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Abstract

The optimal design of structures and systems described by partial differential equations

(PDEs) often gives rise to large-scale optimization problems, in particular if the under-

lying system of PDEs represents a multiscale, multiphysics problem. Therefore, reduced

order modeling techniques such as balanced truncation model reduction (BTMR), proper

orthogonal decomposition (POD), or reduced basis methods (RB) are used to significantly

decrease the computational complexity while maintaining the desired accuracy of the ap-

proximation. We are interested in such shape optimization problems where the design

issue is restricted to a relatively small portion of the computational domain and in optimal

control problems where the nonlinearity is local in nature. In these cases, it appears to be

natural to rely on a full order model only in that specific part of the domain and to use

a reduced order model elsewhere. A convenient methodology to realize this idea is a suit-

able combination of domain decomposition techniques and BTMR. We will consider such

an approach for optimal control and shape optimization problems governed by advection-

diffusion equations and derive explicit error bounds for the modeling error.

As an application in life sciences, we will be concerned with the optimal design of capillary

barriers as part of a network of microchannels and reservoirs on surface acoustic wave driven

microfluidic biochips. Here, the state equations represent a multiscale multiphysics problem

consisting of the linearized equations of piezoelectricity and the compressible Navier-Stokes

equations. The multiscale character is due to the occurrence of fluid flow on different time

scales. A standard homogenization approach by means of a state parameter results in

a first-order time periodic linearized compressible Navier-Stokes equations and a second-

order compressible Stokes system. The second-order compressible Stokes system provides

v



an appropriate model for the optimal design of the capillary barriers.

Another application considered is the shape optimization of an aorto-coronaric bypass.

Finally, in order to address environmental issues, we present an optimal control problem

where our aim is to reduce the water pollution in a region of choice.
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CHAPTER 1

Introduction

Microfluidics is the science dealing with the behavior, precise control, and manipulation of

fluids in the sub-millimeter scale. We are all familiar with the revolution brought to us by

the advancement in microelectronics in our day to day life by providing, smaller, cheaper,

and highly efficient devices. One should expect microfluidic sciences to follow the same

path.

In life sciences, a popular concept is “labs-on-a-chip” which is defined as chip-based

miniature laboratories that can be controlled electronically. Microfluidic biochips represent

an important example (cf. Fig. 1.1 (left)). The miniaturized chip laboratories are able

to do complex tasks within a few micrometers for which usually a full-size laboratory is

required. Often only a very tiny amount of sample is available, e.g., in forensics and in
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gene expression profiling analysis.

Microfluidic biochips are used in pharmaceutical, medical, and forensic applications for

high throughput screening, genotyping, and sequencing in genomics, protein profiling in

proteomics, and cytometry in cell analysis [92, 101]. They provide a much better sensitivity

and a greater flexibility than traditional approaches. More importantly, they give rise to

a significant speed-up of the hybridization processes and allow the in-situ investigation of

these processes at an extremely high time resolution. This can be achieved by integrating

the fluidics on top of the chip by means of a lithographically produced network of channels

and reservoirs (cf. Fig. 1.1 (left)).

Figure 1.1: Microfluidic biochip (left) and sharp jet created by surface acoustic waves
(right)

The idea is to inject a DNA or protein containing probe and to transport it in the

fluid to a reservoir where a chemical analysis is performed. The fluid flow can be taken

care of by external pumps which, however, do not guarantee a very precise control of the

fluid flow and are subject to wear. A new generation of biochips is based on a surface

acoustic waves (SAW)-driven fluid flow [47, 58, 118, 119, 122]. Surface acoustic waves are

generated by interdigital transducers (IDT), well-known from Micro-Electro-Mechanical

Systems (MEMS). They propagate through the base of the device with amplitudes in

the range of nanometers and enter the fluid-filled microchannels creating sharp jets (cf.

Fig. 1.1 (right)). This happens within nanoseconds. In the microchannels, the SAW get
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significantly damped so that an almost stationary fluid pattern emerges which is called

acoustic streaming. This relaxation process occurs on a time scale of milliseconds. We

are thus faced with a multiscale, multiphysics problem whose mathematical modeling and

numerical simulation represents a significant challenge. It is also a challenging problem

with regard to various optimization issues such as the optimal design of the microchannels

in order to achieve a maximum pumping rate. Another one is the design of pressure driven

capillary barriers between the channels and the reservoirs to guarantee a precise filling of

the reservoirs with the probes (cf. Fig. 1.2). This amounts to the solution of a shape

optimization problem where the mathematical model for the acoustic streaming consists of

the linearized equations of piezoelectricity and the compressible Navier-Stokes equations.

Figure 1.2: Capillary barriers

The multiscale character of the problem can be appropriately taken care of by a ho-

mogenization approach. Following [10, 75], after homogenization we obtain a linearized

compressible Navier-Stokes equation and a compressible Stokes system. We will discuss

this in more detail in Chapters 2 and 6.

For the efficient solution of the optimal design problems, we have developed an adaptive

multilevel interior-point method of barrier type featuring a predictor-corrector continuation

method with an adaptive choice of the barrier parameter along the barrier path. The

prediction step relies on a nested-iteration type tangent continuation, and the correction

3



1.1. BIOCHIP IN ACTION

step is a Newton-multigrid method for the KKT system. Despite the fact that this approach

leads to a considerable reduction in the computational work compared to more standard

optimization strategies, the amount of computational time is still significant, and there

is a need for further reductions. Such reductions can be achieved by model reduction

based optimization methods using reduced order models for the underlying state equations

generated, e.g., by Proper Orthogonal Decomposition (POD), Balanced Truncation Model

Reduction (BTMR), Krylov subspace methods, or reduced basis methods.

Among these techniques, we have chosen BTMR combined with a domain decompo-

sition approach referred to as DDBTMR, since for many of the above mentioned optimal

design problems the region, where the optimal design has to be implemented, is small com-

pared to the rest of the microfluidic network. Our approach uses domain decomposition

applied to the optimality system to isolate the subsystem that explicitly depends on the op-

timization variables from the remaining linear optimality system. We derive estimates for

the error between the solution of the original optimization problem and the solution of the

reduced problem and these estimates are confirmed by numerical results. We first consider

shape optimization problems governed by the Stokes system and then extend DDBTMR

to microfluidic biochips where the governing equations are compressible Stokes equations.

1.1 Biochip in action

A microfluidic biochip (cf. Fig. 1.3 (left)) consists of a lithographically produced network of

microchannels located on top of a substrate (glass or plastic plate coated by a piezoelectric

material such as LiNbO3). An IDT, which is attached to a chip holder (cf. Fig 1.4 (left)) is

placed on top of the substrate. The chip holder holds an RF-input connection for receiving

the high frequency signal produced by the signal generator (cf. Fig. 1.4 (right)). This
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1.2. OUTLINE OF THE THESIS

high frequency signal (around 100 MHz) causes the IDT to excite and launch SAWs. The

SAW move like miniature earthquakes and transport fluids and solid matter across the

microchannels (cf. Fig.1.3 (right)).

Figure 1.3: Microfluidic biochip placed on a substrate (left) and fluid flow in part of a
microchannel steered by SAW generated using IDT (right)

Figure 1.4: IDT on a substrate (left) and RF signal generator (right)

1.2 Outline of the thesis

This thesis is organized as follows:

5



1.2. OUTLINE OF THE THESIS

In Chapter 2, we will present a mathematical model for the acoustic streaming that

can be derived by a homogenization approach based on the coupling of the equations of

piezoelectricity and the compressible Navier-Stokes equations.

Chapter 3 is devoted to shape optimization by means of a so-called all-at-once approach

featuring the simultaneous optimization and numerical solution of the state equations (sta-

tionary Stokes system in this case).

The all-at-once approach is realized by a barrier type interior-point method in terms of

a path-following predictor-corrector continuation scheme with an adaptive choice of the

continuation steplength along the barrier path. The barrier method is implemented within

a multilevel framework using a nested iteration type predictor and a Newton multigrid

technique as a corrector. The results obtained are compared with classical barrier methods

such as the long-step path-following method and Mehrotra’s predictor-corrector method.

Some parts of this chapter have been taken from [16] and [17].

Chapter 4 introduces a technique for the dimension reduction of a class of PDE con-

strained optimization problems governed by linear time dependent advection-diffusion

equations for which the optimization variables are related to spatially localized quanti-

ties. Our approach uses domain decomposition applied to the optimality system to isolate

the subsystem that explicitly depends on the optimization variables from the remaining

linear optimality subsystem. We apply balanced truncation model reduction to the linear

optimality subsystem. The resulting coupled reduced optimality system can be interpreted

as the optimality system of a reduced optimization problem. We derive estimates for

the error between the solution of the original optimization problem and the solution of

the reduced problem. The approach is demonstrated numerically with an optimal control

problem and a shape optimization problem. This chapter is based on [14].

6



1.2. OUTLINE OF THE THESIS

In Chapter 5, the technique introduced in Chapter 4 is extended to optimization problems

governed by the Stokes equations. Here, we are interested in shape optimization problems

where the design issue is restricted to a relatively small portion of the computational

domain. In this case, it appears to be natural to rely on a full order model only in

that specific part of the domain and to use a reduced order model elsewhere. A convenient

methodology to realize this idea consists in a suitable combination of domain decomposition

techniques and balanced truncation model reduction. We will consider such an approach

for shape optimization problems associated with the time-dependent Stokes system and

derive explicit error bounds for the modeling error.

Although conceptually the approach in this case is same as in Chapter 4, the extension

requires several important changes. These are due to incompressibility constraints that

affect the model reduction, the domain decomposition and the coupling of both, as well

as the error analysis. As a numerical example, we will be concerned with the optimal

design of capillary barriers as part of a network of microchannels and reservoirs on domain

motivated by microfluidic biochip, but with Stokes equations as the state system. This

chapter contains the results from [15].

Chapter 6: The mathematical model for microfluidic biochips represents a multiphysics

problem consisting of the piezoelectric equations coupled with multiscale compressible

Navier-Stokes equations that have to be treated by an appropriate homogenization. We

discussed the modeling approach in Chapter 2, here we present algorithmic tools for the

numerical simulation and address optimal design issues. In particular, the optimal design

of specific parts of the biochips leads to large-scale optimization problems. In order to

reduce the computational complexity, we present a combination of domain decomposition

and balanced truncation model reduction which allows explicit error bounds for the error

between the reduced order and the fine-scale optimization problem, similar to Stokes case

7



1.2. OUTLINE OF THE THESIS

in Chapter 5. It is shown that this approach gives rise to a significant reduction of the

problem size while maintaining the accuracy of the approximation. This chapter is based

on [13].
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CHAPTER 2

Modeling microfluidic biochips

In this chapter we will present a mathematical model for the acoustic streaming that

can be derived by a homogenization approach based on the coupling of the equations of

piezoelectricity and the compressible Navier-Stokes equations. In Section 2.1 we will first

review the piezoelectric equations, and then take care of the multiscale character of the

microfluidic biochip problem using an homogenization approach, which gives us a linearized

compressible Navier-Stokes equation and a compressible Stokes system. For further details

we refer to [10, 13, 48, 49, 74, 75]. Section 2.2 is devoted to the general discussion of a

shape optimization problem. We will be more specific in the later chapters.
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2.1. MATHEMATICAL MODELING

2.1 Mathematical modeling

In this section, we will develop and analyze a mathematical model describing the opera-

tional behavior of SAW driven microfluidic biochips. The model consists of the equations of

piezoelectricity unilaterally coupled with the compressible Navier-Stokes equations. In par-

ticular, in Subsection 2.1.1 we will be concerned with the piezoelectric equations, whereas

Subsection 2.1.2 will be devoted to the compressible Navier-Stokes equations. Using tech-

niques from heterogeneous multiscale methods [37, 38], we will derive a compressible Stokes

system which serves as a model for the acoustic streaming.

Throughout this section, we will use standard notation from Lebesgue and Sobolev

space theory. In particular, for a bounded polygonal or polyhedral domain Ω ⊂ Rd, d ∈

{2, 3}, with boundary Γ = ∂Ω, we denote by L2(Ω) and L2(Ω) the Hilbert spaces of scalar

and vector-valued Lebesgue integrable functions on Ω with inner products (·, ·)0,Ω and

norms ‖ · ‖0,Ω. Likewise, H1(Ω) and H1(Ω) refer to the Sobolev spaces with inner products

(·, ·)1,Ω and norms ‖ · ‖1,Ω, whereas H1/2(Γ′) and H1/2(Γ′),Γ′ ⊂ Γ, stand for the associated

trace spaces. We further refer to H−1(Ω) and H−1(Ω) as the dual spaces of H1
0 (Ω) and

H1
0(Ω), respectively. For further notation account we refer to Appendix C.

2.1.1 The piezoelectric equations

In piezoelectric materials, the stress tensor σ depends linearly on the electric field E ac-

cording to a generalized Hooke’s law

σ(u,E) = c ε(u) − eE . (2.1)

Here, ε(u) := (∇u + (∇u)T )/2 refers to the linearized strain tensor with u denoting the

mechanical displacement, whereas c and e stand for the symmetric fourth-order elasticity

10



2.1. MATHEMATICAL MODELING

tensor and the symmetric third-order piezoelectric tensor, respectively. Hence, the appli-

cation of an electric field will cause a displacement of the material. Piezoelectric materials

also show the reverse effect to generate an electric field when subjected to mechanical stress.

These properties are called the piezoelectric effect and the inverse piezoelectric effect. The

origin of the piezoelectric effect is related to an asymmetry in the unit cell of a piezoelectric

crystal and can be observed only in materials with a polar axis (cf., e.g., [40, 82]).

The frequency of the electromagnetic wave is small compared to the frequency of the

generated acoustic wave so that a coupling will be neglected. In particular, the electric

field will be considered as quasistatic. Moreover, it is irrotational and hence, according to

E = −∇Φ it can be expressed as the gradient of an electric potential Φ. Since piezoelectric

materials are nearly perfect insulators, the only remaining quantity of interest in Maxwell’s

equations is the dielectric displacement D which is related to the electric field by the

constitutive equation

D = εE + P , (2.2)

where ε is the electric permittivity of the material and P stands for the polarization. In

piezoelectric materials, the polarization P due to external strain is linear, i.e., there holds

P = e ε(u) . (2.3)

We assume that the piezoelectric material with density ρp > 0 occupies some rectangular

domain Ω1 with boundary Γ1 = ∂Ω1 and exterior unit normal n1 and decompose boundary

in two different ways such that

Γ1 = ΓE,D ∪ ΓE,N , ΓE,D ∩ ΓE,N = ∅,

Γ1 = Γp,D ∪ Γp,N , Γp,D ∩ Γp,N = ∅,

where ΓE,D ⊂ Γ1 is a (d− 1) dimension manifold and ΓE,N := Γ1 \ ΓE,D. Given boundary

data ΦE,D on ΓE,D, the pair (u,Φ) satisfies the following initial-boundary value problem

11



2.1. MATHEMATICAL MODELING

for the piezoelectric equations

ρp
∂2u
∂t2

−∇ · σ(u,E) = 0 in Ω1 × (0, T1), (2.4a)

∇ ·D(u,E) = 0 in Ω1 × (0, T1), (2.4b)

u = 0 on Γp,D × (0, T1) , n1 · σ = σn1 on Γp,N × (0, T1), (2.4c)

Φ = ΦE,D on ΓE,D × (0, T1) , n1 ·D = Dn1 on ΓE,N × (0, T1) , (2.4d)

u(·, 0) = 0 ,
∂u
∂t

(·, 0) = 0 in Ω1, (2.4e)

which have to be completed by the constitutive equations (2.1),(2.2) and (2.3).

Assuming time periodic excitations ΦE,D(·, t) = Re
(
Φ̂E,D exp(− iωt)

)
such that Φ̂E,D ∈

H1/2(ΓE,D), we are looking for time harmonic solutions

u(·, t) = Re (u(·) exp(− iωt) ) , Φ(·, t) = Re ( Φ(·) exp(− iωt) ) .

This leads to a saddle point problem for a Helmholtz-type equation which in its weak

form amounts to the computation of (u,Φ) ∈ V × W , where V := H1
0,Γp,D

(Ω1)d and

W := {ϕ ∈ H1(Ω1) | ϕΓE,D
= Φ̂E,D}, such that for all v ∈ V and ψ ∈W0 := H1

0,ΓE,D
(Ω1)

a(u,v) + b(Φ,v)− ω2ρp(u,v)0,Ω = `1(v), (2.5a)

b(ψ,u)− c(Φ, ψ) = `2(ψ). (2.5b)

Here, H1
0,Γp,D

(Ω1)d := {v ∈ H1(Ω1)d | v|Γp,D
= 0},H1

0,ΓE,D
(Ω1) := {ψ ∈ H1(Ω1) | ψ|ΓE,D

=

0}, and the sesquilinear forms a(·, ·), b(·, ·), c(·, ·) and the functionals `1 ∈ V∗, `2 ∈ W ∗ are

given by

a(v,w) :=
�

Ω1

c ε(v) : ε(w̄) dx , b(ϕ,v) :=
�

Ω1

e∇ϕ : ε(v̄) dx ,

c(ϕ,ψ) :=
�

Ω1

ε∇ϕ · ∇ψ̄ dx ,

`1(v) := 〈σn1 ,v〉p,N , `2(ψ) := 〈Dn1 , ψ〉E,N ,

12



2.1. MATHEMATICAL MODELING

with 〈·, ·〉p,N , 〈·, ·〉E,N denoting the dual pairings between the associated trace spaces and

their dual spaces, respectively.

We denote by A : V → V∗,B : W → V∗, and C : W → W ∗ the operators associated

with the sesquilinear forms and by I the injection I : V → V∗. Then, an equivalent

formulation of (2.5a),(2.5b) is

(A− ω2ρpI)u + BΦ = f , (2.6a)

B∗u−CΦ = f. (2.6b)

Here, the right-hand sides f ∈ V∗ and f ∈W ∗ are given by

f := `1 − BΦ̃E,D , f := `2 + CΦ̃E,D , (2.7)

where Φ̃E,D stands for the extension of the Dirichlet data onto W .

In particular, the operator A is symmetric and V-elliptic, and the operator C is symmetric

and W -elliptic. The symmetry of A results from the symmetry of the elasticity tensor

c, whereas the V-ellipticity is a direct consequence of the positive definiteness of c and

Korn’s inequality. Likewise, the symmetry of C follows from the symmetry of the dielectric

permittivity ε and the W -ellipticity can be deduced from the positive definiteness of ε.

Elimination of Φ from (2.6a),(2.6b) results in the Schur complement system

Su − ω2ρp u = g . (2.8)

Here, the Schur complement operator S : V → V∗ is defined according to

S := A + BC−1B∗ , (2.9)

whereas the right-hand side g is given by

g := f + BC−1f . (2.10)

13



2.1. MATHEMATICAL MODELING

Theorem 2.1.1 For the Schur complement S given by (2.9) and the Schur complement

system (2.8) there holds:

(i) The spectrum of S consists of a sequence of countably many real eigenvalues 0 < ζ2
1 <

ζ2
2 < . . . tending to infinity, i.e., limj→∞ ζ2

j = ∞.

(ii) If ω2ρp is not an eigenvalue of S, for every g ∈ V∗, (2.8) admits a unique solution

u ∈ V depending continuously on g.

(iii) If ω2ρp ∈ R is an eigenvalue of S, (2.8) is solvable if and only if g ∈ Ker(S−ω2ρp I)0

where

Ker(S− ω2ρp I)0 := {v∗ ∈ V∗ | 〈v∗,v〉 = 0 , v ∈ Ker(S− ω2ρp I)} .

Proof: The Schur complement system (2.8) can be rewritten according to

Su − ω2ρp u = −ω2ρp S
(
S−1

R − ω−2ρ−1
p I

)
u = g ,

where S−1
R : L2(Ω1) → V is given by S−1

R v = S−1v , v ∈ L2(Ω1). It is easy to see that

S−1
R is a compact self-adjoint endomorphism on L2(Ω1) and hence, the assertions (i), (ii),

and (iii) follow from the Hilbert-Schmidt theory and the Fredholm alternative (cf., e.g.,

[123]). �

2.1.2 The compressible Navier-Stokes equations

Since compressible effects dominate the SAW-induced fluid flow, it has to be described

by the compressible Navier-Stokes equations. We denote by Ω2(t), t ∈ [0, T2], the time

dependent domain occupied by the fluid with boundary Γ2(t) = Γ(t)2,D∪Γ(t)2,N , Γ2,D(t)∩
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2.1. MATHEMATICAL MODELING

Γ2,N (t) = ∅. Here, Γ2,D(t) is that part of the boundary where the SAWs enter the fluid-filled

microchannels. We assume that the coupling between the piezoelectric and the Navier-

Stokes equations is unilateral and occurs by means of the deflection of the walls of the

microchannels caused by the SAWs. We denote by v and p the velocity and the pressure,

and we refer to ρf , η, and ξ as the density of the fluid and the standard and bulk viscosities.

