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Abstract

In this thesis, we study the theory of Isotropic Multiresolution Analysis (IMRA) and its

application to image analysis problems that require rotational invariance. Multiresolution

Analysis (MRA) is a mathematical tool that gives us the ability to process a signal or an

image at multiple levels of resolution and detail. IMRA is a new type of MRA for which

the core resolution sub-space is invariant under all rotations. We give a characterization

of IMRAs using the Lax-Wiener theorem, which shows that all the resolution and detail

spaces of an IMRA are invariant under all rigid motions. We further develop examples of

isotropic wavelet frames associated to IMRA via the Extension Principles. This facilitates

the fast implementation of isotropic wavelet decomposition and reconstruction algorithms.

We derive an IMRA-based explicit scheme for the numerical solution of the acoustic

wave equation in the context of seismic migration. The multiscale structure of the IMRA

offers the possibility of improving the computational efficiency of the standard explicit

schemes used in seismic imaging.

We develop a novel rotationally invariant three-dimensional texture classification scheme

using Gaussian Markov Random Fields on Z3 to model textures sampled on a discrete lat-

tice. These are considered to be sampled versions of continuous textures, which are viewed

as realizations of stationary Gaussian random fields on R3. IMRA is used to bridge the

gap between the discrete and the continuous domains, where the rotation invariance of the

resolution spaces plays a key role.
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Chapter 1
Introduction and Preliminaries

1.1 Background

The ability to process a signal at multiple levels of resolution is highly desirable in signal

and image processing. Being able to switch between coarser and finer resolutions allows us

to adaptively process only the relevant details for the problem at hand. A multiresolution

analysis (abbreviated as MRA), provides a formal mathematical setting for a mechanism

to switch between resolutions. The idea of a multiresolution pyramid, used by Burt and

Adelson [18] in the context of computer vision, is a precursor to the formal definition of

a Multiresolution Analysis (also called Multiresolution Approximation) of L2(R) given by

Mallat [78] and Meyer [85] (see Definition 1.3.1 below). Around the same time a simple

yet not accurately implementable idea was proposed, the continuous wavelet transform,

based on the ideas from reflection seismology and coherent quantum states by Morlet and

Grossman [53]. However, wavelets associated with a Multiresolution Analysis are partic-

ularly useful in practice because of the associated fast wavelet algorithms which provide

1



1.1. BACKGROUND

numerically stable and accurate decompositions and reconstructions (see Section 1.3.3).

To date, the most popular examples of higher dimensional MRAs have been obtained from

MRA of L2(R) via a tensor product construction. Their popularity stems from the rela-

tively easy implementation of the resulting wavelet transforms which essentially involves

the application of the 1-D transforms along the rows and columns of an image (see [79] p.

346). However, this image processing in a row and column fashion is also one of the major

drawbacks of this approach since it gives rise to what is known as directional bias. The

need to eliminate directional bias in digital filtering using scaling functions and wavelets

with high degree of smoothness and symmetry motivated us to introduce Isotropic Mul-

tiresolution Analysis, abbreviated as IMRA. Figure 1.1(b) demonstrates the advantage of

isotropic filters over tensor product constructions using a standard two dimensional image

known as ‘Barbara’ in the image processing literature. We see that while the vertical and

(a) IMRA (b) 2-D DWT (tensor
product)

Figure 1.1: High pass band outputs of the ‘Barbara’ image; one scale decomposition only.
Image (a) obtained with the Isotropic high pass filter associated to an IMRA. Image (b)
was obtained with the tensor product one dimensional Daubechies-8 filters and is the mix
(normalized sum) of all bands but the low-low. Notice in (b) the distortion in Barbara’s
scarf texture due the directional filtering selectivity of the tensor product filters. This effect
is almost absent in (a).

horizontal patterns are picked up by the 2-D DWT, the patterns at other orientations are

distorted. The likely reason for this outcome is that tensor product MRAs give rise to

2
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filters with higher sensitivity in horizontal and vertical orientations. This selectivity in

filtering is what we refer to as directional bias. This motivates us to construct IMRA with

radial filters, since such filters are not biased towards any preferred direction. Even though

we are not the first to have realized the need to reduce this sort of filtering bias, there

is no formal definition of the term directional bias in the literature. In fact, this need to

eliminate the “preferred directions” effect [10] has motivated the constructions of filters

and multiresolution analyses that are not tensor products of one-dimensional ones, the so-

called non-separable MRAs e.g. [3–6, 10, 19, 33, 39, 52, 59, 68, 73]. One of the major design

constraints in all these constructions is that the scaling function is required to form a basis.

Consequently, the scaling functions of these non-separable MRA designs suffer from lack of

either symmetry or smoothness or both. For instance, as pointed out in the introduction

of [10], the scaling functions in [52], are indicator functions of (often fractal-like) compact

sets while those in [68] have discontinuous first derivatives. In addition, most of these

constructs are in two-dimensions. To remedy this situation we allow redundancy in our

design which gives the flexibility of using highly symmetric and smooth scaling functions.

The need for filters with radial symmetry has been recognized in the past, not in an

MRA-context but for multiscale transforms. The most well known and probably the oldest

approach in this context is the Canny Edge Detector [23] motivated by the studies of Marr

and Hildreth [82] on vision. The authors of [82] use the Laplacian of a radial Gaussian for

edge detection to achieve an orientation-independent design; a goal similar to ours. For the

same reason, radial Gaussian filters with various widths (corresponding to different scales)

are used in [23]. More recently, the use of isotropic filters has been proposed by Fickus

and co-workers who develop moment transforms covariant with respect to rigid motions in

multidimensions [47, 48]. The need to derive MRA wavelet decompositions covariant with

respect to rigid motions also motivated [36, 49]. These constructs are in 2-D and are not

3
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generalizable to higher dimensions and the Fourier transforms of their radial Riesz scaling

functions are discontinuous at the origin. Other notable constructions of multidimensional,

isotropic or radial frame wavelets have been proposed in [2, 57, 86]. However, these have not

been shown to arise from MRAs or yield decompositions implementable with MRA-type

fast wavelet algorithms. In [42, 43], Epperson and Frazier construct radial wavelets suited

for polar co-ordiantes but these are not translation invariant and have limited practical

utility.

An alternative method to reduce the effects of directional bias is to introduce more

preferred directions to the filtering by augmenting one dimensional constructions with

multiscale or monoscale angular decomposition. In other words one might spread the

directional bias into more than the obvious directions. We refer to all of those as di-

rectional representations. There are two dominant schools in directional representations;

one pioneered by Candes, Donoho, and collaborators who introduced ridgelets, wedgelets,

beamlets, planelets, shearlets, curvelets, etc. (see e.g., [20–22, 40, 54, 71]) and the other

pioneered by Kingsbury proposing monoscale angular resolution (see e.g., [67, 98, 99]). The

latter approach aims at using oversampled filters, applied to rows and columns of an im-

age, in order to mitigate the problem of directional bias. In [67] the phase information

of a complex wavelet transform is used to encode the local orientation information while

[98, 99] use tensor products of oversampled filter banks based on B-splines. The angle se-

lectivity in either of these approaches is limited to a finite number of orientations. Among

the directional representations of Candes and Donoho, curvelets have received the most

attention as these are claimed to yield an optimally sparse representation for 2-D images

that are smooth away from C2-edges [22]. The construction relies on a product of radial

and angular windows that form a partition of the unity, and a parabolic dilation matrix.

Unlike the construction of Kingsbury, for curvelets the angular resolution increases with

4
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the scale. The discrete curvelet transform and its implementation is described in [109]. The

transform has a redundancy factor of 5 which can pose problems for large data-sets used

in modern signal processing applications such as seismic imaging and biomedical imaging.

In contrast, the redundancy factor for the fast isotropic wavelet transform described in

Section 3.3 is bounded above by 2 and is close to 1.5 for a finite number of levels of decom-

position. The trade-off is the lack of directional information that may be obtained from

the curvelet transform and other directional representations. But for applications such as

seismic imaging (see Chapter 4) where low redundancy and isotropic filters are required,

IMRA scores over directional transforms. It is also better suited for isotropic textures

arising in medical imaging, a rigorous treatment of which can be found in [88]. Another

notable construction, with frequency tiling similar to the discrete curvelet transform, called

shearlets has been described in [71]. It is shown to arise from an MRA with the so-called

composite dilations [54] which results in “a faithful transition from the continuous to the

discrete representation” [41]; unlike curvelets, for which the discrete representation is only

an approximation to the continuous transform. Other directional representations in the

spirit of digital filter design, not directly related to multiresolution analyses nor to wavelets

can be found in [1, 32, 50, 61, 63, 92, 100].

In this thesis, we study the approach to isotropic filters and IMRAs that originated

in [89] and continued in [14, 88]. We formally define Isotropic Multiresolution Analysis

of L2(Rd) in Chapter 2. This is a new type of MRA for which the core subspace, V0, is

invariant under all rotations, in addition to its usual invariance under integer translations.

The rotational invariance of the resolution spaces addresses an important concern in sam-

pling theory: Intuitively, the resolution of an image should not change as a result of a rigid

motion applied to it. But that is not the case with the resolution spaces corresponding

to the multiresolution constructions available in the literature. This situation is remedied

5
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in the construction of IMRA, since the resolution spaces are, by definition, rotationally

invariant. In fact, these spaces are shown to be invariant under all rigid motions in Sec-

tion 2.2. In addition, the IMRA design addresses other concerns with the non-separable

and isotropic constructions discussed above. Firstly, it is easily generalizable to any number

of space dimensions. In fact, we describe all constructions for L2(Rd) for a general d. Next,

the examples of isotropic scaling functions produced in Section 3.2 exhibit high degree of

smoothness in addition to their radial symmetry. In Chapter 3, we construct isotropic

wavelets associated with IMRAs using the so-called Extension Principles [38, 97] which fa-

cilitates fast algorithmic implementation of the IMRA decomposition and reconstruction

algorithms.

In Section 3.1, we revisit the Extension Principles which first appear in the celebrated

paper of Ron and Shen [97], and are later studied in [38], where they are used to design

Framelets. A Framelet is an affine family Ψ :=
{
Dj
ATkψi : j ∈ Z,k ∈ Zd, i = 1, . . . ,m

}
such that each ψi belongs to the resolution space V1 of a MRA. In their definition of MRA,

the authors of [38] only require the translates of the scaling function, φ (the generator of

V0), to be a Bessel family. The Extension Principles characterize affine families that form

tight frames or a pair of dual frames in terms of quadrature mirror type conditions on the

associated low and high pass filters. In applications such as seismic imaging [62], we are

interested in families of the form

Xφψ :=
{
Dj
ATkψi : j ∈ N ∪ {0},k ∈ Zd, i = 1, . . . ,m

}
∪
{
Tkφ : k ∈ Zd

}
.

We are interested in the question of whether Xφψ forms a Parseval frame of L2(Rd). This

question is not answered by the Extension Principles. We characterize the families of the

form Xφψ that are Parseval frames or yield a pair of dual frames of L2(Rd) in terms of

conditions on the associated low and high pass filters that are the same as those that appear

6
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in the Extension Principles but with the so-called fundamental function identically equal

to one.

We discuss the application of IMRA to seismic imaging in Chapter 4. Migration is a

seismic imaging technique used by the oil industry to image the sub-surface of the Earth for

the purpose of oil prospecting. In Section 4.1, we give a very brief overview of what is called

wave equation migration and we arrive at the so-called Phase-shift propagator operator

which is used to obtain the image of the interior by downward propagating acoustic waves

recorded on the surface. An efficient discretization of this operator using the isotorpic

frames arising from IMRA constitutes an explicit migration scheme which is described in

Section 4.2. The importance of circularly symmetric propagator filters, required to design

accurate explicit schemes for wave equation migration, has been discussed in [44, 56, 101,

104]. We show that on top of the circular symmetry, the multiscale structure of IMRA

offers the possibility of reducing the computational cost. This can be compared to the work

of Margrave and his collaborators [81], who describe a sub-sampling scheme based on the

temporal frequency domain. However, the IMRA-based scheme is more general because we

sub-sample not only for one fixed frequency, but also for various regions of the sub-surface

image where the sound velocity is high. In addition, our treatment of the discretization of

the propagator is formal as compared to the various ad-hoc discretization schemes available

in the geophysical literature.

We continue the theme of rotation invariance in image analysis in Chapter 5 where

we describe a rotationally invariant 3-D texture classification scheme. In Section 5.1, we

discuss the literature on rotationally invariant texture classification. The models present

in the literature are mostly for 2-D textures and impose an isotropic structure on possibly

non-isotropic textures. We define a texture signature that is itself non-isotropic but the

7
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rotational invariance is achieved via a rotationally invariant distance between these texture

signatures that we define in Section 5.3. We describe a practical implementation of this

distance that stays computationally efficient in 3-D (Section 5.3.3). Textures defined on a

discrete lattice are modeled using Gaussian Markov Random Fields following the approach

of Chellappa [25]. We consider the texture defined on a discrete lattice to be samples of a

continuous texture which is viewed as a realization of a stationary Gaussian random field

on R3 . The rotation of a texture then takes a natural form and is shown to be equivalent to

the rotation of the corresponding autocovariance function (Section 5.3.2). IMRA is used

to bridge the gap between the discrete and the continuous domains where the rotation

invariance of the resolution spaces plays a key role.

In the remainder of this chapter, we set up the notation (Section 1.2), and discuss the

preliminaries. We discuss the classical MRA of Mallat and Meyer, and the associated fast

wavelet algorithms in Section 1.3. We give a quick overview of frames for separable Hilbert

spaces, and their characterization in terms of the so called analysis and synthesis operators,

in Section 1.4.

1.2 Notation

Before we give the formal definition of an MRA, we must set up some notation that is used

here and in the subsequent chapters of this thesis.

We use F to denote the Fourier Transform on L2(Rd) defined via

Ff(ξ) = f̂(ξ) =
∫

Rn

f(x)e−2πi〈x,ξ〉dx ξ ∈ Rd,

for all f ∈ (L1 ∩ L2)(Rd) and extended to an isometry on all of L2(Rd).

8
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For convenience we adopt the notation,

ek(ξ) = e−2πi〈k,ξ〉 ξ ∈ Rd;k ∈ Zd,

for the modulations and

Td = [−1/2, 1/2]d,

for the fundamental domain.

For y ∈ Rd, the (unitary) shift operator Ty is defined as

Tyf(x) = f(x− y), f ∈ L2(Rd).

Given a lattice Γ ⊂ Rd which is similar to Zd, a linear closed subspace V of L2(Rd) is said

to be Γ-shift-invariant if for each γ ∈ Γ, TγV = V . When we use the term shift-invariant

for a subspace we mean Γ = Zd.

Given S, a subset of a linear space V , the notation 〈S〉 will be used for the shift invariant

subspace generated by S (i.e., the smallest shift invariant subspace of V containing S). If

S = {φ}, we will write 〈φ〉 to denote 〈{φ}〉.

Moreover, Sd−1 denotes the unit sphere in d dimensions, centered at the origin. For

x ∈ Rd and ρ > 0, B(x, ρ) will denote the ball centered at x with radius ρ. We will not

distinguish open from closed balls because the difference B(x, ρ) \ B(x, ρ) (a d sphere)

has measure zero in Rd. By suppf we mean the closure of the set of points x such that

f(x) 6= 0.

Given Ω ⊂ Rd with positive measure, PWΩ is the closed subspace of L2(Rd) defined as

PWΩ = {f ∈ L2(Rd) : suppf̂ ⊆ Ω}.

If r is a positive real number, PWr will denote PWB(0,r). The subspace PWΩ is called

a Paley-Wiener subspace of L2(Rd) associated to Ω, if Ω has compact closure, or simply

9
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a Wiener subspace of L2(Rd) associated to Ω if Ω is an arbitrary measurable subset of

Rd. The Lax-Wiener Theorem states that these are the only subspaces of Rd that are

invariant under the action the group of translations induced by Rd [74]. This theorem

plays a central role in the characterization of IMRAs (Section 2.2). Finally, we remark

that all set equalities and inclusions are modulo null sets unless otherwise mentioned.

Definition 1.2.1 Let Ω be a measurable subset of Rd.

1. We say that Ω ⊂ Rd is radial if for all R ∈ SO(d), RΩ = Ω.

2. A d×d matrix is expansive if it has integer entries and if all of its eigenvalues have

absolute value greater than 1.

3. An expansive matrix is radially expansive if A = aR, for some fixed a > 0 and a

matrix R ∈ SO(d).

A radially expansive matrix A is a matrix with integer entries that leaves the lattice Zd

invariant, and |detA| is a positive integer. The term isotropic is sometimes used to refer

to matrices that are similar to a diagonal matrix and for which every eigenvalue has the

same absolute value [75]. However, these ‘isotropic’ matrices are not suitable for our study

because they do not necessarily map radial sets into radial sets. We also note that we use

the term ‘isotropic’ in an entirely different context.

If A is an expansive (or radially expansive) matrix, we define its associated unitary

dilation operator by

∀f ∈ L2(Rd), DAf(x) = |detA|1/2f(Ax).

10
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A function g defined on Rd is said to be radial if, g(x1) = g(x2), whenever ||x1|| = ||x2||.

A subset F of Rd is radial if its characteristic function χF is equal a.e. to a Lebesgue

measurable radial function. Now, let F be a Lebesgue measurable subset of Rd. Then, χF

is measurable and now a change of coordinates from Cartesian to spherical together with

Tonelli’s theorem readily imply∫
Rd

χF =
∫ ∞

0

∫
Sd−1

χF(r, θ)rd−1dθdr .

The change of variable preserves the measurability of χF because the transformation from

Cartesian to spherical coordinates is continuous. For a.e. r > 0, the function χF(r, ·) is

a.e. constant on the sphere rSd−1, so either it takes the value 1 or the value 0 on rSd−1.

But, the result of the first of the two successive integrations is a measurable function with

respect to r, and the value of this function is either m(Sd−1) or 0, where m(Sd−1) is the

area of the sphere Sd−1. So, there exists a measurable subset F of R+ such that∫
Rd

χF = m(Sd−1)
∫ ∞

0
χF (r)rd−1dr .

We will call this set F a radial profile of F. This set is Lebesgue measurable but it is

not uniquely defined for any given radial subset of Rd. Nonetheless, all radial profiles are

‘equal’ in the sense of measure-theoretic set-equality. Generalizing this analysis we call a

measurable function f defined on Rd radial, if for almost every r > 0, the restriction of

f on rSd−1 is a.e. equal to a constant function, with respect to the surface measure of

Sd−1. Thus, from now on, all these functions are considered constant on the spheres rSd−1,

for a.e. r > 0. This also applies to characteristic functions of radial sets. Thus, if F is

a radial set, then for a.e. r in its radial profile, the sphere rSd−1 is contained in F. This

readily implies that radial sets remain invariant under all rotations and radially expansive

matrices map radial sets onto radial sets.

11
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To simplify the language we henceforth drop the term measurable when we refer to

functions and sets, since we assume that all of them are measurable. We will often need to

consider the restriction of a function on a radial set F. Doing so, we use the term ‘radial’ to

refer to the property that the restrictions of the function to the spheres rSd−1 are constant

for a.e. r in a radial profile of F.

If L is a measurable subset of Rd, x0 is a point of density of L if,

lim
η→0

|L ∩ (B(x0, η)|
|B(0, η)|

= 1 .

A well-known theorem due to Lebesgue asserts that a.e. every point of L is a point of

density of L, e.g. [107], and for a.e. x0 in Lc

lim
η→0

|L ∩ (B(x0, η)|
|B(0, η)|

= 0 .

Since radial sets remain invariant under rotations we readily assert that if x0 is a point

of density for some radial set, then all the points on the sphere ||x0||Sd−1 share the same

property. A function f ∈ L2(Rd) is said to be isotropic if there exist y ∈ Rd and a radial

function g ∈ Rd such that f = Tyg. A function f ∈ L2(Rd) is said to be isotropic if there

exists a y ∈ Rd and a radial function g ∈ Rd such that f = Tyg.

1.3 Classical Fast Wavelet Algorithms

We now present a brief overview of the Multiresolution Analysis (MRA) theory of L2(R)

and the resulting fast wavelet algorithms. In the rest of this chapter, the dilation operator

is assumed to be defined with respect the dyadic dilation matrix, and is denoted by D.
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1.3.1 Definition of a Classical MRA

Definition 1.3.1 A sequence of closed subspaces {Vj}j∈Z of L2(R) is called a Multires-

olution Analysis (MRA) of L2(R) if and only if

• Vj ⊂ Vj+1 ∀j ∈ Z,

• f ∈ Vj ⇔ Df ∈ Vj+1,

•
⋂
j∈Z Vj = {0},

•
⋃
j∈Z Vj = L2(R),

• There exists a function φ ∈ V0 such that {Tkφ : k ∈ Z} is an orthonormal basis of

V0.

The function φ is called the scaling function of the MRA. Here, the hypothesis that

the translates of the scaling function form an orthonormal basis for V0, can be replaced by

just requiring this set to be a Riesz basis.

1.3.2 Construction of Wavelets from MRAs

Let us now review the construction of orthonormal wavelets from MRA. We begin with

the definition of an orthonormal wavelet of L2(R).

Definition 1.3.2 A function ψ ∈ L2(R) is called an orthonormal wavelet if and only

if the set
{
DjTkψ

}
j,k∈Z is an orthonormal basis of L2(R).

13
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Next, since D∗φ ∈ V−1, the inclusion V−1 ⊂ V0 implies that D∗φ can be written in

terms of the orthonormal basis of V0

2−1/2φ(x/2) =
∑
k∈Z

αkT−kφ(x).

This equation is known as the two-scale relation. Taking the Fourier Transform of the

above equation, we get

21/2φ̂(2ξ) = φ̂(ξ)
∑
k∈Z

αke
2πikξ.

This gives us the following equation also called the two-scale relation (in the frequency

domain)

21/2φ̂(2ξ) = φ̂(ξ)m0(ξ),

where m0(ξ) =
∑

k∈Z αke
2πikξ is a 1-periodic function called the low pass filter corre-

sponding to the scaling function φ.

Now, let W0 be the orthogonal complement of V0 in V1, that is V1 = V0 ⊕W0. Then,

Wj = Dj(W0) is a closed subspace of Vj+1 such that for all j ∈ Z

Vj+1 = Vj ⊕Wj .

Now, the inclusion Vj ⊂ Vj+1 for all j ∈ Z and the above relation imply

L2(R) =
∞⊕

j=−∞
Wj .

Hence, if we have a function ψ ∈ W0 such that {Tkψ}k∈Z is an orthonormal basis for W0

then ψ is an orthonormal wavelet, i.e.
{
DjTkψ

}
j,k∈Z is an orthonormal basis of L2(R).

Every function ψ such that {Tkψ}k∈Z is an orthonormal basis ofW0 is called an orthonormal

wavelet associated with the MRA {Vj}j∈Z. If we define ψ by

21/2ψ̂(2ξ) = e2πiξm0(ξ + 1/2)φ̂(ξ), ξ ∈ R,
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then {Tkψ}k∈Z is an orthonormal basis for W0. For a proof of this result the reader is

referred to [60]. The 1−periodic function m1, defined by

m1(ξ) = e2πiξm0(ξ + 1/2),

is referred to as the high pass filter corresponding to m0.

1.3.3 The Fast Wavelet Algorithm

In this section we present the theory of the Fast wavelet transforms associated with the

classical MRAs of L2(R). MRAs provide the mathematical foundation of the transition

between analog and digital domains. Fast wavelet algorithms facilitate the analysis of the

discrete information representing an analog signal to various levels of lower resolution and

detail.

Let Pj be the orthogonal projection operators onto Vj and Qj the orthogonal projection

operators onto Wj . This assumption implies that the original analog signal f has been

approximated by Pjf , its projection at the resolution level j.

For a given f ∈ L2(R) let cj,k and dj,k be defined as follows:

cj,k =
〈
f,DjTkφ

〉
,

dj,k =
〈
f,DjTkψ

〉
.

The coefficients {cj,k}k∈Z essentially are the samples of Pjf at resolution level j, corre-

sponding to a sampling rate proportional to 2−j .

Then Pj and Qj are given by:

Pj(f) =
∑
k∈Z

cj,kD
jTkφ,
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Qj(f) =
∑
k∈Z

dj,kD
jTkψ.

For simplicity we assume that the signal lies in Vj for a certain j ∈ Z. The samples

of the signal can be interpreted as the coefficients cj,k of the projection onto Vj . The so

called pyramid algorithm or fast wavelet transform is an iterative scheme that gives

cj−1,k and dj−1,k from cj,k. Thus, it takes the discrete information corresponding to the

projection of f (or Pjf) to the next lower resolution level Pj−1f and the detail level Qj−1f .

Recall,

D−1φ(x) =
∑
n∈Z

αnT−nφ(x).

