1
an,2n

Re 1
a11

. . . Re 1
an1

−z1 +
Pn
i=1Re

1
ai1

...
...

. . .

Re 1
a1,2n

. . . Re 1
an,2n

−z2n +
Pn
i=1Re

1
ai,2n


.

Recall that aij =
bψij
yizj

(λ− γ̂ij). If the real part of λ is nonpositive then the real parts of

aij are negative. This implies that Re 1
aij

< 0 for all i, j. In turn, this implies that S is

diagonally dominant, and all the eigenvalues of S are negative and real, since S is a real

symmetric matrix.

Therefore 〈Su, u〉 < 0 for all u ∈ R3n, and α cannot be zero. This implies that X is

invertible, which further implies that A is invertible. So, Ri = Cj = 0 for i, j. Eq. (4.7)

therefore implies that V = 0. �

Now we are ready to prove the claim that the slow manifold, arising in the general

setup, is always normally hyberbolic and stable.

Proof of Lemma 4.1.1:

Proof: We will prove the lemma by contradiction. Let

Z =



z1

z2

...

z2n


, Y =



y1

y2

...

yn


.
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Then

ZR2n ⊗ In =



z1

z2

...

z2n

z1

z2

...

z2n

. . .

z1

z2

...

z2n


⊗ In =



z1In

z2In
...

z2nIn

z1In

z2In
...

z2nIn

. . .

z1In

z2In
...

z2nIn


︸ ︷︷ ︸

2n block columns

,

I2n ⊗ Y Rn = I2n ⊗



y1

y2

...

yn

y1

y2

...

yn

. . .

y1

y2

...

yn


︸ ︷︷ ︸

=Y Rn

=



Y Rn

Y Rn

. . .

Y Rn


︸ ︷︷ ︸

2n block columns

.

Let R(i)
n =

[
1 · · · 1 0 1 · · · 1

]
be a row vector with a zero in the i-th place and

1s everywhere else. Then,

(I2n ⊗ Y Rn)
(
I2n2 − În2nt

)
=



Y R
(1)
n

. . .

Y R
(n)
n

Y Rn

. . .

Y Rn


︸ ︷︷ ︸

2n block columns

.

Therefore,

ZR2n ⊗ In + (I2n ⊗ Y Rn)
(
I2n2 − În2nt

)
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=



z1In + Y R
(1)
n . . . z1In z1In . . . z1In

...
. . .

...
...

. . .
...

znIn . . . znIn + Y R
(n)
n znIn . . . znIn

zn+1In . . . zn+1In zn+1In + Y Rn . . . zn+1In
...

. . .
...

...
. . .

...

z2nIn . . . z2nIn z2nIn . . . z2nIn + Y Rn


.

Let

Λ =



Λ(1)

Λ(2)

. . .

Λ(2n)


, Γ =



Γ(1)

Γ(2)

. . .

Γ(2n)


,

where Λ(k),Γ(k), k ∈ {1, 2, ..., 2n} are n× n diagonal blocks of Λ,Γ respectively. Hence

J =

 A11 A12

A21 A22

 ,
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where

A11 =


z1Λ(1) + Λ(1)Y R

(1)
n + Γ(1) . . . z1Λ(1)

...
. . .

...

znΛ(n) . . . znΛ(n) + Λ(n)Y R
(n)
n + Γ(n)

 ,

A12 =


z1Λ(1) . . . z1Λ(1)

...
. . .

...

znΛ(n) . . . znΛ(n)

 ,

A21 =


zn+1Λ(n+1) . . . zn+1Λ(n+1)

...
. . .

...

z2nΛ(2n) . . . z2nΛ(2n)

 ,

A22 =


zn+1Λ(n+1) + Λ(n+1)Y Rn + Γ(n+1) . . . zn+1Λ(n+1)

...
. . .

...

z2nΛ(2n) . . . z2nΛ(2n) + Λ(2n)Y Rn + Γ(n+1)

 .

Let λ be an eigenvalue of J , with a corresponding eigenvector

V =



V (1)

V (2)

...

V (2n)


∈ C2n2

, where V (k) =



v
(k)
1

v
(k)
2

...

v
(k)
n


∈ Cn, k ∈ {1, 2, ..., 2n}.

We will show that v(k)
l = 0 for all l, k. By definition of eigenvalues and using the block
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structure of J we get

z1Λ(1)
∑2n

j=1 V
(j) + Λ(1)Y R

(1)
n V (1) + Γ(1)V (1)

...

znΛ(n)
∑2n

j=1 V
(j) + Λ(n)Y R

(n)
n V (n) + Γ(n)V (n)

zn+1Λ(n+1)
∑2n

j=1 V
(j) + Λ(n+1)Y RnV

(n+1) + Γ(n+1)V (n+1)

...

z2nΛ(2n)
∑2n

j=1 V
(j) + Λ(2n)Y RnV

(2n) + Γ(2n)V (2n)


=



λV (1)

...

λV (n)

λV (n+1)

...

λV (2n)


.

Looking at the above equation row by row we get

zkΛ(k)
2n∑
j=1

V (j) + Λ(k)Y R(k)
n V (k) + Γ(k)V (k) = λV (k), k ∈ {1, 2, ..., n} (4.10a)

zkΛ(k)
2n∑
j=1

V (j) + Λ(k)Y RnV
(k) + Γ(k)V (k) = λV (k), k ∈ {n+ 1, ..., 2n}

(4.10b)

Note that Eq. (4.10) is still in matrix multiplication form. Writing it further in terms of

each of its rows, for each k ∈ {1, 2, ..., 2n} and l ∈ {1, 2, ..., n}, we have (For notational

simplicity let
(
Λ(k)

)−1
:= Ψ(k) )

1
yl

2n∑
j=1

v
(j)
l +

1
zk

n∑
h=1
h 6=l

v
(k)
h =

ψ
(k)
l

ylzk

(
λ− γ(k)

l

)
v

(k)
l , k ∈ {1, ..., n}, (4.11a)

1
yl

2n∑
j=1

v
(j)
l +

1
zk

n∑
h=1

v
(k)
h =

ψ
(k)
l

ylzk

(
λ− γ(k)

l

)
v

(k)
l , k ∈ {n+ 1, ..., 2n}. (4.11b)

Now, Lemma 4.1.3 applied to Eq. (4.11) immediately yields that v(k)
l = 0 for all l, k.

This implies that the real part of λ cannot be nonpositive. This completes the proof of

stability of J . �
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4.1.1 Stability of slow manifold in the absence of some connections

Lemma 4.1.1 show that the slow manifold defined by Eq. (3.19) is normally hyperbolic and

stable when all entries in the connectivity matrices are positive. We next show how to

extend the result to the case when some reactions are absent.

Recall the definitions of the unweighted connectivity matrices, IK , IL, and the associ-

ated matrices CIKU and CILE given in Eqs. (3.29) and (3.30). Let ILt be a n×n matrix with

ones at the places where Lt1, L
t
2, L

t
−1 are non zero and zero where Lt1, L

t
2, L

t
−1 are zeros.

Now, recall the definition of C in Section 4.1 and define

C0 =
[
IU ILt

]
∗ C

Then, in the sense that we only need to differentiate along the coordinates corresponding

to positive connections, one can formally write

I0 :=
∂ vec (C0)
∂ vec (C0)

=

 ÎK 0

0 ÎLt

 . (4.12)

Replacing C with C0 in the definition of F and repeating the whole process of finding

the Jacobian of F , now with respect to C0, and using Eq. (4.12) we obtain the new Jacobian

J0 :=
∂ vec (F (C0))
∂ vec (C0)

= I0JI0,

where the matrix J is the Jacobian matrix given in Eq. (4.4). If the connectivity matrices

have zero entries, then I0 will have zero entries in the diagonal. Therefore, some eigenvalues

of J0 will be zero. But, this does not affect the stability of slow manifold because we only

need to look for the stability along the directions of intermediate complexes that occur in

the reactions. That is, we only need to look at the principal submatrix of J0 corresponding

to the positive entries in the diagonal of I0. Let this principal submatrix be J+
0 . But, since
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I0J0I0 = I0JI0, we see that J+
0 is also a principal submatrix of J . And J+

0 is independent

of zero entries in the connectivity matrices. Since Lemma 4.1.1 implies that, when all

the entries in connectivity matrices are positive, J has eigenvalues with only negative real

parts, we get that J+
0 will have eigenvalues with only negative real parts. We conclude

that the results hold even if some entries in the connectivity matrices are zero.