Then, the pair (v, p) satisfies the following initial-boundary value problem

ρf

(∂v
∂t

+ v · ∇v
)

= ∇ · σ in Ω2(t), t ∈ (0, T2], (2.11a)

∂ρf

∂t
+∇ · (ρfv) = 0 in Ω2(t), t ∈ (0, T2], (2.11b)

v(·+ u(·, t), t) =
∂u
∂t

(·, t) on Γ2,D(t), t ∈ (0, T2], (2.11c)

σn = 0 on Γ2,N (t), t ∈ (0, T2], (2.11d)

v(·, 0) = v0, p(·, 0) = p0 in Ω2(0), (2.11e)

where

σ = (σij)d
i,j=1 , σij := −p δij + 2ηεij(v) + δij(ξ − 2η/3)∇ · v,

and u in (2.11c) stands for the deflection of the walls of the microchannels caused by

the SAW. We note that u can be computed by the solution of the linearized equations

of piezoelectricity as described in previous subsection, for more details see [49]. In this

dissertation we assume that u is given as the time periodic boundary data. We will discuss

this in more detail in Chapter 6.

Since the deflection of the walls of the microchannels by the SAWs is approximately 10−9m

compared to lengths, widths, and heights of the microchannels in the range of µm to mm,

in the sequel we will neglect the time dependence of Ω2.

The SAW-induced fluid flow exhibits two different time scales. When the SAWs enter

the fluid-filled microchannels, sharp jets and vortices are created within nanoseconds (cf.
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2.1. MATHEMATICAL MODELING

Fig. 1.1 and 6.1). The SAWs propagate along the channels and experience a significant

damping which results in an almost stationary flow pattern, called acoustic streaming.

This relaxation process happens on a time scale of milliseconds. The multiscale character

can be appropriately taken care of by a homogenization approach. Following [10, 75], we

introduce a scale parameter 0 < ε � 1 which represents the maximum deflection of the

walls of the microchannels, and we consider the asymptotic expansions

ρf = ρf,0 + ε ρ′f + ε2 ρ′′f + O(ε3) ,

v = v0 + ε v′ + ε2 v′′ + O(ε3) ,

p = p0 + ε p′ + ε2 p′′ + O(ε3) .

Collecting all terms of order O(ε), assuming v0 ≡ 0 (fluid at rest, if no SAW actuation),

and setting ρf,1 = ερ′f ,v1 := εv′, p1 := εp′, we find that the triple (ρf,1,v1, p1) satisfies the

linear system (for notation convenience we assume that this problem has time scale [0, T1])

ρf,0
∂v1

∂t
−∇ · σ1 = 0 in Ω2 × (0, T1], (2.12a)

∂ρf,1

∂t
+ ρf,0∇ · v1 = 0 in Ω2 × (0, T1], (2.12b)

v1 = g1 on Γ2,D × (0, T1], (2.12c)

σ1n = 0 on Γ2,N × (0, T1], (2.12d)

v1(·, 0) = 0, p1(·, 0) = 0 in Ω2, (2.12e)

where σ1 = ((σ1)ij)d
i,j=1 , (σ1)ij := −p1 δij + 2ηεij(v1) + δij(ξ− 2η/3)∇ ·v1 , g1 := ∂u/∂t

and where p1 and ρf,1 are related by the constitutive equation

p1 = c20 ρf,1 in Ω2 × (0, T1] . (2.13)

Here, c0 stands for the small signal sound speed in the fluid. The system describes the

propagation and damping of the acoustic waves in the microchannels.
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We substitute ρf,1 in (2.12b) by means of (2.13) and introduce the function spaces

Vg1 := {v ∈ L2((0, T1);H1(Ω2)) ∩H1((0, T1);H−1(Ω2)) | v|Γ2,D
= g1} ,

W :=H1((0, T1);L2(Ω2)) .

We note that H1((0, T1);H−1(Ω2)) ∩ L2((0, T1);H1(Ω2)) is continuously embedded in

C([0, T1],L2(Ω2)). The weak formulation of (2.12a)-(2.12d) amounts to the computation

of (v1, p1) ∈ Vg1 ×W such that for all (w, q) ∈ H1
0,Γ2,D

(Ω2)× L2(Ω2) there holds

〈ρf,0
∂v1

∂t
,w〉+ a(v1,w) + b(p1,w) = 0 , w ∈ H1

0,Γ2,D
(Ω2), (2.14a)

(ρ−1
f,0c

−2
0

∂p1

∂t
, q)0,Ω2 − b(q,v1) = 0 , q ∈ L2(Ω2), (2.14b)

v1(·, 0) = 0, p1(·, 0) = 0. (2.14c)

Here, 〈·, ·〉 stands for the respective dual pairing, and the bilinear forms a(·, ·) and b(·, ·)

are given by

a(v,w) := η

�

Ω2

∇v : ∇w dx + (ξ +
η

3
)
�

Ω2

∇ · v∇ ·w dx , (2.15a)

b(p,w) := −
�

Ω2

p∇ ·w dx . (2.15b)

For time periodic excitations g1, we also consider the time periodic problem:

Find (v1, p1) ∈ Vg1 ×W such that for all (w, q) ∈ H1
0,Γ2,D

(Ω2)× L2(Ω2) there holds

〈ρf,0
∂v1

∂t
,w〉+ a(v1,w) + b(p1,w) = 0, (2.16a)

(ρ−1
f,0c

−2
0

∂p1

∂t
, q)0,Ω2 − b(q,v1) = 0, (2.16b)

v1(·, 0) = v1(·, T ), p1(·, 0) = p1(·, T ). (2.16c)

Theorem 2.1.2 For the solution of the variational problems (2.14a)-(2.14c) and (2.16a)-

(2.16c) there holds:
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(i) If g1 ∈ L2((0, T );H1/2
00 (Γ2,D)) then there exists a unique solution (v1, p1) ∈ Vg1 ×W

of (2.14a)-(2.14c) satisfying the stability estimate

‖(v1, p1)‖Vg1×W ≤ CT1 ‖g1‖L2((0,T1);H
1/2
00 (Γ2,D))

, (2.17)

where CT1 > 0 is a constant depending on T1.

(ii) If the forcing term g1 is time periodic, then there exists a unique solution (v1, p1) of

(2.16a)-(2.16c).

Proof: Taking advantage of the ellipticity of the bilinear form a(·, ·), i.e.,

a(v,v) ≥ α ‖v‖2
1,Ω2

, α > 0 ,

and the fact that the bilinear form b(·, ·) satisfies the inf-sup condition

inf
q∈L2

0(Ω2)\{0}
sup

v∈H1
0,Γ2,D

(Ω2)\{0}

b(q,v)
‖q‖0,Ω2‖v‖1,Ω2

≥ β > 0 ,

the existence of a solution (v1, p1) ∈ Vg1 ×W of (2.14a)-(2.14c) satisfying (2.17) can be

shown by standard arguments based on the Galerkin method (cf., e.g., [95]). The unique-

ness is an immediate consequence of (2.17). For the proof of (ii) we refer to Theorem 3.12

in [75]. �

Collecting all terms of order O(ε2), neglecting the time derivative with respect to the

pressure, and performing the time-averaging

〈w〉 := T−1
1

� t0+T1

t0

w dt,
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we arrive at the compressible Stokes system (for notation convenience we assume that this

problem has a time scale [0, T ])

ρf,0
∂v2

∂t
−∇ · σ2 = 〈−ρf,1

∂v1

∂t
− ρf,0[∇v1]v1〉 in Ω2 × (0, T ], (2.18a)

ρf,0∇ · v2 = 〈−∇ · (ρf,1v1)〉 in Ω2 × (0, T ], (2.18b)

v2 = g2 on Γ2,D × (0, T ], (2.18c)

σ2n = 0 on Γ2,N × (0, T ], (2.18d)

v2(·, 0) = 0, p2(·, 0) = 0 in Ω2, (2.18e)

where g2 := −〈[∇v1]u〉 in (2.18c) and

σ2 = ((σ2)ij)d
i,j=1 , (σ2)ij := −p2 δij + 2ηεij(v2) + δij(ξ − 2η/3)∇ · v2.

The density ρf,2 can be obtained via the constitutive equation

p2 = c20 ρf,2 in Ω2 × (0, T ] . (2.19)

The compressible Stokes system (2.18a)-(2.18d) is used as a model for the acoustic stream-

ing.

The weak formulation of (2.18a)-(2.18d) requires the computation of (v2, p2) ∈ Vg2 ×W ,

where

Vg2 := {v ∈ H1((0, T ),H−1(Ω2)) ∩ L2((0, T ),H1(Ω2)) | v|ΓD
= g2} ,

W :=H1((0, T );L2(Ω2)),

such that

〈ρf,0
∂v2

∂t
,w〉+ a(v2,w) + b(p2,w) = (f ,w)0,Ω2 , w ∈ H1

0,Γ2,D
(Ω2), (2.20a)

b(q,v2) = (f, q)0,Ω2 , q ∈ L2(Ω2), (2.20b)

v2(·, 0) = 0, p2(·, 0) = 0. (2.20c)
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Here, the bilinear forms a(·, ·), b(·, ·) are as in (2.15a),(2.15b), and the right-hand sides f , f

are given by

f := −〈ρf,1
∂v1

∂t
+ ρf,0 [∇v1]v1〉 , f := −〈ρ−1

f,0∇ · (ρf,1 v1)〉 .

Theorem 2.1.3 If f ∈ L2(Ω2), f ∈ L2(Ω2), and g2 ∈ H1/2
00 (Γ2,D), the weak formulation

(2.20a),(2.20b) of the compressible Stokes system admits a unique solution (v2, p2) ∈ Vg2×

W . Moreover, there exists a constant CT > 0 depending on T such that

‖(v2, p2)‖Vg2×W ≤ CT

(
‖f‖0,Ω2 + ‖f‖0,Ω2 + ‖g2‖H1/2

00 (Γ2,D)

)
. (2.21)

Proof: The proof follows along the same lines as that of Theorem 2.1.2. �

2.2 Shape optimization

We have performed shape optimization of the walls of the microchannels and reservoirs

using objective functionals of tracking type or representing the pumping rate at selected

cross sections or minimizing the vorticity using (2.18a)-(2.18b) as state system.

The optimal design of the shape or topology of structures is an area within the theory

of optimization with applications, e.g., in aero- and fluid dynamics, electromagnetics, and

mechanics whose importance is reflected by a series of monographs on this topic that have

been published during the past decades (cf. [9, 21, 22, 32, 57, 60, 61, 85, 91, 104]).

A typical shape optimization problem associated with a time-dependent PDE or a

system thereof as the underlying state equation amounts to the minimization of a shape

functional J over bounded domains Ω×[0, T ] with Ω ⊂ Rd and T > 0. The state function y
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is assumed to satisfy an initial-boundary value problem as described by means of a partial

differential operator L, and there may be further equality and/or inequality constraints on

the domain. We also assume that the domain Ω does not vary with time. Then the shape

optimization problem over a set of domains is

inf
Ω

J(y,Ω), J(y,Ω) :=

T�

0

�

Ω

`(x, t,y(x, t)) dxdt, (2.22a)

subject to

Ly(x, t) = f(x, t) in Ω× (0, T ], (2.22b)

y(x, t) = g(x, t) on Γ× (0, T ], (2.22c)

y(x, 0) = y0(x) in Ω, (2.22d)

h(x, t) ≥ 0 in Ω× [0, T ]. (2.22e)

In order to cope with the inherent difficulty that the minimization is over a certain class

of domains instead of a set of functions in an appropriate function space, we have used the

classical approach based on a parametrization of the domain by a finite number of design

variables: The boundary Γ is represented by a composite Bézier curve using a certain

number of Bézier control points θ ∈ Θ ⊂ Rk, k ∈ N, which serve as design variables. We

further assume that Θ := {θi ∈ R | θmin
i ≤ θi ≤ θmax

i , 1 ≤ i ≤ k} is independent of time

and is closed and convex. The equality and/or inequality constraints are expressed by

means of the design variables. The above shape optimization amounts to solving

inf
θ∈Θ

J(θ), J(θ) :=

T�

0

�

Ω(θ)

`(x, t, θ,y(x, t)) dxdt, (2.23a)
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subject to

Ly(x, t) = f(x, t) in Ω(θ)× (0, T ], (2.23b)

y(x, t) = g(x, t) on Γ(θ)× (0, T ], (2.23c)

y(x, 0) = y0(x) in Ω(θ), (2.23d)

θ ∈ Θ. (2.23e)

For the finite element approximation of (2.23a)-(2.23c) we choose θ̂ as reference design

variable and refer to Ω̂ := Ω(θ̂) as the associated reference domain. Then, the actual domain

Ω(θ) can be obtained from the reference domain Ω̂ by means of a mapping Ω(θ) = Φ(Ω̂; θ).

The advantage of using the reference domain Ω̂ is that finite element approximations can

be performed with respect to that fixed domain without being forced to remesh for every

new set of the design variables.

An alternative approach would be the use of shape calculus [32], i.e., of shape gradients

and shape Hessians in case of interior-point methods requiring first- and second-order

information. Since stable numerical implementations of shape Hessians were not available

at the time the research has been conducted, we decided to use the standard approach

described above.
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CHAPTER 3

Optimal design of stationary Stokes flow by path-following interior-point

methods

Recall that in Chapter 2 we derived the acoustic streaming system i.e., the compressible

Stokes system given by (2.18). The system derived generates almost a stationary pattern

called acoustic streaming. Keeping in mind our goal i.e., modeling, simulation, and shape

optimization of microfluidic biochips, as a first step in this chapter we consider shape opti-

mization problems governed by incompressible stationary Stokes system. The key features

of this chapter are all-at-once approach, primal-dual barrier method in terms of a path-

following predictor-corrector continuation scheme with adaptive choice of the continuation

steplength, extension of barrier method to multilevel framework and comparison with the

classical primal-dual path-following methods. This chapter is based on [16] and [17].
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Optimal design problems associated with fluid flow problems play a decisive role in a

wide variety of engineering applications (cf., e.g., [85] and the references therein). A typical

example is to design the geometry of the container of the fluid, e.g., a channel, a reservoir,

or a network of channels and reservoirs, in such a way that a desired flow velocity and/or

pressure profile is achieved. The solution of the problem amounts to the minimization of

an objective functional that depends on the so-called state variables (velocity, pressure)

and on the design variables which determine the geometry of the fluid-filled domain. The

state variables are supposed to satisfy the underlying fluid mechanical equations, and

there are typically further technologically motivated constraints, e.g., bilateral constraints

on the design variables which restrict the shape of the fluid-filled domain to that what is

technologically feasible.

Shape optimization problems have been extensively studied and are well documented

in the literature (cf., e.g., the monographs [9, 21, 22, 29, 32, 60, 61, 85, 91, 99, 104] ). The

traditional approach relies on a separate treatment of the design objective and the state

equation by an iterative cycle that starts from a given design, computes an approximate

solution of the state equation for that design, invokes some sensitivity analysis for an up-

date of the design, and continues this way until convergence is achieved. In contrast to this

successive approximation, recently so-called ’all-at-once methods’ or ’one-shot methods’

have attracted considerable attention in PDE constrained optimization whose character-

istic feature is that the numerical solution of the state equation is an integral part of the

optimization routine. In particular, it has been shown that this novel approach may lead

to significant savings of computational time (see e.g. [6, 7, 8, 66, 68, 69, 102]).

In this chapter, we consider the optimal design of stationary fluid flow problems as

described by the Stokes system. The objective is to design the geometry of a channel
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or a particular geometric feature of a channel such that a desired profile of the velocity

and/or the pressure is realized as closely as possible. The design variables are chosen as

the Bézier control points of a globally continuous Bézier curve representation of the walls

of the channel. The control points are subject to bilateral constraints. For instance, for the

shape optimization of a backward facing step (cf. Fig. 3.1), we use kB number of control

points for the lower backward facing step (curved line).

The approach that we are pursuing here is an ‘all-at-once method’ based on a primal-

dual formulation where the Stokes system is coupled by Lagrange multipliers and the

constraints on the design variables are taken care of by parameterized logarithmic barrier

functions.

Figure 3.1: Channel with a backward facing step

This leads to a family of minimization subproblems parameterized by the barrier parameter.

The optimality conditions result in a parameter dependent nonlinear system whose solution

gives rise to the so-called central path (cf., e.g., [46, 120]). A significant challenge is

to follow the central path as closely as possible as the barrier parameter goes to zero.

Here, we use three path-following strategies. The first one is an adaptive continuation

method with tangent continuation as a predictor and Newton’s method as a corrector

following the ideas from [33], whereas the second and third ones are variants of the long-

step target following algorithm and Mehrotra’s algorithm known from linear programming

(cf., e.g., [121]). We note that path-following algorithms for shape optimization problems
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3.1. THE SHAPE OPTIMIZATION OF PARAMETRIZED STOKES EQUATIONS

in structural mechanics have been used in [63].

3.1 The shape optimization of parametrized Stokes equa-

tions

Let Ω(θ) ⊂ Rd be a bounded domain that depends on design variables θ = (θ1, · · · , θk)T ∈

Θ, where Θ ⊂ Rk is a given convex set, θi, 1 ≤ i ≤ k, are the Bézier control points of a Bézier

curve representation of the boundary and Θ := {θi ∈ R | θmin
i ≤ θi ≤ θmax

i , 1 ≤ i ≤ k}.

We assume that the boundary ∂Ω(θ) consists of an inflow boundary Γin(θ), an outflow

boundary Γout(θ), and a lateral boundary Γlat(θ) such that ∂Ω(θ) = Γin(θ) ∪ Γout(θ) ∪

Γlat(θ),Γin(θ) ∩ Γout(θ) ∩ Γlat(θ) = ∅. Consider shape optimization problems associated

with the stationary Stokes system of the form

inf
v∈H1(Ω),p∈L2(Ω),θ∈Θ

J(v, p, θ) (3.1a)

where

J(v, p, θ) :=
�

Ω(θ)

`(v(θ), p(θ), x, θ) dx, (3.1b)

and where v(θ), p(θ) solve

−ν ∆v(x) +∇p(x) = f(x), x ∈ Ω(θ), (3.1c)

∇ · v(x) = 0, x ∈ Ω(θ), (3.1d)

v(x) = vin(x), x ∈ Γin(θ), (3.1e)

v(x, t) = 0, x ∈ Γlat(θ), (3.1f)

(∇v(x)− p(x)I)n = 0 , x ∈ Γout(θ). (3.1g)
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3.1. THE SHAPE OPTIMIZATION OF PARAMETRIZED STOKES EQUATIONS

where n and ν denoting the exterior unit normal vector and viscosity of the fluid, respec-

tively and f denotes the forcing term. It is well-known that the weak formulation of (3.1c-g)

admits a unique solution (cf., e.g., [80]).

For the finite element approximation of (3.1) we choose θ̂ ∈ Θ as a reference design

and refer to Ω̂ := Ω(θ̂) as the associated reference domain. Then, the actual domain Ω(θ)

can be obtained from the reference domain Ω̂ by means of a mapping Ω(θ) = Φ(Ω̂; θ). The

advantage of using the reference domain Ω̂ is that finite element approximations can be

performed with respect to that fixed domain without being forced to remesh for every new

set of the design variables.