Now, by applying the unitary operator DjT2k to this equation, we get,

Dj−1Tkφ(x) =
∑
n∈Z

αnD
jT2k−nφ(x), (1.1)

since TkDj = DjT2jk. Hence,

cj−1,k =
〈
f,Dj−1Tkφ

〉
=

〈
f,
∑
n∈Z

αnD
jT2k−nφ

〉
=

∑
n∈Z

αn
〈
f,DjT2k−nφ

〉
=
∑
n∈Z

αncj,2k−n.

Therefore, the coefficients cj−1,k are obtained by convolving {αn}n∈Z with {cj,k}k∈Z fol-

lowed by downsampling by 2, i.e. keeping only the even entries from the result of the

convolution.

Similarly, if

D−1ψ(x) =
∑
n∈Z

βnT−nφ(x),

applying the unitary operator DjT2k as above, we obtain

Dj−1Tkψ(x) =
∑
n∈Z

βnD
jT2k−nφ(x), (1.2)
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then similar calculations as above yield

dj−1,k =
∑
n∈Z

βncj,2k−n.

The sequences {αn}n∈Z,
{
βn
}
n∈Z are the impulse responses of the low and high pass filters

m0 and m1 respectively. These sequences are also referred to as the analysis low and high

pass components respectively.

Figure 1.2: Schematic representation of the decomposition algorithm

Now observing that Pjf = Pj−1f + Qj−1f , and using (1.1) and (1.2) we deduce the

reconstruction algorithm as follows,

∑
l∈Z

cj,lD
jTlφ =

∑
k∈Z

cj−1,kD
j−1Tkφ+

∑
l∈Z

dj−1,kD
j−1Tkψ

=
∑
k∈Z

cj−1,k

(∑
n∈Z

αnD
jT2k−nφ

)
+
∑
l∈Z

dj−1,k

(∑
n∈Z

βnD
jT2k−nφ

)

=
∑
l∈Z

{∑
k∈Z

[cj−1,kα2k−l + dj−1,kβ2k−l]

}
DjTlφ.

Thus,

cj,l =
∑
k∈Z

[cj−1,kα2k−l + dj−1,kβ2k−l] . (1.3)
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Figure 1.3: Schematic representation of the reconstruction algorithm

Each of the summands in (1.3), represented by an arrow in Figure 1.3, is a convolution.

To see this consider, for j fixed,

c̃n =

 cj−1,n
2

if n is even,

0 otherwise;

and α̃n = α−n. Then

(c̃ ∗ α̃)l =
∑
n∈Z

c̃nα̃l−n =
∑
k∈Z

c̃2kα̃l−2k =
∑
k∈Z

cj−1,kα2k−l.

Thus, each arrow in the figure requires an upsampling by 2 followed by a convolution.

The sequences {α−n}n∈Z, {β−n}n∈Z are referred to as the synthesis low and high pass

respectively.

This decomposition and reconstruction can be presented in a more elegant operator

theoretic setting. This will facilitate the understanding of fast algorithms for the more

intricate IMRA discussed later. To this end we define Y : V0 → L2(T) by

Y (f) =
∑
k∈Z

〈f, Tkφ〉 ek. (1.4)

Since {Tkφ}k∈Z is an orthonormal basis for V0, we get

Y (Tkφ) = ek.
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Thus, Y is a surjective isometry and is our sampling operator, or the converter between the

analog and the digital domains. Note that when φ is a Parseval frame scaling function i.e.

when {Tkφ}k∈Z is a Parseval frame and not an orthonormal basis of V0, Y is not surjective.

If ak = 〈f, Tkφ〉, then

Y (
∑
k∈Z

akTkφ) =
∑
k∈Z

akek = w,

equivalently, for every g ∈ V0, Y (g) = w if and only if ĝ = wφ̂. In particular, we have

Y (D∗φ) = m0. Now,

P−1f =
∑
k∈Z

ãkD
∗Tkφ =

∑
k∈Z

ãkT2kD
∗φ.

Denoting the Fourier Transform by ∧, we obtain

(P−1f)∧ =
∑
k∈Z

ãke2k(D∗φ)∧ =
∑
k∈Z

ãke2kDφ̂ = w1(2.)m0φ̂, (1.5)

where w1 =
∑

k∈Z ãkek. Y P−1Y
∗ is the orthogonal projection, onto Y (V−1) and using (1.5)

we infer

Y P−1f = w1(2.)m0. (1.6)

Note that in Equation (1.5) we don’t have f in the RHS. Obviously, we must find out how

to obtain w1 from f . Next we discuss this problem.

Let us analyze Equation (1.5). The function w1(2.) can be expanded in terms of the

even modulations only. Notice that w1(2.) is already upsampled. Its Fourier coefficients

are the terms of {ãk}k∈Z. This formula is implemented by the low pass branch of the

reconstruction algorithm, because we multiply w1(2.) with the low pass filter m0, usually

referred to as the reconstruction (synthesis) low pass filter.

The problem we now have to address is how to compute ãk from the Fourier coefficients

ak of the expansion of f with respect to {Tkφ}k∈Z. First, we introduce the operator
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U : l2(Z) → l2(Z) defined by

Ua(k) =

 a(k/2) k even,

0 otherwise.

If F is the Fourier Transform on l2(Z), then Ûw(ξ) = w(2ξ), ξ ∈ T where Û = FUF∗. We

also define D : l2(Z) → l2(Z) by

Da(k) = a(2k), or equivalently,

D̂w(ξ) =
1
2

(
w

(
ξ

2

)
+ w

(
ξ

2
+

1
2

))
.

D is called the downsampling operator and U is the called the upsampling operator. Note

that U∗ = D and U is an isometry, while D is only a partial isometry. Using the definition

of Y we obtain

ak = 〈f, Tkφ〉 = 〈Y f, Y (Tkφ)〉 = 〈Y f, ek〉 .

Observe that {e2lm0}l∈Z is an orthonormal basis for Y (V−1) because

Y (D∗Tlφ) = Y (T2lD
∗φ) = Y T2lY

∗(Y D∗φ) = M2lm0 = e2lm0,

and {D∗Tlφ}l∈Z is an orthonormal basis of V−1. Since Y P−1Y
∗ is an orthogonal projection

and Y f = w, we obtain

ãk = 〈P−1f,D
∗Tkφ〉 = 〈Y P−1f, Y D

∗Tkφ〉

= 〈(Y P−1Y
∗)(Y f), e2km0〉 = 〈w, e2km0〉 = 〈wm0, e2k〉 .

Therefore, ãk is the 2k-th Fourier coefficient of wm0 and

w1 = D̂(m0w). (1.7)

Thus, the decomposition algorithm gives the coefficients of the expansion of P−1f with

respect to the basis {D∗Tkφ}k∈Z. The reconstruction algorithm forms P−1f , which is the
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Figure 1.4: Flow diagram for one level of decomposition

actual image captured at the resolution level −1, i.e. the projection one level below the

input analog image. Now, using (1.6) and (1.7) we obtain

Y P−1Y
∗w = Y P−1f = m0(Ûw1)

= m0ÛD̂(m0w) = M̂∗M̂w,

where M̂w = D̂(m0w) for all w ∈ L2(T). Similar arguments are true for the high pass filter

m1 and the associated filtering operators H, H∗. The flow diagrams for decomposition and

reconstruction are shown in Figures 1.4 and 1.5.

Finally, since P−1 +Q−1 = I|V0 , we obtain,

I = M∗M+H∗H .

This is known as the exact reconstruction formula. We close this section by remarking

that in most applications we don’t know ak. So we use the samples of the function f ∈ V0

instead of the coefficients ak.
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Figure 1.5: Flow diagram for one level of reconstruction

1.4 Frames

Next we define the concepts of frames and Bessel families on a separable Hilbert space H.

Definition 1.4.1 Let (H, 〈., .〉H) be a separable Hilbert space. A subset {fn}n∈Λ of H,

where Λ is a countable indexing set, is called a frame if and only if there exist two constants

0 < A,B < +∞, such that

A||g||2H ≤
∑
n∈Λ

|〈g, fn〉H |
2 ≤ B||g||2H , for all g ∈ H. (1.8)

The set, {fn}n∈Λ, is called a Bessel family if only the upper bound, B, in (1.8) exists and

A = 0. The minimum constant B for which (1.8) holds is called the upper Bessel bound

or the upper frame bound. The optimal constant A for which (1.8) holds is called the

lower frame bound.

If A = B = 1 then we refer to the frame as Parseval. In this case we have the following

reconstruction formula:

g =
∑
n∈Λ

〈g, fn〉H fn for all g ∈ H.
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Let K be a separable Hilbert space with an orthonormal basis {en}n∈Λ. The operator,

S : K → H, defined via S(en) = fn, is called the synthesis operator for the family

{fn}n∈Λ. If {fn}n∈Λ is Bessel then S can be extended to a bounded linear operator. The

adjoint of this operator is given by, S∗(f) =
∑

n∈Λ 〈f, fn〉 en for all f ∈ H. We refer to

S∗ as the analysis operator for {fn}n∈Λ. The operator SS∗ is referred to as the frame

operator. A restatement of the above reconstruction formula is: SS∗ = IH if and only if

{fn}n∈Λ is a Parseval frame.

Let {fn}n∈Λ and {f̃n}n∈Λ be frames of H. If

g =
∑
n∈Λ

〈
g, f̃n

〉
H
fn

holds for all g ∈ H, then {fn}n∈Λ and {f̃n}n∈Λ are a pair of dual frames. In operator

theoretic language, if S and S̃ are the synthesis operators for {fn}n∈Λ and {f̃n}n∈Λ respec-

tively, then {fn}n∈Λ and {f̃n}n∈Λ are dual to each other if and only if S(S̃)∗ = IH . For

more details on frames, the reader is referred to [28].
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Chapter 2
Isotropic Multi-Resolution Analysis

2.1 Isotropic Multiresolution Analysis of L2(Rd)

We begin this chapter by defining an Isotropic Multiresolution Analysis (IMRA) of L2(Rd)

(see [96]). We drop the assumption of the existence of a scaling function, translates of

which form a Riesz basis or a frame for the core subspace V0. Instead, we assume that

the core subspace is invariant under all rotations, and under translations by integers. As

we shall see in subsequent chapters, this definition gives us a lot of flexibility in designing

wavelet transforms for applications.

Definition 2.1.1 An Isotropic Multiresolution Analysis (IMRA) of L2(Rd) with respect

to a radially expansive matrix A (see Definition 1.2.1 and the subsequent discussion), is

a sequence {Vj}j∈Z of closed subspaces of L2(Rd) satisfying the following conditions:

• ∀j ∈ Z, Vj ⊂ Vj+1,

• (DA)jV0 = Vj,
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• ∪j∈ZVj is dense in L2(Rd),

• ∩j∈ZVj = {0},

• V0 is invariant under all translations Tk such that k ∈ Zd,

• V0 is invariant under all rotations, i.e.,

O(R)V0 = V0 for all R ∈ SO(d), (2.1)

where O(R) is the unitary operator given by O(R)f(x) := f(RTx) a.e. with f ∈ L2(Rd)

and R ∈ SO(d) and RT is the transpose of the matrix R.

Although the last two properties of Definition 2.1.1 appear not to be sufficiently strong

to yield rigid motion covariant wavelet decompositions, they force all the resolution sub-

spaces Vj of an IMRA to be invariant under all rigid motions in any number of dimensions

(Theorem 2.2.1). This strong result follows from the characterization of all IMRAs by

means of the Lax-Wiener Theorem [74] which is the topic of the next section.

2.2 Characterization of IMRAs

As we will see, Equation (2.1) imposes an algebraic-geometric constraint on the space V0:

Assume V is a shift-invariant subspace of L2(Rd) also satisfying (2.1). Then, for every

R ∈ SO(d) and k ∈ Zd, we have

TkO(R) = O(R)TRT k .

Thus, we obtain O(R)TRT kV = TkO(R)V = V yielding

TRT kV = V , for every R ∈ SO(d) and k ∈ Zd. (2.2)
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2.2. CHARACTERIZATION OF IMRAS

Since SO(d) acts transitively on spheres centered at the origin, the orbit {Rx : R ∈ SO(d)}

of any x in Rd is the entire sphere of radius ‖x‖. In particular, if x = (1, 1, ..., 1), then,

Equation (2.2) implies that V remains invariant under all translations by Ty with y ∈
√
d ·Sd−1 and thus also by translations Ty with y ∈

√
d Sd−1−

√
d Sd−1, which contains the

fundamental domain Td := [−1
2 ,

1
2)d. Hence, we conclude that Ty(V ) = V for all y ∈ Td.

Since the same identity is true for all y ∈ Zd we assert that V remains invariant under

all translations induced by Rd. This implies that V is a Wiener subspace of L2(Rd), so

there exists a measurable subset Ω of Rd such that V = PWΩ. The fact that V remains

invariant by all rotations now implies that Ω is radial. On the other hand, if Ω is radial

we obviously have that V = PWΩ remains invariant under all rotations and translations

induced by Zd. Therefore, we have proved the following characterization of shift-invariant

and rotation invariant subspaces of L2(Rd).

Theorem 2.2.1 Let V be an invariant subspace of L2(Rd) under the action of the trans-

lation group induced by Zd. Then V remains invariant under all rotations if and only if

V = PWΩ for some radial measurable subset Ω of Rd.

As an immediate consequence we obtain a characterization of IMRAs generated by a

single function, in the sense that there exists function ϕ such that V0 =< ϕ >.

Proposition 2.2.2 Let A be a radially expansive matrix and C := A∗. A sequence {Vj}j∈Z

is an IMRA with respect to A if and only if Vj = PWCjΩ, where Ω is radial and satisfies

(i) Ω ⊂ CΩ.

(ii) The set-theoretic complement of ∪∞j=1C
jΩ is null.

(iii) limj→∞ |C−jΩ| = 0 .
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2.2. CHARACTERIZATION OF IMRAS

Moreover the only singly generated IMRAs are precisely Vj = PWCjΩ, where Ω is a radial

subset of Td satisfying (i), (ii) and (iii).

Proof: If {Vj} is an IMRA, then V0 satisfies Equation (2.1). By the previous theorem,

V0 = PWΩ for some set Ω ⊂ Rd. Thus, Vj = PWCjΩ. Properties (i), (ii), and (iii) are now

obvious.

On the other hand if Vj = PWCjΩ, for some radial subset Ω, and conditions (i), (ii)

and (iii) are satisfied, then clearly {Vj} is an Isotropic Multiresolution Analysis.

Now, suppose that V0 =< φ >. Then suppφ = Ω where the equality must be perceived

in the measure-theoretic sense. We will prove Ω ⊆ Td. Since, Φφ(ξ) :=
∑

k∈Zd |φ̂(ξ + k)|2

is a.e. finite the function ω given by ω̂ := φ̂Φ−1/2 is a Parseval frame generator of V0,

i.e. {Tnω : n ∈ Zd} is a Parseval frame of V0, because Φω(ξ) :=
∑

k∈Zd |ω̂(ξ + k)|2 = χE ,

where E is a subset of Td e.g. [12, 16, 87]. Consequently, there exists a family {Lk}k∈Zd

of mutually disjoint measurable subsets of Td such that ∪k∈Zd(k + Lk) = Ω, where this

equality is again meaningful only in a measure-theoretic sense, for if it is not true there

exists a subset U of Td with positive measure and l1, l2 in Zd, l1 6= l2, such that U + l1 and

U + l2 are contained in Ω. Then, the inverse Fourier transform (χU+l1)
∨ belongs to V0, so

χU+l1 = mω̂, (2.3)

with m ∈ L2(Td). Since suppω̂ = Ω and m is Zd-periodic, we conclude m(ξ)ω̂(ξ) 6= 0 a.e.

on U + l2 which is disjoint from U + l1. This conclusion directly contradicts (2.3), so our

claim is proved.

Next, we claim that the previously established property of Ω combined with its radiality

imply Ω ⊆ Td. To prove this claim, assume that the contrary is true. Then, there exists

a point of density ξ0 of Ω and p ∈ Z+ such that ξ0 ∈ (pi + Td), where i = (1, 0, . . . , 0).
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Consequently, every point on ||ξ0||Sd−1 is a density point of Ω. Let, C1 := ||ξ0||Sd−1∩ (pi+

Td) 6= ∅ and C2 := ||ξ0||Sd−1 ∩ (pj + Td) 6= ∅, where j = (0, 1, . . . , 0). Since every point

in both C1 and C2 is a density point of Ω, these two sets must be contained in pi + Lpi

and pj + Lpj respectively, where Lpi and Lpj are disjoint. But, −pi + C1 and −pj + C2

intersect at a density point of both Lpi and Lpj contradicting the fact that these two sets

are disjoint. Thus, Ω ⊆ Td. The converse implication is obvious. �

Remark 2.2.3 If V = PWΩ, for some radial subset Ω we can find a subset F ⊂ L2(Rd)

with V = span{Tkf : f ∈ F, k ∈ Zd} and this set is at most countably infinite. To show

the existence of such a set it suffices to apply Zorn’s lemma. The construction of the set

of generator F is non-trivial but it does not interest us here. If Ω is essentially bounded,

then every f in F can be chosen to satisfy {ξ ∈ Rd : f̂(ξ) 6= 0} = Ω with F finite.

Example 2.2.4 The sequence of closed subspaces Vj = PW2jB(0,ρ), for any ρ > 0 and

j ∈ Z is an IMRA.

The purpose of the next two examples is to show that: First, Ω can be unbounded, and

second, Ω may not contain a neighborhood of the origin. Notice that such a neighborhood

is sufficient for Condition (ii). In both examples we use dyadic dilations.

Example 2.2.5 Denote by B(0, r, s) the (d-dimensional) spherical shell centered at the

origin having inner radius r and outer radius s. Now for simplicity set d = 2 although

this example can be generalized for every d > 2. Let A =
∞⋃
n=1

B(0, rn, 2n−1), with rn =

2n−1 − (1/16)n, and let B = B(0, 1/2). Set Ω := A
⋃

B. Since A and B are disjoint,

|A
⋃

B| = |A|+|B|. Moreover, both A and B have finite measure. Since |B(0, rn, 2n−1)| =

π[(1/8)n−(1/16)2n] which implies |A| <∞. Thus, Ω is radial and satisfies all the conditions
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2.2. CHARACTERIZATION OF IMRAS

(i)-(iii) of Proposition 2.2.2: (i) is satisfied because B(0, rn+1, 2n) ⊂ 2B(0, rn, 2n−1) for all

n ≥ 1 and B(0, r1, 1) ⊂ 2B; (ii) is trivially satisfied since B is contained in Ω. The fact

that Ω has finite measure implies (iii). Thus, Ω gives rise to an Isotropic Multiresolution

Analysis, but Ω is not bounded.

Example 2.2.6 This example is valid for every d ≥ 2. Let Ω =
∞⋃
n=1

B(0, (1/2)n+1, rn), with

rn = (1/2)n − (1/100)n. Obviously, Ω contains no neighborhood of the origin. According

to Proposition 2.2.2, and since Ω ⊆ B(0, 1/2), it is enough to prove that the complement of⋃∞
n=1 2jΩ is null and Ω ⊂ 2Ω in order to establish that Ω defines an IMRA. Let us first show

that (i) of Proposition 2.2.2 is satisfied. This property holds because 2B(0, (1/2)n+1, rn) =

B(0, (1/2)n, 2rn) and rn−1 < 2rn for all n ≥ 2.

We now prove that (ii) is satisfied.

Let x ∈ Rd and jx ∈ Z such that 2jx−1 < ||x|| < 2jx . Then,

1
4
< || x

2jx+1
|| < 1

2
.

However,

lim
n→∞

rn − 2−(n+1)

2−(n+1)
= 1 ,

so there exists positive integer nx satisfying

|| x
2jx+1 || − 1

4

1/4
<
rnx − 2−(nx+1)

2−(nx+1)
.

This implies that 2−(jx+1)x belongs to the spherical shell 2nx−1B(0, 2−(nx+1), rnx), which

is equal to B(0, 1
4 , 2

nx−1rnx). Thus, x belongs to 2nx+jxΩ. Our claim now follows from

the fact that ∪j∈Z2jSd−1 is null.

Remark 2.2.7 Theorem 2.2.1 can be restated in terms of the theory of Von Neumann

Algebras: The joint commutant of {O(R) : R ∈ SO(d)} and TZd , on one hand, and the
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2.3. ISOTROPIC REFINABLE FUNCTIONS AND IMRAS

joint commutant of {O(R) : R ∈ SO(d)} and TRd on the other hand coincide. This follows

from the fact that the orthogonal projections in these two joint commutants are exactly

the same, as Theorem 2.2.1 suggests. Here, TG denotes the group of translations induced

by a subgroup G of Rd.

So far, we have characterized the ‘core’ or zero-resolution subspaces V0 of IMRAs. We

also note that if these are singly generated then the choices for ‘core’ IMRA-subspaces are

all of one kind: PWΩ with Ω radial and inside the fundamental domain Td. In the light of

this discussion an interesting open problem is to characterize all sets Ω for which V0 = PWΩ

is generated by a fixed number, N , of functions. However, none of these generators can be

compactly supported in the spatial domain: If one of them, say φ1, is compactly supported

then φ̂1 has analytic extension on the complex domain Cd. Then φ̂1 can vanish only on a set

of points with no accumulation point, forcing Ω = Rd which, in turn, implies V0 = L2(Rd)

which contradicts the IMRA-definition.

2.3 Isotropic Refinable Functions and IMRAs

According to Proposition 2.2.2 a single refinable function φ defines an IMRA by letting

V0 = span{Tkφ : k ∈ Zd}, if φ is radial and the support of φ̂ is contained in the fundamental

domain Td. This observation motivates us to characterize radial and, more generally,

isotropic refinable functions (Theorem 2.3.1) with respect to dilations defined by radially

expansive matrices. The purpose of this section is to characterize these functions. As we

will see not all of these functions generate ‘core’ IMRA-subspaces, because their support

in the frequency domain does not have to be contained in the fundamental domain.

Let A be a radially expansive matrix. With respect to dilations induced by A, a
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2.3. ISOTROPIC REFINABLE FUNCTIONS AND IMRAS

function φ in L2(Rd) is called refinable if there exists a measurable, essentially bounded,

Zd-periodic function H such that φ̂(A∗ξ) = H(ξ)φ̂(ξ), a.e. ξ ∈ Rd. The function H is

called the low-pass filter or mask corresponding to φ.

Theorem 2.3.1 Let A be a radially expansive matrix and φ ∈ L2(Rd) be a refinable func-

tion and H ∈ L∞(Td) be its mask. We also assume that

1. φ is isotropic , and

2. limξ→0 φ̂(ξ) = L 6= 0.

Then φ ∈ PWρ/(ρ+1), where ρ = |detA|1/d is the dilation factor of A.

The proof of this theorem is presented in [96]. Here we shall consider the following two

important ramifications of Theorem 2.3.1. The first corollary follows from the fact that φ̂

is compactly supported.

Corollary 2.3.2 There is no isotropic, refinable function that is compactly supported in

the spatial domain.

Next, recall that according to Proposition 2.2.2 the refinable functions generating an

integer shift and rotation-invariant subspace of L2(Rd) belong to the Paley-Wiener space

PWTd . So if a refinable function φ is isotropic and does not belong to PWTd , does it define

an IMRA? The answer is provided by the next corollary.

Corollary 2.3.3 If an MRA is defined by a single isotropic refinable function φ whose

Fourier transform is supported outside the ball of radius 1/2 centered at the origin is not an

IMRA; equivalently, the orthogonal projection onto V0 does not commute with all rotations.
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2.3. ISOTROPIC REFINABLE FUNCTIONS AND IMRAS

We remark that Theorem 2.3.1 is not true for a non-singleton refinable set {φl : l ∈ N}, a

set for which there exists an essentially bounded ∞×∞-matrix valued Zd-periodic function

H satisfying

(φ̂1(A∗·), φ̂2(A∗·), . . . )T = H(φ̂1, φ̂2, . . . )T a.e. on Rd,

where even at least one φl satisfies the hypotheses of the theorem. As an example, consider

the set {φ1, φ2}, where φ̂1 = χB(0,1/2), the characteristic function of the ball centered at

the origin and radius 1/2, and φ̂2 = χB(0,1/2,1), the characteristic function of the annulus

with inner radius 1/2 and outer radius 1. Let A = 2IL2(Rd), the dyadic dilation matrix.

Then the set {φ1, φ2} satisfies the following refinement equation: φ̂1(2.)

φ̂2(2.)