4.2 Validity of the tQSSA in the general setup

In this section we will describe the scaling we use to cast the original equations in to a

form where GSPT can be applied. First we will revisit the isolated MM reaction case and

describe the scaling in that. Then we will discuss how this scaling extends to the network

we are studying.

4.2.1 Another approach for validity of tQSSA in isolated MM reaction

It should be noted that we have a certain degree of freedom in scaling of variables. We found

that an informal method called pairwise balance, developed in [17, 59] can be extended to

the network we have in mind. Let us first describe this method for simplest case of isolated

MM reaction.

We define a new set of dimensionless variables as

τ =
t

TX̄
, x̄(τ) =

X̄(t)
XT

, c(τ) =
C(t)
β

. (4.13)

Eq. (2.4) has the following form in the new variables

dx̄

dτ
= −TX̄

k2β

XT
c, (4.14a)

β

k1TX̄XTET

dc

dτ
= x̄− XT x̄+ ET + km

XTET
βc+

β2

XTET
c2. (4.14b)
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We have some freedom in defining β and TX̄ , and we follow [17, 59] in obtaining a particular

choice. We choose β and TX̄ so that the coefficients of the right hand side of Eq. (4.14a-

4.14b) are of order one in magnitude. Since x̄ is order one, the coefficient of c in the right

hand side of Eq. (4.14b) is of order XT+ET+km
XTET

β. Also, because all the variables being

scaled in such a way so that they are restricted to order one region, the linear terms will

dominate. It follows that a proper choice of β is

β =
XTET

XT + ET + km
. (4.15a)

Once we know the value for β we can prescribe the value for TX̄ by requiring that the

coefficient of c in the right hand side of (4.14a) is of order one. This implies that

TX̄ =
XT

k2β
. (4.15b)

The definition of TX̄ implies that TX̄
k2β
XT

= 1. Also, the way β was defined implies that all

the coefficients on the right hand side of (4.14b) are bounded above by 1.

Hence, if the parameters are chosen such that the right hand side of (4.14) is always of

order one magnitude then tQSSA should hold in the limit

ε :=
β

k1TX̄XTET
=
k2

k1

ET
(ET +XT + km)2

→ 0

A simple lemma below shows that an elegant way to control the ε can be to make the ratio

of ET and Van Slyke-Cullen constant [67], k2/k11 too large or too small. That is ε→ 0 in

either of the following two limit

ET
k2/k1

→ 0, or
ET
k2/k1

→∞.

Lemma 4.2.1 (Bound on ε): If k1, k2, k−1, e, x ∈ R+, then

ε :=
k2

k1

e

(e+ x+ k−1+k2
k1

)2
≤ k1e k2

(k1e+ k2)2
≤ 1

4
.
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4.2. VALIDITY OF THE TQSSA IN THE GENERAL SETUP

Proof: Since k1, k2, k−1, e, x are all positive,

k2

k1

e

(e+ x+ k−1+k2
k1

)2
≤ k2

k1

e

(e+ k2
k1

)2
=

k1e k2

(k1e+ k2)2
.

Since for any positive number s, s+ 1/s ≥ 2, we obtain

k1e k2

(k1e+ k2)2
≤ 1(√

k1e
k2

+
√

k2
k1e

)2 ≤
1
4
.

�

This bound is sharp because for k1 = 1, k2 = 1, k−1 → 0, e = 1, x → 0 we obtain

ε→ 1/4.

Note that the above expression for ε is same as the one obtained by Borghans, et al.

in [6] (see section 2.2.1). But the pairwise balance method we have used does not suffer

from self consistency and we will see that this method can be extended from isolated MM

reaction to the network setup we have in hand.

4.2.2 Validity of the tQSSA for two interacting proteins

In this section we will see how the change of variables discussed in the previous section

extends to the two protein example we discussed in Section 3.1. Recall that using Eq. (3.3)
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in Eq. (3.1) yields

dX̄p

dt
= k2Cx − k2C

e
x,

dȲp
dt

= k2Cy − k2C
e
y ,

dCx
dt

= k1(XT − X̄p − Cx)(Ȳp − Cx − Cey)− (k−1 + k2)Cx,

dCy
dt

= k1(YT − Ȳp − Cy)(X̄p − Cy − Cex)− (k−1 + k2)Cy, (4.16)

dCex
dt

= k1(X̄p − Cy − Cex)(ET1 − Cex)− (k−1 + k2)Cex,

dCey
dt

= k1(Ȳp − Cx − Cey)(ET2 − Cey)− (k−1 + k2)Cey .

And recall that the assumption that Cx, Cy, Cex, C
e
y , equilibrate quickly in above system is

what we call the tQSSA in this example. To reveal the asymptotic limits for which the

tQSSA holds, we again rescale the Eq. (4.16). In particular, X̄p and Ȳp are scaled by the

total concentration of the respective proteins. To scale the intermediate complexes, each

MM reaction in this network is treated as isolated. The scaling factors are then obtained

analogously to β in Eq. (4.15a). Let

αx :=
XTYT

XT + YT + km
, αy :=

XTYT
XT + YT + km

,

βex :=
XTE

T
1

XT + ET1 + km
, βey :=

YTE
T
2

YT + ET2 + km
,

and

Ts := max
{
XT

k2αx
,
XT

k2βex
,
YT
k2αy

,
YT
k2βey

}
.

Therefore, Ts is obtained analogously to TX̄ in Eq. (4.15b). The reason for choosing the

maximum will become evident shortly. The rescaled variables are now defined as

τ :=
t

Ts
, x̄p(τ) :=

X̄p(t)
XT

, ȳp(τ) :=
Ȳp(t)
YT

,

cx(τ) :=
Cx(t)
αx

, cy(τ) :=
Cy(t)
αy

, cex(τ) :=
Cex(t)
βex

, cey(τ) :=
Cey(t)
βey

. (4.17)
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Using Eq. (4.17) in Eq. (4.16) we obtain

dx̄p
dτ

=
k2αxTs
XT

cx −
k2β

e
xTs

XT
cex, (4.18a)

dȳp
dτ

=
k2αyTs
YT

cy −
k2β

e
yTs

YT
cey, (4.18b)

αx
k1XTYTTs︸ ︷︷ ︸

≤εx

dcx
dτ

=

[
ȳp − x̄pȳp − αx

XT
cxȳp − αx

YT
cx −

βey
YT
cey + αx

YT
cxx̄p + βey

YT
ceyx̄p + α2

x
XTYT

c2
x

+ αxβey
XTYT

cxc
e
y − αxkm

XTYT
cx
]
,

(4.18c)

αy
k1XTYTTs︸ ︷︷ ︸

≤εy

dcy
dτ

=

[
x̄p − βex

XT
cex −

αy
XT
cy − x̄pȳp + βex

XT
cexȳp + αy

XT
cyȳp − αy

YT
cyx̄p + αyβex

XTYT
cexcy

+ α2
y

XTYT
c2
y −

αykm
XTYT

cy
]
,

(4.18d)

βex
k1XTET1 Ts︸ ︷︷ ︸

≤εex

dcex
dτ

= x̄p −
βex
ET1

cexx̄p −
βex
XT

cex −
αy
XT

cy +
(βex)2

ET1 XT
(cex)2 +

αyβ
e
x

ET1 XT
cexcy −

βexkm

ET1 XT
cex,

(4.18e)

βex
k1ET2 YTTs︸ ︷︷ ︸

≤εey

dcey
dτ

= ȳp −
βey

ET2
ceyȳp −

αx
YT
cx −

βey
YT
cey +

αxβ
e
y

ET2 YT
cxc

e
y +

(βey)
2

ET2 YT
(cey)

2 −
βeykm

ET2 YT
cey,

(4.18f)

where

εx :=
k2

k1

YT
(XT + YT + km)2

, εy :=
k2

k1

XT

(YT +XT + km)2
,

εex :=
k2

k1

ET1
(XT + ET1 + km)2

, εey :=
k2

k1

ET2
(YT + ET2 + km)2

.