For the discretization of the stationary Stokes system we use one of the many standard

methods [51], such as the classical P2-P1 Taylor Hood element, or methods with discontin-

uous pressure discretizations. We assume that the simplicial triangulation Th of the spatial

domain Ω(θ) is geometrically conforming and aligns with Γin(θ),Γlat(θ) and Γout(θ). This

leads to the discrete optimization problem

inf
v∈Rn,p∈Rm,θ∈Θ

J(v, p, θ) (3.2a)

where

J(θ) := `(v(θ), p(θ), x, θ), (3.2b)

and where v(θ), p(θ) solve

S(θ)

 v

p

 =

 g1(θ)

g2(θ)

 . (3.2c)

For ease of notation, we have kept the same symbol for the velocity v and pressure p

as it was there in the continuous setting. Here, `(·) in (3.2b) results from the spatial

discretization of the integral of the objective functional in (3.1a). The discrete Stokes
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3.2. PATH-FOLLOWING INTERIOR-POINT METHODS

operator S(θ) in (3.2c) is given by

S(θ) :=

 A(θ) BT (θ)

B(θ) 0

 , (3.3)

where A(θ) ∈ Rn×n and B(θ) ∈ Rm×n are the stiffness matrix, and the matrix represen-

tation of the discrete divergence operator. The vector g2(θ) ∈ Rm in (3.2c) stems from

the semi-discretization of the incompressibility condition due to the boundary condition at

the inflow boundary. We note that the data of the discrete problem depend on the design

variable θ due to the dependence of the spatial domain on θ.

Assume that θ ∈ Θ satisfies the so-called box constraints i.e.,

Θ := {θi ∈ R | θmin
i ≤ θi ≤ θmax

i , 1 ≤ i ≤ k}. (3.4)

Then due to the nonlinear dependence on the design variables, (3.2) represents an in-

equality constrained nonlinear programming problem. It will be numerically solved by

path-following primal-dual interior-point methods as described in the next section.

3.2 Path-following interior-point methods

Introduce Lagrange multipliers λv ∈ Rn, λp ∈ Rm for the PDE constraints (3.2c) and

couple the inequality constraints (3.4) by logarithmic barrier functions with a barrier pa-

rameter β = 1/µ > 0, µ→∞,. This leads to the saddle point problem

inf
y,θ

sup
λ
L(µ)(y,λ, θ), (3.5)

where y := (v, p), λ := (λv, λp) and L(µ) stands for the Lagrangian

L(µ)(y,λ, θ) = B(µ)(y, θ) + λT
(
S(θ)y − g

)
, (3.6)

28



3.2. PATH-FOLLOWING INTERIOR-POINT METHODS

and B(µ)(y, θ) is the so-called barrier function as given by

B(µ)(y, θ) := J(y, θ) − 1
µ

m∑
i=1

[
ln(θi − θmin

i ) + ln(θmax
i − θi)

]
. (3.7)

(for details cf., e.g., [120]) and g = (g1,g2)T .

The central path µ 7−→ x(µ) :=
(
y(µ),λ(µ), θ(µ)

)T is given as the solution of the nonlinear

system

F(x(µ), µ) =


L(µ)

y (y,λ, θ)

L(µ)
λ (y,λ, θ)

L(µ)
θ (y,λ, θ)

 = 0, (3.8)

where the subindices refer to the derivatives of the Lagrangian with respect to the primal,

the dual, and the design variables. The choice of the barrier parameter strongly influences

the performance of the interior-point method. There are static strategies with the Fiacco-

McCormick approach as the most prominent one (cf. [44]), where the barrier parameter

is fixed until an approximate solution of (3.5) has been obtained, and there is a variety of

dynamic update strategies (cf. [20, 39, 50, 88, 111, 113, 114]). Convergence properties of

the Fiacco-McCormick approach have been studied in [27] and [115], whereas a convergence

analysis of dynamic update strategies has been addressed in [20, 39, 88, 113].

We consider the solution of (3.8) by an adaptive continuation method based on the

affine invariant convergence theory of Newton-type methods and nonlinear variants of the

long-step and Mehrotra’s path-following method (see [84]).

3.2.1 Adaptive continuation method

The adaptive continuation method is a predictor-corrector method with an adaptively de-

termined continuation step size in the prediction step and Newton’s method as a corrector.
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3.2. PATH-FOLLOWING INTERIOR-POINT METHODS

It relies on the affine invariant convergence theory of Newton and Newton-type methods

(cf., e.g., [33]) and ensures that the iterates stay within a neighborhood (contraction tube)

of the central path so that convergence to a local minimum of the original minimization

problem can be achieved (cf. Fig. 3.2).

.

b

x(µ0)

Central Path

x
∗

∆µ
(0)
k δx(µk)

x̃(µk)

.

b

x(µ0)

x
∗

∆µnew
k δx(µk)

x̃(µk)

x̃(µk+1)

Figure 3.2: Adaptive continuation method: Prediction step (left) and correction step (right)

Prediction step: The predictor step relies on tangent continuation along the trajectory

of the Davidenko equation

Fx(x(µ), µ) x′(µ) = −Fµ(x(µ), µ) (3.9)

and amounts to the implementation of an explicit Euler step: Given some approximation

x̃(µk) at µk > 0, compute x̃(j0)(µk+1), where µk+1 = µk + ∆µ(j)
k , according to

Fx(x̃(µk), µk) δx(µk) = − Fµ(x̃(µk), µk) , (3.10a)

x̃(j0)(µk+1) = x̃(µk) + ∆µ(j)
k δx(µk) , (3.10b)

starting with j = 0 (j ≥ 1 only if required by the correction step (see below)). We use

∆µ(0)
0 = ∆µ0 for some given initial step size ∆µ0, whereas for k ≥ 1 the predicted step size

∆µ(0)
k is chosen by

∆µ(0)
k :=

( ‖∆x(j0)(µk)‖
‖x̃(µk)− x̃(j0)(µk)‖

√
2− 1

2Π(µk)

)1/2
∆µk−1 , (3.11)
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3.2. PATH-FOLLOWING INTERIOR-POINT METHODS

where ∆µk−1 is the computed continuation step size, ∆x(j0)(µk) is the first Newton cor-

rection (see below), and Π(µk) < 1 is the contraction factor associated with a successful

previous continuation step.

Correction step: As a corrector, we use Newton’s method applied to F(x(µk+1), µk+1) =

0 with x̃(j0)(µk+1) from (3.10) as a start vector. In particular, for ` ≥ 0 (Newton iteration

index) and j` ≥ 0 (j being the steplength correction index) we compute ∆x(j`)(µk+1)

according to

Fx(x̃(j`)(µk+1), µk+1) ∆x(j`)(µk+1) = − F(x̃(j`)(µk+1), µk+1) , (3.12)

update x̃(j`+1)(µk+1) := x̃(j`)(µk+1) + ∆x(j`)(µk+1) and compute ∆x(j`)(µk+1) as the asso-

ciated simplified Newton correction

Fx(x̃(j`)(µk+1), µk+1) ∆x(j`)(µk+1) = − F(x̃(j`)(µk+1) + ∆x(j`)(µk+1), µk+1) . (3.13)

We monitor convergence of Newton’s method by means of

Π(j`)(µk+1) := ‖∆x(j`)(µk+1)‖/‖∆x(j`)(µk+1)‖ .

In case of successful convergence, we set x̃(µk+1) := x̃(j`)(µk+1) with ` being the current

Newton iteration index, accept the current step size ∆µk := ∆µ(j)
k with current steplength

correction index j and proceed with the next continuation step. However, if the mono-

tonicity test

Π(j`)(µk+1) < 1 (3.14)

fails for some j` ≥ 0, the predicted steplength ∆µ(j)
k has been chosen too large so that

the predicted solution x̃(j0)(µk+1) is not situated within the Kantorovich neighborhood of

x(µk+1), i.e., it is outside the contraction tube around the central path (cf. Fig. 3.2 (right)).

The corrector step provides a correction of the steplength for the tangent direction δx(µk)
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3.2. PATH-FOLLOWING INTERIOR-POINT METHODS

such that the new iterate stays within the contraction tube. To do so, the continuation

step from (3.10b) has to be repeated with the reduced step size

∆µ(j+1)
k :=

(√2− 1
g(Π(j`))

)1/2
∆µ(j)

k , (3.15)

g(Π) :=
√

Π + 1− 1

until we either achieve convergence or for some prespecified lower bound ∆µmin observe

∆µ(j+1)
k < ∆µmin .

In the latter case, we stop the algorithm and report convergence failure.

A Newton step: The Newton steps are realized by an inexact Newton method featuring

right-transforming iterations (cf., e.g., [66, 68, 77]). Consider for example we want to solve

the KKT system (3.12). The block structure of this system is given by (for notational

convenience, in the following the upper index (µ) in the Lagrangian will be dropped)

Fx︷ ︸︸ ︷
∇y,yJ(θ) S(θ) Ly,θ

S(θ) 0 Lλ,θ

Lθ,y Lθ,λ Lθ,θ



∆x︷ ︸︸ ︷
∆y

∆λ

∆θ

 = −

F︷ ︸︸ ︷
∇yL

∇λL

∇θL

 . (3.16)

Introduce the positive auxiliary variables z = (z(1), z(2))T with entries

z
(1)
i :=

1
µ(θi − θmin

i )
, z

(2)
i :=

1
µ(θmax

i − θi)
, 1 ≤ i ≤ k , (3.17)

which are well-defined as µ > 0 and for θ ∈ int(Θ). We can rewrite (3.17) as

D1z(1) =
1
µ
e, D1 := diag(θ1 − θmin

1 , ..., θk − θmin
k ), (3.18a)

D2z(2) =
1
µ
e, D2 := diag(θmax

1 − θ1, ..., θ
max
k − θk), (3.18b)
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3.2. PATH-FOLLOWING INTERIOR-POINT METHODS

where e := (1, ..., 1)T ∈ Rk. The Newton linearization corresponding to (3.18) is given by

Z1∆θ + D1∆z(1) = −(D1z(1) − 1
µ
e) (3.19a)

−Z2∆θ + D2∆z(2) = −(D2z(2) − 1
µ
e) (3.19b)

where Zi := diag(z(i)
1 , ..., z(i)

k ), 1 ≤ i ≤ 2 . The new KKT system reads as follows

K︷ ︸︸ ︷

∇y,yJ(θ) S(θ) Ly,θ 0

S(θ) 0 Lλ,θ 0

Lθ,y Lθ,λ Lθ,θ Î

0 0 Ẑ D





∆y

∆λ

∆θ

∆z


= −



∇yL

∇λL

∇θL

D̂z− 1/µ e


. (3.20)

where K is the KKT matrix and

D̂ :=

 D1 0

0 D2

 , Î :=

 −Ik

Ik


T

, Ẑ :=

 Z1

−Z2

 .

We then apply the condensation and right-transforming iterations to solve (3.20). For

complete details, we refer to [11, 77].

The first- and second-order derivatives w.r.t. design variables θ occurring in the KKT

system are computed by automatic differentiation (cf., e.g., [55]) based on the automatic

differentiation package from the INTLAB toolbox (see [100]).

3.2.2 Long-step path-following method

Long-step path-following method amounts to compute an increment ∆x := (∆y,∆λ,∆θ,

∆z)T by solving the KKT (Newton’s) system as before, namely,

K ∆x = −g̃, (3.21)
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where, g̃ := (g,D1z(1)−σµ−1e,D2z(2)−σµ−1e)T , with an additional centering parameter

σ > 0.

We define N−∞(γ), 0 < γ � 1, as the following neighborhood of the central path

N−∞(γ) :=
{
(y,λ, θ, z) | sT

θ z ≥ µ−1γ
}
, (3.22)

where s(θ) := (s(1)(θ), s(2)(θ))T , s(1)(θ) := θ − θmin, s(2)(θ) := θmax − θ.

The long-step path-following algorithm proceeds as follows:

Initialization: Specify 0 < γ � 1, bounds 0 < σmin < σmax < 1 for the centering

parameter, and choose a start iterate

x(0) = (y(0),λ(0), θ(0), z(0)) ∈ N−∞(γ) .

Iteration loop: For j = 0, 1, 2, . . . set

µ(j) := max
(

k

s(1)(θ(j))T z(1)(θ(j))
,

k

s(2)(θ(j))T z(2)(θ(j))

)
. (3.23)

Choose σ(j) ∈ (σmin, σmax), and compute

∆x(j) = (∆y(j),∆λ(j),∆θ(j),∆z(j))

as the solution of (3.21). Set the next iterate as

x(j+1) = x(j) + η(j)∆x(j),

where, η(j) = max {η ∈ (0, 1) | x(j) + η∆x(j) ∈ N−∞(γ)}.

Given a tolerance ε, the iteration will be terminated, if for some j∗ ≥ 1

∆J :=
∣∣∣J(y(j∗), θ(j∗))− J(y(j∗−1), θ(j∗−1))

∣∣∣ < ε.
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For j ≥ 1, a possible choice of the centering parameter σ(j) is σ(j) :=
(
µ(j−1)/µ(j)

)2
.

The solution of (3.21) is computed based on static condensation of the slack variables and

the application of right-transforming iterations to the resulting reduced Hessian system

(cf., e.g., [66, 77]).

3.2.3 Nonlinear version of Mehrotra’s method

Using the same notation as in Subsection 3.2.2, the nonlinear version of Mehrotra’s method

(cf. [84]) is as follows:

Initialization: Choose a start iterate

x(0) = (y(0),λ(0), θ(0), z(0)) .

Iteration loop: For j = 0, 1, 2, . . . define µ(j) as in (3.23) and solve (3.21) with σ = 0 for

affine scaling direction ∆x(j)
aff =

(
∆y(j)

aff ,∆λ
(j)
aff ,∆θ

(j)
aff ,∆z(j)

aff

)T .

Choose step lengths for the primal (p) and dual (d) components as

βp
aff = max

{
β ∈ (0, 1)

∣∣ θ(j) + β∆θ(j)
aff ≥ 0

}
,

βd
aff = max

{
β ∈ (0, 1)

∣∣ z(j) + β∆z(j)
aff ≥ 0

}
.

Choose centering parameter adaptively by first setting

µaff = max
1≤ν≤2

 k(
s(ν)(θ(j)) + βp

aff∆θ(j)
aff

)T (
z(ν)(θ(j)) + βd

aff∆z(ν),(j)
aff

)
 ,

then σ(j) = (µ(j)/µaff )3.

Solve (3.21) for (∆y(j),∆λ(j),∆θ(j),∆z(j))T with right-hand side g̃ replaced by

g̃ =
(
g,D1z(1) + ∆D1∆z(1),(j)

aff − σ(j)µ(j)−1

e,D2z(2) + ∆D2∆z(2),(j)
aff − σ(j)µ(j)−1

e
)T

,
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where

∆D1 = diag
(
θ
(j)
i + βp

aff ∆θ(j)
i,aff − θmin

i

)
, 1 ≤ i ≤ k,

∆D2 = diag
(
θmax
i − (θ(j)

i + βp
aff ∆θ(j)

i,aff)
)
, 1 ≤ i ≤ k.

Again choose the step lengths as

β̄p = max
{
β ∈ R+

∣∣ θ(j) + β∆θ(j) ≥ 0
}
,

β̄d = max
{
β ∈ R+

∣∣ z(j) + β∆z(j) ≥ 0
}
,

βp = max
{
0.99β̄p, 1

}
, βd = max

{
0.99β̄d, 1

}
,

and compute a new iterate x(j+1) according to

(y(j+1), θ(j+1)) = (y(j), θ(j)) + βp(∆y(j),∆θ(j)),

(λ(j+1), z(j+1)) = (λ(j), z(j)) + βd(∆λ(j),∆z(j)).

The termination criterion is the same as in the long-step path-following method.

3.3 Multigrid and interior-point methods

We perform the predictor-corrector scheme (cf. Subsection 3.2.1) in a multilevel framework

with respect to a hierarchy of discretizations. We describe the multilevel approach in case of

a two-level scheme with the levels `−1 and ` (cf. Fig 3.3). In the general case of more than

two levels, the multilevel predictor-corrector continuation method consists of a recursive

application of the two-level scheme (cf. [17, 77]). The extension to other path-following

methods discussed in Subsections 3.2.2 and 3.2.3 follows on the similar lines.
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Figure 3.3: Two-level predictor-corrector scheme

3.3.1 Multigrid adaptive continuation method

The solutions on coarse grid level `− 1 are computed using the adaptively chosen barrier

parameters µj < µj+1 < µj+2 using the path-following technique as described in Sub-

section 3.2.1. The fine grid solution x`(µj) is obtained either by an initialization step or

results from a previous application of the multigrid prediction-correction scheme.

Prediction step: We use the the level `− 1 approximations x`−1(µj) and x`−1(µj+2) as

well as the level ` approximation x`(µj) to obtain a level ` prediction at µk+2 using the

formula

x̂`(µj+2) = x`(µj) + P`
`−1

(
x`−1(µj+2)− x`−1(µj)

)
(3.24)

where P`
`−1 is the prolongation operator from level `− 1 to `.

Correction step: The approximation x̂`(µj+2) is then corrected by the two-level Newton

multigrid scheme incorporating a two-level PDE solver with augmented Lagrangian as

the pre- and post-smoother. For acceptance of Newton’s method a monotonicity test is

performed [33].
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3.3.2 Multigrid long-step path-following method

The solutions on coarse grid level ` − 1 are computed using the barrier parameters µj <

µj+1 < µj+2 using long-step path-following technique as described in Subsection 3.2.2.

Prediction step: The prediction on level ` is made using the formula (3.24).

Correction step: The approximation x̂`(µj+2) in step above on level ` is corrected using

the long-step method with augmented Lagrangian as the pre- and post-smoother.

3.3.3 Multigrid Mehrotra’s method

The solutions on coarse grid level ` − 1 are computed using the barrier parameters µj <

µj+1 < µj+2 using Mehrotra’s method as described in Subsection 3.2.3.

Prediction step: The prediction on level ` is made using the formula (3.24).

Correction step: The approximation x̂`(µj+2) in step above on level ` is corrected using

the Mehrotra’s method with augmented Lagrangian as the pre- and post-smoother.

3.4 Applications

3.4.1 Channel with a backward facing step

As a benchmark problem, we consider Stokes flow in a channel with a backward facing

step (cf. Figure 3.1). The objective is to design the wall of the step in such a way that a

desired velocity vd is attained.

The computational domain Ω ⊂ R2 is displayed in Figure 3.4. The boundary ∂Ω is
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dotted line:
optimal shape

Figure 3.4: Initial and optimal shape of the backward facing step

decomposed into Γin = {0} × (−1, 1),Γout = {10} × (−1.5, 1), and Γlat = ∂Ω \ (Γin ∪ Γout).

The data of the problem is chosen as follows. Assume f = 0 in Ω, a Poiseuille velocity

profile vin(x1, x2) = 6(x2 + 1)(1 − x2) on Γin, outflow boundary conditions on Γout, and

no-slip conditions on Γlat. The objective is to design the shape of the backward step Γ2,B,

with solid line in Figure 3.4 in such a way that a prescribed velocity profile vd is achieved

in Ω. We use a parametrization of the backward step by means of the Bézier control points

θ ∈ Rk, k = kB, of Bézier curve representations of Γ2,B, where kB refers to the number of

control points for Γ2,B. The shape optimization problem amounts to the minimization of

J(θ) =
�

Ω(θ)

|v(x)− vd(x)|2dx

subject to the Stokes equations (3.1c-g) and design parameter constraints

θmin ≤ θ ≤ θmax,

with viscosity ν = 1. The bounds θmin, θmax on the design parameters are chosen such

that the design constraints are never active in this example. We use kB = 5 Bézier control

points to specify the step boundary. The desired velocity vd is computed by specifying the

optimal parameter θ∗ and solving the state equation on Ω(θ∗). The optimal domain Ω(θ∗)

is shown in Figure 3.4 marked by the dashed line.
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We consider a geometrically conforming simplicial triangulation Th(Ω) of the reference

domain. The discretization in space is taken care of by P2-P1 Taylor-Hood elements. For

D ⊆ Ω, we denote by Nv,h(D),Np,h(D) the set of velocity and pressure nodal points in D.

We use automatic differentiation [54, 100] to compute the derivatives with respect to

the design variables θ. The stationary optimization problems are solved using various

methods described in Sections 3.2-3.3.