 =

 H1 0

H2 0


 φ̂1

φ̂2

 on Rd,

where H1 is a Zd-periodic function whose restriction to Td is χB(0,1/4), and H2 is a Zd-

periodic function whose restriction to Td is χB(0,1/4,1/2). Since ρ = 2 for dyadic dilation,

according to the theorem the scaling function should belong to PW2/3. But, as is evident,

φ2 does not belong to PW2/3.
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Chapter 3
Isotropic Wavelets from Extension

Principles

In Section 2.3, we prove that the singly generated IMRAs are the ones for which the scaling

function is supported inside the ball of radius 1/2. Now, if we want the integer translates

of such a scaling function to form a frame, then its Fourier transform must necessarily be

discontinuous (see Theorem 7.2.3 in [28]). Such a frame is useless in applications because

it lacks good spatial localization. To secure the latter property, we use generators for

V0 whose Fourier transforms are C∞. Then the classical methods for the construction of

wavelets (See Section 1.3.2 for orthonormal wavelets and [11, 12] for frame wavelets) do not

work anymore. One the other hand, if the stability of the generator is the issue, i.e. if we

want its integer translates to form a frame, then the solution is easy; take the generator to

be F−1
(
χ supp(bφ)

)
, where φ is the well-localized generator of an IMRA and as mentioned,

supp(φ) ⊆ Td. But the construction of wavelets associated with this IMRA will require the

use of a high-pass filter whose transfer function is of the form χ supp(bφ)
− χ supp(bφ(A∗·)).
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So the lack of smoothness of the generator for V0 results in the lack of smoothness of

the high pass filter. But what is the underlying property that seems to leave us out of

choices when we try to follow the classical paths of wavelet construction? The answer

is the enhanced symmetry of φ that we want to impose. Apparently, symmetry imposes

limits to stability; we can not turn two knobs to the maximum at the same time! This is

true for 1-D wavelet constructions as well. Daubechies, Cohen and Feauveau dropped the

orthonormality and instead imposed that {Tkφ}k∈Zd is a Riesz basis for its closed linear

span to be able to achieve some symmetry [34]. However, the complete departure from

any stability properties for φ, gives a lot more freedom in the design. Extension Principles

address that fundamental problem in wavelet construction and in digital data processing.

When the integer translates of a refinable function do not form a frame for their closed

linear span but form only a Bessel family the construction of affine wavelet frames with

desirable spatial localization cannot be carried out as in the classical multiresolution theory

of Mallat and Meyer. In this case Extension Principles provide the complete answer to this

problem, i.e., they characterize the affine families, associated with an MRA, that are frames

or yield a pair of dual frames, when the translates of the refinable function only form a

Bessel family. In addition they show that if we use the refinable function and the resulting

wavelets for multiscale signal decompositions these decompositions are implementable with

fast algorithms just as in the classical MRA theory. We don’t want to further discuss the

significance of the Extension Principles in wavelets and multiscale transforms in general.

The interested reader may refer to the celebrated first paper on the topic due to Ron and

Shen [97] and for nice overviews on the topic to the relevant chapter of [29] and to [38].
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3.1 Extension Principles Revisited

For a given refinable function φ, we denote by V0 the closed subspace span {Tkφ}k∈Zd . We

do not necessarily require that {Tkφ}k∈Zd is a frame. In other words, we completely drop

the stability requirements for φ. The spectrum of φ, denoted by σ(V0), is defined by (see,

e.g., [15])

σ(V0) :=

{
ξ ∈ Td :

∑
k

∣∣∣φ̂(ξ + k)
∣∣∣2 > 0

}
.

The next theorem is one of the main results in [97] and is the cornerstone of the Uni-

tary Extension Principle [97], but it also appears in [38] with different assumptions on φ

where it is used to formulate the so-called Oblique Extension Principle. The notation and

assumptions used here are those from [38].

Theorem 3.1.1 [38] Let φ be a refinable function in L2(Rd) such that φ̂ is continuous at

the origin,

lim
|ξ|→0

φ̂(ξ) = 1 . (3.1)

Assume that there exists a constant B > 0 such that
∑

l∈Zd |φ̂(ξ + l)|2 ≤ B a.e. on Rd and

that φ is refinable with respect to the expansive matrix A, i.e. there exists a Zd-periodic

measurable function H0, such that

φ̂(A∗.) = H0φ̂. (3.2)

Furthermore, let Hi, i = 1, . . . ,m, be Zd-periodic measurable functions and define m

wavelets ψi, i = 1, . . . ,m, by

ψ̂i(A∗.) = Hiφ̂. (3.3)

Assume Hi ∈ L∞(Td) for all i = 0, . . . ,m, then the following two conditions are equivalent:

1. The set
{
Dj
ATkψi : j ∈ Z,k ∈ Zd, i = 1, . . . ,m

}
is a Parseval frame for L2(Rd).
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2. For all ξ ∈ σ(V0),

(a) limj→−∞ Θ(A∗jξ) = 1.

(b) If q ∈ (A∗−1Zd)/Zd \ {0} and ξ + q ∈ σ(V0), then

Θ(A∗ξ)H0(ξ)H0(ξ + q) +
m∑
i=1

Hi(ξ)Hi(ξ + q) = 0,

where Θ is the so-called fundamental function, defined by

Θ(ξ) =
∞∑
j=0

m∑
i=1

∣∣Hi(A∗jξ)
∣∣2 j−1∏
l=0

∣∣∣H0(A∗lξ)
∣∣∣2.

The previous theorem characterizes all Parseval wavelet frames of L2(Rd) defined by

means of (3.3) from a refinable function satisfying (3.1) and (3.2). If we use several con-

secutive levels of the multiscale decomposition given by the Parseval frame

{
Dj
ATkψi : j ∈ Z,k ∈ Zd, i = 1, . . . ,m

}
,

of a signal, say f , then it is like using a partial sum of the series

∑
j

∑
k

< f,Dj
ATkψi > Dj

ATkψi = f,

to approximate f . If we are forced to take only a few levels of decomposition, then we wish

to use a family augmenting the refinable function and the wavelets such as

Xφψ :=
{
Dj
ATkψi : j ∈ N ∪ {0},k ∈ Zd, i = 1, . . . ,m

}
∪
{
Tkφ : k ∈ Zd

}
.

If this is the case, e.g. in seismic imaging [62], then it is legitimate to question whether Xφψ

forms a Parseval frame of L2(Rd). This problem is the focus of the present section. The

answer to this problem does not follow from Theorem 3.1.1. However, if Xφψ is a Parseval

frame of L2(Rd), then it is also true that
{
Dj
ATkψi : j ∈ Z,k ∈ Zd, i = 1, . . . ,m

}
shares the

same property (see Remark 3.1.3 and Corollary 3.1.9). One of the merits of Theorem 3.1.7
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is that it imposes minimal conditions on the filters and the refinable function φ. In the

spirit of Theorem 3.1.7, we have Theorem 3.1.10 which characterizes the Bessel sequence

pairs Xa
φψ := Xφaψa and Xs

φψ := Xφsψs that are dual frames of L2(Rd).

To facilitate the implementation of the decomposition of a multidimensional data set

by means of a Parseval frame resulting from Theorems 3.1.1, 3.1.7, 3.1.4, and 3.1.10 we

employ the modulation matrix, a concept introduced for filter design in engineering.

Definition 3.1.2 The modulation matrix H is defined by

H =



H0 H1 . . . Hm

Tq1
H0 Tq1

H1 . . . Tq1
Hm

...
...

. . .
...

Tqn−1
H0 Tqn−1

H1 . . . Tqn−1
Hm


, (3.4)

where n = |det(A∗)| and ql : l = 0, 1, 2, . . . , n− 1 are the representatives of the quotient

group (A∗−1Zd)/Zd.

Remark 3.1.3 (1) A special case of Theorem 3.1.1 occurs when

HH∗ =



χσ(V0) 0 . . . 0

0 Tq1
χσ(V0) . . . 0

...
...

. . .
...

0 0 . . . Tqn−1
χσ(V0)


(3.5)

almost everywhere on Td, then the set
{
Dj
ATkψi : j ∈ Z,k ∈ Zd, i = 1, . . . ,m

}
is a Parseval

frame for L2(Rd). In this case the fundamental function Θ = 1 a.e. on σ(V0). This special

case is referred to as the Unitary Extension Principle in [38]. In Theorem 3.1.7 we show that
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this condition is equivalent to the set Xφψ being a Parseval frame of L2(Rd). Corollary 3.1.9

gives that the latter property implies the conclusion of the UEP. However, our assumptions

for the refinable function φ in Theorem 3.1.7 are more general; we neither impose a decay

condition for φ̂ at infinity as [97] does, nor we require that the integral translates of φ form

a Bessel sequence, as [38] does.

(2) If the spectrum, σ(V0) = Td then the condition in (3.5) reduces to HH∗ = I.

(3) For a very interesting direct proof of UEP under the same more general hypothe-

ses we use in Theorem 3.1.7 see [13]; see also [9, 11]. The more general case where the

fundamental function is not necessarily equal to one is referred to in [38] as the Oblique

Extension Principle.

The next theorem characterizes pairs of affine families that form dual frames of L2(Rd)

in terms of conditions on their filters, similar to those in Theorem 3.1.1. The so-called

Mixed Extension Principles follow directly from this theorem [38].

Theorem 3.1.4 [38] Let φa and φs be refinable functions in L2(Rd) such that φ̂a and φ̂s

are continuous at the origin and

lim
|ξ|→0

φ̂a(ξ) = φ̂s(ξ) = 1. (3.6)

Let Ha
0 and Hs

0 ∈ L∞(Td), be the associated low pass filters. Furthermore, let Ha
i , H

s
i for

i = 1, . . . ,m, be Zd-periodic measurable functions and define m pairs of wavelets ψai , ψ
s
i

i = 1, . . . ,m, by

ψ̂ai (A
∗.) = Ha

i φ̂, (3.7)

ψ̂si (A
∗.) = Hs

i φ̂. (3.8)
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Assume Ha
i ,H

s
i ∈ L∞(Td) for all i = 0, . . . ,m. Then the following two conditions are

equivalent,

1. The sets Ψa :=
{
Dj
ATkψ

a
i : j ∈ Z,k ∈ Zd, i = 1, . . . ,m

}
and

Ψs :=
{
Dj
ATkψ

s
i : j ∈ Z,k ∈ Zd, i = 1, . . . ,m

}
is a pair of dual frames for L2(Rd).

2. Ψa and Ψs are Bessel families and for all ξ ∈ σ(V a
0 ) ∩ σ(V s

0 ),

(a) limj→−∞ ΘM (A∗jξ) = 1,

(b) If q ∈ (A∗−1Zd)/Zd \ {0} and ξ + q ∈ σ(V a
0 ) ∩ σ(V s

0 ), then

ΘM (A∗ξ)Hs
0(ξ)Ha

0 (ξ + q) +
m∑
i=1

Hs
i (ξ)Ha

i (ξ + q) = 0,

where ΘM is the so-called Mixed Fundamental function, defined by

ΘM (ξ) =
∞∑
j=0

m∑
i=1

Hs
i (A

∗jξ)Ha
i (A∗jξ)

j−1∏
l=0

Hs
0(A∗lξ)Ha

0 (A∗lξ).

Remark 3.1.5 Let Ha and Hs denote the modulation matrices corresponding to the filters

Ha
i and Hs

i respectively. By Theorem 3.1.4 we conclude that if

HsH∗
a =



χσ(V a
0 )∩σ(V s

0 ) 0 . . . 0

0 Tq1
χσ(V a

0 )∩σ(V s
0 ) . . . 0

...
...

. . .
...

0 0 . . . Tqn−1
χσ(V a

0 )∩σ(V s
0 )


(3.9)

holds almost everywhere on Td then Ψa and Ψs is a pair of dual frames for L2(Rd). This

special case of Theorem 3.1.4 is referred to as the Mixed Extension Principle in [38]. Notice

that in this case, the Mixed Fundamental function ΘM = 1 a.e. on σ(V a
0 ) ∩ σ(V s

0 ). The

more general case where ΘM may take values other than one is referred to as the Mixed

Oblique Extension Principle in [38].
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The purpose of the next theorem is to characterize when the set Xφψ is a Parseval

frame for L2(Rd) under the most general hypotheses on the refinable function φ and on

the filters Hi. Before we state and prove the theorem, let us prove the following lemma

required in the proof of the theorem and also for the examples described in Section 3.2.

Lemma 3.1.6 Let G be a finite group with the group operation denoted by ◦ and let χ be

a character on G. If χ is not the identity character on G, i.e. there exists an h in G such

that χ(h) 6= 1, then
∑

g∈G χ(g) = 0.

Proof: Let h in G satisfying χ(h) 6= 1. Set Y :=
∑

g∈G χ(g) and observe

χ(h)
∑
g∈G

χ(g) =
∑
g∈G

χ(h ◦ g) = Y.

Hence, we have Y (χ(h)− 1) = 0, which gives us the required result since χ(h) 6= 1. �

Theorem 3.1.7 Let φ ∈ L2(Rd) be a refinable function such that φ̂ is continuous at the

origin satisfying Equations (3.1) and (3.2). Moreover assume Hi ∈ L∞(Td) for all i =

1, . . . ,m are Zd-periodic functions and ψi ∈ L2(Rd) are given by Equation (3.3).

Then Xφψ is a Parseval frame for L2(Rd) if and only if for all q ∈ (A∗−1Zd)/Zd and

for a.e. ξ, ξ + q ∈ σ(V0),
m∑
i=0

Hi(ξ)Hi(ξ + q) = δq,0. (3.10)

Proof: The proof splits in two parts. In the first part, we establish that Xφψ is a Parseval

frame if and only if the following condition holds,

j0(l)∑
j=0

m∑
i=1

ψ̂i
(
A∗−jξ

)
ψ̂i (A∗−j(ξ + l)) + φ̂ (ξ) φ̂ (ξ + l) = δl,0,
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for a.e. ξ ∈ Rd and l ∈ Zd (The function j0 is defined in (3.12) below). In the second part,

we show that this condition is equivalent to (3.10). First, assume that Xφψ is a Parseval

frame for L2(Rd) and obtain the above condition.

We begin by defining a unitary operator U : L2(Rd) → L2(Td, l2(Zd)) via

U(f) =
{
f̂(.+ k) : k ∈ Zd

}
.

Next we define the set J by

J :=
{

(j, r, i) : j ∈ N ∪ {0}, r ∈ Zd/(A∗jZd), i = 1, . . . ,m
}
∪ {(0, 0, 0)},

and a map S : L2(Td, l2(J)) → L2(Td, l2(Zd)), via

S(el, δ(j,r,i)) = U(TlD
j
ATrψi) for all l ∈ Zd, (j, r, i) ∈ J,

where we adopt the convention ψ0 = φ. Note that,

(Selδ(j,r,i))(ξ) =
{
el(ξ)|det(A)|−j/2e−2πi〈r,A∗−j(ξ+k)〉ψ̂i

(
A∗−j(ξ + k)

)}
k∈Zd

for a.e. ξ ∈ Td.

Since Xφψ is a Parseval frame, S can be extended to a bounded linear transformation

on L2(Td, l2(J)). Now S can be represented by a Zd × J matrix so that the (k, (j, r, i))-th

entry of the matrix is an operator on L2(Td), denoted by Sk,(j,r,i). This operator acts on

the modulations as follows:

(Sk,(j,r,i)el)(ξ) = el(ξ)|det(A)|−j/2e−2πi〈r,(A∗−j(ξ+k))〉ψ̂i
(
A∗−j(ξ + k)

)
.

Thus we see that each Sk,(j,r,i) commutes with all the modulation operators Ml defined

on L2(Td) by Mlω(ξ) := el(ξ)ω(ξ). Hence, each Sk,(j,r,i) is a multiplicative operator (e.g.

[37, Corollary 2.12.7]) in the following sense:

(Sk,(j,r,i)ω)(ξ) = ω(ξ)|det(A)|−j/2e−2πi〈r,(A∗−j(ξ+k))〉ψ̂i
(
A∗−j(ξ + k)

)
,
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for all ω ∈ L2(Td). We denote the symbol for this operator again by Sk,(j,r,i)(·), so that

Sk,(j,r,i)(ξ) = |det(A)|−j/2e−2πi〈r,(A∗−j(ξ+k))〉ψ̂i
(
A∗−j(ξ + k)

)
.

Note that Sk,(j,r,i)(·) is an essentially bounded Zd-periodic function. Let S(.) denote the

Zd × J matrix of the symbols Sk,(j,r,i)(.), then

(Sω)(ξ) = S(ξ)ω(ξ) for all ω ∈ L2(Td, l2(J)).

Also ||S(.)|| is essentially bounded [37, Theorem 7.52.8] Now, the adjoint of S can be

represented by the J × Zd matrix of operators on L2(Td) such that the ((j, r, i),k)-th

entry is S∗k,(j,r,i). Since S∗k,(j,r,i) is the adjoint of a multiplicative operator, it is itself a

multiplicative operator with symbol Sk,(j,r,i)(.). Therefore,

(S∗ω)(ξ) = S(ξ)∗ω(ξ) for all ω ∈ L2(Td, l2(Zd)).

Since Xφψ is a Parseval frame, we have, SS∗ = IL2(Td,l2(Zd)), i.e.

S(ξ)S(ξ)∗ = Il2(Zd) for a.e. ξ ∈ Td. (3.11)

The (k, l)-th entry of S(ξ)S(ξ)∗ is given by

(S(ξ)S(ξ)∗)(k,l)

=
∞∑
j=0

m∑
i=1

|det(A)|−j
∑

r∈Zd/(A∗jZd)

e2πi〈r,A∗−j(k−l)〉ψ̂i
(
A∗−j(ξ + k)

)
ψ̂i (A∗−j(ξ + l))

+ φ̂ (ξ + k) φ̂ (ξ + l).

Now, define j0 : Zd \ {0} → Z via

j0(l) = sup{j : A∗−j(l) ∈ Zd}. (3.12)

Obviously, if l 6= 0, then j0(l) is finite while j0(0) can be set equal to +∞. If j > j0(k− l)

then A∗−j(k− l) /∈ Zd and therefore eA∗−j(k−l) is not the identity character on Zd/(A∗jZd).

42



3.1. EXTENSION PRINCIPLES REVISITED

On the other hand, if j ≤ j0(k − l) then A∗−j(k − l) ∈ Zd and eA∗−j(k−l) is the identity

character on Zd/(A∗jZd). Thus using Lemma 3.1.6, we conclude

|det(A)|−j
∑

r∈Zd/(A∗jZd)

e2πi〈r,A∗−j(k−l)〉 =

 0 for j > j0(k − l)

1 for j ≤ j0(k − l)
.

Hence, for k 6= l, (3.12) reduces to,

(S(ξ)S(ξ)∗)(k,l) =
j0(k−l)∑
j=0

m∑
i=1

ψ̂i
(
A∗−j(ξ + k)

)
ψ̂i (A∗−j(ξ + l)) + φ̂ (ξ + k) φ̂ (ξ + l).

Thus using (3.11), we conclude that the following condition holds for a.e. ξ ∈ Td and

k, l ∈ Zd:
j0(k−l)∑
j=0

m∑
i=1

ψ̂i
(
A∗−j(ξ + k)

)
ψ̂i (A∗−j(ξ + l)) + φ̂ (ξ + k) φ̂ (ξ + l) = δk,l. (3.13)

By changing variables the previous equation becomes equivalent to:

j0(l)∑
j=0

m∑
i=1

ψ̂i
(
A∗−jξ

)
ψ̂i (A∗−j(ξ + l)) + φ̂ (ξ) φ̂ (ξ + l) = δ0,l. (3.14)

for a.e. ξ ∈ Rd and l ∈ Zd.

Conversely, we must show that if (3.14) holds for a.e. ξ ∈ Rd and l ∈ Zd, then Xφψ is

a Parseval frame. To this end, we densely define the operators A(ξ) : l2(Zd) → l2(J) via

A(ξ)δk =
{
|det(A)|−j/2e2πi〈r,A∗−j(ξ+k)〉ψ̂i (A∗−j(ξ + k))

}
(j,r,i)∈J

.

Using (3.13) which is equivalent to (3.14), we conclude that A(ξ) extends to an isometry

on l2(Zd), for a.e. ξ ∈ Td. We now define the operator A : L2(Td, l2(Zd)) → L2(Td, l2(J)),

via

(Aω)(ξ) = A(ξ)ω(ξ).

Since A(ξ) is an isometry for a.e. ξ ∈ Td, it is easy to verify that A is an isometry. But A

coincides with S∗, which is the analysis operator for the family Xφψ. Therefore Xφψ is a

Parseval frame, finishing the first part of the proof.
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Now, we proceed to the second part of the proof. In this part we show that (3.14) holds

if and only if (3.10) holds. We will first assume (3.10) holds and prove that (3.14) holds

for all l 6= 0. Note, that A∗−jl ∈ Zd for all j = 0, 1, . . . , j0(l). Thus, for all these j we have∑m
i=0Hi

(
A∗−(j0(l)+1)ξ

)
Hi

(
A∗−(j0(l)+1)(ξ + l)

)
= 1 due to (3.10). Using the last equation

and the two-scale relations ((3.2) and (3.3)) we obtain,

j0(l)∑
j=0

m∑
i=1

ψ̂i
(
A∗−jξ

)
ψ̂i (A∗−j(ξ + l)) + φ̂ (ξ) φ̂ (ξ + l)

=
j0(l)∑
j=1

m∑
i=1

ψ̂i
(
A∗−jξ

)
ψ̂i (A∗−j(ξ + l)) +

+ φ̂
(
A∗−1ξ

)
φ̂ (A∗−1(ξ + l))

(
m∑
i=0

Hi

(
A∗−1ξ

)
Hi (A∗−1(ξ + l))

)

=
j0(l)∑
j=1

m∑
i=1

ψ̂i
(
A∗−jξ

)
ψ̂i (A∗−j(ξ + l)) + φ̂

(
A∗−1ξ

)
φ̂ (A∗−1(ξ + l))

...

=
m∑
i=1

ψ̂i

(
A∗−j0(l)ξ

)
ψ̂i
(
A∗−j0(l)(ξ + l)

)
+ φ̂

(
A∗−j0(l)ξ

)
φ̂
(
A∗−j0(l)(ξ + l)

)( m∑
i=0

Hi

(
A∗−j0(l)ξ

)
Hi

(
A∗−j0(l)(ξ + l)

))

=
m∑
i=1

ψ̂i

(
A∗−j0(l)ξ

)
ψ̂i
(
A∗−j0(l)(ξ + l)

)
+ φ̂

(
A∗−j0(l)ξ

)
φ̂
(
A∗−j0(l)(ξ + l)

)
= φ̂

(
A∗−(j0(l)+1)ξ

)
φ̂
(
A∗−(j0(l)+1)(ξ + l)

)
.(

m∑
i=0

Hi

(
A∗−(j0(l)+1)ξ

)
Hi

(
A∗−(j0(l)+1)(ξ + l)

))
= 0.
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Next we show that (3.14) holds for l = 0, using the hypothesis (3.10). For a fixed N we

have

N∑
j=0

m∑
i=1

∣∣∣ψ̂i (A∗−jξ)∣∣∣2 +
∣∣∣φ̂ (ξ)

∣∣∣2
=

N∑
j=1

m∑
i=1

∣∣∣ψ̂i (A∗−jξ)∣∣∣2 +
∣∣∣φ̂ (A∗−1ξ

)∣∣∣2( m∑
i=0

∣∣Hi

(
A∗−1ξ

)∣∣2)

=
N∑
j=1

m∑
i=1

∣∣∣ψ̂i (A∗−jξ)∣∣∣2 +
∣∣∣φ̂ (A∗−1ξ

)∣∣∣2
=

N∑
j=2

m∑
i=1

∣∣∣ψ̂i (A∗−jξ)∣∣∣2 +
∣∣∣φ̂ (A∗−2ξ

)∣∣∣2( m∑
i=0

∣∣Hi

(
A∗−2ξ

)∣∣2)

=
N∑
j=2

m∑
i=1

∣∣∣ψ̂i (A∗−jξ)∣∣∣2 +
∣∣∣φ̂ (A∗−2ξ

)∣∣∣2
...

=
m∑
i=1

∣∣∣ψ̂i (A∗−Nξ
)∣∣∣2 +

∣∣∣φ̂ (A∗−Nξ
)∣∣∣2( m∑

i=0

∣∣Hi

(
A∗−Nξ

)∣∣2)

=
m∑
i=1

∣∣∣ψ̂i (A∗−Nξ
)∣∣∣2 +

∣∣∣φ̂ (A∗−Nξ
)∣∣∣2

=
∣∣∣φ̂ (A∗−N−1ξ

)∣∣∣2( m∑
i=0

∣∣Hi

(
A∗−N−1ξ

)∣∣2) =
∣∣∣φ̂ (A∗−N−1ξ

)∣∣∣2.
Now the assumption (3.1), together with the continuity of φ̂ at 0 imply that for every ε > 0,

there exists a N0 such that
∣∣∣∣∣∣∣φ̂ (A∗−Nξ

)∣∣∣2 − 1
∣∣∣∣ < ε for all N > N0. This in turn implies

that ∣∣∣∣∣∣
N∑
j=0

m∑
i=1

∣∣∣ψ̂i (A∗−jξ)∣∣∣2 +
∣∣∣φ̂ (ξ)

∣∣∣2 − 1

∣∣∣∣∣∣ < ε,

for all N > N0 + 1. This proves that (3.14) holds for l = 0. Thus, we have shown that

(3.10) implies (3.14).