The bounds on these coefficients follow from the definition of Ts. Since (1/Ts) ≤ (k2αx/XT ),

αx
k1XTYTTs

≤ k2

k1

α2
x

X2
TYT

=
k2

k1

1
X2
TYT

(
XTYT

XT + YT + km

)2

= εx.
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Similarly,
αy

k1XTYTTs
≤ εy,

βex
k1XTET1 Ts

≤ εex, and
βex

k1ET2 YTTs
≤ εey.

Finally, we define

ε := max
{
εx, εy, ε

e
x, ε

e
y

}
. (4.19)

The definitions of scaling factors in (4.17) imply that all the coefficients on the right hand

side of (4.18c–4.18f) are O(1). Therefore, in the asymptotic limit ε→ 0, Eq. (4.18) defines

a singularly perturbed system. Since the two equations are related by the scaling given in

Eq. (4.17), we can conclude that in the limit ε→ 0, the tQSSA is valid.

We have already proved in Section 4.1 that the slow manifold arising from these net-

works are in general normally hyperbolic and stable. Since the two protein of this subsection

is a particular class of the general network, the stability and normal hyperbolicity of its

slow manifold follows from the general discussion in Section 4.1.

4.2.3 Extension of scaling from two dimension to several dimension

We next investigate the asymptotic limits under which the tQSSA is valid in the general

setting. We follow the approach given in the previous sections to obtain a suitable rescaling

of the variables. While this rescaling does not change the stability of the slow manifold,

M0, it allows us to more easily describe the asymptotic limits in which the timescales are

separated, and the system is singularly perturbed.

Recall that Eq. (3.16) and Eq. (3.14) are equivalent. The concise form given in

Eq. (3.16) was useful in obtaining a reduction and checking the stability of the slow man-

ifold. However, to obtain sufficient conditions for the validity of the tQSSA, we will work

with Eqs. (3.14) and (3.15).
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Let lmij := (l−1
ij + l2ij)/l

1
ij , k

m
ij := (k−1

ij + k2
ij)/k

1
ij denote the MM constants. Then the

following scaling factors are natural generalizations of those introduced in Section 4.2.2,

βij :=
ETi U

T
j

ETi + UTj + lmij
, αij :=

UTi U
T
j

UTi + UTj + kmij
, i, j ∈ {1, 2, ..., n}.

Note that for each pair (i, j) either all of k1
ij , k

−1
ij , k

2
ij are all zero or all nonzero. In the case

that k1
ij = k−1

ij = k2
ij = 0 we define kmij := 0. Similarly, if l1ij = l−1

ij = l2ij = 0 then lmij := 0.

Let

TŪ := max

{
max
i,j

{
UTj
l2ijβij

}
, max

i,j

{
UTj
k2
ijαij

}}
=

UTj0
l2i0j0βi0j0

, for some i0, j0 ∈ {1, 2, ..., n}.

We next define the following dimensionless rescaling of the variables in Eq. (3.14)

τ =
t

TŪ
, and p̄i(τ) =

P̄i(t)
UTi

, cuij(τ) =
CUij (t)
αij

, ceij(τ) =
CEij (t)
βij

, i, j ∈ {1, 2, ..., n}.

(4.20)

After rescaling, Eqs. (3.14) take the form

dp̄i
dτ

=
n∑
r=1

(
k2
riαriU

T
j0

l2i0j0βi0j0U
T
i

curj −
l2riβriU

T
j0

l2i0j0βi0j0U
T
i

cerj

)
, (4.21a)

(
βij

l1ijE
T
i U

T
j TŪ

)
dceij
dτ

= 1− ceij

−

 n∑
s=1
s 6=j

βis

ETi
ceis


1− x̄j −

1
UTj

n∑
r=1
r 6=i

βrjcerj +
n∑
s=1
s 6=j

αjsc
u
js




− 1
UTj

UTj x̄j +
n∑
r=1
r 6=i

βrjc
e
rj +

n∑
s=1
s 6=j

αjsc
u
js


− 1
UTj

UTj x̄j +
∑
r=1
r 6=i

βrjc
e
rj +

n∑
s=1
s 6=j

αjsc
u
js +

n∑
s=1
s 6=i

βisc
e
is

 βijceij
ETi

+
(βijceij)

2

ETi U
T
j

.

(4.21c)
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The rescaled form of Eq. (3.14b) is similar to the rescaled form of Eq. (3.14c), and we

therefore omit it. If we define

εij :=
k2
ij

k1
ij

UTi
(UTi + UTj + kmij )2

, εeij :=
l2ij
l1ij

ETi
(ETi + UTj + lmij )2

,

and let

ε := max
{

max
i,j
{εij} ,max

i,j

{
εeij
}}

, (4.22)

then the following theorem defines the conditions under which Eq. (4.21) defines a singularly

perturbed system and, hence, conditions under which GSPT is applicable.

Theorem 4.2.2 If for all non-zero k1
ij , k

2
ij , k

−1
ij and for all non zero l1ij , l

2
ij , l
−1
ij and for all

UTi , E
T
i

O
(
k1
ij

k1
rs

)
= O

(
l1ij
k1
rs

)
= O

(
l1ij
l1rs

)
= O(1),

O
(
k2
ij

k2
rs

)
= O

(
l2ij
k2
rs

)
= O

(
l2ij
l2rs

)
= O(1),

O
(
k−1
ij

k−1
rs

)
= O

(
l−1
ij

k−1
rs

)
= O

(
l−1
ij

l−1
rs

)
= O(1),

O
(
XT
i

XT
j

)
= O

(
XT
i

ETj

)
= O

(
ETi
ETj

)
= O(1),

1 ≤ i, j, r, s ≤ n,

in the limit ε → 0, then Eq. (4.21) is a singularly perturbed system with the structure of

Eq. (1.1). In particular, the p̄i are the slow variables, and the cij and ceij are the fast

variables.

Proof: For each i there always exist indices r, s such that k2
ri 6= 0 6= k2

si. Hence, the the

right hand side of Eq. (4.21a) is not identically zero for any i ∈ {1, 2, ..., n}. Furthermore,

by assumption all coefficients on the right hand side of Eq. (4.21a) are O(1) as ε→ 0. This

implies that ε times the right hand side of Eq. (4.21a) is identically zero, in the limit ε→ 0.

Secondly, the definition of βij implies that all coefficients on the right hand side of

Eq. (4.21c) are less than or equal to 1. Also, by definition, at least one coefficient has value
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exactly equal to 1. Hence, the right hand side of Eq. (4.21c) is not identically zero in the

limit ε→ 0.

The definitions of ε, αij , βij , TŪ imply that coefficients of
dceij
dτ in Eq. (4.21c) are less

than or equal to ε. For example

βij

l1ijE
T
i U

T
j

1
TŪ
≤ βij

l1ijE
T
i U

T
j

l2ijβij

UTj
= εeij ≤ ε.

Hence, in the limit ε → 0, the left hand side of Eq. (4.21c) vanishes while the right hand

side does not. To conclude the proof we only need to show the stability of the slow

manifold in rescaled coordinates. But we have already shown that for unscaled coordinates

in Section 4.1 and a non-singular scaling of variable, as in Eq. (4.20), will not affect the

eigenvalues of the Jacobian. � Hence, under the assumptions of the above theorem,

Eq. (4.21) has the form of Eq. 1.1. Hence, switching back to unscaled variables we conclude

that in the limit ε→ 0, tQSSA is valid, i.e. the reduction from Eq. (3.16) to Eq. (3.18) is

valid.