Table 3.1 reflects the convergence history of the iterative process using the adaptive

continuation method as described in Subsection 3.2.1 and Figure 3.5 shows the convergence

of objective functional J .

k µ ∆µ ∆J
0 1.0e+2 3.0e+2 –
1 1.0e+2 3.0e+2 1.70e+0

6.02e-1
8.80e-2
2.31e-1

2 2.7e+2 1.7e+2 1.06e-2
1.90e-4
2.05e-5

3 3.6e+2 9.8e+1 1.32e-5
4 3.7e+2 3.9e+2 1.08e-5

Table 3.1: Backward facing step: Adap-
tive continuation strategy convergence
history
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Figure 3.5: Backward facing step: Conver-
gence history of the objective functional

The adaptive continuation method has been compared with the dynamic barrier update

strategy from [50], which was also used in [66, 68], and the nonlinear variant of Mehrotra’s

path-following method. For these three methods, Tables 3.2 and 3.3 contain the number

of continuation steps, the final value of the objective functional, and the execution time

on a coarse mesh (hmax = 0.3) and on a finer mesh (hmax = 0.1), where ‘no conv.’ means

no convergence. The results show that the adaptive continuation method is more efficient
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than the dynamic barrier update strategy and more robust than Mehrotra’s method for

which convergence only occurs, if the mesh is fine enough. On the other hand, for this

robustness one has to pay a price in terms of the execution time (cf. Table 3.3).

Method Cont. Steps J Exec. Time
ACM 4 6.68E-07 5 min
DBUS 8 9.32E-07 8 min
MEHR – no conv. –

Table 3.2: Backward facing step: Comparison of adaptive continuation method (ACM),
dynamic barrier update strategy (DBUS) from [50] and Mehrotra’s method (MEHR) on a
coarse mesh (hmax = 0.3)

Method Cont. Steps J Exec. Time
ACM 3 4.98e-07 59 min
DBUS 11 9.42e-07 142 min
MEHR 8 6.61e-07 34 min

Table 3.3: Backward facing step: Comparison of adaptive continuation method (ACM),
dynamic barrier update strategy (DBUS) from [50] and Mehrotra’s method (MEHR) on a
finer mesh (hmax = 0.1)

We consider multigrid extension of the above developed interior-point methods i.e.,

adaptive continuation, long-step and Mehrota’s method. Three levels of refinement is used

with the number of unknowns on the coarsest and finest level to be 7599 and 116859

respectively. The results obtained using different interior point methods are almost the

same. The multilevel code works three times faster as compared to the single grid. We

omit the data table in this case and will show it in next example.

The computed optimal value of the design parameter using all the methods is

θ∗ = (+1.0,−0.5,−0.55,−0.6,−0.6,−1.5).
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3.4.2 Capillary barrier

One of the issues in the optimal design of the biochips is to make sure that the reservoir is

filled with a very precise amount of the fluid. This is taken care of by a capillary barrier

placed between a channel and the reservoir (see Fig. 3.6).

Figure 3.6: Channel with capillary barrier on an SAW driven microfluidic biochip (left)
and optimal shape obtained (right)

As computational domain we have chosen part of a channel with a capillary barrier at

its end and part of a reservoir connected with the channel by the capillary barrier. The

objective is to design the walls of the barriers in such a way that a desired velocity profile

vd is attained.

The boundary ∂Ω is decomposed into Γin = {−2} × (−1, 1),Γout = {5} × (−1, 1), and

Γlat = ∂Ω \ (Γin ∪ Γout). The data of the problem is chosen as follows. Assume f = 0 in

Ω, a Poiseuille velocity profile vin(x1, x2) = 6(x2 + 1)(1 − x2) on Γin, outflow boundary

conditions on Γout, and no-slip conditions on Γlat. The objective is to design the shape of

the barrier (dotted walls in Figure 3.6(right)) top Γ2,T and the bottom Γ2,B of ∂Ω in such

a way that a prescribed velocity profile vd is achieved in Ω. We use a parametrization of

the barrier by means of the Bézier control points θ ∈ Rk, k = kT + kB, of Bézier curve

representations of Γ2,T and Γ2,B, where kT and kB refers to the number of control points for
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Γ2,T and Γ2,B, respectively. The shape optimization problem amounts to the minimization

of

J(θ) =
�

Ω(θ)

|v(x)− vd(x)|2dx

subject to the Stokes equations (3.1c-g) and design parameter constraints

θmin ≤ θ ≤ θmax,

with viscosity ν = 1. The bounds θmin, θmax on the design parameters are chosen such

that the design constraints are never active in this example. We use k = kT + kB = 16

Bézier control points for the Bézier curve representation of the capillary barrier as design

variables. The desired velocity vd is computed by specifying the optimal parameter θ∗ and

solving the state equation on Ω(θ∗).

Figure 3.6 (right) displays the computed optimal shape of the barrier together with

an underlying finite element mesh. The channel additionally has passive outlet valves (cf.

Figure 3.6) that are activated when the barrier operates in stopping mode and back flow

occurs. Figure 3.7 (left) provides a visualization of the velocity field for the optimized

channel under conditions of flow from the channel into the reservoir. Likewise, Figure 3.7

(right) displays the velocity field for the optimized channel under back flow conditions, i.e.,

when the capillary barrier operates in stopping mode.

Figure 3.7: Velocity field: Optimal configuration barrier non-stopping mode (left) and
stopping mode (right)
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We compared the adaptive continuation method with the long-step path-following al-

gorithm and Mehrotra’s algorithm, first for a single grid and then consider the extension to

the multigrid. As in the previous example, we observed robustness of the adaptive contin-

uation method as it converges on relatively coarse meshes where the two other algorithms

fail to convergence. Below we report the convergence history and execution times of all

three algorithms for a sufficiently fine finite element mesh with a total of Ndof = 62916

degrees of freedom with a tolerance ε = 10−3 as termination criterion. Tables 3.4, 3.5 and

3.6 display the convergence histories of the three algorithms for a single grid.

k µ ∆µ ∆J Time
0 2.0E+02 5.0E+02 –
1 6.9E+02 4.9E+02 2.83E+00
2 1.2E+03 5.3E+02 4.58E-05 747 min

Table 3.4: Capillary barrier: Adaptive continuation method

k µ σ η ∆J Time
0 2.0E+02 – – –
1 2.0E+02 1.0E-03 1 2.35E+00
2 3.2E+03 1.2E-01 1 4.80E-01
3 9.2E+03 7.2E-03 1 5.34E-04 360 min

Table 3.5: Capillary barrier: Long-step path-following method

k µ σ βp, βd ∆J Time
0 2.0E+02 – – –
1 2.0E+02 1.0E-05 0.99 2.37E+00
2 3.2E+03 4.1E-02 0.99 4.62E-01
3 1.2E+03 1.4E-07 0.99 5.04E-04 371 min

Table 3.6: Capillary barrier: Mehrotra’s method

Extension to the multigrid is considered of the above developed interior-point methods

i.e., adaptive continuation, long-step and Mehrota’s method. Four levels of refinement are

used with the number of unknowns on corasest and finest level to be 2362 and 141634

respectively. The results obtained using different interior-point methods are almost the
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same. The multilevel code works three times faster as compared to the single grid. Table 3.7

shows the results obtained for the multigrid adaptive continuation strategy.

level k µ ∆µ ∆J
1 0 2.0E+02 5.0E+02

2.83E+00
1 6.3E+02 4.3E+02 1.87E-05
2 1.1E+03 4.9E+02 3.40E-06
3 1.6E+03 5.1E+02 1.09E-06
4 2.3E+03 6.8E+02 5.70E-07
5 3.5E+03 1.1E+03 3.63E-07
6 5.3E+03 1.9E+03 1.99E-07
7 8.8E+03 3.5E+03 1.02E-07
8 1.6E+04 7.3E+03 4.50E-08

2 2 1.1E+03 9.2E+02
4 2.3E+03 1.2E+03
6 5.3E+03 3.0E+03
8 1.6E+04 1.1E+04

3 4 2.3E+03 2.1E+03
8 1.6E+04 1.4E+04

4 8 1.6E+04 1.6E+04

Table 3.7: History of the adaptive multilevel predictor-corrector strategy (capillary barrier,
4 levels)

3.5 Concluding remarks

In this chapter, we have provided an ’all-at-once approach’ for the optimal design of station-

ary flow problems described by linear and nonlinear Stokes flow featuring path-following

primal-dual interior-point methods by means of an adaptive predictor-corrector type con-

tinuation method, a long-step path-following algorithm and a nonlinear version of Mehro-

tra’s algorithm. A multilevel extension of these methods is discussed and implemented.

The computation of the first-order derivatives in the KKT systems and the second-order
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derivatives in the Hessians is significantly facilitated by automatic differentiation. Numer-

ical examples including a benchmark problem and a real-life design problems demonstrate

that the methods can be used in shape optimization with the adaptive continuation method

being the most robust algorithm at the expense of slightly higher execution times on finer

finite element meshes.
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CHAPTER 4

Domain decomposition and model reduction for optimal control and

shape optimization of an advection-diffusion system

We consider optimization problems where the optimization variables are located in a small

spatial region Ω2 of the entire spatial domain Ω on which the PDE is posed. Consider, for

instance the shape optimization of capillary barriers for the microfluidic biochips, where

only a small portion of the shape can be modified, or the parameter identification problems

where the parameters are associated with spatially localized material properties.

In this chapter we investigate this for the numerical solution of optimization problems

governed by time dependent advection-diffusion partial differential equations (PDEs) and

is based on [14]. The approach is extended to the time dependent Stokes or the time de-

pendent linearized Navier-Stokes equations, linearized around a steady state in Chapter 5.
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In Chapter 6 we consider the compressible Navier-Stokes equations for the shape opti-

mization of microfluidic biochips. The extension to the Stokes is non-trivial and handling

the advection-diffusion case first provides us the insight into the main ideas behind our

approach and the error analysis.

Although the optimization parameters are located in a small spatial region Ω2, standard

methods for the numerical optimization of such systems require the repeated solution of the

governing PDE (the state equation) and the associated adjoint PDE over the entire domain

Ω. It is desirable to reduce the overall problem size by essentially reducing the optimization

problem to the small spatial region on which the optimization parameters act. Since the

governing PDEs on the small spatial region interact with the solution on the entire domain,

it is not feasible to simply truncate the domain, but one has to carefully reduce the problem

to preserve the important interactions between the different components of the system. For

a class of problems we present a systematic approach based on domain decomposition and

balanced truncation model reduction to reduce the subproblems corresponding to the large

subdomain Ω \ Ω2.

There are many examples where domain decomposition and some form of model re-

duction is used to reduce the computational complexity of the simulation. For example,

the papers [42, 43, 45, 93] use physics-based model reduction. A complex system of PDEs

is replaced by a simpler model away from the region Ω2 of interest. Specifically, [42, 43]

discusses the coupling of the Navier-Stokes equations to the linear Oseen equations. In [45]

the 3D Navier-Stokes equations are coupled with a 1D model for the flow in blood vessels.

Section 3.3 of the review paper [93] discusses the coupling of distributed parameter models

with lumped parameter models for the modeling of blood flow. The papers [79, 78, 108, 109]

use dimension reduction techniques (see [23] for a recent overview). The papers [79, 78]
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describe the use of domain decomposition and Proper Orthogonal Decomposition (POD)

for the simulation of flows with shocks. Domain decomposition and balanced truncation

model reduction is used in [108, 109] for the simulation of PDEs with spatially localized

nonlinearities. The approach in these two papers is related to ours, except that we apply it

in the optimization context. Moreover, we provide an a priori bound for the error between

the solution of the original and the model reduced optimization problem.

We study optimization problems governed by advection-diffusion equations of the type

∂

∂t
y(x, t)−∇(k(x)∇y(x, t)) + V (x) · ∇y(x, t)) = f(x, t)

in Ω × (0, T ), together with suitable boundary and initial conditions. The optimization

variables can, for example, be shape parameters that describe the domain Ω or they can

be related to the parameters k, V , f in the PDE. In Section 4.4 we discuss an optimal

control problem in which the optimization variable is related to the source f and a shape

optimization problem in which the optimization variables are shape parameters.

After a discretization in space the optimization problems studied in this chapter are of

the form

minimize
� T

0
`(y(t), t, θ)dt, (4.1a)

subject to

M(θ)
d

dt
y(t) + A(θ)y(t) = B(θ)u(t), t ∈ (0, T ), (4.1b)

M(θ)y(0) = y0, (4.1c)

θ ∈ Θ. (4.1d)

Here M(θ),A(θ) ∈ RN×N are mass and stiffness matrices that arise from a spatial dis-

cretization. Furthermore Θ is a closed convex set of admissible parameters and B(θ) ∈
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RN×m, u are given inputs which relate to the source f and boundary data in the advection-

diffusion equation. We will discuss the derivation of (4.1) for two applications in Sec-

tion 4.4. Since the optimization variables θ are related to spatially localized quantities

(shape parameters, coefficients,..) in the advection-diffusion equation, only few entries of

M(θ),A(θ),B(θ) depend on θ.

Our goal is to replace (4.1) by a reduced order problem

minimize
� T

0
`(ŷ(t), t, θ)dt, (4.2a)

subject to

M̂(θ)
d

dt
ŷ(t) + Â(θ)ŷ(t) = B̂(θ)u(t), t ∈ (0, T ), (4.2b)

M̂(θ)y(0) = ŷ0, (4.2c)

θ ∈ Θ, (4.2d)

with matrices M̂(θ), Â(θ) ∈ Rn×n, B̂(θ) ∈ Rn×m, such that n � N and such that the

solution θ∗ of (4.1) is well approximated by the solution θ̂∗ of (4.2).

Our approach uses domain decomposition techniques to divide the optimality system

corresponding to (4.1) into linear subproblems and small nonlinear subproblems. Balanced

truncation is applied to the linear subproblems with inputs and outputs determined by the

original in- and outputs as well as the interface conditions between the subproblems. The

reduced optimality system is identified as the optimality system of a reduced optimization

problem (4.2). We provide a priori estimates for the error between the solution θ∗ of (4.1)

and the solution θ̂∗ of (4.2). These bounds depend on the balanced truncation error bounds

as well as properties of the subsystem that is not reduced.

We expect that this combination of domain decomposition and balanced truncation will

lead to a substantial reduction of the original problem, if the nonlinearities are localized, i.e.,
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4.1. BALANCED TRUNCATION MODEL REDUCTION

the nonlinear subproblems are small relative to the other subdomains, and if the interfaces

between the subproblems are relatively small. This is confirmed by our numerical results.

In the next section we provide a brief review of balanced truncation model reduction.

Section 4.2 applies balanced truncation to reduce a linear quadratic optimal control prob-

lem. Although this optimization problem is simpler than (4.1) it is relevant for many

applications and already provides insight into the main ideas behind our approach and

the corresponding error analysis. The integration of domain decomposition and balanced

truncation model reduction for the reduction of (4.1) is presented and analyzed in Sec-

tion 4.3. In Section 4.4 we discuss two problems which lead to (4.1) and the application of

our approach for the reduction of these problems.

Throughout this chapter we use ‖ · ‖ to denote the Euclidean norm in RN or the

corresponding matrix norm in RN×N . Instead of Lp(0, T ; RN ) we simply write Lp.

4.1 Balanced truncation model reduction

Model reduction seeks to replace a large-scale system of differential or difference equations

by a system of substantially lower dimension that has nearly the same response charac-

teristics. Balanced reduction is a particular method that preserves asymptotic stability

and also provides an error bound on the discrepancy between the outputs of the full and

reduced order system [18, 23, 34, 53, 86]. We use balanced truncation model reduction

because of the availability of an error bound.

We briefly review balanced truncation model reduction for linear time invariant systems
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in state space form

My′(t) = Ay(t) + Bu(t), t ∈ (0, T ) (4.3a)

z(t) = Cy(t) +Dsu(t), t ∈ (0, T ) (4.3b)

y(0) = y0, (4.3c)

−Mλ′(t) = ATλ(t) + CTw(t), t ∈ (0, T ) (4.3d)

q(t) = BTλ(t) +Daw(t), t ∈ (0, T ) (4.3e)

λ(T ) = 0, (4.3f)

where M ∈ RN×N is symmetric positive definite, A ∈ RN×N , B ∈ RN×m, C ∈ Rk×N ,

Ds ∈ Rk×m, and Da ∈ Rm×k.

Projection methods for model reduction generally produce N × n matrices V,W with

n� N and with WTMV = In. One obtains a reduced form of equations (4.3) by setting

y = Vŷ and projecting (imposing a Galerkin condition) so that

WT [MV d
dt

ŷ(t)−AVŷ(t)− Bu(t)] = 0, t ∈ (0, T ).

Applying an analogous projection to (4.3d,e) with λ replaced by Wλ̂, we obtain a reduced

order system of order n given by

ŷ′(t) = Âŷ(t) + B̂u(t), t ∈ (0, T ) (4.4a)

ẑ(t) = Ĉŷ(t) +Dsu(t), t ∈ (0, T ) (4.4b)

ŷ(0) = ŷ0, (4.4c)

−λ̂
′
(t) = ÂT λ̂(t) + ĈTw(t), t ∈ (0, T ) (4.4d)

q̂(t) = B̂T λ̂(t) +Daw(t), t ∈ (0, T ) (4.4e)

λ̂(T ) = 0, (4.4f)
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with Â = WTAV, B̂ = WTB, Ĉ = CV, and ŷ0 = WTMy0.

Balanced reduction is a particular technique for constructing the projecting matrices

V and W. Originally, balanced reduction was developed for state space systems with

M = I. To apply it to (4.3), we factor M = RRT , multiply (4.3) by R−1, and substitute

ỹ = RTy, λ̃ = RTλ. Then we apply the standard balanced reduction to the resulting

system. Afterwards we transform back to the original variables and express all operations

in terms of the original system (4.3).

To compute the balanced reduction, we first have to compute the controllability and

observability Gramians P,Q, respectively. Under the assumptions of stability, controlla-

bility and observability, the matrices P,Q are both symmetric and positive definite and

they solve the Lyapunov equations

APM+MPAT + BBT = 0, (4.5a)

ATQM+MQA+ CTC = 0. (4.5b)

There are direct methods for the small dense case and iterative methods for the large sparse

setting to compute P = UUT and Q = LLT in factored form. In the large-scale setting

the factorization is typically a low rank approximation.

The balancing transformation is constructed by the SVD

UTML = ZSYT , (4.6a)

V = UZnS−1/2
n , (4.6b)

W = LYnS−1/2
n . (4.6c)

Here, Sn = diag(σ1, σ2, . . . , σn) with S = SN . The σj are in decreasing order and n

is selected to be the smallest positive integer such that σn+1 < τσ1 where τ > 0 is a
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prespecified constant. The matrices Zn,Yn consist of the corresponding leading n columns

of Z,Y.

It is easily verified that PMW = VSn and that QMV = WSn. Hence,

0 = WT (APM+MPAT + BBT )W

= ÂSn + SnÂT + B̂B̂T , (4.7a)

0 = VT (ATQM+MQA+ CTC)V

= ÂTSn + SnÂ+ ĈT Ĉ. (4.7b)

The terminology “balanced” refers to the fact that the controllability and observability

Gramians of the reduced systems are both diagonal and equal. This is true for every

possible order n of the truncation.

It is well known (see, e.g., [18, 53, 124]) that Â must be stable. Furthermore if y0 = 0,

and σn > σn+1, then for any given inputs u, w we have

‖z− ẑ‖L2 ≤ 2‖u‖L2(σn+1 + . . .+ σN ), (4.8a)

‖q− q̂‖L2 ≤ 2‖w‖L2(σn+1 + . . .+ σN ). (4.8b)

Remark 4.1.1 One can derive error bounds for inhomogeneous initial values y0. These

require a slight modification of the problem setup in which the original B is augmented.

Since we are interested in the handling of local nonlinearities and our examples have ho-

mogeneous initial values y0 = 0, we omit this extension.
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4.2 Balanced truncation model reduction and optimal con-

trol

Before we consider the optimization problem (4.1), we consider a simpler problem, a linear

quadratic optimal control problem

minJ(u) ≡ 1
2

� T

0
‖Cy(t) + Du(t)− d(t)‖2dt, (4.9)

where y(t) = y(u; t) is the solution of

My′(t) = Ay(t) + Bu(t), t ∈ (0, T ), (4.10a)

y(0) = y0. (4.10b)

Here M ∈ RN×N is symmetric positive definite, A ∈ RN×N , B ∈ RN×m, C ∈ Rk×N ,

D ∈ Rk×m, and d ∈ L2(0, T ) is a given function. We assume that there exists α > 0 such

that

vTAv ≤ −αvTMv, ∀v ∈ RN . (4.11)

Note that (4.11) implies that all eigenvalues of the pair (A,M) have negative real part.