To establish the converse implication, first notice that the calculations we carried out

to prove that (3.10) implies (3.14) for l 6= 0 are still valid for almost every ξ and all l ∈ Zd.
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Now pick q ∈ (A∗−1)Zd/Zd. We have A∗q ∈ Zd. If p is an arbitrary integer grid point, i.e.

p ∈ Zd set l := A∗(q + p). Obviously l ∈ Zd, since A is expansive and thus A∗ leaves the

lattice Zd invariant. Observe j0(l) = 0, because p + q does not belong to the integer grid.

Next, assume that (3.10) holds for q = 0. Since, (3.14) is valid for all l 6= 0 we deduce

0 =
m∑
i=1

ψ̂i (ξ) ψ̂i (ξ + l) + φ̂ (ξ) φ̂ (ξ + l)

= φ̂
(
A∗−1ξ

)
φ̂ (A∗−1(ξ + l))

(
m∑
i=0

Hi

(
A∗−1ξ

)
Hi (A∗−1(ξ + l))

)

= φ̂
(
A∗−1ξ

)
φ̂ (A∗−1ξ + q + p)

(
m∑
i=0

Hi

(
A∗−1ξ

)
Hi (A∗−1ξ + q + p)

)
a.e. in Rd.

Take ξ and ξ +q in σ(V0) such that A∗ξ belongs to the set of points in Rd for which (3.14)

holds. The fact that (3.14) is equivalent to (3.13) implies that, if (3.14) holds for a ξ ∈ Rd

then, (3.14) holds for all integer translates of this point. Apply the previous equations for

A∗(ξ + s) instead of ξ, where s ∈ Zd. Then

0 = φ̂ (ξ + s) φ̂ (ξ + q + p)

(
m∑
i=0

Hi (ξ)Hi (ξ + q)

)
,

due to the Zd-periodicity of Hi. Since p, s are arbitrary integers and ξ, ξ +q ∈ σ(V0) there

exist some s0 and p0 for which

φ̂ (ξ + s0) φ̂ (ξ + q + p0) 6= 0 .

Thus,
m∑
i=0

Hi (ξ)Hi (ξ + q) = 0 .

In order to complete the proof of the theorem we need to establish that (3.10) holds

for q = 0. To verify this, set l = 0 in (3.14):

∞∑
j=0

m∑
i=1

∣∣∣ψ̂i (A∗−jξ)∣∣∣2 +
∣∣∣φ̂ (ξ)

∣∣∣2 = 1, ξ ∈ Rd a.e. .
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Observe that this implies

∞∑
j=0

m∑
i=1

∣∣∣ψ̂i (A∗−j+1ξ
)∣∣∣2 +

∣∣∣φ̂ (A∗ξ)
∣∣∣2 = 1, ξ ∈ Rd a.e. .

Using the two scale relations, (3.2) and (3.3), we infer

∞∑
j=0

m∑
i=1

∣∣∣ψ̂i (A∗−j+1ξ
)∣∣∣2 +

∣∣∣φ̂ (A∗ξ)
∣∣∣2 =

∞∑
j=0

m∑
i=1

∣∣∣ψ̂i (A∗−jξ)∣∣∣2 +
∣∣∣φ̂ (ξ)

∣∣∣2( m∑
i=0

|Hi (ξ)|2
)
.

Hence,

∞∑
j=0

m∑
i=1

∣∣∣ψ̂i (A∗−jξ)∣∣∣2 +
∣∣∣φ̂ (ξ)

∣∣∣2 =
∞∑
j=0

m∑
i=1

∣∣∣ψ̂i (A∗−jξ)∣∣∣2 +
∣∣∣φ̂ (ξ)

∣∣∣2( m∑
i=0

|Hi (ξ)|2
)
.

Therefore,
∑m

i=0 |Hi (ξ)|2 = 1 for a.e. ξ ∈ σ(V0). �

Remark 3.1.8 The characterization of affine frames in [97] utilizes

Ψ[ω, ω′] :=
∑
ψ∈Ψ

∞∑
j=κ(ω−ω′)

ψ̂(2jω)ψ̂(2jω′) , ω, ω′ ∈ R

where κ is defined by κ(ω) = inf{j ∈ Z : 2jω ∈ 2πZ}. A similar convention is used by

Bownik [17]. This is reminiscent of the term of the sum in the left-hand side of (3.14)

involving the wavelets ψi. However, since we use positive powers of DA in the definition of

Xφψ, we arrive at negative powers of A∗ .

An immediate consequence of the previous theorem is a generalization of the UEP.

Corollary 3.1.9 [13] Under the hypotheses of Theorem 3.1.7 the following is true: If

Condition 3.10 holds for all q ∈ (A∗−1Zd)/Zd and for a.e. ξ, ξ + q ∈ σ(V0), then the set{
Dj
ATkψi : j ∈ Z,k ∈ Zd, i = 1, . . . ,m

}
is a Parseval frame for L2(Rd).
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Proof: Obviously we have that Xφψ is a Parseval frame of L2(Rd), thus for every jo ∈ Z,

the set {
Dj
ATkψi : j ≥ j0,k ∈ Zd, i = 1, . . . ,m

}
∪
{
Dj0
A Tkφ : k ∈ Zd

}
,

is a Parseval frame of L2(Rd) as well. Now, take f ∈ L2(Rd). Then as j0 → −∞ observe

that

lim
j0→−∞

∑
k∈Zd

∣∣∣< f,Dj0
A Tkφ >

∣∣∣2 = 0 .

The proof of this fact is not hard (see [13, Lemma 7.7]), so we omit it. �

Theorem 3.1.7 shows that Xφψ is a Parseval frame if and only if the conditions in

Theorem 3.1.1 hold with the fundamental function equal to 1 a.e. on σ(V0). In the same

spirit, the next theorem characterizes the Bessel families, Xa
φψ and Xs

φψ, that form a pair of

dual frames based on conditions on the corresponding filters. We infer that Xa
φψ and Xs

φψ

are a pair of dual frames for L2(Rd) if and only if the conditions in Theorem 3.1.4 hold

with the mixed fundamental function equal to 1 a.e. on σ(V a
0 )∩σ(V s

0 ) (see Remark 3.1.11

below). The proof of Theorem 3.1.10 uses arguments similar to those in the proof of

Theorem 3.1.7.

Theorem 3.1.10 Let φa and φs be refinable functions in L2(Rd) such that φ̂a and φ̂s are

continuous at the origin and

lim
|ξ|→0

φ̂a(ξ) = φ̂s(ξ) = 1. (3.15)

Let Ha
0 and Hs

0 ∈ L∞(Td), be the associated low pass filters. Furthermore, let Ha
i , H

s
i ∈

L∞(Td) for i = 1, . . . ,m, be Zd-periodic functions and define m pairs of wavelets ψai , ψ
s
i

i = 1, . . . ,m, by

ψ̂ai (A
∗.) = Ha

i φ̂
a. (3.16)

ψ̂si (A
∗.) = Hs

i φ̂
s. (3.17)
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Then Xa
φψ and Xs

φψ form a pair of dual frames for L2(Rd) if and only if

1. Xa
φψ and Xs

φψ are Bessel families,

2. For all q ∈ (A∗−1Zd)/Zd and for a.e. ξ, ξ + q ∈ σ(V a
0 ) ∩ σ(V s

0 ),

m∑
i=0

Hs
i (ξ)Ha

i (ξ + q) = δq,0. (3.18)

Proof: Analogous to the proof of Theorem 3.1.7, the proof for this theorem is divided into

two parts. First, we establish that Xa
φψ and Xs

φψ is a pair of dual frames for L2(Rd), if and

only if the following condition holds,

j0(l)∑
j=0

n∑
i=1

ψ̂si
(
A∗−jξ

)
ψ̂ai (A∗−j(ξ + l)) + φ̂s (ξ) φ̂a (ξ + l) = δl,0.

for a.e. ξ ∈ Rd and l ∈ Zd (The function j0 is defined in (3.21) below). In the second part

we show that this condition is equivalent to (3.18).

We begin by defining a unitary operator U : L2(Rd) → L2(Td, l2(Zd)) via

U(f) =
{
f̂(.+ k) : k ∈ Zd

}
.

Next we define the set J by

J :=
{

(j, r, i) : j ∈ N ∪ {0}, r ∈ Zd/(A∗jZd), i = 1, . . . , n
}
∪ {(0, 0, 0)},

and a map Sa : L2(Td, l2(J)) → L2(Td, l2(Zd)), via

Sa(el, δ(j,r,i)) = U(TlD
j
ATrψ

a
i ) for all l ∈ Zd, (j, r, i) ∈ J,

where we adopt the convention ψa0 = φa.

Note that,

(Saelδ(j,r,i))(ξ) =
{
el(ξ)|det(A)|−j/2e−2πi〈r,A∗−j(ξ+k)〉ψ̂ai

(
A∗−j(ξ + k)

)}
k∈Zd

,

49



3.1. EXTENSION PRINCIPLES REVISITED

for a.e. ξ ∈ Td. Since Xa
φψ is a Bessel family, Sa can be extended to a bounded linear

transformation on L2(Td, l2(J)). Now Sa can be represented by a Zd × J matrix so that

the (k, (j, r, i))-th entry of the matrix is an operator on L2(Td), denoted by Sak,(j,r,i). This

operator acts on the modulations as follows,

(Sak,(j,r,i)el)(ξ) = el(ξ)|det(A)|−j/2e−2πi〈r,(A∗−j(ξ+k))〉ψ̂ai
(
A∗−j(ξ + k)

)
.

Thus, we see that each Sak,(j,r,i) commutes with all the modulation operators Ml. These

modulation operators are defined on L2(Td) by Mlω(ξ) := el(ξ)ω(ξ). Hence, each Sak,(j,r,i)

is a multiplicative operator (e.g. [37, Corollary 2.12.7]) in the following sense:

(Sak,(j,r,i)ω)(ξ) = ω(ξ)|det(A)|−j/2e−2πi〈r,(A∗−j(ξ+k))〉ψ̂ai
(
A∗−j(ξ + k)

)
,

for all ω ∈ L2(Td). We denote the symbol for this operator again by Sak,(j,r,i)(·), so that,

Sak,(j,r,i)(ξ) = |det(A)|−j/2e−2πi〈r,(A∗−j(ξ+k))〉ψ̂ai
(
A∗−j(ξ + k)

)
.

Note that Sak,(j,r,i)(·) is an essentially bounded Zd-periodic function.

Let Sa(.) denote the Zd × J matrix of the symbols Sak,(j,r,i)(.), then

(Saω)(ξ) = Sa(ξ)ω(ξ) for all ω ∈ L2(Td, l2(J)).

Now, the adjoint of Sa can be represented by the J ×Zd matrix of operators on L2(Td)

such that the ((j, r, i),k)-th entry is Sa∗k,(j,r,i). Since Sa∗k,(j,r,i) is the adjoint of a multiplicative

operator, it itself, is a multiplicative operator with symbol Sak,(j,r,i)(.). Therefore,

(Sa∗ω)(ξ) = Sa(ξ)∗ω(ξ) for all ω ∈ L2(Td, l2(Zd)).

Similarly, we define Ss : L2(Td, l2(J)) → L2(Td, l2(Zd)), via

Ss(el, δ(j,r,i)) = U(TlD
jTrψ

s
i ) for all l ∈ Zd, (j, r, i) ∈ J,
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where we adopt the convention ψs0 = φs. Arguing as before for Sa, we obtain the following

expression for Ss:

(Ssω)(ξ) = Ss(ξ)ω(ξ) for all ω ∈ L2(Td, l2(J)),

where Ss(.) denotes the Zd × J matrix of the symbols,

Ssk,(j,r,i)(ξ) = |det(A)|−j/2e−2πi〈r,(A∗−j(ξ+k))〉ψ̂si
(
A∗−j(ξ + k)

)
.

The families, Xa
φψ andXs

φψ, is a pair of dual frames, if and only if, SsSa∗ = IL2(Td,l2(Zd)),

i.e.

Ss(ξ)Sa(ξ)∗ = Il2(Zd) for a.e. ξ ∈ Td. (3.19)

The (k, l)-th entry of Ss(ξ)Sa(ξ)∗ is given by

(Ss(ξ)Sa(ξ)∗)(k,l)

=
∞∑
j=0

n∑
i=1

|det(A)|−j
∑

r∈Zd/(A∗jZd)

e2πi〈r,A∗−j(k−l)〉ψ̂si
(
A∗−j(ξ + k)

)
ψ̂ai (A∗−j(ξ + l))

+ φ̂s (ξ + k) φ̂a (ξ + l).

(3.20)

Define j0 : Zd → Z via

j0(l) = sup{j : A∗−j(l) ∈ Zd} for all l ∈ Zd, (3.21)

with the convention that j0(0) = +∞.

Now, if j > j0(k− l), then A∗−j(k− l) /∈ Zd and therefore eA∗−j(k−l) is not the identity

character on Zd/(A∗jZd). On the other hand, if j ≤ j0(k − l) then A∗−j(k − l) ∈ Zd and

eA∗−j(k−l) is the identity character on Zd/(A∗jZd). Thus, using Lemma 3.1.6, we conclude

|det(A)|−j
∑

r∈Zd/(A∗jZd)

e2πi〈r,A∗−j(k−l)〉 =

 0 for j > j0(k − l)

1 for j ≤ j0(k − l)
.
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Hence, for k 6= l, (3.20) reduces to,

(Ss(ξ)Sa(ξ)∗)(k,l) =
j0(k−l)∑
j=0

n∑
i=1

ψ̂si
(
A∗−j(ξ + k)

)
ψ̂ai (A∗−j(ξ + l))

+ φ̂s (ξ + k) φ̂a (ξ + l).

Thus using (3.19), Xa
φψ and Xa

φψ is a pair of dual frames if and only if the following

condition holds for a.e. ξ ∈ Td and k, l ∈ Zd:

j0(k−l)∑
j=0

n∑
i=1

ψ̂si
(
A∗−j(ξ + k)

)
ψ̂ai (A∗−j(ξ + l)) + φ̂s (ξ + k) φ̂a (ξ + l) = δk,l. (3.22)

Changing variables, in the previous equation gives that it is equivalent to:

j0(l)∑
j=0

n∑
i=1

ψ̂si
(
A∗−jξ

)
ψ̂ai (A∗−j(ξ + l)) + φ̂s (ξ) φ̂a (ξ + l) = δl,0, (3.23)

for a.e. ξ ∈ Rd and l ∈ Zd. This finishes the first part of the proof.

Now, we proceed to the second part of the proof. In this part we show that (3.23) holds

if and only if (3.18) holds. We will first assume (3.18) holds and prove that (3.23) holds
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for all l 6= 0. Using the two-scale relations ((3.16) and (3.17)) and (3.18) we obtain,

j0(l)∑
j=0

n∑
i=1

ψ̂si
(
A∗−jξ

)
ψ̂ai (A∗−j(ξ + l)) + φ̂s (ξ) φ̂a (ξ + l) =

=
j0(l)∑
j=1

n∑
i=1

ψ̂si
(
A∗−jξ

)
ψ̂ai (A∗−j(ξ + l))

+ φ̂s
(
A∗−1ξ

)
φ̂a (A∗−1(ξ + l))

(
n∑
i=0

Hs
i

(
A∗−1ξ

)
Ha
i (A∗−1(ξ + l))

)

=
j0(l)∑
j=1

n∑
i=1

ψ̂si
(
A∗−jξ

)
ψ̂ai (A∗−j(ξ + l)) + φ̂s

(
A∗−1ξ

)
φ̂a (A∗−1(ξ + l))

...

=
n∑
i=1

ψ̂si

(
A∗−j0(l)ξ

)
ψ̂ai
(
A∗−j0(l)(ξ + l)

)
+

φ̂s
(
A∗−j0(l)ξ

)
φ̂a
(
A∗−j0(l)(ξ + l)

)( n∑
i=0

Hs
i

(
A∗−j0(l)ξ

)
Ha
i

(
A∗−j0(l)(ξ + l)

))

=
n∑
i=1

ψ̂si

(
A∗−j0(l)ξ

)
ψ̂ai
(
A∗−j0(l)(ξ + l)

)
+ φ̂s

(
A∗−j0(l)ξ

)
φ̂a
(
A∗−j0(l)(ξ + l)

)
= φ̂s

(
A∗−(j0(l)+1)ξ

)
φ̂a
(
A∗−(j0(l)+1)(ξ + l)

)
.(

n∑
i=0

Hs
i

(
A∗−(j0(l)+1)ξ

)
Ha
i

(
A∗−(j0(l)+1)(ξ + l)

))
= 0.
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Next, using the hypothesis (3.18), we show that (3.23) holds for l = 0,

∞∑
j=0

n∑
i=1

ψ̂si
(
A∗−jξ

)
ψ̂ai (A∗−jξ) + φ̂s (ξ) φ̂a (ξ) =

=
∞∑
j=1

n∑
i=1

ψ̂si
(
A∗−jξ

)
ψ̂ai (A∗−jξ)

+ φ̂s
(
A∗−1ξ

)
φ̂a (A∗−1ξ)

(
n∑
i=0

Hs
i

(
A∗−1ξ

)
Ha
i (A∗−1ξ)

)

=
∞∑
j=1

n∑
i=1

ψ̂si
(
A∗−jξ

)
ψ̂ai (A∗−jξ) + φ̂s

(
A∗−1ξ

)
φ̂a (A∗−1ξ)

...

=
∞∑
j=N

n∑
i=1

ψ̂si
(
A∗−jξ

)
ψ̂ai (A∗−jξ)

+ φ̂s
(
A∗−Nξ

)
φ̂a (A∗−Nξ)

(
n∑
i=0

Hs
i

(
A∗−Nξ

)
Ha
i (A∗−Nξ)

)

=
∞∑
j=N

n∑
i=1

ψ̂si
(
A∗−jξ

)
ψ̂ai (A∗−jξ)︸ ︷︷ ︸

→0 as N→∞ because the series converges for a.e. ξ∈Rd

+ φ̂s
(
A∗−Nξ

)
φ̂a (A∗−Nξ)︸ ︷︷ ︸

→1 as N→∞ by (3.15) and continuity of cφs,cφa at the origin.

→ 1 as N →∞ for almost every ξ ∈ L2(Rd).

Thus, we have shown that (3.18) implies (3.23).

Next we establish that the converse implication is valid. Assume first, that (3.18)

holds for q = 0. Under the assumption, the calculations we carried out to prove that

(3.18) implies (3.23) for l 6= 0 are still valid for almost every ξ and all l ∈ Zd. Now, pick

q ∈ (A∗−1)Zd/Zd. We have A∗q ∈ Zd. If p is an arbitrary integer grid point, i.e. p ∈ Zd

set l := A∗(q + p). Obviously l ∈ Zd, since A is expansive and, thus, A∗ leaves the lattice

Zd invariant. Observe j0(l) = 0, because q + p does not belong to the integer grid. Since
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(3.23) is valid for all l 6= 0, we deduce

0 =
n∑
i=1

ψ̂si (ξ) ψ̂ai (ξ + l) + φ̂s (ξ) φ̂a (ξ + l)

= φ̂s
(
A∗−1ξ

)
φ̂a (A∗−1(ξ + l))

(
n∑
i=0

Hs
i

(
A∗−1ξ

)
Ha
i (A∗−1(ξ + l))

)

= φ̂s
(
A∗−1ξ

)
φ̂a (A∗−1ξ + q + p)

(
n∑
i=0

Hs
i

(
A∗−1ξ

)
Ha
i (A∗−1ξ + q + p)

)
,

for a.e. ξ in Rd. Now, take ξ and ξ + q in σ(V a
0 )∩ σ(V s

0 ) such that A∗ξ belongs to the set

of points in Rd for which (3.23) holds. The fact that (3.23) is equivalent to (3.22) implies

that, if (3.23) holds for a ξ ∈ Rd then, (3.23) holds for all integer translates of this point.

Next, apply the previous equations for A∗(ξ + λ) instead of ξ, where λ ∈ Zd. Then,

0 = φ̂s (ξ + λ) φ̂a (ξ + q + p)

(
n∑
i=0

Hs
i (ξ)Ha

i (ξ + q)

)
,

due to the Zd-periodicity of Ha
i and Hs

i . Since p,λ are arbitrary integers and ξ, ξ + q ∈

σ(V a
0 ) ∩ σ(V s

0 ) there exist some λ0 and p0 for which

φ̂s (ξ + λ0) φ̂a (ξ + q + p0) 6= 0 .

Thus,
m∑
i=0

Hs
i (ξ)Ha

i (ξ + q) = 0 .

In order to complete the proof of the theorem we need to establish that (3.18) holds

for q = 0. To verify this set l = 0 in (3.23):

∞∑
j=0

n∑
i=1

ψ̂si
(
A∗−jξ

)
ψ̂ai (A∗−j(ξ)) + φ̂s (ξ) φ̂a (ξ) = 1.

Observe that this implies,

∞∑
j=0

n∑
i=1

ψ̂si
(
A∗−j+1ξ

)
ψ̂ai (A∗−j+1(ξ)) + φ̂s (A∗ξ) φ̂a (A∗ξ) = 1.
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Using the two scale relations, (3.16) and (3.17), we infer,

∞∑
j=0

n∑
i=1

ψ̂si
(
A∗−j+1ξ

)
ψ̂ai (A∗−j+1ξ) + φ̂s (A∗ξ) φ̂a (A∗ξ) =

=
∞∑
j=0

n∑
i=1

ψ̂si
(
A∗−jξ

)
ψ̂ai (A∗−jξ) + φ̂s (ξ) φ̂a (ξ)

(
n∑
i=0

Hs
i (ξ)Ha

i (ξ)

)
,

hence,

∞∑
j=0

n∑
i=1

ψ̂si
(
A∗−jξ

)
ψ̂ai (A∗−jξ) + φ̂s (ξ) φ̂a (ξ) =

=
∞∑
j=0

n∑
i=1

ψ̂si
(
A∗−jξ

)
ψ̂ai (A∗−jξ) + φ̂s (ξ) φ̂a (ξ)

(
n∑
i=0

Hs
i (ξ)Ha

i (ξ)

)
.

Therefore,
∑n

i=0H
s
i (ξ)Ha

i (ξ) = 1 for a.e. ξ ∈ σ(V a
0 ) ∩ σ(V s

0 ). �

Remark 3.1.11 The conditions on the filters in (3.18) are similar to those required for

Proposition 5.2 in [38] (also [30]), from which the so-called Mixed Extension Principle

follows. The statement of the previous theorem does not require the so-called Mixed

Fundamental Function that is present in the said result in [38]. At first glance, this fact

seems contradictory but it is not. Under the assumptions of Theorem 3.1.10, the Mixed

Fundamental Function is equal to one almost everywhere on σ(V a
0 ) ∩ σ(V s

0 ). This follows

from the proof of the so-called Mixed Oblique Extension Principle (Corollary 5.3 in [38]).

Let us recall the statement of this result:

Theorem 3.1.12 [38] [Mixed Oblique Extension Principle]: Let φa and φs be refinable

functions in L2(Rd) such that φ̂a and φ̂s are continuous at the origin and

lim
|ξ|→0

φ̂a(ξ) = φ̂s(ξ) = 1. (3.24)
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Let Ha
0 and Hs

0 ∈ L∞(Td), be the associated low pass filters. Furthermore, let Ha
i , H

s
i for

i = 1, . . . ,m, be Zd-periodic measurable functions and define m pairs of wavelets ψai , ψ
s
i

i = 1, . . . ,m, by

ψ̂ai (A
∗.) = Ha

i φ̂, (3.25)

ψ̂si (A
∗.) = Hs

i φ̂. (3.26)

Assume Ha
i ,H

s
i ∈ L∞(Td) for all i = 0, . . . ,m, and the affine families Ψa and Ψs are

Bessel. Suppose we can find a Zd-periodic function Θ that satisfies the following:

1. Θ is essentially bounded, continuous at the origin, and Θ(0) = 1.

2. If q ∈ (A∗−1Zd)/Zd \ {0} and ξ, ξ + q ∈ σ(V a
0 ) ∩ σ(V s

0 ), then

Θ(A∗ξ)Hs
0(ξ)Ha

0 (ξ + q) +
m∑
i=1

Hs
i (ξ)Ha

i (ξ + q) = 0.

and

Θ(A∗ξ)Hs
0(ξ)Ha

0 (ξ) +
m∑
i=1

Hs
i (ξ)Ha

i (ξ) = Θ(ξ).

Then Ψa and Ψs form a pair of dual frames.

The proof of this result establishes that Θ is equal to the mixed fundamental function ΘM

a.e. on σ(V a
0 ) ∩ σ(V s

0 ). The condition that the sets Xa
φψ and Xs

φψ are Bessel implies that

the affine families Ψa and Ψs are Bessel (see Corollary 3.1.9). Condition 3.18 is the same

as the conditions on the filters in this result with Θ equal to 1 a.e. on σ(V a
0 ) ∩ σ(V s

0 ).