4.2.3.1 The assumption of zero initial concentrations of intermediate com-

plexes and the choice of scaling

Before concluding, we discuss the significance of zero initial concentrations of intermediate

complexes and the benefit of the choice of scaling we used to verify the asymptotic limits

in which the system is singularly perturbed. Proposition 4.2.3 below proves that if the

reaction starts with zero initial concentration of intermediate complexes then the solution

of both Eqs. (3.16) and (4.21) are trapped in an O(1) neighborhood of the origin. Hence,

separation of time scale in Eq.(4.21), implied by Theorem 4.2.2 can be used to obtain the

reduction of Eq. (3.16) given by Eq. (3.18). This is important, since GSPT would not be
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applicable if the rescaling were to send O(1) solutions of Eq. (3.16) to solutions of Eq. (4.21)

that are unbounded as ε→ 0.

Proposition 4.2.3 The (2n2 + n)-dimensional hypercube Ω defined by

Ω :=
{
{p̄i}, {cuij}, {ceij} | 0 ≤ p̄i ≤ 1, 0 ≤ cuij ≤ 2, 0 ≤ ceij ≤ 2, ∀ i, j ∈ {1, 2, ..., n}

}
,

is invariant under the flow of Eq. (4.21).

Proof: By the construction of the differential equations from the Law of Mass Action,

all the species concentration variables can take only non-negative values. This together

with the conservation constraints (3.11b) force the P̄i to take values between 0 and UTi .

Therefore 0 ≤ p̄i(τ) ≤ 1, ∀ τ > 0, provided the initial conditions are chosen in Ω.

Positivity of variables also implies that cuij(τ) ≥ 0, ceij(τ) ≥ 0 if the flow starts inside

Ω. So we only need to show that cuij(τ) ≤ 2 and ceij(τ) ≤ 2. It is sufficient to show that
dcuij
dτ

∣∣∣∣
cuij=2

≤ 0, and
dceij
dτ

∣∣∣∣
ceij=2

≤ 0, or equivalently that
dCUij
dt

∣∣∣∣
CUij=2αij

≤ 0, and
dCEij
dt

∣∣∣∣
CEij=2βij

≤

0. But

dCUij
dt

∣∣∣∣
CUij=2αij

= k1
ij

[
PiUj − (k−1

ij + k2
ij)C

U
ij

] ∣∣
CUij=2αij

= k1
ij

[(
P̄i −

n∑
s=1

CUis −
n∑
r=1

CEri

)(
UTi − P̄i −

n∑
r=1

CUri

)

−(k−1
ij + k2

ij)C
U
ij

]∣∣∣∣∣
CUij=2αij

≤ k1
ij

(
P Ti − 2αij

)
(Uj − 2αij)− (k−1

ij + k2
ij)2αij

= k1
ij

[(
P Ti − 2αij

) (
UTj − 2αij

)
− kmij 2αij

]
≤ 0.

Similarly we can show that CEij is decreasing when CEij = βij . This concludes the proof.

�
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From this we conclude that the assumptions of Theorem 4.2.2 and the zero initial values

of intermediate complexes together imply the tQSSA.

Finally, we combine the results of Section 4.1 with Theorem 4.2.2 and Proposition 4.2.3

to obtain the main result of this study.

Theorem 4.2.4 If the parameters of Eq. (3.12) are such that assumptions of Theorem 4.2.2

are satisfied and the initial values of intermediate complexes are zero, then the tQSSA holds.

For ε defined by Eq. (4.22), there exists an ε0 such that for all 0 < ε < ε0, the solutions

of Eq. (3.16) are O(ε) close to the solutions of Eq. (3.18) after an exponentially fast tran-

sient. Eq. (3.12) can therefore be reduced to the n-dimensional Eq. (3.22) involving only

the protein concentrations, Pi.
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Chapter 5
Linearization of Michaelis-Menten

differential equations

In this chapter we show that a particular class of non-linear dynamical system, with non-

linearities represented by Hill-functions, can be approximated by a piecewise-linear dynam-

ical system. This linear system is naturally determined from the structure of the original

system. The approximation can again be explained on the basis of the GSPT. Successful

application of this theory on two simple examples are also presented.

5.1 Introduction

Ordinary differential equations are commonly used to model interactions between enzymes,

proteins, and genes. Such interactions are frequently described using sigmoidal functions.

A particularly common choice is the Hill function, f(x) = xn/(xn+Jn), and its variants [2].

The resulting systems of ODEs are generally not tractable analytically. This is particularly
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important for large networks, where the potential complexity of the dynamics, and large

number of parameters may make the system difficult to analyze using only numerical

methods.

While the ODEs describing such networks are inherently non-linear, they can be treated

analytically in certain limits. In particular, the approaches that have been proposed to

analyze models of gene interaction networks can be broadly classified into three categories:

Quasi-Steady State Approximations (QSSA), Piecewise-Linear Approximations (PLA) and

discretization of continuous time ODEs [55].

In the previous chapters we have described how to extend the QSSA approximation to

a network level [38]. Here we will be primarily concerned with PLAs. In particular, we

show that in certain limits interactions between network elements become switch–like, and

more tractable [2, 13].

We introduce a class of network models that are well–approximated by piecewise-linear

differential equations in certain limits. Similar approaches have been used in different

contexts. In a recent study piecewise-linear functions of the form developed in [22] have

been shown to be well suited for the modeling of genetic regulatory networks [9]. More

results regarding generic properties of this simplification can be found in [33, 54]. The basic

idea behind such reductions is to approximate a Hill function by a Heaviside function. As

the Hill coefficient, n, increases, the regions within which the Hill function changes value

from close to 1 to close to 0 become thinner. These regions partition the domain in such

a way that for each block a fixed set of coordinates are away from the thresholds of Hill

functions and the remaining coordinates are near the thresholds. Then the Hill functions

corresponding to the coordinates which are away from the thresholds are treated as known

parameters, either 0 or 1. This leaves the Hill functions corresponding to the coordinates
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which are near thresholds. But in this region it is reasonable to assume that the values of

the Hill functions change very rapidly. With this assumption the Hill functions are then

introduced as the new variables. This induces a differential equation with fast variables

as Hill functions and the slow variables as the the coordinates which are away from the

thresholds. Then one proceeds like one would in any standard QSSA like argument. In the

the limit of large Hill coefficient, the fast variables will be assumed to reach their steady

states instantaneously. These steady states will be some function of the the coordinates

which are away from the thresholds. Hence, for each block one gets a closed form differential

equation only in terms of the coordinates which are away from thresholds.

Here we take a similar approach, but work in a different limit. We again start with the

Hill function, xn/(xn + Jn), but consider the limit of small J , rather than large n. The

subsequent results hold for any fixed n. For the sake of simplicity we therefore assume

n = 1. Thus the network interactions are modeled by functions of the form x/(x + J)

(activation) or (1 − x)/(1 − x + J) (repression). Equations involving this special class of

Hill functions are known as Michaelis-Menten equations, where J is the Michaelis-Menten

constant [11, 13, 24, 43]. There are many examples of such models of which we only list a

representative sample [13, 23, 40, 49, 50, 64] The results in this paper are obtained in the

asymptotic limit of small J , 0 < J � 1. Recently the asymptotic limit J → 0 was

considered in a reduction of a protein interaction network to a Boolean network [13].

However, we are here concerned with a rigorous justification underlying such reductions,

as well as examples with dynamically rich behavior.

Remark: The theoretical justification of the use of Hill functions, like the Michaelis-

Menten differential equations, is debatable. But the subject of this chapter is not the

biological phenomena modeled by the differential equations, but the differential equations
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themself.

The main idea behind the reduction we propose is simple. For example, suppose we

want to get rid of the non-linear term, say f(x) = x/(x + J). When x � J ≈ 0 then

f(x) ≈ 1 and when x ≈ 0 then we use x = 0 to eliminate the non-linear terms. This

induces a natural decomposition of the domain into a nested sequence of hypercubes such

that for each level of nesting we get a separate linear equation. The examples in the next

section will make this idea more clear.