Remark 4.2.1 We can show that under suitable assumptions, the finite element discretiza-

tion of advection dominated problems satisfies (4.11). We refer to Chapter 6 in [94] and

Chapter 3 in [73] for complete details.

We want to reduce this optimization problem using balanced truncation model reduc-

tion and establish bounds for the error between the solution u∗ of (4.9), (4.10) and the

solution û∗ of the reduced optimal control problem. This will provide some insight into

the process that will be applied for the reduction of the optimization problem (4.1) in a

simpler setting involving less notation.
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The necessary and sufficient optimality conditions for (4.9), (4.10) are given by

My′(t) = Ay(t) + Bu(t), t ∈ (0, T ) (4.12a)

z(t) = Cy(t) + Du(t)− d(t), t ∈ (0, T ) (4.12b)

y(0) = y0, (4.12c)

−Mλ′(t) = ATλ(t) + CTz(t), t ∈ (0, T ) (4.12d)

q(t) = BTλ(t) + DTz(t), t ∈ (0, T ) (4.12e)

λ(T ) = 0, (4.12f)

q(t) = 0, t ∈ (0, T ). (4.12g)

The optimality system (4.12) is written in a slightly unconventional way to highlight its

connection with the system (4.3) to which balanced truncation model reduction can be

applied.

We use balanced truncation model reduction to compute W,V and the reduced opti-

mality system

ŷ′(t) = Âŷ(t) + B̂u(t), t ∈ (0, T ) (4.13a)

ẑ(t) = Ĉŷ(t) + Du(t)− d(t), t ∈ (0, T ) (4.13b)

ŷ(0) = ŷ0, (4.13c)

−λ̂
′
(t) = ÂT λ̂(t) + ĈT ẑ(t), t ∈ (0, T ) (4.13d)

q̂(t) = B̂T λ̂(t) + DT ẑ(t), t ∈ (0, T ) (4.13e)

λ̂(T ) = 0, (4.13f)

q̂(t) = 0, t ∈ (0, T ), (4.13g)

with Â = WTAV, B̂ = WTB, Ĉ = CV, and ŷ0 = WTMy0. We assume that

y0 = 0, (4.14)
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cf., Remark 4.1.1.

We note that the reduced optimality system (4.13) is the optimality system for the

reduced optimal control problem

min Ĵ(u) ≡ 1
2

� T

0
‖Ĉŷ(t) + Du(t)− d(t)‖2dt (4.15)

where ŷ(t) = ŷ(u; t) solves

ŷ′(t) = Âŷ(t) + B̂u(t), t ∈ (0, T ), (4.16a)

ŷ(0) = ŷ0. (4.16b)

Next we provide an estimate for the error between the solution u∗ of (4.9), (4.10) and

the solution û∗ of (4.15), (4.16). We assume that J is a strictly convex quadratic function.

More precisely, we assume the existence of κ > 0 such that

〈u−w,∇J(u)−∇J(w)〉L2 ≥ κ‖u−w‖2
L2 (4.17)

for all u,w ∈ L2. If u∗ solves (4.9), (4.10) and û∗ solves (4.15), (4.16), then

∇J(u∗) = ∇Ĵ(û∗) = 0

and (4.17) implies

‖u∗ − û∗‖L2‖∇Ĵ(û∗)−∇J(û∗)‖L2 = ‖u∗ − û∗‖L2‖∇J(u∗)−∇J(û∗)‖L2

≥ 〈u∗ − û∗,∇J(u∗)−∇J(û∗)〉L2

≥ κ‖u∗ − û∗‖2
L2 .

Hence

‖u∗ − û∗‖L2 ≤ κ−1‖∇Ĵ(û∗)−∇J(û∗)‖L2 . (4.18)
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Thus, to estimate the error we need to estimate the error in the gradients between the

original problem (4.9), (4.10) and of the reduced (4.15), (4.16).

To emphasize the dependence of the solution of (4.12a-f) and of (4.13a-f) on the inputs

u, we often write y(u), z(u), λ(u), q(u) and ŷ(u), ẑ(u), λ̂(u), q̂(u). If for given u

the functions y(u), z(u), λ(u), q(u) satisfy (4.12a-f) and ŷ(u), ẑ(u), λ̂(u), q̂(u) satisfy

(4.13a-f), then

∇J(u) = q(u), ∇Ĵ(u) = q̂(u).

To estimate the error ‖q(û∗)−q̂(û∗)‖L2 we cannot use the error estimate (4.8) for balanced

truncation model reduction directly, since (4.3d,e) and (4.4d,e) both depend on the same

input w, whereas (4.12d,e) has input z and (4.13d,e) has input ẑ.

We consider the auxiliary adjoint equation

−Mλ̃
′
(t) = AT λ̃(t) + CT ẑ(t), t ∈ (0, T ) (4.19a)

q̃(t) = BT λ̃(t) + DT ẑ(t), t ∈ (0, T ) (4.19b)

λ̃(T ) = 0. (4.19c)

Lemma 4.2.2 Let (4.11) be satisfied. For any z, ẑ ∈ L2 the outputs q and q̃ of (4.13d-f)

and (4.19), respectively, satisfy

‖q̃− q‖L2 ≤ c‖ẑ− z‖L2 ,

where c = α−12‖CM−1/2‖‖M−1/2B‖+ ‖D‖.

Proof: Since M is symmetric positive definite, M1/2 exists and is symmetric positive

definite. The scaled adjoints M1/2(λ̃− λ) satisfy

−M1/2(λ̃− λ)′(t) =M−1/2ATM−1/2M1/2(λ̃− λ)(t) + M−1/2CT (ẑ− z)(t),

M1/2(λ̃− λ)(T ) =0.
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Lemma A.1.1 in the Appendix A gives

‖M1/2(λ̃− λ)‖L2 ≤
2‖CM−1/2‖

α
‖ẑ− z‖L2 .

The desired inequality follows since

q̃− q = BTM−1/2M1/2(λ̃− λ) + DT (ẑ− z).

�

We assume that the Hankel singular values satisfy

σ1 ≥ . . . ≥ σn > σn+1 ≥ . . . ≥ σN . (4.20)

The error estimate (4.8) for balanced truncation model reduction implies

‖z− ẑ‖L2 ≤ 2‖u‖L2(σn+1 + . . .+ σN ), (4.21a)

‖q̂− q̃‖L2 ≤ 2‖ẑ‖L2(σn+1 + . . .+ σN ) (4.21b)

for all u ∈ L2 and all ẑ ∈ L2. We can now use Lemma 4.2.2 and the balanced truncation

model reduction error estimates (4.21) to derive a bound for the error between the solutions

u∗ of (4.9), (4.10) and û∗ of (4.15), (4.16).

Theorem 4.2.3 Let (4.11) and (4.20) be satisfied. For any u ∈ L2 let ŷ(u) be the corre-

sponding reduced state and ẑ(u) = Ĉŷ(u) + Du− d. The error in the gradients obeys

‖∇J(u)−∇Ĵ(u)‖L2 ≤ 2 (c‖u‖L2 + ‖ẑ(u)‖L2) (σn+1 + . . .+ σN ),

where c is the constant specified in Lemma 4.2.2.

Proof: For arbitrary u ∈ L2 let the functions y(u), z(u), λ(u), q(u) satisfy (4.12a-f), let

ŷ(u), ẑ(u), λ̂(u), q̂(u) satisfy (4.13a-f), and let λ̃(u), q̃(u) satisfy (4.19).
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We have ∇J(u) = q(u), ∇Ĵ(u) = q̂(u). Lemma 4.2.2 and the balanced truncation model

reduction error estimates (4.21) imply

‖q(u)− q̂(u)‖L2 ≤ ‖q(u)− q̃(u)‖L2 + ‖q̃(u)− q̂(u)‖L2

≤ c‖ẑ(u)− z(u)‖L2 + 2‖ẑ(u)‖L2(σn+1 + . . .+ σN )

≤ 2 (c‖u‖L2 + ‖ẑ(u)‖L2) (σn+1 + . . .+ σN ).

�

Inequality (4.18) and Theorem 4.2.3 imply the following estimate for the error in the

optimal controls.

Corollary 4.2.4 Let (4.11) and (4.20) be satisfied and let κ > 0 be a constant such that

(4.17) holds. Furthermore, let u∗ solve (4.9), (4.10) and let û∗ be the solution of (4.15),

(4.16) with corresponding state ŷ∗ and ẑ∗ = Ĉŷ∗+Du∗−d. The error between the solutions

satisfies

‖u∗ − û∗‖L2 ≤
2
κ

(c‖û∗‖L2 + ‖ẑ∗‖L2) (σn+1 + . . .+ σN ),

where c is the constant specified in Lemma 4.2.2.

Note that the size of σn+1 + . . .+σN can be controlled by the user during the computation

of the reduced order models. Moreover, ‖û∗‖L2 and ‖ẑ∗‖L2 can be computed.
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4.3 The optimization problem

We now return to the optimization problem (4.1). The Lagrangian associated with this

problem is

L(y,λ, θ) =
� T

0
`(y(t), t, θ)dt+

� T

0
λ(t)T

(
M(θ)y′(t) + A(θ)y(t)−B(θ)u(t)

)
dt.

Since Θ is a closed convex set, the first-order necessary optimality conditions for (4.1) with

θ ∈ Θ, are given by the state-adjoint system

M(θ)
d

dt
y(t) + A(θ)y(t) = B(θ)u(t), t ∈ (0, T ), (4.22a)

−M(θ)T d

dt
λ′(t) + A(θ)Tλ(t) = −∇y`(y(t), t, θ), t ∈ (0, T ), (4.22b)

and the inequality
� T

0
Dθ`(y(t), t, θ)(θ̃ − θ)dt

+
� T

0
λ(t)T

[(
DθM(θ)(θ̃ − θ)

) d
dt

y(t) +
(
DθA(θ)(θ̃ − θ)

)
y(t)

−
(
DθB(θ)(θ̃ − θ)

)
u(t)

]
dt ≥ 0 (4.22c)

for all θ̃ ∈ Θ, and y(0) = y0, λ(T ) = 0.

4.3.1 Domain decomposition

We assume that Ω(θ) is decomposed into a subdomain Ω1 independent of θ and a subdomain

Ω2(θ) that depends on θ. More precisely, we assume

Ω(θ) = Ω1 ∪ Ω2(θ), Ω1 ∩ Ω2(θ) = ∅.

Moreover, we assume that the integrand ` in the objective function (4.1a) is of the form

`(y(t), t, θ) = 1
2‖C

(1)
I y(1)

I (t)− d(1)
I (t)‖2 + ˜̀(yΓ(t),y(2)

I (t), t, θ). (4.23)
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In the following section we will use domain decomposition to decompose the optimality

conditions (4.22) into three components, one corresponding to the fixed subdomain Ω1,

one corresponding to the variable subdomain Ω2(θ), and one corresponding to the interface

between Ω1 and Ω2(θ). The decomposed problems will be used to identify linear quadratic

subproblems corresponding to the fixed domain Ω1, which will be reduced using balanced

truncation model reduction.

We note that both subdomains Ω1 and Ω2(θ) could be subdivided further. This ad-

ditional structure can be used in the implementation of the balanced truncation and the

optimization algorithm for the solution of the reduced shape optimization problem. How-

ever, the division of Ω(θ) into Ω1 and Ω2(θ) is enough to study the essential features of our

approach.

We use a standard nonoverlapping domain decomposition approach (substructuring)

to decompose the optimality system. See, e.g., [103, Ch. 4] and [112, Ch. 1]. Our notation

follows that of [103, 112]. The finite element stiffness matrix can be decomposed into

A(θ) =


A(1)

II A(1)
IΓ 0

A(1)
ΓI AΓΓ(θ) A(2)

ΓI (θ)

0 A(2)
IΓ (θ) A(2)

II (θ)


where

AΓΓ(θ) = A(1)
ΓΓ + A(2)

ΓΓ(θ).

The matrices M, B admit similar representations and the vectors y,u can be structured

accordingly.

In the following we frequently omit the argument t and, for example, simply write y(1)
I

instead of y(1)
I (t).
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Using the domain decomposition structure, the state equations (4.1b) can be written as

M(1)
II

d

dt
y(1)

I + M(1)
IΓ

d

dt
yΓ + A(1)

II y(1)
I + A(1)

IΓyΓ = B(1)
I u(1)

I , (4.24a)

M(2)
II (θ)

d

dt
y(2)

I + M(2)
IΓ (θ)

d

dt
yΓ + A(2)

II (θ)y(2)
I + A(2)

IΓ (θ)yΓ = B(2)
I (θ)u(2)

I , (4.24b)

M(1)
ΓI

d

dt
y(1)

I + MΓΓ(θ)
d

dt
yΓ + M(2)

ΓI

d

dt
y(2)

I

+A(1)
ΓI y(1)

I + AΓΓ(θ)yΓ + A(2)
ΓI y(2)

I = BΓ(θ)uΓ. (4.24c)

The optimality conditions (4.22) can now be written as (4.24a-c) and the adjoint equations

−M(1)
II

d

dt
λ

(1)
I −M(1)

IΓ

d

dt
λΓ +

(
A(1)

II

)T
λ

(1)
I +

(
A(1)

ΓI

)T
λΓ = −

(
C(1)

I

)T (C(1)
I y(1)

I − d(1)
I

)
,

(4.24d)

−M(2)
II (θ)

d

dt
λ

(2)
I −M(2)

IΓ (θ)
d

dt
λΓ +

(
A(2)

II (θ)
)T
λ

(2)
I

+
(
A(2)

ΓI (θ)
)T
λΓ = −∇

y
(2)
I

˜̀(yΓ,y
(2)
I , t, θ), (4.24e)

−M(1)
ΓI

d

dt
λ

(1)
I −MΓΓ(θ)

d

dt
λΓ −M(2)

ΓI

d

dt
λ

(2)
I

+
(
A(1)

IΓ

)T
λ

(1)
I +

(
AΓΓ(θ)

)T
λΓ +

(
A(2)

IΓ

)T
λ

(2)
I = −∇yΓ

˜̀(yΓ,y
(2)
I , t, θ), (4.24f)

and

� T

0
Dθ
˜̀(yΓ,y

(2)
I , t, θ)(θ̃ − θ)dt

+
� T

0

 λΓ

λ
(2)
I


T [(

DθM(2)(θ)(θ̃ − θ)
) d

dt

 yΓ

y(2)
I

+
(
DθA(2)(θ)(θ̃ − θ)

) yΓ

y(2)
I


−
(
DθB(2)(θ)(θ̃ − θ)

) uΓ

u(2)
I

] dt ≥ 0 (4.24g)

for all θ̃ ∈ Θ.
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We have set

M(2)(θ) =

 MΓΓ(θ) M(2)
ΓI (θ)

M(2)
IΓ (θ) M(2)

II (θ)

 , A(2)(θ) =

 AΓΓ(θ) A(2)
ΓI (θ)

A(2)
IΓ (θ) A(2)

II (θ)

 ,

B(2)(θ) =

 BΓ(θ)

B(2)
I (θ)

 .

We apply balanced truncation model reduction to the optimality subsystem that corre-

sponds to the fixed subdomain Ω1.

4.3.2 Balanced truncation model reduction of the fixed subdomain prob-

lem

We will apply balanced truncation model reduction to the optimality subsystem that cor-

responds to the fixed subdomain Ω1. To accomplish this we need to identify how y(1)
I

and λ(1)
I in (4.24) interact with the other components of the system and we have to make

sure that the resulting subsystem is of the form (4.3) to which balanced truncation can

be applied. This is the reason why we have assumed that the integrand ` in the objective

function (4.1a) is of the form (4.23).

If we inspect (4.24) to see how y(1)
I and λ(1)

I interact with the other components of the

system, we are led to

M(1)
II

d

dt
y(1)

I =−A(1)
II y(1)

I −M(1)
IΓ

d

dt
yΓ + B(1)

I u(1)
I −A(1)

IΓyΓ (4.25a)

z(1)
I =−C(1)

I y(1)
I + d(1)

I , (4.25b)

zΓ =−M(1)
ΓI

d

dt
y(1)

I −A(1)
ΓI y(1)

I , (4.25c)
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−M(1)
II

d

dt
λ

(1)
I =−

(
A(1)

II

)T
λ

(1)
I + M(1)

IΓ

d

dt
λΓ −

(
C(1)

I

)Tw(1)
I −

(
A(1)

ΓI

)T
λΓ (4.25d)

q(1)
I =

(
B(1)

I

)T
λ

(1)
I , (4.25e)

qΓ =M(1)
ΓI

d

dt
λ

(1)
I −

(
A(1)

IΓ

)T
λ

(1)
I . (4.25f)

In fact (4.25a) and (4.25d) are identical to (4.24a) and (4.24d), respectively, if w(1)
I =

−z(1)
I = C(1)

I y(1)
I − d(1)

I . The output (4.25b) enters into (4.24d) and the output (4.25c)

enters into (4.24c). Similarly, the output (4.25f) enters into (4.24f). The output (4.25e) is

included as an auxiliary variable. It does not enter into any of the equations in (4.24), but

is included to establish the connection with the generic system (4.3).

If

M(1)
IΓ = 0 and M(1)

ΓI = 0, (4.26)

then (4.25) is given by

M(1)
II

d

dt
y(1)

I = −A(1)
II y(1)

I +
(
B(1)

I | −A(1)
IΓ

)u(1)
I

yΓ

 (4.27a)

z(1)
I

zΓ

 =

−C(1)
I

−A(1)
ΓI

 y(1)
I +

I

0

 d(1)
I , (4.27b)

−M(1)
II

d

dt
λ

(1)
I = −(A(1)

II )Tλ
(1)
I +

−C(1)
I

−A(1)
ΓI


T w(1)

I

λΓ

 (4.27c)

q(1)
I

qΓ

 =
(
B(1)

I | −A(1)
IΓ

)T

λ
(1)
I . (4.27d)

This system is exactly of the form (4.3) that is needed for balanced truncation. We assume

that

vTAv ≤ −αvTMv, ∀v ∈ RN . (4.28)
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Note that assumption (4.28) implies

vTA(1)
II v ≤ −αvTM(1)

II v, ∀v ∈ RN
(1)
I . (4.29)

As a consequence of (4.29) all eigenvalues of the pair (A(1)
II ,M

(1)
II ) have negative real part

and, hence, balanced truncation model reduction can be applied to (4.27) which leads to

the following reduced subsystem

d

dt
ŷ(1)

I = −Â(1)
II ŷ(1)

I − Â(1)
IΓyΓ + B̂(1)

I u(1)
I (4.30a)

ẑ(1)
I = −Ĉ(1)

I ŷ(1)
I + d(1)

I , (4.30b)

ẑΓ = −Â(1)
ΓI ŷ(1)

I , (4.30c)

− d

dt
λ̂

(1)

I = −
(
Â(1)

II

)T
λ̂

(1)

I −
(
Â(1)

ΓI

)T
λΓ −

(
Ĉ(1)

I

)Tw(1)
I (4.30d)

q̂(1)
I =

(
B̂(1)

I

)T
λ̂

(1)

I , (4.30e)

q̂Γ = −
(
Â(1)

IΓ

)T
λ̂

(1)

I . (4.30f)

We assume that

y(1)
I,0 = 0, (4.31)

cf., Remark 4.1.1.