Therefore, in our setting ΘM is equal to one almost everywhere on σ(V a
0 ) ∩ σ(V s

0 ).
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3.2 Examples of Isotropic Wavelet Frames

In this section we describe two examples of Isotropic wavelet frames. With the help of The-

orems 3.1.1, 3.1.7, 3.1.4, and 3.1.10, the problem of designing wavelet frames is transformed

into a problem of designing the corresponding filters. We illustrate this in Examples 3.2.1

and 3.2.2. In Example 3.2.1 we construct a Parseval frame while in Example 3.2.2 we

construct a pair of dual frames. Recall that we define the dilation operator with respect

to a radially expansive matrix A = aR, where R is a rotation. The constant a > 0 will be

used in the examples below.

Example 3.2.1 As pointed out at the beginning of this section, we obtain the wavelet

frame, by designing the corresponding filters and then invoking the appropriate extension

principle. We begin with the low pass filter H0, a smooth Zd-periodic function such that

• H0 = 1 inside the ball of radius b1,

• H0 = 0 on Td \B(0, b0),

• H0|B(0,b0) is radial,

where 1
2a2 < b1 < b0 <

1
2a .

If φ by φ̂ = H0(A∗−1.)χTd , then φ satisfies conditions (3.1) and (3.2) of Theorem 3.1.1.

Now, let h be a Zd-periodic function defined by,

h(ξ) =

√
1−H2

0 (ξ)
|det(A)|

. (3.27)

Using h we define the high pass filters as follows,

Hi(ξ) = eqi−1
(ξ)h(ξ), i = 1, . . . , |det(A)|, (3.28)
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where {ql : l = 0, 1, 2, . . . , |det(A)| − 1} are the representatives of the quotient group

Zd/(A∗Zd).

We claim HH∗ = I, where H is defined by (3.1.2). Hence, by Theorem 3.1.1, the set{
Dj
ATkψi : j ∈ Z, k ∈ Zd, i = 1, . . . , |det(A)|

}
,

forms a Parseval Frame for L2(Rd). Also, by Theorem 3.1.7, the set Xφψ is a Parseval

frame for L2(Rd).

To prove our claim, we use (3.27) and (3.28) to obtain

(HH∗)1,1(ξ) =
|det(A)|∑
i=0

|Hi(ξ)|2 = H2
0 (ξ) + |det(A)|1−H2

0 (ξ)
|det(A)|

= 1 for all ξ ∈ Td,

and

(HH∗)i+1,i+1(ξ) = (HH∗)1,1(ξ +A∗−1qi−1) = 1 for all ξ ∈ Td, i = 1, . . . , |det(A)|.

Next we want to show that the off-diagonal entries of HH∗ are zero. To do this

we observe that the supports of H0(. + A∗−1qi−1) and H0(.+A∗−1qj−1) are disjoint by

definition of H0. Thus,

H0(ξ +A∗−1qi−1)H0(ξ +A∗−1qj−1) = 0 for all ξ ∈ Td, i 6= j.

Hence,

(HH∗)j,k(ξ)

=
|det(A)|∑
i=0

Hi(ξ +A∗−1qj−1)Hi(ξ +A∗−1qk−1)

=
|det(A)|∑
i=1

Hi(ξ +A∗−1qj−1)Hi(ξ +A∗−1qk−1)

= h(ξ +A∗−1qj−1)h(ξ +A∗−1qk−1)

|det(A)|∑
i=1

eqi−1
(ξ +A∗−1qj−1)eqi−1

(ξ +A∗−1qk−1)


︸ ︷︷ ︸

=:sj−1,k−1

.
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Figure 3.1: Fourier transforms of a typical isotropic refinable function (left) and wavelet
(right).

Now we need to establish that sj,k = 0 for all j 6= k.

sj,k =
|det(A)|∑
i=1

eqi−1
(ξ +A∗−1qj)eqi−1

(ξ +A∗−1qk)

=
|det(A)|∑
i=1

eqi−1
(A∗−1qj −A∗−1qk) =

|det(A)|−1∑
i=0

e2πi〈qi,A
∗−1(qj−qk)〉.

Since j 6= k, we have qj − qk 6= 0 and A∗−1(qj − qk) /∈ Zd. Therefore, eA∗−1(qj−qk) is not

the identity character on the quotient group Zd/(A∗Zd) and by Lemma 3.1.6, sj,k = 0.

This completes the proof of the claim HH∗ = I.

Figure 3.1 shows the graphs of the Fourier transform of the 2-D version of a typical

isotropic scaling function and isotropic wavelet, obtained in this example while Figure 3.2

shows their space domain graphs.

One concrete realization of the construction described in Example 3.2.1 is obtained by

using the so-called ‘Root Raised Cosine’ filter as a low pass filter. Here, we use the dyadic
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Figure 3.2: Isotropic refinable function (left) and wavelet (right) in the space domain.

dilation matrix to define the dilation operator. The low pass filter is defined by

H0(ξ) =


1 for |ξ| < 3/20√

1+cos(10π|ξ|− 3π
2 )

2 for 3/20 < |ξ| < 1/4

0 for |ξ| > 1/4

.

Hence, the Fourier transform of the refinable function φ is given by

φ̂(ξ) =


1 for |ξ| < 3/10√

1+cos(5π|ξ|− 3π
2 )

2 for 3/10 < |ξ| < 1/2

0 for |ξ| > 1/2

.

The high pass filters are given by

Hi(ξ) =
eqi−1

2d/2


0 for |ξ| < 3/20√

1−cos(10π|ξ|− 3π
2 )

2 for 3/20 < |ξ| < 1/4

1 for |ξ| > 1/4

.
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and, finally, the wavelets are defined in the frequency domain as follows:

ψ̂i(2ξ) =
eqi−1

2d/2



0 for |ξ| < 3/20√
1−cos(10π|ξ|− 3π

2 )
2 for 3/20 < |ξ| < 1/4

1 for 1/4 < |ξ| < 3/10√
1+cos(5π|ξ|− 3π

2 )
2 for 3/10 < |ξ| < 1/2

0 for |ξ| > 1/2

.

Example 3.2.2 In this example we produce dual frame pairs using the Mixed Extension

Principle (Theorem 3.1.4) and Theorem 3.1.10. As in the previous example, all the wavelets

are isotropic and the refinable function is radial. Let 1
2a2 < b2 < b1 < b0 < 1

2a (See

Figure 3.3). Pick the analysis low-pass filter, a smooth, Zd-periodic function Ha
0 satisfying

B
B
BBN

b3
B
B
BBN

b2
�

�
��


b1
�

�
��


b0

Figure 3.3: Radial profiles of the transfer functions of various filters used in Example 3.2.2.
Notice that all filters lie between 0 and 1. The actual high pass filters are a constant
multiple of the filters shown here (see Equation (3.29)). Since the constant differs with
the dimension of the space and the dilation factor, we have not shown it here. The dashed
graphs represent the synthesis filters while the solid ones represent the analysis filters.

the following three properties:

• Ha
0 = 1 inside the ball of radius b2,
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• Ha
0 = 0 on Td \B(0, b1),

• Ha
0 |B(0,b1) is radial.

Similarly to the previous example, we define φa by φ̂a = Ha
0 (A∗−1.)χTd . Now, let ha

be a Zd-periodic function defined by,

ha(ξ) =
1−Ha

0 (ξ)

|det(A)|1/2
. (3.29)

Using ha we define the analysis high pass filters

Ha
i (ξ) := eqi−1

(ξ)ha(ξ), i = 1, . . . , |det(A)|. (3.30)

Next, let the synthesis low pass filter, a smooth, Zd-periodic function Hs
0 satisfying the

following three properties:

• Hs
0 = 1 inside the ball of radius b1,

• Hs
0 = 0 on Td \B(0, b0),

• Hs
0 |B(0,b0) is radial.

To define |det(A)| synthesis high pass filters Hs
i , i = 1, . . . , |det(A)|, we use a smooth,

Zd-periodic function hs satisfying the following three properties:

• hs = 0 inside the ball of radius b3, for some b3 > 0,

• hs = 1

|det(A)|1/2 on Td \B(0, b2),

• hs|Td is radial,

and take Hs
i = eqi−1hs. Notice, for each i = 0, . . . , |det(A)|, the pairing of the analysis

and synthesis filters. Let Ha and Hs denote the modulation matrices corresponding to the
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filters Ha
i and Hs

i respectively. (Recall that a modulation matrix is defined by (3.1.2)).

We claim that HsH∗
a = I. To prove the claim we begin by observing

(HsH∗
a)1,1(ξ) =

|det(A)|∑
i=0

Hs
i (ξ)Ha

i (ξ) = Ha
0 (ξ) + |det(A)|1−Ha

0 (ξ)
|det(A)|

= 1 for all ξ ∈ Td.

Now,

(HsH∗
a)i+1,i+1(ξ) = (HsH∗

a)1,1(ξ +A∗−1qi−1) = 1 for all ξ ∈ Td, i = 1, . . . , |det(A)|.

To establish that the off-diagonal entries are zero, observe that the supports of Hs
0(. +

A∗−1qi−1) and Ha
0 (.+A∗−1qj−1) are disjoint, which implies

Hs
0(ξ +A∗−1qi−1)Ha

0 (ξ +A∗−1qj−1) = 0 for all ξ ∈ Td, i 6= j.

Hence,

(HsH∗
a)j,k(ξ) =

|det(A)|∑
i=0

Hs
i (ξ +A∗−1qj−1)Ha

i (ξ +A∗−1qk−1)

=
|det(A)|∑
i=1

Hs
i (ξ +A∗−1qj−1)Ha

i (ξ +A∗−1qk−1)

= ha(ξ +A∗−1qk−1)

|det(A)|∑
i=1

eqi−1
(ξ +A∗−1qj−1)eqi−1

(ξ +A∗−1qk−1)


︸ ︷︷ ︸

=:sj−1,k−1

.

Recall, from Example 3.2.1 that sj,k = 0 for all j 6= k. Now, the proof of the claim

HsH∗
a = I is complete.

Our next objective is to show that
{
Dj
ATkψ

a
i : j ∈ Z, k ∈ Zd, i = 1, . . . , |det(A)|

}
is a

Bessel sequence. For a fixed i and a fixed j, we have,

∑
k∈Zd

∣∣∣〈f,Dj
ATkψ

a
i

〉∣∣∣2 =
∑
k∈Zd

1
|det(A)|j

∣∣∣∣∫
Rd

f̂(ξ)ek(A∗−jξ)ψ̂ai (A∗−jξ)dξ
∣∣∣∣2
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3.2. EXAMPLES OF ISOTROPIC WAVELET FRAMES

=
∑
k∈Zd

1
|det(A)|j

∣∣∣∣∣∣
∑
l∈Zd

∫
A∗jTd

f̂(ξ +A∗jl)ek(A∗−jξ)ψ̂ai (A∗−jξ + l)dξ

∣∣∣∣∣∣
2

.

The sum over l ∈ Zd in the last equality reduces to a sum over l ∈ F , where F is a finite

subset of Zd which remains fixed for all j, because ψ̂ai has compact support. Now, by

applying Plancherel’s theorem to the AjZd-periodic function
∑

l∈Zd f̂(·+ l)ψ̂ai (A∗−j .+ l),

we have

|det(A)|∑
i=1

∞∑
j=−∞

∑
k∈Zd

∣∣∣〈f,Dj
ATkψ

a
i

〉∣∣∣2 =
|det(A)|∑
i=1

∞∑
j=−∞

∫
A∗jTd

∣∣∣∣∣∑
l∈F

f̂(ξ +A∗jl)ψ̂ai (A∗−jξ + l)

∣∣∣∣∣
2

dξ

≤
|det(A)|∑
i=1

∞∑
j=−∞

∫
A∗jTd

[∑
l∈F

∣∣∣f̂(ξ +A∗jl)
∣∣∣2]
∑

l′∈F

∣∣∣ψ̂ai (A∗−jξ + l′)
∣∣∣2
 dξ

=
∑|det(A)|

i=1

∑∞
j=−∞

∑
l∈F

∫
A∗j(Td+l)

∣∣∣f̂(η)
∣∣∣2 [∑l′∈F

∣∣∣ψ̂ai (A∗−jη − l + l′)
∣∣∣2] dη

≤
∑|det(A)|

i=1

∑∞
j=−∞

∑
l∈F

∫
A∗j(Td+l)

∣∣∣f̂(η)
∣∣∣2 [∑q∈F−F

∣∣∣ψ̂ai (A∗−jη + q)
∣∣∣2] dη

≤
∫

Rd

∣∣∣f̂(η)
∣∣∣2∑|det(A)|

i=1

∑∞
j=−∞

[∑
q∈F−F

∣∣∣ψ̂ai (A∗−jη + q)
∣∣∣2] dη.

Using the definition of the ψai ’s one can easily establish

∞∑
j=−∞

∣∣∣ψ̂ai (A∗−jη + q)
∣∣∣2 ≤ 2

|det(A)|
,

for every q which implies that
{
Dj
ATkψ

a
i : j ∈ Z, k ∈ Zd, i = 1, . . . , |det(A)|

}
is a Bessel

sequence.

Similarly, we can show that
{
Dj
ATkψ

s
i : j ∈ Z, k ∈ Zd, i = 1, . . . , |det(A)|

}
is a Bessel

sequence too. Now, Theorem 3.1.4 implies that the families,

{
Dj
ATkψ

a
i : j ∈ Z,k ∈ Zd, i = 1, . . . , |det(A)|

}
and

{
Dj
ATkψ

s
i : j ∈ Z,k ∈ Zd, i = 1, . . . , |det(A)|

}
,
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are a pair of dual frames for L2(Rd). Also, by Theorem 3.1.10, the families Xa
φψ and Xs

φψ

are a pair of dual frames for L2(Rd).

It can be easily verified that if the synthesis high pass filters in Example 3.2.2 are re-

placed by Hs
i = eqi−1χTd , the identity, HsH∗

a = I, still holds, but the families,{
Dj
ATkψ

s
i : j ∈ Z,k ∈ Zd, i = 1, . . . , |det(A)|

}
and Xs

φψ are not Bessel sequences. This

shows we need the hypotheses that both affine families generated from the wavelets ψa

and ψs in Theorem 3.1.4 and similarly the families Xa
φψ and Xs

φψ in Theorem 3.1.10 are

Bessel sequences.

One concrete realization of the construction described in Example 3.2.2 is again ob-

tained by using the so-called ‘Raised Cosine’ filter as a low pass filter. Once again, we use

the dyadic dilation matrix to define the dilation operator. The analysis and synthesis low

pass filters are defined by

Ha
0 (ξ) =


1 for |ξ| < 1/8

1+cos(12π|ξ|− 3π
2 )

2 for 1/8 < |ξ| < 5/24

0 for |ξ| > 5/ < 24

,

Hs
0(ξ) =


1 for |ξ| < 5/24

1+cos( 240π
11

|ξ|− 50π
11 )

2 for 5/24 < |ξ| < 1/4

0 for |ξ| > 1/4

.

Hence, the Fourier transform of the scaling functions are given by the formulae,

φ̂a(ξ) =


1 for |ξ| < 1/4

1+cos(6π|ξ|− 3π
2 )

2 for 1/4 < |ξ| < 5/12

0 for |ξ| > 5/12

,
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φ̂s(ξ) =


1 for |ξ| < 5/12

1+cos( 120π
11

|ξ|− 50π
11 )

2 for 5/12 < |ξ| < 1/2

0 for |ξ| > 1/2

.

Define the analysis and synthesis high pass filters by

Ha
i (ξ) =

eqi−1

2d/2


0 for |ξ| < 1/8

1−cos(12π|ξ|− 3π
2 )

2 for 1/8 < |ξ| < 5/24

1 for |ξ| > 5/24

,

Hs
i (ξ) =

eqi−1

2d/2
.


0 for |ξ| < 1/16

1−cos(16π|ξ|−π)
2 for 1/16 < |ξ| < 1/8

1 for |ξ| > 1/8

.

Finally, the wavelets are defined in the frequency domain as follows,

ψ̂ai (2ξ) =
eqi−1

2d/2



0 for |ξ| < 1/8
1−cos(12π|ξ|− 3π

2 )
2 for 1/8 < |ξ| < 5/24

1 for 5/24 < |ξ| < 1/4
1+cos(6π|ξ|− 3π

2 )
2 for 1/4 < |ξ| < 5/12

0 for |ξ| > 5/12

,

ψ̂si (2ξ) =
eqi−1

2d/2



0 for |ξ| < 1/16

1−cos(16π|ξ|−π)
2 for 1/16 < |ξ| < 1/8

1 for 1/8 < |ξ| < 5/12
1+cos( 120π

11
|ξ|− 50π

11 )
2 for 5/12 < |ξ| < 1/2

0 for |ξ| > 1/2

.

The two previous examples presented typical IMRA-wavelets and refinable functions,

but there are other possible cases. Particularly, some of the wavelets constructed by means

of Theorem 3.1 in [2] or in [86] can be derived from singly generated IMRAs and thus
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shown to be implementable with IMRA-fast wavelet algorithms. The radial wavelets of

Epperson and Frazier [42, 43] cannot be derived from singly generated IMRAs although

they are very similar to the radial wavelets constructed in the previous two examples. The

decompositions of L2(Rd) for which these wavelets are used are not at all similar to those

induced by Xφψ and their associated dual families.

3.3 Fast Isotropic Wavelet Transform

In this section we describe the fast isotropic wavelet transforms associated with the frames

produced in Example 3.2.2. We use the abbreviation FIWT for Fast Isotropic Wavelet

Transform. This discrete wavelet decomposition and reconstruction algorithm was first

presented in [14], for dyadic dilations, in the context of exact reconstruction isotropic filter

banks.

As in the classical fast wavelet algorithm (See Section 1.3.3), the goal of the decom-

position branch of FIWT is to obtain the approximation (low pass component) and detail

(high pass component) at level j−1 given the approximation at level j. The reconstruction

branch retrieves the approximation at level j using these high and low pass components at

level j − 1.

We begin by observing that for the filters defined in Example 3.2.2, the set {ekha : k ∈

Zd} is equal to ∪|det(A)|
i=1 {e2kH

a
i : k ∈ Zd}. The latter union would yield |det(A)| high pass

channels with decimation. In our implementation, all these channels are combined into a

single undecimated channel using the filter ha, which is the Zd-periodic function defined in

(3.29). Accordingly, in our implementation the low pass filtering is followed by decimation

determined by A while the high pass filtered signal stays undecimated.
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����
?Ma

Ha

ν

νl

νh

Figure 3.4: Flow diagram for one level of decomposition in FIWT

����
6 Ms

Hs

ν

νl

νh

����
+

Figure 3.5: Flow diagram for one level of reconstruction in FIWT

The analysis filters produce analysis operators Ma and Ha defined via

(Maν)∧ = |det(A)|1/2D̂(Ha
0 ν̂) and (Haν)∧ = |det(A)|1/2haν̂ , ν ∈ `2(Zd), (3.31)

where D denotes the downsampling operator given by,

(Dν)∧(ξ) =
1

|det(A)|

|det(A)|∑
l=1

ν̂
(
A∗−1ξ + γl

)
,

and {γl : l = 1, · · · , |det(A)|} are the representatives of the quotient group (A∗−1Zd)/Zd.

As in the case of analysis high pass filters, the |det(A)| high pass channels are combined

into a single high pass channel with filter hs. We define the high pass synthesis operator
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via (Hsν)∧ = |det(A)|1/2hsν̂ and the low pass synthesis operator, Ms, is defined via

(Msν)∧ := |det(A)|1/2Hs
0(Uν)∧, where ν ∈ `2(Zd) and U is the upsampling operator

defined via,

(Uν)∧(ξ) = ν̂(A∗ξ).

These analysis and synthesis operators satisfy an exact reconstruction formula similar to the

one obtained for classical fast wavelet algorithms at the end of Section 1.3.3. This formula

enables the implementation of FIWT analogous to the classical fast wavelet algorithm.

Proposition 3.3.1 [14][Exact reconstruction formula] Let Ms, Ma, Hs and Hs be op-

erators on `2(Zd) as defined above, then the following identity holds

I`2(Zd) = MsMa +HsHa

Proof: Let ν ∈ `2(Zd) then (HsHaν)
∧ = |det(A)|hshaν̂ = |det(A)|1/2haν̂. From the defini-

tion of D and U , we infer (UMaν)∧ is a A−1Zd-periodic function. Since ms and ma vanish

outside the d-torus A∗−1Td and the ball A∗−1B1 respectively, we obtain (MsMaν)∧ =

msmaν̂ = maν̂.

Now, observe that ma + |det(A)|1/2ha = 1, which verifies the exactness of the recon-

struction. �

Remark 3.3.2 The exact reconstruction formula holds even if we use 1

|det(A)|1/2 I`2(Zd)

instead of Hs. Hence, for the implementation, we do not apply the synthesis high pass

filter. Instead, we just multiply by the output of the analysis high pass operator by the

factor 1

|det(A)|1/2 . We mention this fact here because if we use 1

|det(A)|1/2 I`2(Zd) instead of

Hs as the high pass synthesis operator then the family, Xs
φψ, is not Bessel. The latter is
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required for theoretical consistency as it enables Theorem 3.1.10, which gives that Xa
φψ

and Xs
φψ are dual frames for L2(Rd).

Remark 3.3.3 In contrast to the usual tensor-product constructions both filters (low pass

and high pass) are isotropic. The analysis and synthesis scaling functions are C∞-smooth

in the wavenumber domain by definition. This, in turn, implies that the wavelets are

also C∞-smooth in the wavenumber domain. Thus, the radial scaling functions and their

associated wavelets have rapid decay in the spatial domain.

The exact reconstruction formula holds for any filter bank satisfying Equation (3.9),

for digital signals ν such that ν̂ is supported on σ(V a
0 ) ∩ σ(V s

0 ). We conclude this chapter

by proving this version of the exact reconstruction formula.

Recall that for a filter bank {Hi, i = 0, 1, . . . ,m} the modulation matrix H is defined

by

H =



H0 H1 . . . Hm

Tq1
H0 Tq1

H1 . . . Tq1
Hm

...
...

. . .
...

Tqn−1
H0 Tqn−1

H1 . . . Tqn−1
Hm


,

where n = |det(A∗)| and ql : l = 0, 1, 2, . . . , n− 1 are the representatives of the quotient

group (A∗−1Zd)/Zd. If Ha is the modulation matrix corresponding to the analysis filters,

and Hs is the modulation matrix corresponding to the synthesis filters, then Equation (3.9)
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says that

HsH∗
a =



χσ(V a
0 )∩σ(V s

0 ) 0 . . . 0

0 Tq1
χσ(V a

0 )∩σ(V s
0 ) . . . 0

...
...

. . .
...

0 0 . . . Tqn−1
χσ(V a

0 )∩σ(V s
0 )


.

For a given digital signal ν ∈ `2(Zd) let ω denote the following vector:

ω = (ν̂, Tq1
ν̂, . . . , Tqn−1

ν̂)T .

Observe that,

H∗
aω =



∑n−1
l=0 Tql

(
Ha

0 ν̂
)

∑n−1
l=0 Tql

(
Ha

1 ν̂
)

...∑n−1
l=0 Tql

(
Ha
mν̂
)


= |det(A)|



ÛD̂(
(
Ha

0 ν̂
)

ÛD̂
(
Ha

1 ν̂
)

...

ÛD̂
(
Ha
mν̂
)


.

Now, assuming that HsH
∗
a = I, we get

m∑
i=0

Hs
iHa

i = I`2(Zd), (3.32)

where, for each i, the analysis operator, Ha
i , is defined via Ĥa

i = |det(A)|1/2D̂(Ha
i ν̂), and

the synthesis operator, Hs
i , is defined via Ĥs

i = |det(A)|1/2Hs
i (Uν)∧. Equation (3.32) gives

an exact reconstruction formula for filters satisfying HsH
∗
a = I. This condition is slightly

stronger than the condition in Equation (3.9). If the filters satisfy the weaker condition

(3.9) then we get
m∑
i=0

(Hs
iHa

i ν)
∧ = χσ(V a

0 )∩σ(V s
0 )ν̂. (3.33)

Therefore, in this case, we get exact reconstruction for a digital signal, only if, its Fourier

transform is supported on σ(V a
0 ) ∩ σ(V s

0 ).
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Since the definition of filters on the complement of σ(V a
0 ) ∩ σ(V s

0 ) has no effect on

Theorem 3.1.10, we can design the filters to satisfy the stronger condition above and thus

have exact reconstruction at every step of the pyramid algorithm. This is the case with

the filters designed in Examples 3.2.2 and 3.2.1.
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Chapter 4
Explicit Schemes in Seismic Migration and

Isotropic Multiscale Representations

Migration is a seismic imaging technique used by the oil industry to image the interior of

the Earth for the purpose of oil prospecting. A detailed description of seismic migration is

beyond the scope of this thesis. In Section 4.1, we give a very brief overview of what is called

wave equation migration and we arrive at the so-called Phase-shift propagator operator

which is used to obtain the image of the interior by downward propagating acoustic waves

recorded on the surface. Our focus in this chapter is the efficient discretization of this

operator in terms of pairs of dual frames arising from a Isotropic Multiresolution Analysis

(IMRA) described in Section 3.2. Seismic migration is a delicate inverse problem. To solve

it we work on a 3 or 4 dimensional time-frequency space, R×R2 or R×R3 respectively. The

underlying spaces are L2(R)⊗ L2(Rd) with d = 2, 3. One of the main tools is the Fourier

transform. We actually use two such transforms; the Fourier transform on L2(R) and the

Fourier transform on L2(Rd). We refer to R as the time-domain and to Rd as the spatial
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domain. We refer to the dual group of R2 or R3 as the wavenumber domain to distinguish

it from the dual group of R, which we refer to as the frequency domain. Wavenumbers, i.e.

elements of the dual group of Rd, are denoted by ξ’s versus elements of the dual group of

R, the time domain, denoted by ω’s.