We proceed as follows: In Section 5.2 we illustrate our approach in some simple exam-

ples and provide numerical evidence for the validity of our claim. In Section 5.3 we describe

a general class of differential equations which subsumes these examples. Furthermore, in

this section we justify our approach mathematically using GSPT. At the end of the chapter

we discuss some limitations of these reductions.

5.2 Example problems

In this section we demonstrate the reduction methods heuristically with two simple ex-

amples. We provide a mathematical justification for the different steps in the subsequent

section. First, consider two mutually repressing elements within a biological network. Such

biological toggle switches have been discussed widely [13, 18, 64]. Let u1 and u2 represent

the activity of each element, respectively. Suppose these variables can take values only

in the interval [0, 1], where ui = 1 means the maximum activity of the i-th element and

ui = 0 means no activity of the same element. The mutually repressing activity of these
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two elements can be modeled by the following system of differential equations

du1

dt
= 0.5

1− u1

J + 1− u1
− u2

u1

J + u1
,

du2

dt
= 0.5

1− u2

J + 1− u2
− u1

u2

J + u2
,

(5.1)

where J is some positive constant. From the very structure of Eq. (5.1) it is clear that its

solution will remain in the cube [0, 1]2 = {(u1, u2) | 0 ≤ u1, u2 ≤ 1} (see Proposition 5.3.1).

We show that, in the limit of small J (0 < J � 1), this non-linear differential equation

can be approximated by a piecewise-linear differential equation defined as follows: When

J is small, and x is not too close to zero the expression x/(J + x) is approximately unity.

More precisely, we choose a small positive number δ > 0, which will be dependent on J .

This δ will measure the closeness of any coordinate to the boundary. When x < δ we

replace x/(J + x) by 1, and when x > 1− δ then we replace (1− x)/(J + 1− x) by 1.

With this convention in mind we will break the cube [0, 1]2 into several subregions

where one or more rational expressions from the right hand side can be eliminated. For

example let

R0
0 := {(u1, u2) ∈ [0, 1]2 | δ ≤ u1 ≤ 1− δ and δ ≤ u2 ≤ 1− δ}. (5.2)

Then, Eq. (5.1), restricted to R0
0 can be approximated by the linear differential equation.

du1

dt
= 0.5− u2,

du2

dt
= 0.5− u1. (5.3)

If one of the coordinate is near the boundary, while the other is in the interior, the approx-

imation is different. For instance, let

R0
1 := {(u1, u2) ∈ [0, 1]2 |u1 < δ and δ ≤ u2 ≤ 1− δ}. (5.4)

In this case we are forced to keep the nolinear term u1/(J + u1), and the approximation
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in this region has the form

du1

dt
= 0.5− u2

u1

J + u1
, (5.5a)

du2

dt
= 0.5− u1. (5.5b)

This equation can be simplified further. Since u1 is near the boundary, and the boundaries

are invariant, it’s derivative must be small. We therefore set du1
dt = 0 in Eq. (5.5a) and

u1 = 0 in Eq. (5.5b) to obtain

0 = 0.5− u2
u1

J + u1
, (5.6a)

du2

dt
= 0.5. (5.6b)

Note that Eq. (5.6b) is linear and decoupled from Eq. (5.6a), while Eq. (5.6a) is an algebraic

system which can be solved for u1.

A similar reduction can be obtained in all other parts of the domain [0, 1]2. In each

subregion we obtain a linear equation for the variable(s) which is away from the boundary.

Variable(s) near the boundary are assumed to be approximately in steady state, and that

lead to algebraic equations which can be solved in terms of the interior variables.

In Table 5.1 we list all the subregion of [0, 1]2 and the differential–algebraic system that

approximates Eq. (5.1) within the respective subregion. Each approximate solution has

the potential of exiting the region within which it is defined, and entering another region.

The global approximate solution of Eq. (5.1) is obtained by concatenating entries from

Table 5.1. Fig. 5.1 shows that the approximation can be very good when J is small and δ

is chosen appropriately. In general the global solution will be discontinuous. The reason is

that as soon as the solution enters a new region, the solution jumps to the manifold defined

by the algebraic part of the linear differential algebraic system corresponding to the new

region.
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Region’s name u1 u2 Approximating linear system

R0
0 δ ≤ u1 ≤ 1− δ δ ≤ u2 ≤ 1− δ

du1
dt = 0.5− u2,
du2
dt = 0.5− u1

R1
0 u1 > 1− δ δ ≤ u2 ≤ 1− δ 0 = 0.5 1−u1

J+1−u1
− u2,

du2
dt = −0.5

R2
0 δ ≤ u1 ≤ 1− δ u2 > 1− δ

du1
dt = −0.5,

0 = 0.5 1−u2
J+1−u2

− u1

R0
1 u1 < δ δ ≤ u2 ≤ 1− δ 0 = 0.5− u2

u1
J+u1

,
du2
dt = 0.5

R0
2 δ ≤ u1 ≤ 1− δ u2 < δ

du1
dt = 0.5,

0 = 0.5− u1
u2

J+u2

R12
0 u1 > 1− δ u2 > 1− δ 0 = 0.5 1−u1

J+1−u1
− 1,

0 = 0.5 1−u2
J+1−u2

− 1

R0
12 u1 < δ u2 < δ

0 = 0.5− J u1
J+u1

,

0 = 0.5− J u2
J+u2

R1
2 u1 > 1− δ u2 < δ

0 = 0.5 1−u1
J+1−u1

,

0 = 0.5− u2
J+u2

R2
1 u1 < δ u2 > 1− δ 0 = 0.5− u1

J+u1
,

0 = 0.5 1−u2
J+1−u2

Table 5.1: List of differential–algebraic systems that approximate Eq. (5.1) in differ-
ent parts of the domain. The column gives the names of the regions. The superscript
lists the coordinates which are near 1, with 0 denoting the empty set. The subscript
lists coordinates which are near 0. For example, R2

1 denotes that subregion with
u1 ≈ 1 and u2 ≈ 0, and R2

0 the subregion where u2 is near 1, but u1 is away from the
boundary. The middle column define the subregion explicitly. The right column gives
the approximating differential-algebraic system valid in that region

The same reduction can be applied to systems of arbitrary dimension. We next consider

the repressilator [14, 64] which can be described by

du1

dt
= 0.6

1− u1

J + 1− u1
− u3

u1

J + u1
,

du2

dt
= 0.4

1− u2

J + 1− u2
− u1

u2

J + u2
, (5.7)

du3

dt
= 0.3

1− u3

J + 1− u3
− u2

u3

J + u3
.

The cyclic repression of the three elements in this network can lead to oscillations. Indeed,
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Figure 5.1: Comparison of the numerical solution of Eq. (5.1) (dashed black) and the solution
of the approximate system as listed in Table 5.1 (solid colored) for two different values of J (
We used J = 10−2 in (a); and J = 10−4 in (b).). The different colors denote the switching
behavior of the solution from one region to next. We used δ = 0.01. Solution of the linear
approximation started in the region R0

0 (Initial value: u1 = 0.6, u2 = 0.4), and as soon as u2

became smaller than δ, the region switched to R0
2 and driving linear differential equation also

switched accordingly. It should be noted that the approximate solution is discontinuous. The
reason is that as soon as the solution crossed the horizontal line, u2 = δ, the solution jumped
(see inset) to the manifold, described by the algebraic part of the linear differential algebraic
system prevalent in the region R0

2. The solution finally stopped in the region R1
2.

system (5.7) supports oscillatory solutions over a large range of values of J . The domain

of this system, [0, 1]3, can be divided into 27 subdomains: 1 interior, 6 faces, 12 edges, and

8 vertices, with an approximating equation within each subdomain. The global approxi-

mation is obtained by concatenating these approximations across the different regions. We

demonstrate the validity of the approximation in Fig. 5.2. In particular, the numerically

obtained solutions to the full system given by Eq. (5.7), and the approximate solution

both exhibit oscillations. As mentioned before, solutions tend to be discontinuous at the

intersection of two subdomains.
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Figure 5.2: Comparison of the numerical solution of Eq. (5.7) (dashed black) and the solution
of the approximate linear system (not explicitly provided) for two different sets of J and δ.
For (a)-(c) J = 10−2, δ = 0.06; for (c)-(f) J = 10−4, δ = 0.01. The approximate solution
changes color when switching between different subdomains. Note that the approximate solution
is discontinuous in general. The reason is that as soon as the solution enters a new region, the
solution jumps (see inset) to the manifold defined by the algebraic part of the linear differential
algebraic system corresponding to the new region.