Balanced truncation generates a reduced order model (4.30) such that the error between

the input-to-output maps of (4.25) and (4.30) can be estimated by∥∥∥∥∥∥∥
z(1)

I

zΓ

−

ẑ(1)
I

ẑΓ


∥∥∥∥∥∥∥

L2

≤ 2

∥∥∥∥∥∥∥
u(1)

I

yΓ


∥∥∥∥∥∥∥

L2

τ, (4.32a)

∥∥∥∥∥∥∥
q(1)

I

qΓ

−

q̂(1)
I

q̂Γ


∥∥∥∥∥∥∥

L2

≤ 2

∥∥∥∥∥∥∥
w(1)

I

λΓ


∥∥∥∥∥∥∥

L2

τ, (4.32b)

where

τ = σn+1 + . . .+ σN . (4.32c)
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To be consistent with (4.26) we also assume that M(2)
IΓ = 0 and M(2)

ΓI = 0. The reduced

order optimality system corresponding to (4.24) is given by the state equation

d

dt
ŷ(1)

I + Â(1)
II ŷ(1)

I + Â(1)
IΓ ŷΓ = B̂(1)

I u(1)
I , (4.33a)

M(2)
II

d

dt
ŷ(2)

I + A(2)
II ŷ(2)

I + A(2)
IΓ ŷΓ = B(2)

I u(2)
I , (4.33b)

MΓΓ
d

dt
ŷΓ + Â(1)

ΓI ŷ(1)
I + AΓΓŷΓ + A(2)

ΓI ŷ(2)
I = BΓuΓ, (4.33c)

the adjoint equation

− d

dt
λ̂

(1)

I +
(
Â(1)

II

)T
λ̂

(1)

I +
(
Â(1)

ΓI

)T
λ̂Γ = −

(
Ĉ(1)

I

)T (Ĉ(1)
I ŷ(1)

I − d(1)
I

)
,

(4.33d)

−M(2)
II

d

dt
λ̂

(2)

I +
(
A(2)

II

)T
λ̂

(2)

I +
(
A(2)

ΓI

)T
λ̂Γ = −∇by(2)

I

˜̀(ŷΓ, ŷ
(2)
I , t, θ), (4.33e)

−MΓΓ
d

dt
λ̂Γ +

(
Â(1)

IΓ

)T
λ̂

(1)

I + AT
ΓΓλ̂Γ +

(
A(2)

IΓ

)T
λ̂

(2)

I = −∇byΓ
˜̀(ŷΓ, ŷ

(2)
I , t, θ), (4.33f)

where M(2)
II = M(2)

II (θ), MΓΓ = MΓΓ(θ), A(2)
II = A(2)

II (θ), AΓΓ = AΓΓ(θ), A(2)
IΓ = A(2)

IΓ (θ),

A(2)
ΓI = A(2)

ΓI (θ), B(2)
I = B(2)

I (θ), BΓ = BΓ(θ), and by

� T

0
Dθ
˜̀(ŷΓ, ŷ

(2)
I , t, θ)(θ̃ − θ)dt

+
� T

0

 λ̂Γ

λ̂
(2)

I


T [(

DθM(2)(θ)(θ̃ − θ)
) d

dt

 ŷΓ

ŷ(2)
I

+
(
DθA(2)(θ)(θ̃ − θ)

) ŷΓ

ŷ(2)
I


−
(
DθB(2)(θ)(θ̃ − θ)

) uΓ

u(2)
I

] dt ≥ 0 (4.33g)

for all θ̃ ∈ Θ.

The reduced order optimality system (4.33) is the first-order necessary optimality sys-

tem for the reduced order semidiscretized shape optimization problem

minimize
� T
0

1
2‖Ĉ

(1)
I ŷ(1)

I (t)− d(1)
I (t)‖2

2 + ˜̀(ŷΓ(t), ŷ(2)
I (t), t, θ) dt, (4.34)
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4.3. THE OPTIMIZATION PROBLEM

subject to (4.33a-c) with initial conditions ŷ(1)
I (0) = ŷ(1)

I,0, ŷ(2)
I (0) = y(2)

I,0, ŷΓ(0) = yΓ,0 and

parameter constraints θ ∈ Θ.

4.3.3 Error analysis

We define the objective functions

J(θ) =
� T

0

1
2‖C

(1)
I y(1)

I (t)− d(1)
I (t)‖2

2 + ˜̀(yΓ(t),y(2)
I (t), t, θ) dt,

Ĵ(θ) =
� T

0

1
2‖Ĉ

(1)
I ŷ(1)

I (t)− d(1)
I (t)‖2

2 + ˜̀(ŷΓ(t), ŷ(2)
I (t), t, θ) dt,

where y(1)
I ,y(2)

I ,yΓ solve (4.24a-c) and where ŷ(1)
I , ŷ(2)

I , ŷΓ solve (4.33a-c). Using these ob-

jective functions, which treat the states y(1)
I ,y(2)

I ,yΓ and ŷ(1)
I , ŷ(2)

I , ŷΓ as implicit functions

of θ ∈ Θ, the optimization problems (4.1) and (4.34) can be written as

min
θ∈Θ

J(θ) and min
θ∈Θ

Ĵ(θ)

respectively. Recall that Θ is a closed convex set. If θ∗ ∈ Θ and θ̂∗ ∈ Θ are solutions of

these problems, then

∇J(θ∗)T (θ − θ∗) ≥ 0, ∇Ĵ(θ̂∗)T (θ − θ̂∗) ≥ 0 (4.35)

for all θ ∈ Θ. This implies

(∇J(θ∗)−∇Ĵ(θ̂∗))T (θ̂∗ − θ∗) ≥ 0 (4.36)

If we assume the convexity condition

(∇J(θ̂∗)−∇J(θ∗))T (θ̂∗ − θ∗) ≥ κ‖θ̂∗ − θ∗‖2, (4.37)

then combining (4.36) and (4.37) leads to

(∇J((θ̂∗)−∇Ĵ(θ̂∗))T (θ̂∗ − θ∗) ≥ κ‖θ̂∗ − θ∗‖2.
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4.3. THE OPTIMIZATION PROBLEM

Hence, we have the error estimate

‖θ∗ − θ̂∗‖ ≤ κ−1‖∇Ĵ(θ̂∗)−∇J(θ̂∗)‖. (4.38)

As before, assuming (4.37), an estimate of the error in the solution of (4.1) and (4.34) re-

quires an estimate of the error in the gradient of the full and the reduced order optimization

problem.

The gradients are given by

∇J(θ)T θ̃

=
� T

0
Dθ
˜̀(yΓ(t),y(2)

I (t), t, θ)θ̃dt

+
� T

0

 λΓ(t)

λ
(2)
I (t)


T {(

DθM(2)(θ)θ̃
) d

dt

 yΓ(t)

y(2)
I (t)


+
(
DθA(2)(θ)θ̃

) yΓ(t)

y(2)
I (t)

−
(
DθB(2)(θ)θ̃

) uΓ(t)

u(2)
I (t)

} dt
where y(1)

I , y(2)
I , yΓ, λ(1)

I , λ(2)
I , λΓ solve (4.24a-f), and

∇Ĵ(θ)T θ̃

=
� T

0
Dθ
˜̀(ŷΓ(t), ŷ(2)

I (t), t, θ)θ̃dt

+
� T

0

 λ̂Γ(t)

λ̂
(2)

I (t)


T {(

DθM(2)(θ)θ̃
) d

dt

 ŷΓ(t)

ŷ(2)
I (t)


+
(
DθA(2)(θ)θ̃

) ŷΓ(t)

ŷ(2)
I (t)

−
(
DθB(2)(θ)θ̃

) uΓ(t)

u(2)
I (t)

} dt
where ŷ(1)

I , ŷ(2)
I , ŷΓ, λ̂

(1)

I , λ̂
(2)

I , λ̂Γ solve (4.33a-f), respectively.
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The difference between the full and the reduced gradients is given by

(
∇J(θ)−∇Ĵ(θ)

)T
θ̃

=
� T

0

(
Dθ
˜̀(yΓ,y

(2)
I , t, θ)−Dθ

˜̀(ŷΓ, ŷ
(2)
I , t, θ)

)
θ̃dt

+
� T

0

 λΓ

λ
(2)
I


T {(

DθM(2)(θ)θ̃
) d

dt

 yΓ − ŷΓ

y(2)
I − ŷ(2)

I

+
(
DθA(2)(θ)θ̃

) yΓ − ŷΓ

y(2)
I − ŷ(2)

I

} dt

+
� T

0

 λΓ − λ̂Γ

λ
(2)
I − λ̂

(2)

I


T {(

DθM(2)(θ)θ̃
) d

dt

 ŷΓ

ŷ(2)
I

+
(
DθA(2)(θ)θ̃

) ŷΓ

ŷ(2)
I


−
(
DθB(2)(θ)θ̃

) uΓ

u(2)
I

} dt. (4.39)

We begin with an estimate of the error in the states.

Lemma 4.3.1 Let (4.20) and (4.28) be valid. If y(1)
I , y(2)

I , yΓ solve (4.24a-c), and ŷ(1)
I ,

ŷ(2)
I , ŷΓ solve (4.33a-c), then

∥∥∥C(1)
I y(1)

I − Ĉ(1)
I ŷ(1)

I

∥∥∥
L2
≤

(
2 +

4‖M−1‖‖C(1)
I ‖

α

)∥∥∥∥∥∥∥
u(1)

I

ŷΓ


∥∥∥∥∥∥∥

L2

τ (4.40a)

and ∥∥∥∥∥∥∥
y(2)

I − ŷ(2)
I

yΓ − ŷΓ


∥∥∥∥∥∥∥

L2

≤ 4‖M−1‖
α

∥∥∥∥∥∥∥
u(1)

I

ŷΓ


∥∥∥∥∥∥∥

L2

τ, (4.40b)

where τ = σn+1 + . . .+ σN .

Proof: Let y(1)
I , y(2)

I , yΓ solve (4.24a-c), and let ŷ(1)
I , ŷ(2)

I , ŷΓ solve (4.33a-c). Further-

more, let ỹ(1)
I solve

M(1)
II

d

dt
ỹ(1)

I (t) + A(1)
II ỹ(1)

I (t) + A(1)
IΓ ŷΓ(t) = B(1)

I u(1)
I (t) (4.41)
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with initial condition ỹ(1)
I (0) = y(1)

I,0.

The balanced truncation error bound (4.32) implies∥∥∥∥∥∥∥
C(1)

I ỹ(1)
I − Ĉ(1)

I ŷ(1)
I

A(1)
ΓI ỹΓ − Â(1)

ΓI ŷΓ


∥∥∥∥∥∥∥

L2

≤ 2

∥∥∥∥∥∥∥
u(1)

I

ŷΓ


∥∥∥∥∥∥∥

L2

τ. (4.42)

The equations (4.24a-c), (4.33a-c), and (4.41) give

M(1)
II (θ)

d

dt
(y(1)

I − ỹ(1)
I ) + A(1)

II (θ)(y(1)
I − ỹ(1)

I ) + A(1)
IΓ (θ)(yΓ − ŷΓ) = 0, (4.43a)

M(2)
II (θ)

d

dt
(y(2)

I − ŷ(2)
I ) + A(2)

II (θ)(y(2)
I − ŷ(2)

I ) + A(2)
IΓ (θ)(yΓ − ŷΓ) = 0, (4.43b)

MΓΓ(θ)
d

dt
(yΓ − ŷΓ) + AΓΓ(θ)(yΓ − ŷΓ)

+A(1)
ΓI (y(1)

I − ỹ(1)
I ) + A(2)

ΓI (θ)(y(2)
I − ŷ(2)

I ) = Â(1)
ΓI ŷ(1)

I −A(1)
ΓI ỹ(1)

I

(4.43c)

with initial conditions y(1)
I (0)− ỹ(1)

I (0) = 0, y(2)
I (0)− ŷ(2)

I (0) = 0, yΓ(0)− ŷΓ(0) = 0.

Application of Lemma A.1.2 in the Appendix A to (4.43) followed by an application of

(4.42) gives∥∥∥∥∥∥∥∥∥∥


y(1)

I − ỹ(1)
I

y(2)
I − ŷ(2)

I

yΓ − ŷΓ


∥∥∥∥∥∥∥∥∥∥

L2

≤ 2‖M−1‖
α

∥∥∥Â(1)
ΓI ŷ(1)

I −A(1)
ΓI ỹ(1)

I

∥∥∥
L2
≤ 4‖M−1‖

α

∥∥∥∥∥∥∥
u(1)

I

ŷΓ


∥∥∥∥∥∥∥

L2

τ.

(4.44)

This implies (4.40b). The estimate (4.40a) follows from (4.42) and (4.44). �

The errors in the adjoints are estimated similarly.
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Lemma 4.3.2 Let (4.20) and (4.28) be valid and assume that

‖∇yΓ
˜̀(y(2)

I ,yΓ, t, θ)−∇yΓ
˜̀(ỹ(2)

I , ỹΓ, t, θ)‖ ≤ L
(
‖y(2)

I − ỹ(2)
I ‖2 + ‖yΓ − ỹΓ‖2

)1/2
,

‖∇
y

(2)
I

˜̀(y(2)
I ,yΓ, t, θ)−∇y

(2)
I

˜̀(ỹ(2)
I , ỹΓ, t, θ)‖ ≤ L

(
‖y(2)

I − ỹ(2)
I ‖2 + ‖yΓ − ỹΓ‖2

)1/2

for all y(2)
I − ỹ(2)

I ∈ RN
(2)
I , yΓ − ỹΓ ∈ RNΓ, θ ∈ Θ. If y(1)

I , y(2)
I , yΓ, λ(1)

I , λ(2)
I , λΓ solve

(4.24a-f), and ŷ(1)
I , ŷ(2)

I , ŷΓ, λ̂
(1)

I , λ̂
(2)

I , λ̂Γ solve (4.33a-f), then∥∥∥∥∥
λ(2)

I − λ̂
(2)

I

λΓ − λ̂Γ

∥∥∥∥∥
L2

≤ cλ(σn+1 + . . .+ σN ), (4.45)

where

cλ =
4‖M−1‖

α

∥∥∥∥∥
Ĉ(1)

I ŷ(1)
I − d(1)

I

λ̂Γ

∥∥∥∥∥
L2

+

(
2‖C(1)

I ‖‖M−1‖
α

(
2 +

4‖C(1)
I ‖‖M−1‖
α

)
+

8L‖M−1‖2

α2

)∥∥∥∥∥∥∥
u(1)

I

ŷΓ


∥∥∥∥∥∥∥

L2

.

Proof: Let y(1)
I , y(2)

I , yΓ, λ(1)
I , λ(2)

I , λΓ solve (4.24a-f), and ŷ(1)
I , ŷ(2)

I , ŷΓ, λ̂
(1)

I , λ̂
(2)

I , λ̂Γ

solve (4.33a-f) and set

ẑ(1)
I = Ĉ(1)

I ŷ(1)
I .

Furthermore, let λ̃
(1)

I solve

−M(1)
II

d

dt
λ̃

(1)

I (t) + (A(1)
II )T λ̃

(1)

I (t) + (A(1)
ΓI )T λ̂Γ(t) = −(C(1)

I )(Ĉ(1)
I ŷ(1)

I − d(1)
I ) (4.46)

with the final condition λ̃
(1)

I (T ) = 0.

The balanced truncation error bound (4.32) implies∥∥∥∥∥
(B(1)

I )T λ̃
(1)

I − (B̂(1)
I )T λ̂

(1)

I

(A(1)
IΓ )T λ̃

(1)

I − (Â(1)
IΓ )T λ̂

(1)

I

∥∥∥∥∥
L2

≤ 2

∥∥∥∥∥
Ĉ(1)

I ŷ(1)
I − d(1)

I

λ̂Γ

∥∥∥∥∥
L2

(σn+1 + ...+ σN ). (4.47)
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The equations (4.24d-f), (4.33d-f), and (4.46) imply

−M(1)
II

d

dt
(λ(1)

I − λ̃
(1)

I ) + (A(1)
II )T (λ(1)

I − λ̃
(1)

I )

+(A(1)
ΓI )T (λΓ − λ̂Γ) =− (C(1)

I )(C(1)
I y(1)

I − Ĉ(1)
I ŷ(1)

I ),

−M(2)
II (θ)

d

dt
(λ(2)

I − λ̂
(2)

I ) + (A(2)
II (θ))T (λ(2)

I − λ̂
(2)

I )

+(A(2)
ΓI (θ))T (λΓ − λ̂Γ) =− (∇

y
(2)
I

`(y(2)
I ,yΓ, θ, t)

−∇by(2)
I

`(ŷ(2)
I , ŷΓ, θ, t)),

−MΓΓ(θ)
d

dt
(λΓ − λ̂Γ) + (AΓΓ(θ))T (λΓ − λ̂Γ)

+(A(1)
IΓ )T (λ(1)

I − λ̃
(1)

I ) + (A(2)
IΓ (θ))T (λ(2)

I − λ̂
(2)

I ) =(Â(1)
IΓ )T λ̂

(1)

I − (A(1)
IΓ )T λ̃

(1)

I

− (∇yΓ`(y
(2)
I ,yΓ, θ, t)

−∇byΓ
`(ŷ(2)

I , ŷΓ, θ, t))

with final conditions λ(1)
I (T ) = λ̃

(1)

I (T ) = 0, λ(2)
I (T ) = λ̂

(2)

I (T ) = 0, and λΓ(T ) = λ̂Γ(T ) =

0. Lemma A.1.2 gives the estimate∥∥∥∥∥∥∥∥∥∥


λ

(1)
I − λ̃

(1)

I

λ
(2)
I − λ̂

(2)

I

λΓ − λ̂Γ


∥∥∥∥∥∥∥∥∥∥

L2

≤ 2‖M−1‖
α

‖C(1)
I ‖‖C(1)

I y(1)
I − Ĉ(1)

I ŷ(1)
I ‖L2

+
2‖M−1‖

α
‖(Â(1)

IΓ )T λ̂
(1)

I − (A(1)
IΓ )T λ̃

(1)

I ‖L2

+
2L‖M−1‖

α

∥∥∥∥∥∥∥
y(2)

I − ŷ(2)
I

yΓ − ŷΓ


∥∥∥∥∥∥∥

L2

. (4.49)

The error estimate follows from (4.49), (4.40) and (4.47). �

Equation (4.39) and Lemmas 4.3.1, 4.3.2 imply the following result:
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Theorem 4.3.3 Let the assumptions of Lemma 4.3.2 be valid and assume that

‖∇θ
˜̀(y(2)

I ,yΓ, t, θ)−∇θ
˜̀(ỹ(2)

I , ỹΓ, t, θ)‖ ≤ L
(
‖y(2)

I − ỹ(2)
I ‖2 + ‖yΓ − ỹΓ‖2

)1/2

for all y(2)
I − ỹ(2)

I ∈ RN
(2)
I , yΓ − ỹΓ ∈ RNΓ, θ ∈ Θ, and

max
{
‖DθM(2)(θ)θ̃‖, ‖DθA(2)(θ)θ̃‖, ‖DθB(2)(θ)θ̃‖

}
≤ γ

for all ‖θ̃‖ ≤ 1 and all θ ∈ Θ. Then, there exists c > 0 dependent on u, ŷ, and λ̂ such that

‖∇J(θ)−∇Ĵ(θ)‖L2 ≤
c

α
(σn+1 + ...+ σN ).

Proof: The inequality follows directly from equation (4.39) and Lemmas 4.3.1, 4.3.2. �

Corollary 4.3.4 If the assumptions of Theorem 4.3.3 and (4.37) hold, then there exists

c > 0 dependent on u, ŷ, and λ̂ such that

‖θ∗ − θ̂∗‖ ≤
c

ακ
(σn+1 + ...+ σN ).

Remark 4.3.5 (i) The error estimates in Theorem 4.3.3 and Corollary 4.3.4 rely on an

estimate of the type (4.32) of the errors between the input-output operators of the full state

and adjoint systems and the reduced state and adjoint systems. Balanced truncation model

reduction provides such a bound. Any other model reduction technique for which such a

bound is available can be used as well.

(ii) The assumption (4.28) is used in two ways. First, it implies that all eigenvalues

of the pair (A(1)
II ,M

(1)
II ) have negative real part and, consequently, it is necessary for the

application of balanced truncation model reduction. Secondly, we use it in connection with

Lemma A.1.1. We could, for example, use Gronwall type estimates to derive different
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bounds for the solution of a dynamical system in terms of the right hand side of the dy-

namical system. These bounds can be easily substituted for the bound in Lemma A.1.1. If

such estimates are used, assumption (4.28) could be weakened.

4.4 Numerical examples

4.4.1 Optimal control of water pollution

This example is motivated by [31], where adaptive finite elements are considered for a

steady state version of the optimal control problem described below. See also [4] for a

related problem.

The domain Ω is shown in Figure 4.1. The boundary specifications in Figure 4.1 are

those for the advection-diffusion equation (4.51).1032 L. DEDE’ AND A. QUARTERONI
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Figure 4. Test 1. Reference domain for the control problem. We report the boundary condi-
tions for the advection–diffusion Equation (10) (a) and for the Stokes problem (64) (b).

where ρw
K , ρp

K and ρu
K are defined in Equations (55) and (61) (for the sake of simplicity, we have dropped the

apex (j) on the error indicators). Results are compared with those obtained on fine grids, that we consider an
accurate guess of the exact solution.