The phase shift operator is a multiplicative operator in the wavenumber domain. It is

therefore, a convolution in the space domain. If the velocity of sound waves is not assumed

to be constant beneath the surface then this becomes a spatially varying convolution op-

erator. The recursive application of this convolution operator is referred to as an explicit

scheme. Explicit schemes for wave equation migration are attractive because they handle

lateral variations in velocity better than implicit schemes such as Fourier finite differences

[95]. However, the computational cost of explicit schemes is always a matter of concern

due to the enormity of the data sets. In Section 4.2 we show that the IMRA-based wave

equation migration (henceforth referred to as migration) reduces to a standard explicit

scheme when applied to a signal at the zero resolution level. The multiscale structure of

IMRA, offers the possibility of reducing the computational cost. This can be compared

to the work of Margrave and his collaborators [81], who describe a sub-sampling scheme

using the frequency domain.

4.1 Explicit Schemes for Wave Equation Migration

In this section we give a brief overview of explicit wave equation migration. In a typical

prospecting experiment, sound waves generated by small explosions travel from a source

on the surface into the ground and are reflected back by the complex structures beneath

the surface which we refer to as reflectors. These reflectors represent the surfaces where

the stratigraphy changes. The reflected waves are recorded on receivers called geophones
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(or hydrophones in the case of offshore exploration). If we assume that the source and

the receiver are located at the same point then the data (recorded pressure wave on the

receivers) is said to have zero offset. For zero-offset data the incident and reflected waves

travel along the same path. A simplifying assumption is to disregard the incident wave

and assume that the reflectors beneath the surface explode at time t = 0, to produce the

waves that travel to the surface at half of the actual velocity and are recorded on the

receivers. With this assumption the propagation distance (reflector to surface) is half the

actual propagation distance (surface to reflector and back to the surface). Since both the

velocity and propagation distance are half of their actual values, the pressure wave created

by the exploding reflectors arrives at the same time as the original reflected wave.

Migration refers to the process of obtaining the image of the reflectors using the pressure

wave recorded on the surface. The pressure wave at x,y horizontal coordinates, depth z

and time t is denoted by f(x, y, z, t). We begin by taking the Fourier transform of f with

respect to the time variable. This new function with variables x, y, z and ω is called the

‘wavefield’ for frequency, ω. If the velocity varies only with depth z, we solve the following

differential equation proposed by Claerbout (Section 1.5 in [31]), who derives it by applying

principles of classical optics;

∂f̂

∂z
(kx, ky, z, ω) =

(
2πi

√
ω2

c(z)2
− k2

x − k2
y

)
f̂(kx, ky, z, ω), (4.1)

where c(z) denotes the velocity, f̂ denotes the wavefield in the wavenumber domain (with

respect to x and y variables), and kx and ky denote the wavenumbers. We refer to (4.1)

as the one-way wave equation because it represents the upward going waves when the

reflectors ‘explode’ in the subsurface. The solution to (4.1) is given by:

f̂(z; kx, ky, ω) = exp

(∫ z

z0

2πi

√
ω2

c(z)2
− k2

x − k2
ydz

)
f̂(z0; kx, ky, ω). (4.2)
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For a small depth step ∆z, c is practically constant. Hence, for practical purposes we allow

f̂(z + ∆z; kx, ky, ω) = e
2πi∆z

r
ω2

c(z)2
−k2

x−k2
y
f̂(z, kx, ky;ω). (4.3)

In conclusion, the wavefield at z + ∆z is calculated from the wavefield at z via a mul-

tiplication in the wavenumber domain. The multiplication by e
2πi∆z

r
ω2

c(z)2
−k2

x−k2
y

in the

previous equation defines a multiplicative operator referred to as the Phase-shift propa-

gator operator. This is a convolution operator in the spatial domain which we denote

by P. We recursively obtain the wavefield for all z using P. Integrating numerically over

all frequencies ω, we obtain the pressure wave f(x, y, z, 0) for all z at time t = 0 which

depicts the ‘exploding’ reflectors. This procedure is termed as post stack migration, be-

cause, in order to apply the ‘exploding reflectors’ concept, the data has to be stacked into

zero offset sections. The interested reader can find the details of the stacking process and

the derivation of the one-way wave equation in [31]. If the velocity varies laterally, the

operator P is replaced by a ‘spatially varying convolution’ operator. We clarify this kind

of convolution below. But before doing this we want to mention that in the geophysical

literature, the migration process described above, is discretized by sampling the wave-field

on a regular grid and by approximating e±2πi∆z
q

ω2

c2
−k2

x−k2
y (the symbol of the operator, P

in the wavenumber domain) with a trigonometric polynomial. This approximation of P is

carried out for every point of the grid on which the data are collected. The collection of

all these approximations of P is referred to as a propagator matrix. Propagator matrices

are applied recursively on the data to calculate the propagating wavefield for all z.

Our approach is formal compared to various ad-hoc discretizations of the phase-shift

operator. It also leads to a sparser propagator matrix in certain cases.

Let us now return to P. For a fixed ω, we denote the wavefield at (x, z, ω) by fz(x),
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where x = (x, y). The operator P acts via a multiplication in the wavenumber domain,

f̂z+∆z(ξ) = (̂Pfz)(ξ) = e
2πi∆z

q
ω2

c2
−|ξ|2

f̂z(ξ),

where ξ = (kx, ky). Thus,

Pfz(x) =
∫

R2

e2πi〈x,ξ〉e
2πi∆z

q
ω2

c2
−|ξ|2

f̂z(ξ)dξ. (4.4)

To make P bounded, we need to assume that fz is appropriately band-limited and is in

L2(R2). All this analysis works under the assumption that c is laterally constant in the

depth slice [z, z + ∆z]. If c varies with x ∈ R2 then (4.4) is no longer valid. What is

still valid is to assume that P is linear and bounded. With these assumptions and for a φ

that is a continuous function with compact support or rapidly decaying at infinity, we can

approximate 〈Pfz, φ〉 by∫
R2

∫
R2

e2πi〈x,ξ〉e
2πi∆z

q
ω2

c2
−|ξ|2

f̂z(ξ)φ(x)dξdx, (4.5)

where c is the mean velocity in the support of φ. The previous equation allows us to consider

situations that are realistic in seismic imaging, where the velocity has lateral variation.

Since φ is well localized, we can assume that c is practically constant. This discussion

implies that a discretization of P, discussed in Section 4.2.1, must be implemented with a

spatially varying convolution.

4.2 The IMRA-based Numerical Solution of the One-way

Acoustic Wave Equation

To carry out the discretization of P we employ the dual pair of frames, Xa
φψ and Xs

φψ,

obtained in Example 3.2.2. Recall that the families Xa
φψ := Xφaψa and Xs

φψ := Xφaψa are
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defined via

Xφψ :=
{
Dj
ATkψi : j ∈ N ∪ {0},k ∈ Zd, i = 1, . . . ,m

}
∪
{
Tkφ : k ∈ Zd

}
.

In the rest of this chapter we drop the subscript A from the notation for the dilation

operator but we keep in mind that it is defined with respect to a radially expansive matrix

of the form A = aR, where a > 1 and R ∈ SO(2).

For a fixed depth, z, and a frequency, ω, the samples of the wavefield, f on Z2, are

assumed to be equal to the coefficients 〈f, Tkφ
a〉 where φa is the two-dimensional IMRA

analysis scaling function which is radial and bandlimited to B(0, ab1) ⊂ T2. This is based

on the assumption that the wavefield is band-limited in the ball, B2 := B(0, ab2), where φ̂a

is equal to 1. Indeed, for all such f , we have:

f(k) =
∫

R2

f̂(ξ)e2πi〈k,ξ〉dξ =
∫

R2

f̂(ξ)φ̂a(ξ)e2πi〈k,ξ〉dξ

=
〈
f̂ , φ̂aek

〉
= 〈f, Tkφ

a〉 for all k ∈ Z2. (4.6)

The second equality is true because φ̂a is equal to 1 on the support of f̂ and the last

equality follows from Plancherel’s theorem. Now, if the signal (function) has a higher band

limit, then we sample the signal on a finer grid and the samples are then the coefficients〈
f,DjTkφ

a
〉

for an appropriate scale j > 0.

Recall that the families Xa
φψ and Xs

φψ form a pair of dual frames for L2(R2). This

implies that Dj0Xa
φψ and Dj0Xs

φψ form a pair of dual frames for L2(R2) because Dj0 is a

unitary operator for all j0 ∈ Z. Hence, every f ∈ L2(R2) can be written as:

f =
∑
k∈Z2

〈
f,Dj0Tkφ

a
〉
Dj0Tkφ

s +
∞∑
j=j0

|det(A)|∑
i=1

∑
k∈Z2

〈
f,DjTkψ

a
i

〉
DjTkψ

s
i . (4.7)

In the special case that f is band limited to the disk of radius aj0+1b2 then
〈
f,DjTkψ

a
i

〉
= 0

for all j ≥ j0, i = 1, . . . , |det(A)|,k ∈ Z2, and
〈
f,Dj0Tkφ

a
〉

= f(A−j0k) for all k ∈ Z2.
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Hence, the representation of f in (4.7) reduces to

f =
∑
k∈Z2

f(A−j0k)Dj0Tkφ
s. (4.8)

We refer to this expression as the representation at the j0 resolution level. In practice, the

resolution level is not quantified. All data sets are delivered on a sampling grid. Typically,

this grid delivers the data sampled at the proper rate or at a somewhat higher one. Thus,

we always adopt the convention that the wavefield, f , lies in the zero-resolution space, i.e.

f can be expressed by means of (4.8) with j0 = 0.

4.2.1 Discretization of the Propagator

Recall that P denotes the propagator operator and k0 the ratio ω2

c20
, where c0 is the velocity

which is assumed to be constant for the moment. The discretization of P turns out to be

a Toeplitz matrix in this case. In the wavenumber domain, P acts via multiplication with

the symbol of the operator,

P̂(f)(ξ) = e2πi∆z
√
k2
0−|ξ|

2

f̂(ξ) ξ ∈ R2.

Applying P to both sides of the frame decomposition (4.7) we obtain a discretization

of P. First,

P(f) =
∑
l∈Z2

〈P(f), Tlφ
a〉Tlφ

s +
∞∑
j=0

|det(A)|∑
i=1

∑
l∈Z2

〈
P(f), DjTlψ

a
i

〉
DjTlψ

s
i . (4.9)

Before we proceed, note that the support of a function in the wavenumber domain is

invariant under the action of the propagator, P because P is multiplicative in this domain.

Hence, for a function, f bandlimited to B2, P(f) is also bandlimited to B2. Now, from

(4.6) and (4.8), such a function, f , can be expressed in terms of the integer translates of
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φs:

f =
∑
k∈Z2

f(k)Tkφ
s. (4.10)

Since, the same is also true for P(f), we have

P(f) =
∑
l∈Z2

P(f)(l)Tlφ
s,

where,

P(f)(l) = 〈P(f), Tlφ
a〉 =

〈
P

∑
k∈Z2

f(k)Tkφ
s

 , Tlφ
a

〉
=
∑
k∈Z2

f(k) 〈P (Tkφ
s) , Tlφ

a〉 .

Thus, the vector of samples of the wavefield at z + ∆z is given by multiplying the vector

of samples of the wavefield at z with a matrix which we denote by P(0). We refer to this

matrix as the propagator matrix for V0, given by

P(0)
l,k = 〈PTkφ

s, Tlφ
a〉 =

〈
P̂ekφ̂s, elφ̂a

〉
=
∫

R2

φ̂a(ξ)ei∆z
√
k2
0−|ξ|

2

e−2πi〈k−l,ξ〉dξ.

The last equality follows from the fact φ̂s = 1 on the support of φ̂a. Now, since φ̂a

is supported in B1 ⊂ T2, the l,k-entry of P(0) is the (k − l)-th Fourier coefficient of

φ̂aei∆z
√
k2
0−|ξ|

2

. Observe that P(0) is a Toeplitz matrix. Hence, the operator is applied on

the discretized signal by convolution with the first row of this matrix.

For a fixed value of the ratio k0 =
ω

c0
, we refer to these Fourier coefficients as the

propagator filter corresponding to k0. Note that for the constant velocity model, we

required only one propagator filter for each ω. Now, if the velocity varies laterally, for each

ω, we need more than one propagator filter to construct the propagator matrix P(0). In

that case, we construct a ‘table’ driven migration scheme, meaning that we calculate the

propagator filters for a pre-determined set of values of the ratio k0 =
ω

c0
and store them in

a ‘table’. The values of k0 range from 0 to
ωmax
cmin

, where ωmax is the maximum temporal

frequency of the data and cmin is the minimum velocity for the given velocity model.
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Recall, for the variable velocity model, we approximate P via (4.5):

〈Pfz, φ〉 =
∫

R2

∫
R2

e2πi〈x,ξ〉e
2πi∆z

r
ω2

c(x)2
−|ξ|2

f̂z(ξ)φ(x)dξdx,

where φ is compactly supported or rapidly decaying in the spatial domain and continuous.

The equation is still valid if
∫

R2 |φ(x)|2(1 + |x|)2+δ)dx < +∞ for δ > 0. Hence,

P(0)
l,k = 〈P(Tkφ

s), Tlφ
a〉 =

∫
R2

∫
R2

e2πi〈x,ξ〉e
2πi∆z

r
ω2

c(x)2
−|ξ|2

ek(ξ)φ̂s(ξ)Tlφa(x)dξdx.

Applying the Fubini-Tonelli Theorem, we can change the order of integration. Now, replace

c(x) by cl, the l−th sample of the velocity model because Tlφ
a is well localized in the space

domain since φ̂a is C∞-smooth (see Remark 3.3.3). This yields

P(0)
l,k =

∫
R2

e
2πi∆z

r
ω2

c2
l

−|ξ|2
ek(ξ)φ̂s(ξ)el(ξ)φ̂a(ξ)dξ. (4.11)

Hence, at a given depth step, the l-th row of the matrix P(0)
l,k is the propagator filter

corresponding to the ratio
ω

cl
. Hence, the l-th row of the matrix can be obtained from

the pre-calculated table by picking up the propagator filter corresponding to k0 which is

closest to the ratio
ω

cl
.

Notice that φ̂a acts like a smoothing function to obtain a trigonometric polynomial ap-

proximation of the phase shift operator. The matrix, P(0), is practically a spatially varying

convolution. This is because for the constant velocity case, we saw it was a Toeplitz matrix

(i.e. each row is obtained by right shifting the previous row) and hence, a convolution.

Now that the filter changes with every point on the grid (i.e. l-th row depends on cl),

this induces what is referred to as a spatially varying convolution. As pointed out in the

introduction, the discretization of P we obtained here, at the zero resolution level, is what

geophysicists call a standard explicit scheme. In the geophysics literature, this kind of

analysis is not carried out. Instead, the entries of the propagator matrix are calculated via

(4.11), where instead of φ̂aφ̂s = φ̂a, an arbitrary smoothing filter is used.
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However, the multilevel structure of the IMRA can be utilized to reduce the computa-

tional cost as we argue in the following subsections.

4.2.2 Decomposing the Signal and the Propagator Matrix using the Fast

Isotropic Wavelet Algorithm

We can decompose a wavefield belonging to V0 into a low pass component and a high pass

component using the two dimensional version of the fast wavelet algorithm described in

Section 3.3. Now, the representation of the function becomes

f =
∑
k∈Z2

〈
f,D−1Tkφ

a
〉
D−1Tkφ

s

︸ ︷︷ ︸
low pass component

+
|det(A)|∑
i=1

∑
k∈Z2

〈
f,D−1Tkψ

a
i

〉
D−1Tkψ

s
i .︸ ︷︷ ︸

high pass component

Now, from the definition of ψai and ψsi we infer, D−1Tk′ψ
a
i = Tkψ

a
1 and D−1Tk′ψ

s
i = Tkψ

s
1

where k = Ak′ + pi and pi are the representatives of the quotient group Z2/(AZ2). For

instance, if A is the dyadic dilation matrix, 2IR2 , then p1 = (0, 0), p2 = (1, 0), p3 = (0, 1)

and, p4 = (1, 1). We therefore have the following representation of the function f :

f =
∑
k∈Z2

〈
f, TAkD

−1φa
〉
TAkD

−1φs︸ ︷︷ ︸
low pass component

+
∑
k∈Z2

〈
f, TkD

−1ψa1
〉
TkD

−1ψs1.︸ ︷︷ ︸
high pass component

For this representation, the propagator matrix P(0) is decomposed into the following:P(−1) F(−1)

T(−1) Q(−1)

 , (4.12)
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where

P(−1)
l,k =

〈
PTAkD

−1φs, TAlD
−1φa

〉
,

F
(−1)
l,k =

〈
PTAkD

−1φs, TlD
−1ψa1

〉
,

T
(−1)
l,k =

〈
PTkD

−1ψs1, TAlD
−1φa

〉
,

Q(−1)
l,k =

〈
PTkD

−1ψs1, TlD
−1ψa1

〉
.

We argue that we can ignore F(−1) and T(−1) to obtain the following block diagonal

propagator matrix, P(−1) 0

0 Q(−1)

 . (4.13)

We now describe the process of obtaining each of the components, P(−1),F(−1),T(−1)

and Q(−1), for the constant velocity case. The generalization to the variable velocity model

is exactly the same as for P(0). To obtain the propagators for V−1 and W−1, recall the two

scale relations:

φ̂a(A∗.) = Ha
0 φ̂

a, (4.14)

φ̂s(A∗.) = Hs
0 φ̂

s. (4.15)

Applying the inverse Fourier transform followed by a translation, TAk, to (4.14) and (4.15)

yields,

D−1Tkφ
a =

∑
m∈Z2

αamTAk−mφ
a,

D−1Tkφ
s =

∑
m∈Z2

αsmTAk−mφ
s,

where, {αam}m∈Z2 and {αsm}m∈Z2 are the coefficients of the Fourier series of |det(A)|1/2ma
0

and |det(A)|1/2ma
0 respectively. Using this, the matrix P(−1) is obtained by the convolution
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of P(0) with the tensor product matrix S = (αaiα
s
m)i,m followed by downsampling as

follows:

P(j−1)
l,k =

〈
P
(
Dj−1Tkφ

s
)
, Dj−1Tlφ

a
〉

=

〈
P

 ∑
m∈Z2

αsmD
jTAk−mφ

s

 ,
∑
i∈Z2

αaiD
jTAl−iφ

a

〉

=
∑
i,m

αaiα
s
m

〈
PDjTAk−mφ

s, DjTAl−iφ
a
〉

=
∑
i,m

αaiα
s
mP

(j)
Al−i,Ak−m.

Similar expressions can be derived for F(−1),T(−1) and Q(−1), using (3.16), (3.17), (4.14),

and (4.15). Thus, having discretized P at V0, we can in principle, obtain its discretizations

for V−1 and W−1 using the Isotropic Fast wavelet algorithm. But, since the Isotropic Fast

wavelet algorithm in this case must be implemented with four dimensional convolutions,

which are computationally very expensive, we, instead, calculate the propagator matrices

for the resolution and detail level −1 directly. This is done according to the following

equations:

P(−1)
l,k =

〈
PD−1Tkφ

s, D−1Tlφ
s
〉

= |det(A)|
〈
P̂eAkφ̂

s(A∗.), eAlφ̂a(A∗.)
〉

= |det(A)|
∫

R2

φ̂a(A∗ξ)ei∆z
√
k2
0−|ξ|

2

e−2πi〈A(k−l),ξ〉dξ.

Similarly, we obtain the following expressions:

Q(−1)
l,k =

∫
R2

ψ̂a1(A∗ξ)ei∆z
√
k2
0−|ξ|

2

e−2πi〈k−l,ξ〉dξ,

F
(−1)
l,k = |det(A)|1/2

∫
R2

φ̂s(A∗ξ)ψ̂a1(A∗ξ)ei∆z
√
k2
0−|ξ|

2

e−2πi〈Ak−l,ξ〉dξ,

T
(−1)
l,k = |det(A)|1/2

∫
R2

φ̂a(A∗ξ)ψ̂s1(A
∗ξ)ei∆z

√
k2
0−|ξ|

2

e−2πi〈k−Al,ξ〉dξ.

Now, observe that φ̂a(A∗.) and ψ̂a1(A∗.) overlap only in a small annulus with inner radius b2

and outer radius b1. We denote this annulus by S. Hence, we can ignore the contribution of
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the off diagonal components. We give a justification for this claim by looking more closely

at F(−1).

The component F(−1) acts on the sequence {
〈
f, TAkD

−1φa
〉
}k∈Z2 . Let A be the anal-

ysis operator for
{
TAkD

−1φa
}

k∈Z2 , i.e. A(f) = {
〈
f, TAkD

−1φa
〉
}k∈Z2 . We claim that

||F(−1)A(f)|| tends to zero, as the area of the annulus, S, goes to zero, for all f such that f̂

is essentially bounded. This is a reasonable assumption on f because we only have finitely

many samples of the wavefield. It is therefore represented by a finite linear combination

of the translates of the synthesis scaling function which is bounded in the wavenumber

domain.

We write l = Al′ + pi, and define |det(A)| sub-matrices of F(−1), denoted by F
(−1)
i ,

via (F(−1)
i )l′,k = (F(−1))l,k. Recall that pi are the representatives of the quotient group

Z2/(AZ2). Now, observe that each of F
(−1)
i is a Toeplitz matrix with each row made

up of the Fourier coefficients of the A∗−1Z2-periodic function φ̂s(A∗.)ψ̂ai (A
∗.)ei∆z

√
k2
0−|.|

2

.

Therefore, the action F
(−1)
i on A(f) is a convolution. Also note that Â(f) = f̂ φ̂a(A∗.),

where we identify the bandlimited function, f̂ φ̂a(A∗.) with its A∗−1Z2-periodic extension.

Therefore, applying Plancherel’s theorem we conclude,

||F(−1)
i A(f)||

2
=

∫
A∗−1T2

∣∣∣φ̂s(A∗ξ)ψ̂ai (A
∗ξ)ei∆z

√
k2
0−|ξ|

2

f̂(ξ)φ̂a(A∗ξ)
∣∣∣2dξ

≤ ||f ||2∞
∫
A∗−1T2

∣∣∣ψ̂ai (A∗ξ)φ̂a(A∗ξ)
∣∣∣2dξ

≤ ||f ||2∞||ψ̂ai (A
∗.)φ̂a(A∗.)||

2

∞|S|,

where |S| is the area of the annulus S. This proves our claim that ||F(−1)A(f)|| tends to zero

as the area of S tends to zero. Similar calculations can be carried out for the component,

T(−1). Hence, by keeping the area of the annulus small, we can neglect the error caused by

ignoring the off-diagonal components of the propagator. Our experimental results support

this claim (see Figure 4.1).
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Figure 4.1: Here we show the vertical cross sections of the images obtained for the SEG Salt
model using IMRA. The left image on the top was obtained by discretizing the propagator
at the zero resolution level. The right image on the top was obtained using one-level of
decomposition with the Dyadic dilation matrix. The image on the bottom was obtained
using one-level of decomposition using the Quincunx dilation matrix (4.16).
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Figure 4.2: Horizontal cross-sections of the results obtained using the IMRA for the Impulse
(left) and the Salt (right) models. Due to the radial nature of the filters the faults in all
directions are imaged with the same accuracy and have no directional artifacts.
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4.2.3 Increasing the Sparsity of the Propagator Matrix

In this subsection, we describe how the decomposition into low and high pass components

can be used to increase the sparsity of the propagator matrix and thereby reduce the cost

of computation. We use ν to denote the signal in V0, i.e. the samples of the wavefield on

Z2 and refer to this sequence of samples as the original signal and the grid on which it is

defined, as the original grid. After decomposing into a low pass component, νl and a high

pass component, νh, using the fast wavelet algorithm, the wavefield is represented by the

column vector (νl, νh)T , where T stands for transpose. Recall that the high pass component

is undecimated. Hence, νh has the same size as ν. Thus, as a result of our decomposition,

we increase the amount of data by the size of νl. The low pass component, νl is a quarter

of the size of ν if we use the Dyadic dilation matrix. Applying the propagator (4.13) on

(νl, νh)T yields (P(−1))νl,Q(−1)νh)T . The cost of matrix-vector multiplication, Q(−1)νh is

the same as that of the matrix-vector multiplication P(0)ν.