5.3 General setup

The approximations described in the previous section can be extended to more general

differential equations. Suppose we have n variable u1, u2, ..., un, (n ≥ 2) whose evolution

is described by

dui
dt

= (activation function)
1− ui

JAi + 1− ui
− (inhibition function)

ui

JIi + ui
, (5.8)

where JAi , J
I
i are some positive constants. The initial conditions are assumed to satisfy

ui(0) ∈ [0, 1] for all i. The activation/inhibition functions that appear in Eq. (5.8) capture

the interaction of ui with other variables. We will define them to be non-negative. This
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will force the trajectories to stay inside the unit cube [0, 1]n(see Proposition 5.3.1).

Activation/Inhibition functions: Let W = [wij ] be an n×n real matrix. The entry

wij of W gives the contribution of the j-th variable on the growth rate of i-th variable. If

wij > 0, then wij it will appear in the activation function for ui; and if wij < 0 then −wij

will appear in the inhibition function for ui. Therefore W represents a connectivity matrix.

Let b = [ b1 b2 ... bn ]t be an n × 1 real vector. The entries bi represent the threshold

between the activation function and the inhibition function for ui. The value |bi| will

appear in the activation or the inhibition function for ui, depending on whether bi > 0

or bi < 0, respectively. To be more precise, we use the convention x+ = max{x, 0} and

x− = max{−x, 0} for all x ∈ R, and define the activation functions Ai and the inhibition

functions Ii as

Ai :=
n∑
j=1

w+
ijuj + b+i , Ii :=

n∑
j=1

w−ijuj + b−i . (5.9)

Using this notation, Eqs. (5.8) take the form

dui
dt

= Ai
1− ui

JAi + 1− ui
− Ii

ui

JIi + ui
. (5.10)

The next result illustrates that the cube [0, 1]n is invariant under the flow of dynamical

system (5.10).

Proposition 5.3.1 The cube [0, 1]n is invariant for the dynamical system (5.10).

Proof: It will be enough to show that the vector field at any point on the boundary is

directed inward. Since, Ais and Iis will always take nonnegative values, we observe that

for any i,

dui
dt

∣∣∣∣
ui=0

= Ai
1

JAi + 1
≥ 0, and

dui
dt

∣∣∣∣
ui=1

= −Ii
1

JIi + 1
≤ 0.
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This means that as soon as the solution reaches the boundary, it will be forced to move

inward. �

We can express Eq. (5.10) in matrix notation in following way: Let,

u :=
[
u1 u2 · · · un

]t
, W+ := [w+

ij ], W
− := [w−ij ], b

+ =
[
b+1 b+2 · · · b+n

]t
,

b− =
[
b−1 b−2 · · · b−n

]t
, and

F (u) := diag

(
1− u1

JA1 + 1− u1
,

1− u2

JA2 + 1− u2
, ...,

1− un
JAn + 1− un

)
,

G(u) := diag

(
u1

JI1 + u1
,

u2

JI2 + u2
, ...,

un
JIn + un

)
.

Then, we can write Eq. (5.10) in matrix form as

du

dt
= F (u)(W+u+ b+)−G(u)(W−u+ b−). (5.11)

For example, with the repressilator we have

W =


0 0 −1

−1 0 0

0 −1 0

 and b =


0.6

0.4

0.3

 ,

and JA1 = JA2 = JA3 = JI1 = JI2 = JI3 = J .

Linear approximation of Eq. (5.10)

We follow the reduction procedure outlined in Section 5.2. For notational convenience we

consider the case JAi = JIi = J , with J small and positive. The general case is equivalent.

Let δ be some positive number which will be used to define the thickness of the boundary

layers, and which will depend on J in general. The division of the square [0, 1]2, listed in

Table 5.1, can be generalized to the n-dimensional cube [0, 1]n as follows.
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Let T and S be two disjoint subsets of the set {1, 2, ..., n} and define

RTS :=
{

(u1, u2, ..., un) ∈ [0, 1]n
∣∣∣us < δ for all s ∈ S; ut > 1− δ for all t ∈ T ;

and δ ≤uk ≤ 1− δ for all k /∈ S ∪ T
}
.

Therefore, RTS corresponds to the part of the cube [0, 1]n where the coordinates us, s ∈ S

are close to zero; and the coordinates ut, t ∈ T are close to one; and all the other coordinates

are away from the extreme values zero and one. In Table 5.1, and in Eqs. (5.2) and (5.4)

we used the above notation together with following conventions: RT0 := RTS when S is

empty; R0
S := RTS when T is empty; and R0

0 := RTS when T , S both are empty.

The system of equations (5.10) is reduced to a different linear algebraic–differential

system within each region RTS . We follow the reduction from Eq. (5.1) to Eq. (5.5) . For

i /∈ S ∪ T we obtain the linear system

dui
dt

=
n∑
j=1

aijuj + bi ; (5.12a)

for s ∈ S some of the non linear terms will stay and we get

dus
dt

=

 n∑
j=1

a+
sjuj + b+s

−
 n∑
j=1

a−sjuj + b−s

 us
J + us

; (5.12b)

and for t ∈ T we will have

dut
dt

=

 n∑
j=1

a+
tjuj + b+t

 1− ut
J + 1− ut

−

 n∑
j=1

a−tjuj + b−t

 . (5.12c)

Eq. (5.12) is simpler than Eq. (5.10), but it is not solvable yet. Following the reduction

from Eq. (5.5) to Eq. (5.6), we note that in the region RTS , us, s ∈ S are close to zero

and ut, t ∈ T are close to one. The first simplification we propose is to plug in these

approximate values of us and ut, i.e. us = 0 and ut = 1 in the activation and inhibition

functions appearing in Eq. (5.12). The second simplification comes from the fact that
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boundary of [0, 1]n is inflowing and the RTS is thin. Therefore, when us, ut are near the

boundary, their derivative must be small (this is justified below). Thus it makes sense to

assume that coordinates us for s ∈ S and ut for t ∈ T are in steady state. With these two

simplifications Eq. (5.12) takes the form

dui
dt

=
∑

j /∈S∪T

aijuj +
∑
j∈T

aij + bi i /∈ S ∪ T ;

(5.13a)

0 =
∑

j /∈S∪T

a+
sjuj +

∑
t∈T

a+
st + b+s −

 ∑
j /∈S∪T

a−sjuj +
∑
t∈T

a−st + b−s

 us
J + us

; s ∈ S,

(5.13b)

0 = −

 ∑
j /∈S∪T

a+
tjuj +

∑
j∈T

a+
tj + b+t

 1− ut
J + 1− ut

+
∑

j /∈S∪T

a−tjuj +
∑
j∈T

a−tj + b−t , t ∈ T.

(5.13c)

Eq. (5.13) is completely solvable since Eq. (5.13a) is linear and decoupled from boundary

variables. Furthermore, Eqs.(5.13b) and (5.13c) are solvable for us and ut, respectively, as

functions of the solution of Eq. (5.13).

Finally we justify our claim that the variables that are close to the boundary can be

assumed to be in steady state. We define the following new variables to “magnify” the

boundary region.

ũs := us
J for s ∈ S,

ũt := 1−ut
J for t ∈ T.