4.1. Test 1: water pollution

Let us consider a first test case that is inspired to a problem of a water pollution. The optimal control problem
consists in regulating the emission rates of pollutants (rising e.g. from refusals of industrial or agricultural plants)
to keep the concentration of such substances below a desired threshold in a branch of a river.

We refer to the domain reported in Figure 4a, that could represent a river that bifurcates into two branches
past a hole, which stands for, e.g., an island. Referring to Equation (10), we obtain the velocity field V as the
solution of the following Stokes problem:






−µ∆V + ∇p = 0, in Ω,
V = (1 − ( y

0.2 )2, 0)T , on Γin
D ,

V = 0, on ΓD,
µ∇V · n− pn = 0, on ΓN ,

(64)

where p stands for the pressure, while Γin
D , ΓD and ΓN are indicated in Figure 4b. Adimensional quantities

are used. Here the Stokes problem serves the only purpose to provide an appropriate velocity field for the
advection–diffusion problem; since the latter governs our control problem, the analysis provided in Section 1
and Section 2 applies. Moreover, for the sake of simplicity, we adopt the method and the a posteriori error
estimate (54) proposed in Section 3. In fact, this approach is not fully coherent, being the velocity field V
computed numerically by means of the same grid adopted to solve the control problem, i.e. we consider Vh

instead of V.
For the Stokes problem we assume µ = 0.1 , for which the Reynolds number reads Re ≈ 10; we solve the

problem by means of linear finite elements with stabilization (see [16]), computed with respect to the same grid
of the control problem. In Figure 5 we report the velocity field and its intensity as obtained by solving the
Stokes problem.

For our control problem we assume ν = 0.015, u = 50 in both the emission areas U1 and U2 and zd = 0.1 in
the observation area D. The initial value of the control function, u = 50, can be interpreted as the maximum
rate of emission of pollutants (divided by the emission area), while the state variable w stands for the pollutant

Figure 4.1: The domain Ω with boundary conditions for the advection-diffusion equation
(4.51)
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The advection V is the solution of the steady Stokes equation

−µ∆V(x) +∇p(x) = 0, in Ω (4.50a)

∇ ·V(x) = 0, in Ω (4.50b)

V(x) = Vin(x), on Γin (4.50c)

V(x) = 0, on Γ0 (4.50d)

(µ∇V(x)n− p(x)I) n = 0, on Γout. (4.50e)

The problem data are chosen as in [31]. In particular, µ = 0.1 and Vin(x) = (1 −

(x2/0.2)2, 0)T . Furthermore, the inflow boundary is Γin =
{
(x1, x2) ∈ Ω : x1 = 0

}
, the

outflow boundary is Γout =
{
(x1, x2) ∈ Ω : x1 = 1.2

}
, and Γ0 = ∂Ω \ (Γin ∪ Γout).

The optimal control problem is governed by the advection-diffusion equation

∂

∂t
y(x, t)−∇(k∇y(x, t)) + V(x) · ∇y(x, t)) = u(x, t)χU1(x) + u(x, t)χU2(x) in Ω,

(4.51a)

with boundary and initial conditions

y(x, t) = 0 in ΓD, (4.51b)

∂

∂n
y(x, t) = 0 in ΓN , (4.51c)

y(x, 0) = 0 in Ω. (4.51d)

Here χS is the characteristic function corresponding to the set S. Furthermore, k = 0.015,

V is the solution of (4.50), the boundary segments ΓD and ΓN and the control regions U1

and U2 are shown in Figure 4.1. In our experiments, the final time is T = 4.

The objective function is

1
2

� T

0

�
D

(y(x, t)− d(x, t))2dx dt+
10−4

2

� T

0

�
U1∪U2

u2(x, t)dx dt,
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where D is the observation region shown in Figure 4.1.

For the spatial discretization we use piecewise linear finite elements on three different

triangulations with decreasing mesh sizes. We use the modified low-rank Smith method

in [56] with m = 4 shifts to solve the controllability and observability Lyapunov equations

(4.5). For the model reduction, we select those Hankel singular values σn, with σn ≥

10−4σ1. Table 4.1 displays the size of the reduced and the full order problems for the three

grid sizes. The size of the reduced order model is insensitive to the size of the discretization.

grid
number m k N n

1 168 9 1545 9
2 283 16 2673 9
3 618 29 6036 9

Table 4.1: The number m of observations, the number k of controls, the size N of the full
order system, and the size n of the reduced order system for three discretizations.

Figure 4.2 shows the largest Hankel singular values for the fine grid discretization,

together with the threshold 10−4σ1 indicated by the solid line.

0 10 20 30 40 50 60
10

−20

10
−15

10
−10

10
−5

10
0

Hankel Singular Values

Figure 4.2: The largest Hankel singular values and the threshold 10−4σ1
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For the numerical solution of (4.9), (4.10) we use the Crank-Nicolson method in time

with time step size 10−2. The resulting problem is solved using the conjugate gradient

method. The conjugate gradient is stopped if the initial residual is reduced by a factor

10−4. Figure 4.3 shows the integrals
�
U1
u2(x, t)dx and

�
U2
u2(x, t)dx of the optimal controls

computed using the full and the reduced order model on the fine grid problem. The full and

the reduced order model solutions are in excellent agreement as expected by Corollary 4.2.4.

For the fine grid problem, the error between full and the reduced order model solutions is

‖u∗ − û∗‖2
L2 = 6.2 · 10−3.
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Figure 4.3: The left plot shows the integrals
�
U1
u2
∗(x, t)dx and

�
U1
û2
∗(x, t)dx of the optimal

controls computed using the full (solid line) and the reduced order model (dashed line).
The right plot shows the integrals

�
U2
u2
∗(x, t)dx and

�
U2
û2
∗(x, t)dx of the optimal controls

computed using the full (solid line) and the reduced order model (dashed line). The full
and reduced order model solutions are in excellent agreement.

The convergence histories of the conjugate gradient algorithm applied to the full order

and reduced order optimal control problem are shown in Figure 4.4. The convergence

behavior of the conjugate gradient algorithm applied to the full and the reduced order

problems is nearly identical. Although there is no rigorous theoretical justification for this
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behavior, it is not surprising, given the gradient error bounds derived in Theorem 4.2.3.
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Figure 4.4: The convergence histories of the conjugate gradient algorithm applied to the
full (+) and the reduced (o) order optimal control problems

4.4.2 Shape optimization

Our second example is a shape optimization problem governed by the heat equation. The

domain Ω is of the type shown in Figure 4.5 with a circular hole ΩH . It is decomposed

into subdomains Ω1 = ΩA ∪ ΩB and Ω2 = ΩC \ ΩH . The boundary ∂Ω is decomposed

into ΓL,ΓR,ΓT ,ΓB, and ΓH = ∂ΩH . The interface between Ω1 and Ω2 is given by ΓI =

(ΩA ∩ ΩC) ∪ (ΩB ∩ ΩC).
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Figure 4.5: Reference domain Ωref
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Assuming a heat source f in Ω2× (0, T ), no heat flux through ∂Ω at any time, and zero

initial temperature, the objective is to design the shape of the top Γ2,T and the bottom

Γ2,B of ∂Ω2 in such a way that a prescribed temperature distribution yd is achieved in

Ω2 × (0, T ) and on (ΓL ∪ ΓR)× (0, T ). We use a parametrization Ω2(θ) of Ω2 by means of

the Bézier control points θ ∈ Rk, k = kT + kB, of Bézier curve representations of Γ2,T and

Γ2,B, where kT and kB refer to the number of control points for Γ2,T and Γ2,B, respectively.

The shape optimization problem amounts to the minimization of

J(θ) =

T�

0

�

ΓL∪ΓR

|y − yd|2dsdt+

T�

0

�

Ω2(θ)

|y − yd|2dxdt

subject to the differential equation

yt(x, t)−∆y(x, t) + y(x, t) =f(x, t) in Ω(θ)× (0, T ),

n · ∇y(x, t) = 0 on ∂Ω(θ)× (0, T ),

y(x, 0) = 0 in Ω(θ),

and design parameter constraints

θmin ≤ θ ≤ θmax.

We set f = 100 in Ω2(θ) × (0, T ) and f = 0 else. Furthermore, we specify T = 4. The

bounds θmin, θmax on the design parameters are chosen such that the design constraints are

never active in this example. We use kT = 3, kB = 3 Bézier control points to specify the

top and the bottom boundary of the variable subdomain Ω2(θ). The desired temperature

yd is computed by specifying the optimal parameter θ∗ (specified in Table 4.3 below) and

solving the state equation on Ω(θ∗). The optimal domain Ω(θ∗) is shown in Figure 4.6.

For the semi-discretization in space we use conforming piecewise linear finite elements

with respect to a simplicial triangulation of the computational domain Ω(θ) that aligns with
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Figure 4.6: Optimal domain

its decomposition into the subdomains Ω1 and Ω2. For D ⊆ Ω̄, we denote by Nh(D) the

set of nodal points in D. We use the domain decomposition methodology as described in

the previous section and set N (ν)
dof = card(Nh(Ω̄ν \ΓI)), ν = 1, 2, and NΓI

dof := card(Nh(ΓI))

so that Ndof = N
(1)
dof +N

(2)
dof +NΓI

dof is the total number of degrees of freedom.

The matrices A,M in the semidiscretized optimization problem (4.1) are given as usual.

If φi are the piecewise linear basis functions associated with the triangulation of Ω(θ), then,

for example,

A(θ)ij =
�

Ω(θ)
(∇φT

j ∇φi + φjφi)dx.

The matrix B(θ) ∈ RNdof×1 corresponds to the right-hand side f and is given by B(θ)i =
�
Ω2(θ) φidx such that with u = 100,

�
Ω(θ) f(x, t)φidx = B(θ)u (recall that f = 100 in

Ω2(θ)×(0, T ) and f = 0 else). If the boundary data in the heat equation were nonzero, they

would also be incorporated into B(θ) by adding another column. For example, n·∇y(x, t) =

g1(x)g2(t) on ∂Ω(θ)× (0, T ) would lead to a second column of B(θ)i,2 =
�
∂Ω(θ) φig1(x)dx.

The observation matrix C(1)
I in (4.23) is associated with the term

T�
0

�
ΓL∪ΓR

|y−yd|2dsdt in

the objective function. If φi, i = 1, . . . , k1, are the basis functions associated with the nodes

on ΓL∪ΓR, then we compute the entries of C(1)
I ∈ Rk1×N

(1)
dof as (C(1)

I )i,j =
�
Ω1
φi(x)φj(x)dx

for i = 1, . . . , k1, and j = 1, ..., N (1)
dof .

We use automatic differentiation [54, 100] to compute the derivatives with respect to the
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design variables θ. The semi-discretized optimization problems are solved using a projected

BFGS method with Armijo line search [71]. The optimization algorithm is terminated when

the norm of projected gradient is less than ε = 10−4.

As before, we use the modified low-rank Smith method in [56] with m = 4 shifts to

solve the controllability and observability Lyapunov equations (4.5). Figure 4.7 shows the

largest Hankel singular values. For the model reduction, we select those Hankel singular

values σj , with σj ≥ 10−4σ1. The threshold 10−4σ1 is indicated by the solid line in Figure

4.7.
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Figure 4.7: The largest Hankel singular values and the threshold 10−4σ1

Table 4.2 displays the sizes for the full and the reduced order problems.

N
(1)
dof Ndof

Reduced 147 581
Full 4280 4714

Table 4.2: Sizes of the full and the reduced order problems

The optimal shape parameters θ∗ and θ̂∗ computed by minimizing the full and the reduced
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order model, respectively, are shown in Table 4.3. The error ‖θ∗ − θ̂∗‖2 = 2.325 · 10−4 is

proportional to the threshold applied to the truncation of the Hankel singular values, as

predicted by Corollary 4.3.4.

θ∗ (1.00, 2.0000, 2.0000, -2.0000, -2.0000, -1.00)
θ̂∗ (1.00, 1.9999, 2.0001, -2.0001, -1.9998, -1.00)

Table 4.3: Optimal shape parameters θ∗ and θ̂∗ (rounded to 5 digits) computed by mini-
mizing the full and the reduced order model, respectively

The convergence histories of the projected BFGS algorithm applied to the full and

the reduced order problems are shown in Figure 4.8. Except for the final iterations, the

convergence behavior of the optimization algorithm applied to the full and the reduced

order problems is nearly identical. Although there is no rigorous theoretical justification for

this behavior, it is not surprising, given the gradient error bounds derived in Theorem 4.3.3.
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Figure 4.8: The convergence histories of the projected BFGS algorithm applied to the
full and the reduced order problems. The left figure shows the convergence history of the
objective functionals for the full (+) and reduced (o) order model. The right figure shows
the convergence history of the projected gradients for the full (+) and reduced (o) order
model.
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4.5 Concluding remarks

In this chapter, we have integrated domain decomposition and balanced truncation model

reduction for the numerical solution of a class of PDE-constrained optimization problems

which are governed by linear time dependent advection-diffusion equations and for which

the optimization variables are related to spatially localized quantities. Our approach leads

to a reduced optimization problem with the same structure as the original one, but of

potentially much smaller dimension. We have derived an estimate for the error between

the solution of the original optimization problem and the solution of the reduced problem.

The estimate is largely determined by the balanced truncation error estimate.
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CHAPTER 5

Domain decomposition and balanced truncation model reduction for

shape optimization of the Stokes system

In this chapter we extend the technique introduced in Chapter 4 to study the numerical

solution of a class of shape optimization problems governed by the time dependent Stokes or

the time dependent linearized Navier-Stokes equations, linearized around a steady state, in

which only a small part of the overall domain is modified. The numerical solution of such

optimization problems using gradient based optimization methods requires the solution

of coupled systems of partial differential equations (PDEs) involving the forward in time

governing equation and the backward in time adjoint equation. The solution of this coupled

system can be very expensive, both in terms of computing time and memory. This chapter

is based on [15].
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Our approach to reduce the computational complexity of the numerical optimization

is an integration of domain decomposition and model reduction. Domain decomposition

in space is used to decouple the small subproblem that corresponds to the subdomain

whose shape is modified by the optimization from the fixed subdomain problem. Balanced

truncation model reduction is used to replace the subproblem corresponding to the fixed

subdomain by a substantially smaller problem. Domain decomposition identifies the proper

connectivities between the subproblems, which are used in the balanced truncation. In

principle any model reduction technique can be used, but balanced truncation provides an

error bound for the quality of the reduced order subsystem. This error bound will be used

to derive an error bound for the coupled shape optimization problem.

Chapter 4 was devoted to the numerical solution of optimal control and shape op-

timization problems associated with linear time dependent advection-diffusion equations

by DDBTMR. This chapter extends the approach and analysis presented in Chapter 4 to

shape optimization problems governed by the time dependent Stokes or the time dependent

linearized Navier-Stokes equations, linearized around a steady state. Although conceptu-

ally the approach in this chapter is similar to the one in Chapter 4, the extension to the

Stokes system requires several important changes. These are due to the presence of the

incompressibility constraints and affect the model reduction, the domain decomposition,

the coupling of both, and the analysis.

The chapter is organized as follows: Section 5.1 is devoted to an appropriate setup

of the problem. Balanced truncation model reduction (BTMR) for the semi-discretized

Stokes system is reviewed in Section 5.2. Section 5.3 introduces the domain decomposition

(DD) methodology, including the specification of the optimality systems for the respective

subdomain and interface problems. This is followed by the application of BTMR to the
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domain decomposed optimality system in Section 5.4. Section 5.5 is concerned with an a

priori estimate of the modelling error which, under certain assumptions, is shown to be

largely determined by the BTMR error bound. Two numerical examples concerning the

application of DDBTMR to the shape optimization problems are presented in Section 5.6.

The first example is motivated by the shape optimization of a capillary barrier in a surface

acoustic wave-driven microfluidic biochip (c.f., Subsection 5.6.1). The shape optimization

of an aorto-coronaric bypass is considered in Subsection 5.6.2. Finally, Section 5.7 contains

some concluding remarks as well as an outlook to possible extensions. While problems

governed by the Stokes system are used to demonstrate our approach, it can be applied to

problems governed by the Oseen equation or linearized Navier-Stokes equations, linearized

around a steady state.

5.1 Shape optimization of the time dependent Stokes system

Let Ω(θ) ⊂ R2 be a bounded domain that depends on design variables θ = (θ1, · · · , θd)T ∈

Θ, where Θ ⊂ Rd is a given convex set, e.g., θi, 1 ≤ i ≤ d, are the Bézier control points of

a Bézier curve representation of the boundary and Θ := {θi ∈ R | θmin
i ≤ θi ≤ θmax

i , 1 ≤

i ≤ d}. We assume that the boundary ∂Ω(θ) consists of an inflow boundary Γin(θ), an

outflow boundary Γout(θ), and a lateral boundary Γlat(θ) such that ∂Ω(θ) = Γin(θ) ∪

Γout(θ) ∪ Γlat(θ),Γin(θ) ∩ Γout(θ) ∩ Γlat(θ) = ∅. We set Q(θ) := Ω(θ) × (0, T ),Σ(θ) :=

∂Ω(θ) × (0, T ),Σin(θ) := Γin(θ) × (0, T ),Σlat(θ) := Γlat(θ) × (0, T ), T > 0, and consider

shape optimization problems associated with the time dependent Stokes system of the form

inf
θ∈Θ

J(θ) (5.1a)
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where

J(θ) :=

T�

0

�

Ω(θ)

`(v(θ), p(θ), x, t) dx dt, (5.1b)

and where v(θ), p(θ) solve

∂

∂t
v(x, t)− ν ∆v(x, t) +∇p(x, t) = f(x, t) , (x, t) ∈ Q(θ), (5.1c)

∇ · v(x, t) = 0 , (x, t) ∈ Q(θ), (5.1d)

v(x, t) = vin(x, t) , (x, t) ∈ Σin(θ), (5.1e)

v(x, t) = 0 , (x, t) ∈ Σlat(θ), (5.1f)

(∇v(x, t)− p(x, t)I)n = 0 , (x, t) ∈ Σout(θ), (5.1g)

v(x, 0) = v(0)(x) , x ∈ Ω(θ). (5.1h)

Here, v = v(x, t) = (v1(x, t), v2(x, t))T and p = p(x, t) stand for the velocity and the

pressure, f = f(x, t) is a given forcing term, vin denotes a prescribed normal velocity on

Σin(θ), v(0) = v(0)(x), x ∈ Ω(θ), is the velocity distribution at initial time t = 0, satisfying

∇ · v(0) = 0, ν > 0 refers to the viscosity of the fluid, and t,n are the unit tangential

and unit exterior normal vector on ∂Ω(θ). Moreover, the integrand `(·) in the objective

functional J is a given function of the velocity, the pressure, and the independent variables

x, t.

For the spatial discretization of the time dependent Stokes system we use one of the

many standard methods [51], such as the classical P2-P1 Taylor Hood element, or methods

with discontinuous pressure discretizations. We will discuss this in more detail in Section

5.3 and for details of numerical implementation we refer to Appendix B. We assume that

the simplicial triangulation Th of the spatial domain Ω(θ) is geometrically conforming and

aligns with Γin(θ),Γlat(θ) and Γout(θ). This leads to the semi-discrete optimization problem
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inf
θ∈Θ

J(θ) (5.2a)

where

J(θ) :=

T�

0

`(v(θ),p(θ), x, t, θ) dt, (5.2b)

and where v(θ),p(θ) solve

E(θ)
d

dt

 v(t)

p(t)

+ S(θ)

 v(t)

p(t)

 =

 g1(θ)(t)

g2(θ)(t)

 , t ∈ (0, T ], (5.2c)

M(θ)v(0) = v(0)(θ), (5.2d)

−B(θ)M−1v(0)(θ) + g2(θ)(0) = 0. (5.2e)

Here, the integrand `(·) in (5.2b) results from the spatial discretization of the inner inte-

gral of the objective functional in (5.1b). The block matrix E(θ) and the discrete Stokes

operator S(θ) in (5.2c) are given by

E(θ) :=

 M(θ) 0

0 0

 , S(θ) :=

 A(θ) BT (θ)

B(θ) 0

 , (5.3)

where M(θ) ∈ Rn×n,A(θ) ∈ Rn×n and B(θ) ∈ Rm×n are the lumped mass matrix, the

stiffness matrix, and the matrix representation of the discrete divergence operator. The

vector g2(θ)(t) ∈ Rm in (5.2c) stems from the semi-discretization of the incompressibility

condition due to the boundary condition at the inflow boundary and v(0)(θ) is the initial

velocity satisfying the discrete incompressibility condition (5.2e). We note that the data

of the semi-discrete problem depend on the design variable θ due to the dependence of the

spatial domain on θ.