Nevertheless, the sparsity increases from the fact that we can discard the high pass

component for certain values of the ratio, ω/c. Wavenumbers larger than the ratio ω/c

correspond to evanescent waves which are considered non-physical [31]. Hence, we only

need to propagate the waves corresponding to wavenumbers smaller than ω/c accurately,

while the evanescent waves can be damped or set to zero. Now, for ratios ω/c < b2, we can

set the high pass component equal to zero because in this case the high pass component

contains only the evanescent waves. By setting the high pass component to zero, we mean

that we can set the l-th row of Q(−1) equal to zero whenever ω/cl < b2. In the case of

dyadic dilations, 1
8 < b2 <

1
4 . This reduces the computational load significantly for regions

where the velocity is high and the temporal frequency is low, because in such regions

we only propagate the low pass component and with the use of dyadic dilations the low
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pass component is one-quarter the size of the original grid. This use of the IMRA can be

compared to the sub-sampling scheme proposed by Margrave et al [81]. However, unlike

Margrave’s sub-sampling, the 1-level IMRA wavelet decomposition is suitable for localized

variations of the velocity model. In their implementation, for a fixed frequency, ω, the

signal is sub-sampled to reduce the computation time. The IMRA decomposition is more

general because we subsample not only for one fixed frequency, but also for various regions

of the image where the velocity is high.

A significant gain in speed as compared to standard explicit scheme can be anticipated

if we can discard the high pass component for a sufficient number of points in the grid.

However, Table 4.1 shows that with dyadic dilation, we have to propagate the high pass

component for almost every grid point when the frequency is higher than 9 Hz. When this

happens a decomposition ends up being more expensive. Hence, it is useful to decompose

the wavefield only for very low frequencies.

Frequency in Hz Dyadic Quincunx

1.5 - 8.75 55 0

9 - 16.25 99.5 37.5

16.5 - 23.75 100 93.3

24 - 31.25 100 96.4

31.25 - 37.5 100 100

Table 4.1: Percentage of points in the high pass component that must be propagated for
various ranges of temporal frequencies, in the case of Dyadic and Quincunx dilations, for
the SEG Salt model.
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To rectify this, we want the low pass filter to be supported in a ball that has bigger

radius than the one we had with Dyadic dilation, so that the high pass component can be

discarded for more values of ω/c. This can be achieved by replacing the Dyadic dilation

matrix with the Quincunx matrix:

A =

 1 −1

1 1

 . (4.16)

This allows the low pass band to be supported in a ball of radius b0, where 1
4 < b0 <

√
2

4 .

But, in this case the discretization grid for the low pass component is half the size of

the original computation grid. As we can see from Table 4.1, this improves the situation

because now, decomposing the wavefield is useful for higher temporal frequencies than

in the case of Dyadic dilation. In the actual implementation, the decomposition is only

applied for the lower frequencies since it does not save computation time for higher ones.

4.3 Filter Design and Implementation

To implement either the explicit scheme or the IMRA approach, we need a trigonometric

polynomial approximation of the discretized phase shift operator. We need short filters

(i.e. less terms in the trigonometric polynomial) to keep the computational cost under

control. Since the extrapolation is done for small increments ∆z, these filters must not

amplify the wavefield at every depth step. Hence, we have to optimize the filter under a

constraint that guarantees stability and in a way that keeps the computational cost under

control. We use a weighted least squares (WLSQ) algorithm due to Thorbecke et al [104],

to carry out this task. Recall that wavenumbers larger than the ratio ω/c correspond

to evanescent waves which are considered non-physical. The only requirement for the

evanescent waves is that they should be damped (i.e. must be less than one in absolute
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value) so that they do not cause numerical instability. Hence, we use a weight that is

equal to one in the propagating region (|ξ| < ω/c) and equal to a very small value (about

10−5) in the evanescent region (|ξ| > ω/c). The filters calculated with this weighted least

squares approach have larger errors in the evanescent region but are very accurate for

|ξ| < ω/c. Whereas, filters calculated without the weight (i.e. by truncating the Fourier

series) have oscillations in the propagating region which results in numerical instability.

This is illustrated in Figure 4.3.

Figure 4.3: Trigonometric polynomial approximations of the propagator filter with a
weighted least squares algorithm (top) and with a truncated Fourier series (bottom). Both
have 25× 25 coefficients.
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For 3-D migration, we have to convolve with 2-D filters. Two-dimensional convolutions

are expensive and hence, we study ways to make these convolutions computationally effi-

cient without compromising accuracy. We can take advantage of the radial nature of the

filters to optimize the 2-D convolution. Since a radial filter is even in both variables, for

each point we can first sum up the four quarters of the data and perform the convolution

for 1/4 of the original size of the filter i.e. just the first quadrant. Another approach is to

design a 1-D filter in the radial variable and use a transformation to map it to a 2-D filter.

We consider two such transformations, the McClellan transform [56, 83] and the Soubaras’

Laplacian synthesis [101].

4.3.1 McClellan Transform

The McClellan transform was originally described by McClellan in his PhD thesis [83], as

a tool to design two dimensional radial filters from their one dimensional profiles in the

radial variable.

Let P̂0 denote the exact radial filter in the wavenumber domain. Then, P̂0 can be

approximated by a trigonometric polynomial, say P̂ with respect to the radial variable

k =
√
k2
x + k2

y,

P̂ (k) =
∑
n

ancos(nk).

Using Tn to denote the n-th degree Chebychev polynomial,

P̂ (kx, ky) =
∑
n

anTn

(
cos
(√

k2
x + k2

y

))
,

where Tn(cos(x)) = cos(nx).

Multiplication by Tn(cos(k)) in the wavenumber domain is equivalent to repeated con-

volutions in the space domain by a filter approximating cos
(√

k2
x + k2

y

)
. This can be
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implemented by the so-called Chebychev recursion scheme described in [84].

The filter suggested by McClellan for the approximation of cos
(√

k2
x + k2

y

)
is the 3×3

filter,


1/8 1/4 1/8

1/4 −1/2 1/4

1/8 1/4 1/8

 .

For seismic imaging, Hale suggested the so called ‘Improved McClellan’ filter, [56], given

by:



−c/8 0 c/4 0 −c/8

0 1/8 1/4 1/8 0

c/4 1/4 −(1 + c)/2 1/4 c/4

0 1/8 1/4 1/8 0

−c/8 0 c/4 0 −c/8


.

Observe from Figure 4.5 that this filter is a good approximation for cos
(√

k2
x + k2

y

)
if

kx and ky up to half the bandwidth of the original signal, but for higher wavenumbers, the

approximation is good only along the kx and ky axes and deviates significantly along the

kx = ky line. This produces significant dispersion in the 45o azimuth angle of the image.

(See Figures 4.7 and 4.9).

4.3.2 Soubaras’ Laplacian Synthesis

Another way of mapping 1-D filter co-efficients to 2-D filters via Chebychev recursion is

Soubaras’ Laplacian synthesis [101]. In this approach, L0 := k2
x + k2

y is approximated by a
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trigonometric polynomial of the form,

L = (dx(0) + dy(0))/2 +
Nx∑
n=1

dx(n) cos(nkx) +
Ny∑
n=1

dy(n) cos(nky), (4.17)

where dx(n) are the coefficients of the Fourier Series of the function f defined by f(kx) =

Figure 4.4: The 1-D profiles of the filters, L (dashed) and L0 (solid), along the kx-axis. Here
L is a trigonometric polynomial in Equation (4.17) with Nx = Ny = 5. The approximation
is exact up to kexact.

k2
x.H(kx) for kx in [−∆x/π,−∆x/π] and extended periodically. Here ∆x is the spatial

sampling interval and H is a smoothing window. We obtain dy(n) in the same way. Notice

from Figures 4.4 and 4.5 that L is a good approximation for L0 up to a certain radius say

95



4.3. FILTER DESIGN AND IMPLEMENTATION

kexact. This imposes a limit on the dip angles that can be imaged correctly, but up to this

radius the approximation is accurate in all directions.

Since L and cosine are continuous functions we can recover the entire range of values

of L using the following equation

L = γ(h) = 0.5(Lmin − Lmax) cos(h) + 0.5(Lmin + Lmax), 0 ≤ h ≤ π, (4.18)

where Lmin and Lmax are the minimum and the maximum values of the synthesized Lapla-

cian L. Recall that we the exact filter in the wavenumber domain is denoted by P̂0. Now,

the radial filter P̂0(L) = P̂0(γ(h)) can be approximated by a Cosine Series (in the variable

h) via

P̂ (γ(h)) =
∑
n

tncos(nh).

Solving Equation (4.18) for cos(h), P̂ can be written with respect to L as follows

P̂ (L) =
∑
n

tnTn [(2L− Lmin − Lmax)/(Lmin − Lmax)] .

The operator P is implemented via a Chebychev recursion similar to the one used for

the McClellan transform. Here, instead of a filter approximating cos
(√

k2
x + k2

y

)
we use

the filter (2L − Lmin − Lmax)/(Lmin − Lmax). This filter is implemented via convolution

with the matrix

1
Lmin − Lmax



0 0 dy(Ny) 0 0

0 0
... 0 0

dx(Nx) . . . dx(0) + dy(0)− Lmin − Lmax . . . dx(Nx)

0 0
... 0 0

0 0 dy(Ny) 0 0


.
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Observe that unlike McClellan, the 1-D filter design must be done after the design of

the transformation filter L. This is because the function γ depends on L. The weight

function in the WLSQ algorithm must correspond to the appropriate cut off given by

hc = (2Lc − Lmin − Lmax)/(Lmin − Lmax) where Lc = min
{
ω2/c2, k2

exact

}
.
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Figure 4.5: The figure on the left has the contours of the ‘Improved McClellan filter’
plotted along with the exact function cos

(√
k2
x + k2

y

)
. The figure on the right is a contour

plot of a synthesized Laplacian, L with Nx = Ny = 5 along with the contour plot of
the exact function k2

x + k2
y. Notice that although the McClellan filter gives a very good

approximation of the exact function along the axes, it deviates significantly along the
kx = ky line. The Soubaras’ filter is a good approximation in all directions up to a radius
kexact (See Figure 4.4) which is larger than the radius up to which the McClellan filter
gives a good appriximation. Beyond kexact, the Soubaras’ filter also deviates from the
exact function k2

x + k2
y as the contours for the filter are not radial for radii bigger than

kexact.
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Figure 4.5 shows that the filter L is a good approximation to k2
x+k2

y for a bigger domain

than the one in which the ‘Improved McClellan’ filter is accurate. See Figures 4.7 and 4.10.

4.3.3 Computational Cost

A comparison between the number of floating point operations (FLOPS) required for the

Chebychev recursion scheme and direct convolution is given in [56]. Although, the number

of FLOPS is much higher for direct convolution, it is important to note that the Chebychev

recursion scheme is computationally more complex and hence the computational overhead

may increase the computation time. An empirical study for the time required by various

computers for the implementation of each method is presented in [103]. Surprisingly, for

some computers direct convolution turns out to be less expensive.

The computational cost for Soubaras’ method in terms of the number of FLOPS is

comparable to that of the McClellan transform but the results obtained from the former

method do not have the directional bias in contrast to those obtained by means of the

McClellan transform. Therefore, we recommend the use of Soubaras’ method for seismic

migration.
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Figure 4.6: Slice y = 76 of the constant velocity impulse model using McClellan (top) and
Soubaras (bottom).
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Figure 4.7: Slice x = y of the constant velocity impulse model using McClellan (top) and
Soubaras (bottom). The result from McClellan shows a lot of dispersion in the higher
angles while the Soubaras gives an accurate result.
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Figure 4.8: Slice y = 76 (top) and x = y (bottom) of the constant velocity impulse
model using 2D IMRA filters. These results have less ringing than the ones obtained from
Soubaras. (Figures 4.6,4.7)
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Figure 4.9: Slice z = 75 using McClellan. Notice the dispersion in the 450 azimuth angle
which is absent in the results obtained from Soubaras (Figure 4.10) and full 2-D IMRA
implementation (Figure 4.11).
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Figure 4.10: Slice z = 75 of the constant velocity impulse model using Soubaras. The
result is accurate in all directions but has more ringing than the result obtained from a full
2-D convolution (Figure 4.11)
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Figure 4.11: Slice z = 75 of the constant velocity impulse model using 2D IMRA filters at
the zero resolution level (without decomposing into low and high pass components).
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Figure 4.12: Slice y = 5 of the steep model using McClellan.
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Figure 4.13: Slice y = 5 of the steep model using Soubaras.
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Figure 4.14: Slice y = 5 of the steep model using 2D IMRA filters at the zero resolution
level (without decomposing into low and high pass components).
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Figure 4.15: Slice x = y of the steep model using McClellan. Notice the dispersion in the
higher angles of propagation. The results obtained from Soubaras (Figure 4.16) and 2-D
IMRA filters (Figure 4.17) do not have these artifacts.
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Figure 4.16: Slice x = y of the steep model using Soubaras.
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Figure 4.17: Slice x = y of the steep model using 2D IMRA filters at the zero resolution
level (without decomposing into low and high pass components).
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Chapter 5
Rotationally Invariant 3-D Texture

Classification

5.1 Introduction

Textures appear in most natural images, but there is no precise mathematical definition of

a texture. However, there are various descriptions of textures available in the literature.

These approaches can be broadly classified as structural or deterministic, and stochastic

[26, 35, 58, 76, 105]. The structural approach is more suitable for describing textures that

can be formed by repeating a unit pattern also known as a primitive. Examples of such

textures are shown in Figure 5.1. Textures in which the absence of a faithful repetition of

a certain pattern is the norm are better described by statistical models. Some examples of

non-deterministic textures are shown in Figure 5.2.

Textures appear naturally in many classes of imaging, among them medical images

used for diagnostic and research purposes. In imaging modalities such as X-ray CT and
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Figure 5.1: Examples of structural 2-D textures

Figure 5.2: Examples of stochastic 2-D textures

MRI, different tissues give rise to different textures, but these textures are now 3-D. Thus,

efficient texture classification and segmentation routines can be used for the automatic or

semi-automatic detection of anomalies. Textures arising from tissues can not be treated as

those in Figure 5.1, where the precise perpetual repetition of the primitive determines the

texture. Natural tissue variation should be taken into account. In addition, various types

of noise join forces to enhance the variability in textures of this sort. Thus, stochastic

models are better suited for modeling textures that appear in medical imaging. These

textures are the focus of this chapter.

The first step in a texture analysis problem is to identify a good set of features or

texture signatures. A feature is a certain attribute of the model. To be useful, a feature

should be easily computable otherwise it can not be easily utilized. A texture signature

is a collection of features identifying a texture. Feature vector is an alternative term that

can be used instead of texture signature. In fact, the use of the noun ‘vector’ underscores

the importance of vector-valued texture signatures versus scalar-valued signatures. The

complexity of the nature of a texture becomes feasible with a multidimensional approach.
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The dimensionality of a texture signature is very critical in enabling texture discrimination.

The feature vectors or texture signatures corresponding to two different textures should be

distant enough from each other with respect to a suitable metric. Various kinds of features

have been considered in the literature such as those arising from spatial frequency based

techniques such as Gabor filters [8, 91, 102] and wavelets [24, 45, 106], or those arising from

spatial interaction and autoregressive models such as Markov random fields [25, 64, 80]. The

autoregressive and spatial interaction models are particularly attractive because they take

into account the local statistical interactions of an image which capture a lot of information

about textures. Of these, Gaussian Markov Random Fields (GMRF) have been studied

most extensively for 2-D texture analysis [25, 35, 65, 91]. More recently, GMRFs have been

used for the study of 3-D textures in [93]. The literature on 3-D texture analysis in general

is extremely limited due to the tremendous computational challenges one encounters in this

kind of image analysis. A few recent generalizations of the 2-D methods to 3-D can be

found in [69, 70, 77, 94, 108].

We are interested in rotationally invariant classification of 3-D textures because, in

applications such as medical imaging, a tissue type must be classified regardless of the po-

sition or orientation of the subject. Various authors have considered different approaches

to obtain a rotationally invariant classification scheme, mostly in 2-D. In [66], Kashyap

and Khotanazad propose a so-called circular symmetric autoregressive model. They fit two

traditional simultaneous autoregressive models, one for the nearest neighbors and one for

the diagonal nearest neighbors. By the diagonal nearest neighbors they mean points on

the diagonal at a unit distance. These points do not lie on the original lattice so the gray

scale values here are obtained via linear interpolation. The parameters for these models

are used as rotation invariant features. This kind of circularly symmetric models are also
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considered in [91], where higher order neighborhoods beyond first order ones are also em-

ployed. In [91], the authors also propose circularly symmetric Gabor filter-based features.

The main shortcoming of these models is that they impose an isotropic structure on possi-

bly non-isotropic textures. A mathematically rigorous treatment of isotropic textures can

be found in [88]. However, when we are dealing with textures that show directional char-

acteristics, isotropic models limit the flexibility in texture classification. This problem is

also recognized in [35], where the authors model the textures using a continuous stationary

Gaussian random field. Rotations are defined via a continuous counterpart of the discrete

power spectral density associated to a discrete model defined on a finite lattice. This is

similar to the approach that we describe for rotation of textures in Section 5.3.2. Using

the continuous power spectral density, they derive a likelihood function for the rotation pa-

rameter. The classification is then carried out in two steps. First, they obtain a maximum

likelihood estimate for the rotation angle and then they compare against each texture in

the training set for classification. This approach is shown to work well in 2-D but a 3-D

version would be computationally extremely expensive since the likelihood function they

obtain constitutes a product over all the lattice nodes. A 3-D rotation invariant approach

for texture classification using local binary patterns is considered in [46]. To the best of

our knowledge there has been no previous attempt of a 3-D rotation invariant texture

classification using GMRF.

Instead of using a rotationally invariant probabilistic model for a texture, we aim at

defining a rotationally invariant distance between two texture signatures which might them-

selves be non-isotropic. Two different non-isotropic textures might not be distinguishable

if isotropy of the texture signatures is imposed. Thus, using non-isotropic signatures, and

implementing the rotational invariance via a distance function, makes the models more

flexible.
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We model discrete textures, i.e. textures defined on a discrete lattice, using GMRF

following the approach of Rama Chellappa described for 2-D textures in [25], and extended

to 3-D volumes in [93]. GMRFs are particularly useful for the following reasons:

• These stochastic models have a very well understood mathematical structure,

• The computability of Kullback-Leibler distance (see Section 5.3.1),

• Relatively low computational cost of parameter estimation and texture synthesis.

The texture signature is obtained by fitting a GMRF model to each of a finite set of rota-

tions of the texture. This finite set of rotations is obtained by a uniform sampling of SO(3).

We define a rotationally invariant distance between these texture signatures in Section 5.3.

Since the rotation of a discrete texture is not well-defined, we propose a continuous coun-

terpart of the discrete texture that we wish to rotate. We consider a continuous texture

to be a realization of a stationary Gaussian process on R3. Then the concept of rotating a

texture takes a natural form and is shown to be (Equation (5.20)) equivalent to rotating the

corresponding autocovariance function. The conversion between discrete and continuous

textures is achieved via Isotropic Multiresolution Analysis developed in Chapters 2 and 3.

This is discussed in detail in Section 5.3.2.

5.2 Description of the GMRF Model

To describe the GMRF model, we follow the notation in [93]. The image/volume is defined

on a 2/3-D lattice denoted by Λ. By a lattice, we mean the following:

Λ2D = {k = (i, j) | 1 ≤ i ≤M, 1 ≤ j ≤ N} ,

Λ3D = {k = (i, j, k) | 1 ≤ i ≤M, 1 ≤ j ≤ N, 1 ≤ k ≤ P} .
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where, i, j, k are integers and M,N,P denote the size of the lattice in each dimension.

The total number of sites or nodes on the lattice are denoted by NT . In the 2-D case,

NT = MN and for 3-D, NT = MNP . In the rest of this chapter, we assume that we work

with a 3-D lattice though most of the discussion in this section applies verbatim to 2-D.

A neighborhood ηk of node k is a subset of the lattice, ηk ⊂ Λ such that,

• k /∈ ηk,

• l ∈ ηk ⇒ k ∈ ηl.

A neighborhood system η, is the collection of neighborhoods at all nodes, η =

{ηk,k ∈ Λ}.

A clique C defined with respect to η, is a subset of Λ such that C either contains a

single node, or all nodes in C are neighbors. The set of all cliques in a neighborhood is

denoted by C and Cn, for n ∈ N+, denotes the set of cliques with n nodes.

Let X be a family of random variables defined on the lattice Λ via X := {X1, . . . , XNT
}.

We refer to X as a random field and use the notation X = x for the joint event

{Xi = xi, i = 1, . . . , NT }, where x = {x1, . . . , xNT
} is called a configuration of X. An

image/volume is a configuration or realization of X. Each xi belongs to a (usually finite)

set A, referred to as the alphabet (or gray-levels in image processing terminology).

5.2.1 Gibbs and Markov Random Fields

In this subsection, we assume that the alphabet A is discrete to keep the discussion simple.

The technical details required to describe random fields are not needed for our discussion

on GMRF in Section 5.2.2, even though the alphabet in that case is R. For the general
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theory of Gibbs and Markov fields with a continuous alphabet, the reader is referred to

Chapter 2 in [55]. A random field X is referred to as a Gibbs Random Field (GRF) if

it satisfies the following probability distribution:

P(X = x) =
1
Z

exp
(
U(x)
T

)
.

where Z is a positive normalizing constant known as the partition function, T is the

temperature and U is referred to as the Gibbs energy.

For a finite lattice Λ with a symmetric neighborhood structure η, an example of Gibbs

energy function is defined as:

U(x) =
∑

k∈Λ,C∈C1

VC(xk) +
∑
k∈Λ

∑
l∈ηk,C∈C2

VC(xk, xl), (5.1)

where VC are known as the clique potentials.

A random field X is called a Markov Random Field (MRF) on the lattice Λ with

respect to a neighborhood system η if it satisfies the following conditions:

• P(X = x) > 0, for all x ∈ ANT , and

• P(Xk = xk | Xl = xl, ∀l ∈ Λ\k) = P(Xk = xk | Xl = xl, ∀l ∈ ηk).

The local characteristic at node k is the function πk : ANT → [0, 1] defined by

πk(x) = P(Xk = xk | Xl = xl∀l ∈ ηk).

The family {πk}k∈Λ is called the local specification of the MRF.

An MRF is characterized by its local property, (the conditional probability density

at a node given its neighbors) while a GRF is characterized by its global property (the

Gibbs distribution). The Hammersley-Clifford theorem (see e.g. [51]) states that a

117



5.2. DESCRIPTION OF THE GMRF MODEL

random field is a GRF if and only if it is an MRF. Thus, it gives us the flexibility of

designing an MRF using local or global properties depending on their availability for a

specific application.

5.2.2 Gaussian Markov Random Field

A special class of MRF arises from the following clique potentials:

VC(xk) =
(xk − µk)2

2σ2
,∀C ∈ C1,

and

VC(xk, xl) = −θk,l
(xk − µk)(xl − µl)

σ2
, l ∈ ηk,∀C ∈ C2,

where µk determines the mean at node k, and as we shall see shortly, θk,l are parameters

related to the covariance matrix of the random field. Substituting these clique potentials

in (5.1) we obtain,

U(x) =
1

2σ2

∑
k∈Λ

(xk − µk)2 − 1
σ2

∑
k∈Λ

∑
l ∈ ηk(xk − µk)θk,l(xl − µl).

We now assume that the alphabet is R. Thus, the joint probability density of all NT

nodes in Λ is given by:

p(x) =

√
det(B)√

(2πσ2)NT
exp

[
−(x− µ)TB(x− µ)

2σ2

]
, (5.2)

where µ is an NT × 1 vector of means and B = [blk] is the following NT ×NT matrix:

blk =


1, if l = k,

−θl,k, if l ∈ ηk,

0, else.

(5.3)

118



5.2. DESCRIPTION OF THE GMRF MODEL

The function in Equation (5.2) is the joint probability density function of a multivariate

Gaussian distribution with covariance matrix Σ = σ2B−1 and mean vector µ. Hence,

this random field is referred to as a Gaussian Markov Random Field. The necessary and

sufficient condition for p defined in Equation (5.2) to be a density function is that B is a

positive matrix. The Markov property now reads

P(Xk ∈ A | Xl, ∀l ∈ Λ\k) = P(Xk ∈ A | Xl, ∀l ∈ ηk), ∀A ⊂ R.