(5.14)

Using Eq. (5.14) in Eq. (5.12) we get:

For i /∈ S ∪ T

dui
dt

=
∑

j /∈S∪T

aijuj +
∑
j∈T

aij + J

(∑
s∈S

aisũs −
∑
t∈T

aitũt

)
+ bi ; (5.15a)
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and for s ∈ S, we have

J
dũs
dt

=
∑

j /∈S∪T

a+
sjuj +

∑
t∈T

a+
st + J

∑
j∈S

a+
sj ũj −

∑
t∈T

a+
stũt

+ b+s

−

 ∑
j /∈S∪T

a−sjuj +
∑
t∈T

a−st + b−s

 ũs
1 + ũs

− J

∑
j∈S

a+
sj ũj −

∑
t∈T

a+
stũt5

 ũs
1 + ũs

,

(5.15b)

and similarly, for t ∈ T , we have

J
dũt
dt

=−

 ∑
j /∈S∪T

a+
tjuj +

∑
j∈T

a+
tj + b+t

 ũt
1 + ũt

− J

∑
s∈S

a+
tsũs −

∑
j∈T

a+
tj ũj

 ũt
1 + ũt

+
∑

j /∈S∪T

a−tjuj +
∑
j∈T

a−tj + b−t + J

∑
s∈S

a+
tsũs −

∑
j∈T

a+
tj ũj

 . (5.15c)

Note that Eq. (5.15) exactly has the form of Eq. (1.1), with ui, i 6∈ S∪T as the slow variable;

and ũs, s ∈ S and ũt, t ∈ T as the fast variables. Therefore, following the discussion on

the GSPT (see Chapter 1), for small J we can approximate the Eq. (5.15) by plugging in

J = 0 in Eq. (5.15). Doing that yields the following differential-algebraic system.

dui
dt

=
∑

j /∈S∪T

aijuj +
∑
j∈T

aij + bi, i /∈ S ∪ T ;

(5.16a)

0 =
∑

j /∈S∪T

a+
sjuj +

∑
t∈T

a+
st + b+s −

 ∑
j /∈S∪T

a−sjuj +
∑
t∈T

a−st + b−s

 ũs
1 + ũs

, s ∈ S;

(5.16b)

0 = −

 ∑
j /∈S∪T

a+
tjuj +

∑
j∈T

a+
tj + b+t

 ũt
1 + ũt

+
∑

j /∈S∪T

a−tjuj +
∑
j∈T

a−tj + b−t , t ∈ T.

(5.16c)
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Normal hyperbolicity of the slow manifold defined by Eqs. (5.16b) and (5.16c):

Before we can safely conclude that Eq. (5.16) is a valid reduction of Eq. (5.15), we still need

to verify one more requirement of the theorems of the GSPT. That is, the manifold to which

the dynamics is being reduced must be asymptotically stable. In the present scenario this

means that the manifold defined by Eqs. (5.16b) and (5.16c) has to be normally hyperbolic

and stable. We show next that this additional requirement is easy to verify.

Let û = {ui1 , ..., uim} where {i1, ..., im} = {1, 2, ..., n}\(S ∪ T ), be the coordinates of

u which are away from the boundary, and denote the right hand side of Eq. (5.16b) by

Fs(û, ũis), for all s ∈ S. i.e.

Fs(û, ũis) :=
∑

j /∈S∪T

a+
sjuj +

∑
t∈T

a+
st + b+s −

 ∑
j /∈S∪T

a−sjuj +
∑
t∈T

a−st + b−s

 ũs
1 + ũs

.

Then, clearly we have

∂Fs
∂ũis

= −

 ∑
j /∈S∪T

a−sjuj +
∑
t∈T

a−st + b−s

( 1
1 + ũs

)2

< 0

for all s ∈ S. Similarly, by denoting the right hand side of Eq. (5.16c) by Gt(û, ũit), for all

t ∈ T . i.e.

Gt(û, ũit) := −

 ∑
j /∈S∪T

a+
tjuj +

∑
j∈T

a+
tj + b+t

 ũt
1 + ũt

+
∑

j /∈S∪T

a−tjuj +
∑
j∈T

a−tj + b−t ,

we see that

∂Gt
∂ũit

= −

 ∑
j /∈S∪T

a+
tjuj +

∑
j∈T

a+
tj + b+t

( ũt
1 + ũt

)2

< 0.

Hence, the manifold defined by Eqs. (5.16b) and (5.16c) is normally hyperbolic and stable.

This completes the proof of the claim that, for small J , the variables us, s ∈ S and ut, t ∈ T

can be safely assumed to be in steady state in Eq. (5.12). Hence the reduction of the non-

linear system (5.10) to a solvable system (5.13) is justified if J is very small.
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5.4 Discussion

A special class of non-linear differential equation was studied. The non-linear terms in-

volved were like Hill functions. We showed that if the Michaelis-Menten constants are

small enough then the non-linearity of the system can be circumvented by appropriate

linear systems. This induces a natural decomposition of the domain into a nested sequence

of hypercubes. Example problems were worked out and mathematical justification through

the geometrical singular perturbation theory was discussed.

A potential limitation in our arguments is that we have an approximation with is valid

only in an asymptotic limit. Another major limitation of our analysis is that we have

not provided a systematic relationship between the thickness of the boundary, δ, and the

Michaelis-Menten constant, J . Intuitively we believe that δ should go to zero as J goes to

zero, but more research is required to make this relation more concrete. Also, more study

needs to be done to approximate the error induced in the system by the replacement of

non-linear terms with unity.
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Appendix A
The Law of Mass Action

Consider an elementary chemical reaction

aA+ b1B
k1
�
k−1

b2B + pP, (A.1)

where a, b1, b2, p are positive integers and A,B, P are molar concentration of some chemical

species, and k1, k−1 are reaction rate coefficients. For this reaction, the the Law of Mass

Action states that the rate of change of each of the reactant or product is governed by

the following rules:

The contribution from the Forward reaction:

k1A
aBb1 = −1

a

dA

dt
=

1
b2 − b1

dB

dt
=

1
p

dP

dt
(A.2)

The contribution from the Backward reaction:

k−1B
b2P p =

1
a

dA

dt
=

1
b1 − b2

dB

dt
= −1

p

dP

dt
. (A.3)
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The final differential equation to model the concentration of different chemical involved in

reaction (A.1) is obtained by adding the contribution from Eq. (A.2) and Eq. (A.3)

dA

dt
= −k1aA

aBb1 + k−1aB
b2P p,

dB

dt
= −k1(b1 − b2)AaBb1 + k−1(b1 − b2)Bb2P p,

dP

dt
= k1pAaB

b1 − k−1pB
b2P p.

Similarly, if the reaction is broken into more than one elementary reaction, rate of

change of each reactant/product can be calculated from individual elementary reaction

and finally added. Here is an example.

Complex reaction

Complex reactions are chain of elementary reactions. So, the Law of Mass Action can be

applied on individual steps and added. Consider the following two stage reaction.

a1A+ b1B
k1
�
k−1

b2B + c1C, (A.4)

a2A+ c2C
k2
�
k−2

eE + fF, (A.5)

Then, by applying the Law of Mass Action in each of the above step and in each direction,

we get:

From forward direction of (A.4),

k1A
a1Bb1 = − 1

a1

dA

dt
=

1
b2 − b1

dB

dt
=

1
c1

dC

dt
,

from backward direction of (A.4),

k−1B
b2Cc1 =

1
a1

dA

dt
= − 1

b2 − b1
dB

dt
= − 1

c1

dC

dt
,

from forward direction of (A.5),

k2A
a2Cc2 = − 1

a2

dA

dt
= − 1

c2

dC

dt
=

1
e

dE

dt
=

1
f

dF

dt
,
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from backward direction of (A.5),

k−2E
eF f = −1

e

dE

dt
= − 1

f

dF

dt
=

1
a2

dA

dt
=

1
c2

dC

dt
.

From these we can write down the dynamics of the whole reaction as

dA

dt
= −k1a1A

a1Bb1 + k−1a1B
b2Cc1 − k2a2A

a2cc2 + k−2a2E
eF f ,

dB

dt
= k1(b2 − b1)Aa1Bb1 − k−1(b2 − b1)Bb2Cc1 ,

dC

dt
= k1c1A

a1Bb1 − k−1c1B
b2Cc1 − k2c2A

a2Cc2 + k−2c2E
eF f ,

dE

dt
= k2eA

a2Cc2 − k−2eE
eF f ,

dF

dt
= k2fA

a2Cc2 − k−2fE
eF f .
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Appendix B
Differentiation with respect to a matrix

The theory of differentiation with respect to a matrix is described in [42]. Suppose M =

[M.1 : M.2 : . . . : M.n] is a m× n matrix, where M.j is the jth column of M . Then define

vec (M) :=



M.1

M.2

...