This is true because the conditional probability density p(xk | xl, l ∈ Λ\k) is given by [93]:

p(xk | xl, l ∈ Λ\k) = p(xk | xl, l ∈ ηk)

=
1√

2πσ2
exp

− 1
2σ2

xk − µk −
∑
l∈ηk

θk,l(xl − µl)

2 . (5.4)

The conditional distribution corresponding to this density is referred to as the local charac-

teristic at node k for the continuous alphabet case. This conditional distribution is defined

in the sense of regular conditional probability (see Theorem V.8.1 in [90]). Now, the gray

level at the node k can be expressed as a linear combination of the gray levels at the

neighboring nodes:

xk = µk +
∑
l∈ηk

θk,l(xl − µl) + ek, (5.5)

where the correlated Gaussian noise, e = (e1, . . . , eNT
), has the following structure:

E[ekel] =


σ2, k = l,

−θk,lσ
2, l ∈ ηk,

0, else.

(5.6)

In [25, 65], Equations (5.5) and (5.6) are used to define GMRF. This model is referred

to as Conditional Markov (CM) model in [65] where the various parameter estimation

schemes for this model are discussed. Also contained in [65] is a discussion on the choice

of neighbors.
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For models that we use, we assume the following spatial symmetry for the parameters

θ:

θk,l = θk,−l. (5.7)

Hence, the neighborhoods must be defined so that l ∈ ηk ⇒ −l ∈ ηk. We also assume the

stationarity of the model. Hence, θk,l only depends on k− l and the neighborhood ηk has

the same structure at each k. By the same structure we mean that the set {k − l}l∈ηk

is the same for all k. This set is denoted by η. Similarly, the mean, µk is also constant

across all the nodes and hence we drop the subscript k and denote the mean by µ. Due

to the symmetry assumed in Equation (5.7), if r ∈ η then −r is also in η. We use η+ to

denote half of the elements of η such that only one of r or −r is in η+. For instance, in

the 2-D case, if η = {(1, 0), (0, 1), (−1, 0), (0,−1)} then η+ = {(1, 0), (0, 1)}. Thus, for the

stationary case, Equation (5.5) takes the following form

xk = µ+
∑

r∈η+

θr(xk−r + xk+r − 2µ) + ek. (5.8)

The vector of parameters [θr, r ∈ η+] is denoted by θ.

In the rest of the discussion we assume that µ = 0, unless otherwise mentioned.

5.2.3 Parameter Estimation

Chellappa and Kashyap discuss various parameter estimation schemes in [25, 65]. These,

amongst others, include a Maximum likelihood scheme, a coding scheme due to Besag and

Least squares (LS). The ML-estimates have good statistical properties but are expensive

to compute because they require numerical optimization techniques. We follow the LS

estimation scheme given in Section 4.3 of [25]. The statistical properties of this scheme

are analyzed in [65]. For a given realization x, the estimates are given by the following
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statistics:

θ̂(x) = (YTY)−1YTx, (5.9)

σ̂2(x) =
1
NT

(
x−Yθ̂

)T (
x−Yθ̂

)
, (5.10)

where Y = [yr], r ∈ Λ and yr = [xl + x−l, l ∈ η+
r ]. Thus, if m is the size of the half-

neighborhood η+
r then Y is a NT × m matrix. For a derivation of these equations see

Appendix B of [93]. Using the estimate, θ̂, from (5.9), the expression for estimate of σ2

reduces to

σ̂2(x) =
1
NT

(
xTx− θ̂

T
YTx

)
. (5.11)

A sufficient condition on θ for the corresponding B(θ) (see Equation (5.3)) to be a positive

matrix is |θ| < 0.5 [72]. Here, |θ| denotes the `1-norm of the vector θ. As shown in [72], in

general, this sufficient condition only represents a subset of the valid parameter space for

θ. But, in the case of order one neighborhood, this is also a necessary condition.

In the light of Equation (5.9) and the constraint on θ for order one neighborhood, we

have to solve the following constrained optimization problem to estimate θ:

Find

min
θ
||YTYθ −YTx||2,

subject to,
3∑
i=1

|θi| < 0.5.

The entries of the matrix YTY and the vector YTx can be calculated from the auto-

covariance function of x. This will facilitate fast calculation of the rotationally invariant

distance defined in Section 5.3. For a stationary random process X on Z3, the auto-

covariance function is given by

ρ(l) = E[X(l)X(0)].
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In particular, for a infinite extent GMRF whose local specifications are given by (5.4), the

auto-covariance function ρ decays to zero as |l| goes to ∞. This is due to the fact that the

power spectral density ρ̂ is the inverse of a positive trigonometric polynomial.

Due to the ergodicity (implicit in the model, see Theorem III.4.4 in [7]), the auto-

covariance function, ρ, can be approximated by

ρ0(l) =
1
NT

∑
r∈Λ

xrxr+l, for all l ∈ Λ, (5.12)

for a sufficiently large NT . Using the Discrete Fourier Transform, we obtain

ρ̂0(k) = x̂(k)x̂(k) = |x̂(k)|2 for all k ∈ Λ′, (5.13)

where Λ′ is a grid of T3, similar to Λ. Note that those values of ρ̂0 give an approximation of

the power spectral density ρ̂ defined on T3, at the grid points Λ′. Equation (5.13) facilitates

efficient calculation of ρ0 via FFT. Now, the entries of the vector YTx are expressed in

terms of ρ0 as follows:

(YTx)r =
∑
l∈Λ

xl(xl+r + xl−r)

= NT (ρ0(r) + ρ0(−r)),

for each r ∈ η+. Similarly, the entries of the matrix YTY are given by

(YTY)(k,r) =
∑
l∈Λ

(xl+k + xl−k)(xl+r + xl−r)

= NT (ρ0(r − k) + ρ0(r + k) + ρ0(−r − k) + ρ0(−r + k)),

for each (k, r) ∈ η+ × η+. Thus, for any given zero mean discrete texture x, that is not

necessarily a GMRF, we can calculate the ρ0 using (5.12). Then we can estimate the

parameters for a GMRF with neighborhood of order one using the above equations. We

refer to the model with these parameters as the GMRF fitted to the texture x.
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5.2.4 Synthesizing a GMRF

Next, we briefly discuss the algorithm for sampling a stationary GMRF with toroidal

boundaries. For a fixed neighborhood structure η and known parameters, θk,l,µ, σ, we

can write Equation (5.5) as:

B(x− µ) = e.

where e is a zero mean Gaussian noise sequence with the covariance structure defined in

(5.6). This noise sequence can be written as

e =
√

Be0,

where e0 is a zero mean Gaussian noise sequence with covariance matrix given by σ2

times the identity. This is easily generated with a standard random number generator in

MATLAB. Hence, a realization of X is obtained via

x = B−1
√

Be0 + µ = B
−1
2 e0 + µ.

The stationarity assumption implies that µk = µ,∀k ∈ Λ and that θk,l only depends on

the difference k − l. This along with the toroidal boundary condition makes B a block

circulant matrix which can be inverted efficiently using FFT. For details of this algorithm

and block circulant matrices, see [93], Chapter 4.

5.3 Rotationally Invariant Distance

Now, to obtain a rotationally invariant texture distance, we begin by defining a texture

signature. We use a neighborhood of order one, η+ = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. Thus, θ

is a three-dimensional vector. Recall that for a given texture x, θ̂(x) and σ̂2(x), denote
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the parameters of the GMRF fitted to x. We define the texture signature Γx, via

Γx(α) =
[
θ̂(Rαx), σ̂2(Rαx)

]
, (5.14)

for all Rα ∈ SO(3), where α = (α, β, γ) is the Euler angle parametrization for the rotation

Rα (see Equation (5.22) below), andRα is the rotation operator induced byRα on L2(R3).

Notice the abuse of notation when we write Rαx, since x is not defined on R3 but on Λ,

which is a finite sub-lattice of Z3. For now, just think of x as samples of some continuous

infinite extent texture, xcont, and then Rαx denotes the samples of Rαxcont on Λ. This

idea of rotating and resampling the texture will be made more precise in Section 5.3.2.

Now, we define a distance between two textures by the following expression:

min
α0∈SO(3)

∫
SO(3)

KLdist (Γx1(α),Γx2(αα0)) dα, (5.15)

where KLdist(., .) is the KL-distance between two Gaussian densities defined in Equa-

tion (5.19), and the product αα0 denotes the Euler angles corresponding to the rota-

tion operator RαRα0 . The integration is carried out with respect to the Haar measure

on SO(3). For the Euler angle parametrization of SO(3) with the ZY Z-convention (see

Equation (5.22) below), the Haar measure is given by (See Chapter 5 of [27]),

dα = sin(β)dαdβdγ, (5.16)

where dα, dβ and dγ stand for the Lebesgue measure. The Haar measure is usually

normalized by 1
8π2 .
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5.3.1 KL-distance Between two Gaussian Markov Random Fields

The Kullback-Leibler distance between two N -dimensional probability distributions with

joint probability density functions p1 and p2 is given by

D(p2||p1) =
∫

RN

p2(x) loge

(
p2(x)
p1(x)

)
dx. (5.17)

The joint probability density function (p.d.f) of a multivariate Gaussian distribution with

covariance matrix Σ and mean vector µ is given by

p(x) =
1√

(2π)N det(Σ)
exp

[
−(x− µ)TΣ−1(x− µ)

2

]
. (5.18)

Now suppose, we have two N -dimensional Gaussian probability density functions, p1 and

p2, with means µ1 and µ2, and covariance matrices Σ1 and Σ2 respectively. Then substitut-

ing the formulae for p1 and p2 in (5.17) yields the following expression for the KL-distance

between two Gaussian distributions:

1
2

loge

(
det Σ1

det Σ2

)
+

1
2

(µ2 − µ1)
T Σ−1

1 (µ2 − µ1) +
1
2
Trace(Σ−1

1 Σ2)−
N

2
.

Note that the distance defined above is not symmetric. Hence, if we exchange Σ1 and Σ2,

we get another expression:

1
2

loge

(
det Σ2

det Σ1

)
+

1
2

(µ1 − µ2)
T Σ−1

2 (µ1 − µ2) +
1
2
Trace(Σ−1

2 Σ1)−
N

2
.

Adding these two expressions yields the following expression, which is symmetric:

1
2

(µ1 − µ2)
T (Σ−1

2 + Σ−1
1 ) (µ1 − µ2) +

1
2
Trace(Σ−1

2 Σ1 + Σ−1
1 Σ2)−N.

Assuming zero means for both the p.d.fs, we conclude that the KL-distance between two

Gaussian distributions is:

1
2
Trace(Σ−1

2 Σ1 + Σ−1
1 Σ2 − 2IN×N ). (5.19)

Since in our case, Σ1 and Σ2 are block circulant, (5.19) can be calculated efficiently using

FFT.
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5.3.2 Rotation of Textures

As pointed out in the introduction of this chapter, rotating a discrete texture is not well-

defined. Hence, we define a continuous counterpart of the discrete texture we wish to

rotate. We model a continuous texture as a realization of a stationary Gaussian random

field, Xcont, on R3 with a square integrable autocovariance function. We assume that the

texture remains invariant under rotation by π about any line passing through the origin.

This is consistent with the symmetry assumptions for the discrete texture. We further

assume that the autocovariance function of a texture, ρcont, belongs to the zero resolution

space, V0, of the IMRA described in Example 3.2.1. Recall that V0 is the closed linear

span of the set {Tkφ}k∈Z3 . This assumption implies that the power spectral density is

compactly supported, inside a radial set. Thus, its support remains invariant under all

rotations. Hence, the autocovariance function remains in the same resolution space after

rotation and can therefore be sampled at the same sampling rate. This is the advantage of

assuming that ρcont belongs to V0.

The sequence of coefficients {〈ρcont, Tkφ〉}k∈Z3 is denoted by ρ. This sequence can be

considered as the samples of ρcont on Z3. In fact, if we assume that the power spectral

density ρ̂cont is supported on the ball B(0, 2b1) where φ̂ is equal to one, then 〈ρcont, Tkφ〉 =

ρcont(k) and ρcont =
∑

k∈Z3 ρcont(k)Tkφ.

Next, observe that the autocovariance function of RαXcont is given by Rαρcont:

E[RαXcont(s)RαXcont(0)] = E[Xcont(RTαs)Xcont((RTα0)]

= ρcont(RTαs) = Rαρcont(s). (5.20)

Now, since we assumed that ρ̂cont is supported on the ball B(0, 2b1), Rαρcont is also

supported on the same ball. With a slight abuse of notation, the sequence of samples,
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{〈Rαρcont, Tkφ〉}k∈Z3 is denoted by Rαρ. Also note that

ρcont(k) = E[Xcont(k)Xcont(0)] = E[X(k)X(0)],

i.e., the autocovariance function of X, the samples of Xcont on Z3, is ρ.

Given a realization x of a discrete texture X on the finite lattice Λ, we can calculate ρ0

corresponding to x using (5.12). As pointed out in Section 5.2.3 this is an approximation

for ρ on Λ if Λ is sufficiently big. Assuming that the values of ρ are negligible on Z3 \Λ,

the parameters of the GMRF model fitted to the ‘rotated texture’ denoted by Rαx can

be calculated using Rαρ. This formalizes the idea of a ‘discrete’ rotation that we had

alluded to in Section 5.3. This is an excellent example of how MRAs in general and IMRA

in particular act as a bridge between the digital or discrete, and the analog or continuous

domains. We make sense of a discrete rotation by first converting to the analog domain

via the IMRA, rotating in the analog domain, where rotations are well defined, and finally,

converting back to the discrete domain via sampling.

In principle, we can calculate the sequence {〈Rαρcont, Tkφ〉}k∈Z3 exactly, but that is

computationally very expensive. Instead, we resample ρ on a finer grid using the IMRA.

This works by performing one or more steps of the reconstruction algorithm described in

Section 3.3, assuming that the detail or high-pass component is zero at each reconstruction

step. If we use dyadic dilation, for example, then one step of the reconstruction gives

the coefficients
{〈
ρcont, Tk

2
Dφ
〉}

k∈Z3
. These can be considered as the samples of the

covariance function on the denser grid Z3

2 . We then rotate this covariance function defined

on a denser grid by using linear interpolation to get the values at grid points that do

not lie on the integer lattice after rotation. This is not exact but the error can be made

smaller by resampling on a finer grid. In practice we see that just one or two steps of

the reconstruction algorithm are enough to give good results. This is demonstrated in
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Section 5.4, where we discuss the results from our experimental study.

5.3.3 Practical Implementation of the Distance

For the practical implementation of the distance defined in Equation (5.15), we must

discretize the integral over α. To this end, we discretize the ZY Z-Euler angles. First,

note that, due the symmetries in the model, it is enough to restrict the Euler angles to the

following domains:

0 ≤ α ≤ π, 0 ≤ β ≤ π

2
, 0 ≤ γ ≤ π. (5.21)

To prove this, recall that our model is invariant under a rotation by π about any line

passing through the origin. Using the ZY Z-convention, the rotation Rα is defined by:

Rα = RZ(γ)RY (β)RZ(α), (5.22)

where RZ(α) and RY (α) denote rotation by α about the Z-axis and Y -axis respectively,

RZ(α) =


cos(α) − sin(α) 0

sin(α) cos(α) 0

0 0 1

 , RY (α) =


cos(α) 0 − sin(α)

0 1 0

sin(α) 0 cos(α)

 .
Now, suppose α = a + π, where 0 < a < π and 0 ≤ β ≤ π

2 , 0 ≤ γ ≤ π, then the

corresponding rotation, Rα, is given by

Rα = Rα1RZ(π),

where α1 = (a, β, γ). Since, our model is invariant under rotation by RZ(π), we infer that

it is enough to restrict α to [0, π]. Similar calculations show that γ can be restricted to [0, π]

as well. To see that it is enough to restrict β between
[
0, π2

]
, consider α = (α, a+ π/2, γ),

where 0 < a < π
2 . Then, we have,

Rα = RZ(γ)RY
(
a+

π

2

)
RZ(α).
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Again, because of the symmetry properties of our texture, RY
(
a+ π

2

)
can be replaced by

RY
(
a+ 3π

2

)
, because this corresponds to a rotation by π about the new Y -axis after the

texture has been rotated by RZ(α). It is easy to check that

RY

(
a+

3π
2

)
= RZ(π)RY

(π
2
− a
)
RZ(π).

Since, π
2 − a lies in

[
0, π2

]
, we conclude that it is enough to restrict β in

[
0, π2

]
.

Now, we are ready to discretize the integral in (5.15). We take points spaced uniformly

with respect to the Haar measure defined in Equation (5.16). This is done by taking equally

spaced points on the interval [0, π] for both α and γ. Hence, the discrete sets of parameters

are given by αi = { iπNα
} for i = 0, 1, . . . , Nα − 1, and γi = { iπNγ

} for i = 0, 1, . . . , Nγ − 1.

For β, we take the discrete set βi = {arccos(1 − i+0.5
Nβ

)}, for i = 0, 1, . . . ,Nβ − 1. Notice

that we take the discrete values of β starting with 0.5, this is done to avoid β0 from being

equal to zero. If β0 = 0, we get into a situation referred to as gimbal lock. In that case,

only α + γ is uniquely determined. Hence, we offset by 0.5 to avoid duplicating rotations

in our discrete set. For more information, and a nice illustration of why this situation is

called gimbal lock, visit the following web-page.

http://en.wikipedia.org/wiki/Euler_angles

Using the above discrete set of rotations, a practically implementable version of the

distance defined in Equation (5.15) is given by

min
α0∈SO(3)

1
NαNβNγ

Nα−1∑
i=0

Nβ−1∑
j=0

Nγ−1∑
k=0

KLdist(Γ(α(i,j,k)),Γ(α(i,j,k)α0)), (5.23)

where αi,j,k = (αi, βj , γk) and as before, the product αi,j,kα0 represents the Euler angles

corresponding the rotation operator Rαi,j,k
Rα0 . For actual experiments, the minimization

can be carried out on a subset of SO(3) corresponding to the Euler angles described by

(5.21) because of the symmetries present in the model.
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5.4 Experimental Results

To test the ideas developed so far, we generate synthetic volumes arising from 3-D GMRF

models which we synthesize using the algorithm described in Section 5.2.4. We use the

MATLAB function patternsearch to solve the minimization problem which is required

to calculate the distance defined in Equation (5.23). The number of discrete angles are

taken to be Nα = Nβ = Nγ = 5. This gives a total of 125 rotations sampled uniformly

with respect to the Haar measure on SO(3). Thus, each evaluation of the function to be

minimized in Equation (5.23) requires the calculation of 125 sets of parameters and the

calculation of 125 K-L distances. On a 2.8 GHz machine each evaluation of the function

takes about three-quarters of a second. The MATLAB routine mentioned above is par-

ticularly useful because it does not calculate derivatives and thus, each iteration of the

algorithm requires very few evaluations of the function to be minimized. The details of

this routine can be found in the MATLAB documentation on the web-page of Mathworks.

We do not intend to study this optimization algorithm here. We just use it as a black-box

and it works well for the calculation of the rotationally invariant distance. It takes about

one minute to calculate the distance between two texture signatures.

For our first set of experiments, we generate two distinct synthetic textures, denoted by

T1 and T2, that have the same conditional variance, σ2 = 1, and mean, µ = 0. We use the

first order neighborhood to generate these textures using the parameters θ = (θx, θy, θz)

shown in Table 5.1. We make this choice to test the real potential of this method. If we

generate synthetic textures with neighborhoods larger than those of order one, then we do

not have control over the conditional variance of the GMRF of order one fitted to those

textures. In fact, as we show in another set of experiments described below, a few textures

that we generated with higher order neighborhoods could be discriminated based on the
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value of σ2 corresponding to the order one GMRF fitted to these textures. If the estimate

for σ2 itself is enough to discriminate between textures then we do not have to look at

θ. Hence, for our first set of experiments we stick with the synthetic textures obtained

from order one GMRFs with equal conditional variance. We denote T1 by T1,0 while T1,π
2

T1,0 T1,π
2

T2,0 T2,π
2

θx 0.1 0.1 0.05 0.20

θy 0.1 0.25 0.15 0.15

θz 0.25 0.1 0.20 0.05

σ2 1.0 1.0 1.0 1.0

Table 5.1: Parameters for synthetic textures used for experimental study.

denotes the texture T1,0 rotated about the X-axis by π
2 . Similarly, T2,0 denotes the texture

T2 while T2,π
2

denotes the texture T2,0 rotated about the Y -axis by π
2 . Thus, we expect

the distances between T1,0 and T1,π
2
, and between T2,0 and T2,π

2
to be small, while we want

both T1,0 and T1,π
2

to have a large distance from both T2,0 and T2,π
2
.

In Tables 5.2, 5.3 and 5.4, we tabulate the distance of a realization of each of the

four textures (two rotations of two distinct textures) given in Table 5.1 from another

realization of each of these textures, for different upsampling factors. The diagonal entries

in the tables correspond to the distance between two realizations of the same texture while

the off-diagonal entries correspond to the distance between realizations of two different

textures. We notice that in Tables 5.2 and 5.3, the distance between T1,0 and T1,π
2

is of

the order of the distance between two realizations of T1,0 or T1,π
2
. Same is true for T2,0 and
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T2,π
2
. We further observe that the distance between any realization of T1 and any realization

T2 is an order of magnitude higher than the distance between two realizations of either T1

or T2, or their rotated versions. Thus, we see that the distance is able to discriminate

textures up to rotations.

The results in Table 5.2 are obtained by resampling the auto covariance on the grid

Z3

4 while the results in Table 5.3 are obtained using the auto covariance resampled on Z3

2 .

The finer grid does not give any significant improvement. Hence, in this case, resampling

on Z3

2 is enough. Table 5.4 shows the results obtained with the autocovariance defined on

the original grid Z3. Here T1,0 and T1,π
2

are at a much larger distance from each other than

two realizations of T1,0 or T1,π
2
. Same is true for T2,0 and T2,π

2
as well. Since we have not

resampled the autocovariance function on a finer grid in this case, we end up rotating by a

simple linear interpolation. Hence, we conclude that rotation by simple linear interpolation

is not enough. The data must be resampled on a grid that is fine enough to keep the error

due to linear interpolation under control.

Finally, observe that the Euler angles corresponding to the minimizer for each case

are listed below each distance. They have been normalized by π to make it easier to

read. Hence, in each case we list the angles (α∗/π, β∗/π, γ∗/π), where (α∗, β∗, γ∗) is the

minimizer for the optimization problem required to calculate the distance. This minimizer

corresponds to the rotation that must be applied on one texture to get the other in case

one is a rotated version of the other. As we can observe in Tables 5.2 and 5.3, , all these

minimizers are close to the expected values modulo the symmetries assumed, i.e. each can

be off by ±π.
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5.4. EXPERIMENTAL RESULTS

For the experiments described above we only took two distinct textures to test the

rotational invariance of the our distance function. Next, we study five distinct textures,

two of which are the ones presented above (T1 and T2) while the other three, denoted by

T3, T4 and T5, are produced using GMRF models with higher order neighborhoods. Now,

since we still use order one neighborhood to get the texture signatures, the estimate for

σ2 may not be the same as, or even close to, the σ2 used to produce these textures. In

fact, for the examples we use here, even though we used the same σ2 (but different θs) to

produce T3, T4 and T5, the value of σ2 estimated for a order one GMRF fitted to each of

these three textures is different. Thus, in this case, the estimate of σ2 might be enough

to discriminate textures. It is interesting to note that this difference in the value of σ2 is

not an impediment for our distance function. This is evident from the results tabulated

in Table 5.5. For each of the five textures, we see that the distance between two of its

T1 T2 T3 T4 T5

T1 0.0006 0.0073 0.4232 2.3180 1.7724

T2 0.0125 0.0010 0.4894 2.5227 1.8381

T3 0.4466 0.5134 0.0004 0.5208 0.4563

T4 2.4314 2.6315 0.5605 0.0021 0.3533

T5 1.8200 1.9227 0.4318 0.2540 0.0043

Table 5.5: Distances between five distinct textures using the rotationally invariant distance
defined in Equation (5.23) and autocovariance resampled on the grid Z3

2 .

realizations is still relatively much smaller than its distance from other textures. Thus,

we see that we can even discriminate textures arising from higher order GMRFs using
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5.5. CONCLUSION AND FUTURE WORK

our scheme. This shows that this classification scheme is not limited to synthetic textures

produced using GMRFs with order one neighborhoods, and may also be applied to a larger

class of textures.

5.5 Conclusion and Future Work

In this chapter we have presented a novel approach to rotationally invariant 3-D texture

classification. We define a rotationally invariant distance on GMRF-based texture sig-

natures. Rotation of a texture is achieved via rotation of the autocovariance function

corresponding to the texture. The practical implementation of the rotationally invariant

distance is shown to work well on experimental data. Moving forward, we want to test

if these GMRF-based texture signatures, along with the rotationally invariant distance,

can be used to separate natural 3-D textures arising, for example, in medical imaging.

We have used a 2-D version of this scheme to separate natural textures (taken from the

Brodatz library for instance) that are not generated using a GMRF. The positive results

in 2-D together with the fact that we could discriminate textures obtained from higher

order GMRFs in 3-D, makes our scheme a promising candidate for rotationally invariant

classification of natural textures in 3-D.
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