M.n


∈ Cmn×1, and M̂ := diag( vec (M)) ∈ Cmn×mn.

Therefore, vec (M) is obtained by stacking the columns of M on top of each other, and M̂

is the mn×mn diagonal matrix whose diagonal entries are given by vec (M).

Suppose G : Cp×q → Cm×n is a matrix valued function with X ∈ Cp×q 7→ G(X) ∈

Cm×n. Then the derivative of G with respect to X is defined as

∂G

∂X
:=

∂ vec (G)
∂ vec (X)

,

where the right hand side is the Jacobian [42]. Below we list some important properties

of these operators as they relate to differentiation with respect to a matrix. Proofs can be
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found in [42].

Theorem B.1 ([47, 58]) For any three matrices A,B and C such that the matrix product

ABC is defined,

vec (ABC) = (Ct ⊗A) vec (B).

Theorem B.2 ([42]) For any two matrices A and B of equal size

vec (A ∗B) = Â vec (B) = B̂ vec (A).

Theorem B.3 (Product rule[42]) Let G : Cp×q → Cm×r and H : Cp×q → Cr×n be two

differentiable function then

∂ vec (GH)
∂ vec (X)

= (Ht ⊗ Im)
∂ vec (G)
∂ vec (X)

+ (In ⊗G)
∂ vec (H)
∂ vec (X)

.

Theorem B.4 (Hadamard product rule [42]) Let G : Cp×q → Cm×n and H : Cp×q →

Cm×n be two differentiable functions then

∂ vec (G ∗H)
∂ vec (X)

= Ĥ
∂ vec (G)
∂ vec (X)

+ Ĝ
∂ vec (H)
∂ vec (X)

.
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Appendix C
Some Linear Algebra results

These results were discovered while we were trying to prove the stability of Jacobian ma-

trix that came up in the system of coupled Michaelis-Menten reaction in Chapter 4 (see

Eq. (4.4)). We have not used these in the main part of the thesis, but these might still

interest the reader.

Lemma C.1 If Y ∈ Rn×1
+ is a column vector with positive entire , V = [1 1 · · · 1]t is a

column vector of size n with all entries as ones and Λ ∈ Rn×n
+ diagonal matrix with all

positive entries in the diagonal then the n× n matrix

D = Y V t + Λ

has only real eigenvalues.
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Proof: Let,

Y =



y1

y2

...

yn


, Λ =



λ1

λ2

. . .

λn


.

And let λ = a+ ib be an eigenvalue with b 6= 0 and choose corresponding eigenvector

V̄ =



v1

v2

...

vn


=



r1 + is1

r2 + is2

...

rn + isn


such that

n∑
k=1

vk = 1. (C.1)

By the definition of eigenvector and using (C.1) ∀k ∈ {1, 2, ..., n} we have

yk + λkvk = λvk.

So

yk = (λ− λk)vk

= ((a− λk) + ib) (rk + isk)

= ((a− λk)rk − bsk) + i ((a− λk)sk + brk) . (C.2)

Since yk is real and b 6= 0 we can set the imaginary part to zero and solve for rk

(a− λk)sk + brk = 0, (C.3)

rk = −(a− λk)
sk
b
. (C.4)

Pluggin this in (C.2) we get
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yk = −
(
(a− λk)2 + b2

) sk
b
. (C.5)

Since yk > 0, equations (C.3),(C.5) together implies that all the entries of eigenvector have

nonzero real and imaginary parts.

Now by (C.1) we have
∑n

k=1 sk = 0. Which implies that for some k0, sk0
b > 0. Which

will imply that yk0 < 0 which is a contradiction on the assumption that Y has positive

entries.

Hence λ must be real. �

Lemma C.2 If Y ∈ Rn×1
+ is a column vector with positive entire , V = [1 1 · · · 1]t is a

column vector of size n with all entries as ones and Λ ∈ Rn×n
+ diagonal matrix with all

positive entries in the diagonal then the n× n matrix

D = Y V t + Λ

has only positive eigenvalues.

Proof: Let,

Y =



y1

y2

...

yn


, Λ =



λ1

λ2

. . .

λn


.
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By lemma (C.1) we know that D can have only real eigenvalues. Let, if possible, λ < 0 be

a negative eigenvalue and choose corresponding eigenvector

V̄ =



v1

v2

...

vn


such that

n∑
k=1

vk = 1. (C.6)

and vk, k ∈ {1, 2, ..., n} are real (we can do this separating the real and imaginary part of

any eigenvector as long as the eigenvalue is real).

Now, by the definition of eigenvector and using (C.6) ∀k ∈ {1, 2, ..., n} we have

yk + λkvk = λvk,

yk = (λ− λk)vk. (C.7)

But since λ < 0 and λk > 0, (C.7) would imply that vk < 0∀k ∈ {1, 2, ..., n} which will be

a contradiction to (C.6). So λ can not be negative. �

Lemma C.3 Suppose Z ∈ R2n×1
+ is a 2n dimensional vector with positive entries; Y ∈

Rn×1
+ is an n dimensional vector with positive entries; In, I2n, I2n2 is identity matrices of

order n, 2n, 2n2, respectively. Assume further that Rn and R2n are row vectors of size n

and 2n respectively with all entries equal to 1. Then the 2n2 × 2n2 matrix

J := (ZR2n ⊗ In) + (I2n ⊗ Y Rn) + I2n2 (C.8)

has eigenvalues with strictly positive real parts.
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Proof: The first thing to note is that the terms on the right hand side of Eq. (C.8)

commute:

(ZR2n ⊗ In)(I2n ⊗ Y Rn) = (ZR2nI2n)⊗ (InY Rn)

= (I2nZR2nI2n)⊗ (Y RnIn)

= (I2n ⊗ Y Rn)(ZR2n ⊗ In),

and obviously

(ZR2n ⊗ In)I2n2 = I2n2(ZR2n ⊗ In),

(I2n ⊗ Y Rn)I2n2 = I2n2(I2n ⊗ Y Rn)⊗ In).

We next show that each term of the right hand side of Eq. (C.8) has non negative eigenvalue.

Lets focus on (ZR2n ⊗ In) first. By a property of tensor products, we have

σ(ZR2n ⊗ In) = σ(ZR2n), (C.9)

where with σ(A) we mean the spectrum of the matrix A. Let

Z =



z1

z2

...

z2n


and Y =



y1

y2

...

yn


.

We see that ZR2n is a rank one matrix and has one positive eigenvalue
∑2n

i=1 zi, because

z1 z1 . . . z1

z2 z2 . . . z2

...
...

z2n z2n . . . z2n





z1

z2

...

z2n


=

2n∑
i=1

zi



z1

z2

...

z2n


.
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Hence, all the other eigenvalues of ZR2n will be zero. Hence Eq. (C.9) implies that

σ(ZR2n ⊗ In) =

{
2n∑
i=1

zi, 0

}
.

Similarly,

σ(I2n ⊗ Y Rn) =

{
n∑
i=1

yi, 0

}
.

And obviously

σ(I2n2) = {1}.

And now we invoke a linear algebra property that, since the terms in the right hand side

of Eq. (C.8) commute, we get (with a slight abuse of notations on addition of sets)

σ(J) = σ [(ZR2n ⊗ In) + (I2n ⊗ Y Rn) + I2n2 ]

⊆ σ(ZR2n ⊗ In) + σ(I2n ⊗ Y Rn) + σ(I2n2)

=

{
2n∑
i=1

zi, 0

}
+

{
n∑
i=1

yi, 0

}
+ {1}

=

{
1, 1 +

2n∑
i=1

zi, 1 +
n∑
i=1

yi,

2n∑
i=1

zi +
n∑
i=1

yi

}
.

This implies that J has all positive eigenvalues. This concludes the proof. �
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