The Oseen equation and the linearized Navier-Stokes equations, linearized around a

steady state, also lead to systems of the type (5.2c)–(5.3). The existence and uniqueness
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of a solution (v,p) ∈ L2((0, T ); Rn) × L2((0, T ); Rm/(Ker BT )) of the semi-discretized

equations (5.2c),(5.2d) as well as its continuous dependence on the data of the problem is a

consequence of the following result which will also play a prominent role with regard to the

application of BTMR and the derivation of upper estimates for the modeling error. The

following result applies to the semi discretized Stokes system, but also to class of problems

governed by the Oseen equations or the linearized Navier-Stokes equations.

Theorem 5.1.1 Let A,M ∈ Rn×n,B ∈ Rm×n,m < n, be matrices with the following

properties:

(i) M is symmetric positive definite.

(ii) A is positive definite (not necessarily symmetric) on Ker B, i.e., there exists a con-

stant α > 0 such that

vTAv ≥ α vTMv , v ∈ Ker B. (5.4)

(iii) B has full row rank m.

Consider the initial value problem

E
d

dt

 v(t)

p(t)

+ S

 v(t)

p(t)

 =

 g1(t)

g2(t)

 , t ∈ (0, T ], (5.5a)

Mv(0) = v(0), (5.5b)

where E,S are as in (5.3) and g1 ∈ C([0, T ]; Rn),g2, dg2/dt ∈ C([0, T ]; Rm) and v(0) ∈ Rn

satisfies

−BM−1v(0) + g2(0) = 0. (5.6)
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Under the assumptions (i),(ii) and (iii), the initial value problem (5.5a),(5.5b) has a unique

solution (v,p) ∈ C([0, T ]; Rn) × C([0, T ]; Rm/(Ker BT )), and there exist constants C1 −

C8 ≥ 0, depending on A,B,M such that

‖v‖L2 ≤ C1

(
‖v(0)‖+ C2‖g2(0)‖

)
+ C3‖g1‖L2 + C4‖g2‖L2 ,

‖p‖L2 ≤ C1C5

(
‖v(0)‖+ C2‖g2(0)‖

)
+ C6‖g1‖L2 + C7‖g2‖L2 + C8

∥∥∥∥ ddtg2

∥∥∥∥
L2

,

where

C1 =

√
2
∥∥∥M−1/2

∥∥∥∥∥∥M1/2
∥∥∥

√
α

, C2 =
∥∥BT (BM−1BT )−1

∥∥ , C3 =
2
∥∥∥M−1

∥∥∥
α

,

C4 =
2
∥∥∥M−1

∥∥∥
α

∥∥AM−1BT (BM−1BT )−1
∥∥+

∥∥M−1BT (BM−1BT )−1
∥∥ ,

C5 =
∥∥(BM−1BT )−1BM−1

∥∥ ‖A‖ ,
C6 =

∥∥(BM−1BT )−1BM−1
∥∥( 2

α

∥∥∥M−1
∥∥∥ ‖A‖+ 1

)
,

C7 =
∥∥(BM−1BT )−1BM−1

∥∥ ∥∥AM−1BT (BM−1BT )−1
∥∥( 2

α

∥∥∥M−1
∥∥∥ ‖A‖+ 1

)
,

C8 =
∥∥(BM−1BT )−1

∥∥ .
Proof: We set Π := I − BT (BM−1BT )−1BM−1. Since Π2 = Π, ΠM = MΠT ,

null(Π) = range(BT ) and range(Π) = null(BM−1), i.e., Π is an oblique projector.

We split v(t) = vH(t) + vP (t) and v(0) = Πv(0) + v(0)
P , where

vH(t) ∈ KerB , vP (t) := M−1BT (BM−1BT )−1g2(t), (5.7)

v(0)
P = BT (BM−1BT )−1g2(0).

We note that vP (t) and v(0)
P are particular solutions of the second equation in (5.5a) and
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of (5.6), respectively. Then, the initial value problem (5.5a),(5.5b) can be transformed to

ΠMΠT d

dt
vH(t) = −ΠAΠTvH(t) + Πg̃(t) , t ∈ (0, T ], (5.8a)

ΠMΠTvH(0) = v(0)
H , (5.8b)

where v(0)
H = Π v(0) and g̃ ∈ Rn is given by

g̃(t) := g1(t)−AM−1BT (BM−1BT )−1g2(t). (5.9)

Moreover, p(t) ∈ Rm/(Ker BT ) can be recovered according to

p(t) = (BM−1BT )−1
(
BM−1

(
−AvH(t) + g̃(t)

)
− d

dt
g2(t)

)
. (5.10)

In view of (i),(ii), the matrices M := ΠMΠT and A := ΠAΠT are symmetric positive

definite on Ker B and satisfy

−vTAv ≤ −αvTMv , v ∈ Ker B.

Then, Lemma A.1.2 in Appendix A implies

‖vH‖L2 ≤

√
2
∥∥∥M−1/2

∥∥∥∥∥∥M1/2
∥∥∥

√
α

‖v(0)
H ‖+

2
∥∥∥M−1

∥∥∥
α

‖g̃‖L2 . (5.11)

We conclude due to (5.7),(5.10) and (5.11). �

Remark 5.1.2 The semi-discretized Stokes system (5.5a) satisfies (5.4). We refer to the

proof of Theorem 7.1 in [62].
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5.2 Balanced truncation model reduction for Stokes-type

systems

Balanced truncation model reduction is a particular model reduction technique that seeks

to replace a large-scale system of differential or difference equations by a system of sub-

stantially lower dimension that has nearly the same response characteristics, that preserves

asymptotic stability and that provides an error bound on the discrepancy between the out-

puts of the full and reduced order system [18, 23, 34, 53, 86, 124]. Originally, balanced

truncation model reduction was developed for systems of ordinary differential equations

(ODEs). Recently it has been extended to descriptor systems. An overview of balanced

truncation model reduction for descriptor systems can be found in [83]. Balanced trun-

cation model reduction for semi-discretized Stokes and linearized Navier-Stokes systems is

studied in [62, 98, 107]. We summarize the basic ideas for a system that is closely related

to the optimality system arising in control and shape optimization problems governed by

the semi-discretized Stokes or linearized Navier-Stokes equations. Our presentation follows

[62]. We consider

M
d

dt
v(t) = −Av(t)−BTp(t) + Ku(t), t ∈ (0, T ), (5.12a)

0 = −Bv(t) + Lu(t), t ∈ (0, T ) (5.12b)

z(t) = Cv(t) + Fp(t) + Du(t), t ∈ (0, T ), (5.12c)

Mv(0) = v(0), (5.12d)

BM−1v(0) = Lu(0), (5.12e)
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and

−M
d

dt
λ(t) = −ATλ(t)−BTκ(t) + CTw(t), t ∈ (0, T ), (5.13a)

0 = −Bλ(t) + FTw(t), t ∈ (0, T ), (5.13b)

q(t) = KTλ(t) + LTκ(t) + DTw(t), t ∈ (0, T ), (5.13c)

Mλ(T ) = λ(T ), (5.13d)

BM−1λ(T ) = FTw(T ), (5.13e)

where M ∈ Rnv×nv is a symmetric positive definite matrix, A ∈ Rnv×nv , B ∈ Rnp×nv ,

np < nv, is a matrix with rank np, K ∈ Rnv×ng , L ∈ Rnp×ng , C ∈ Rnz×nv , F ∈ Rnz×np ,

and D ∈ Rnz×ng . The terms Du(t) and DTw(t) are ‘feed through terms’ in the output

equations. The system (5.13) is the adjoint system corresponding to (5.12). Conditions

(5.12e) and (5.13e) ensure the compatibility of the inputs u and w with the initial and

final values [28].

In addition to the assumptions above, we assume that the generalized eigenvalues of

the pair (A,M) have positive real part. This assumption is needed to apply balanced

truncation model reduction.

The numerical method discussed in [62] for computing reduced order models using

balanced truncation is applied to the system (5.12,5.13) directly. However, it is derived

by eliminating the variables p and κ via projection. This leads to dynamical systems

governed by ODEs to which standard balanced truncation can be applied. The application

of balanced truncation to the projected system of ODEs is then translated into an approach

that applies directly to (5.12,5.13) . Since the transformation of (5.12,5.13) into a a system

of ODEs is also important for the later application of balanced truncation in optimization

contexts, we summarize the main steps. Details can be found in [62].
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As in the proof of Theorem 5.1.1 we choose v(t) = vH(t) + vP(t), where

vP(t) = M−1BT (BM−1BT )−1Lu(t) (5.14)

is a particular solution of (5.12b) and vH(t) satisfies 0 = BvH(t). If we insert v(t) =

vH(t) + vP(t), (5.14) into (5.12a-c), we obtain

M
d

dt
vH(t) = −AvH(t)−BTp(t)

+
(
K−AM−1BT (BM−1BT )−1L

)
u(t)

−BT (BM−1BT )−1L
d

dt
u(t), (5.15a)

0 = BvH(t), (5.15b)

z(t) = CvH(t) + Fp(t) +
(
D + CM−1BT (BM−1BT )−1L

)
u(t). (5.15c)

Equations (5.15a,b) imply that

p(t) =− (BM−1BT )−1BM−1AvH(t)

+ (BM−1BT )−1BM−1
(
K−AM−1BT (BM−1BT )−1L

)
u(t)

− (BM−1BT )−1L
d

dt
u(t) (5.16)

and ΠTvH(t) = vH(t), where

Π = I−BT (BM−1BT )−1BM−1. (5.17)

Note that Π2 = Π, ΠM = MΠT , null(Π) = range(BT ) and range(Π) = null(BM−1),

i.e., Π is an oblique projector.

Next, we insert (5.16) into (5.15a,c), use the identity ΠTvH(t) = vH(t), and multiply

the resulting equation (5.15a) by Π. Since ΠBT (BM−1BT )−1L = 0 this leads to

ΠMΠT d

dt
vH(t) = −ΠAΠTvH(t) + ΠB̃u(t), (5.18a)

z(t) = C̃ΠTvH(t) + D̃u(t)− F(BM−1BT )−1L
d

dt
u(t), (5.18b)
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where

B̃ = K−AM−1BT (BM−1BT )−1L,

C̃ = C− F(BM−1BT )−1BM−1A,

D̃ = D + CM−1BT (BM−1BT )−1L + F(BM−1BT )−1BM−1B̃.

To obtain the initial condition for vH we set v(0) = Πv(0) + (I−Π)v(0) and use (5.12e)

v(0) = Πv(0) + BT (BM−1BT )−1BM−1v(0)

= Πv(0) + BT (BM−1BT )−1Lu(0).

Furthermore, we have

Mv(0) = MvH(0) + MvP(0) = MΠTvH(0) + MvP(0)

= ΠMvH(0) + BT (BM−1BT )−1Lu(0).

This leads to

ΠMvH(0) = ΠMΠTvH(0) = Πv(0) (=: v(0)
H ). (5.18c)

We can proceed in the same way to transform (5.13). We set λ = λH(t) + λP(t) where

λP(t) = M−1BT (BM−1BT )−1FTw(t). The equations (5.13) can be transformed into

−M
d

dt
λH(t) = −ATλH(t)−BTκ(t)

+
(
CT −ATM−1BT (BM−1BT )−1FT

)
w(t)

+ BT (BM−1BT )−1FT d

dt
w(t) (5.19a)

0 = BλH(t), (5.19b)

q(t) = KTλH(t) + LTκ(t) +
(
DT + KTM−1BT (BM−1BT )−1FT

)
w(t). (5.19c)
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Equations (5.19a,b) imply that

κ(t) =− (BM−1BT )−1BM−1ATλH(t)

+ (BM−1BT )−1BM−1
(
CT −ATM−1BT (BM−1BT )−1FT

)
w(t)

+ (BM−1BT )−1FT d

dt
w(t) (5.20)

and ΠTλH(t) = λH(t), where Π is given as before.

Next, we insert (5.20) into (5.19a,c), use the identity ΠTλH(t) = λH(t), and multiply

the resulting equation (5.19a) by Π. Since ΠBT (BM−1BT )−1FT = 0 this leads to

−ΠMΠT d

dt
λH(t) = −ΠATΠTλH(t) + ΠC̃Tw(t), (5.21a)

q(t) = B̃TΠTλH(t) + D̃Tw(t) + LT (BM−1BT )−1FT d

dt
w(t), (5.21b)

MλH(T ) = Πλ(T ), (5.21c)

where B̃, C̃ and D̃ are given as before.

For model reduction purposes we view u and d
dtu as inputs into (5.18) and w and d

dtw

as inputs into (5.21). The terms involving u and w in (5.18b) and (5.21b) are ‘feed through’

terms, since inputs are directly fed to the outputs z and q respectively. These terms are

not reduced. Note that the transformed system (5.21) is the adjoint system corresponding

to (5.18).

The systems (5.18) and (5.21) are almost in the form to which standard balanced

truncation model reduction can be applied. Since Π has a non-trivial null-space, the

dynamical systems in (5.18) and (5.21) have to be solved for vH with ΠTvH = vH and λH

with ΠTλH = λH. This can be made explicit by expressing

Π = ΘlΘT
r (5.22a)
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with Θl,Θr ∈ Rnv×(nv−np) satisfying

ΘT
l Θr = I. (5.22b)

Substituting this decomposition into (5.18) shows that ṽH = ΘT
l vH ∈ Rnv−np must satisfy

ΘT
r MΘr

d

dt
ṽH(t) = −ΘT

r AΘrṽH(t) + ΘT
r B̃u(t), (5.23a)

z(t) = C̃Θr
d

dt
ṽH(t) + D̃u(t)− F(BM−1BT )−1L

d

dt
u(t). (5.23b)

An analogous substitution is applied in (5.21). Standard balanced truncation model reduc-

tion can now be applied to the system (5.23) and the corresponding adjoint system derived

from (5.21). The projection matrices computed by balanced truncation for (5.23) and the

corresponding adjoint system derived from (5.21) can then be transformed into projection

matrices for the systems (5.18) and (5.21).

Balanced truncation model reduction generates projection matrices V,W ∈ Rnv×k

with k � nv such that

V = ΠTV,W = ΠTW, and WTMV = I.

The reduced order model for (5.18) is obtained by replacing vH(t) in (5.18) by Vv̂(t) and

multiplying the resulting equation by WT . This gives

d

dt
v̂(t) = −WTAVv̂(t) + WT B̃u(t), (5.24a)

ẑ(t) = C̃Vv̂(t) + D̃u(t)− F(BM−1BT )−1L
d

dt
u(t), (5.24b)

v̂(t) = WTΠv(0). (5.24c)

Similarly, the reduced order model for (5.21) is obtained by replacing λH(t) in (5.21)
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by Wλ̂(t) and multiplying the resulting equation by VT . This gives

− d

dt
λ̂(t) = −VTATWλ̂(t) + VT C̃Tw(t), (5.25a)

q̂(t) = B̃TWλ̂(t) + D̃Tw(t) + LT (BM−1BT )−1FT d

dt
w(t), (5.25b)

λ̂(t) = VTΠλ(T ). (5.25c)

We can show that WTAV is stable see [62, Sec. 7] for details. Furthermore if vH(0) =

λH(T ) = 0, and

σ1 ≥ . . . ≥ σk > σk+1 ≥ . . . ≥ σn , (5.26)

then for any given inputs u, w we have

‖z− ẑ‖L2 ≤ 2‖u‖L2(σk+1 + . . .+ σn), (5.27a)

‖q− q̂‖L2 ≤ 2‖w‖L2(σk+1 + . . .+ σn). (5.27b)

Remark 5.2.1 Inhomogeneous initial conditions can be handled by modifying the balanced

truncation model reduction as discussed in [19].

5.3 Domain decomposition

We consider a decomposition of Ω(θ) into subdomains Ω1,Ω2(θ) such that

Ω(θ) = Ω1 ∪ Ω2(θ) , Ω1 ∩ Ω2(θ) = ∅ , Γ := Ω1 ∩ Ω2(θ), (5.28)

where Γ stands for the interfaces between the subdomains. The domain decomposition is

motivated by such PDE-constrained optimization problems where the optimal design issues

focus on a relatively small portion of the domain, namely the subdomain Ω2(θ). Conse-

quently, only that subdomain is supposed to depend on the design variables θ, whereas Ω1
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is independent of θ. In practice, the subdomains Ω1 and Ω2(θ) can be further subdivided.

Multiple subdomains can be incorporated into our approach, but to keep the presentation

simple we consider the two subdomain case.

We assume that the objective functional can be split accordingly

J(θ) := J1(v, p) + J2(v(θ), p(θ), θ). (5.29)

Here, J1(v, p) is given in terms of observation operators C : L2((0, T );V) →

L2((0, T ); (L2(Ω1)q)), F : L2((0, T );L2
0(Ω)) → L2((0, T ); (L2(Ω1))q) and a feedthrough

operator D : L2((0, T );L2(Ω)) → L2((0, T ); (L2(Ω1))q), q ∈ N. For a given function

d ∈ L2((0, T ); (L2(Ω1))q), we define

J1(v, p) :=

T�

0

�

Ω1

|Cv + Fp+Du− d|2 dx dt. (5.30)

On the other hand, J2(v, p, θ) is supposed to be as in (5.1b) with Ω(θ) replaced by Ω2(θ).

We consider geometrically conforming simplicial triangulations Th(Ω(θ)) that align with

the decomposition in the sense that their restrictions to Ω1,Ω2(θ) represent geometrically

conforming triangulations Th(Ω1), Th(Ω2(θ)). The semi-discretization in space of the Stokes

equation in the domain decomposition context requires some care. See, e.g., [3, 25, 72, 90,

96, 97, 110, 112]. For semi-discretization in space, we may use stable discontinuous pressure

elements such as nonconforming P2-P0 or P1-P0 elements [30] or spectral elements [90, 112].

The subsequent analysis also applies, if we use continuous pressure elements such as the

Taylor-Hood P2-P1 element or the mini-element [24, 26], provided the incompressibility

condition on the interface Γ(θ) is not discretized and hence, we do not explicitly consider

the semi-discrete pressure on the interface Γ(θ) (cf., e.g., [97]).

The discretization needs to be such that the coupled problem is solvable, i.e., the local

subproblems corresponding to the subdomains Ω1 and Ω2(θ) as well as those corresponding
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to the interface are solvable. The global problem (5.2c)–(5.2e) has a unique solution (v,p) ∈

L2((0, T ); Rn)×L2((0, T ); Rm/(Ker BT )). Some of the local problems associated with the

subdomain Ω1 or Ω2(θ) correspond to Stokes subdomain problems with Dirichlet boundary

conditions only. Consequently, for these subproblems the pressure is only unique up to a

constant. To ensure that the subdomain solution is the restriction of the solution of (5.2c)–

(5.2e) to the subdomain, we split the subdomain pressures into a constant and a subdomain

pressure with zero spatial average. The latter is determined uniquely as the solution of the

subdomain problem, whereas the constant is determined through the coupled problems.

This split is not necessary for subdomains with an outflow condition, where the local

pressure is unique. However, to simplify the presentation, we assume that the split has to

be made for both subdomains.

The velocities are discretized using

vh(x, t) =
n∑

j=1

vj(t)φj(x),

where φj(t), j = 1, . . . , n1 have support in Ω1, φj(t), j = n1 + 1, . . . , n1 + n2 have sup-

port in Ω2, and φj(t), j = n1 + n2 + 1, . . . , n = n1 + n2 + nΓ are the remaining basis

functions, which are associated with the interface. The semi-discretized pressure ph(x, t)

is the sum of subdomain pressures ph,i(x, t), i = 1, 2 with zero average on the subdomain,
�
Ωj
ph,i(x, t)dx = 0, i = 1, 2, and constant pressures p0,i(t), i = 1, 2, for each subdomain.

We have

ph(x, t) =
2∑

j=1

p0,j(t)χΩj
(x) +

m−2∑
j=1

pj(t)ψj(x),

where χS denotes the characteristic function of a set S ⊂ Ω, ψj(t), j = 1, . . . ,m1 are basis

functions that have support in Ω1, and ψj(t), j = m1 + 1, . . . ,m − 2 = m1 + m2 have
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support in Ω2. We require that

�
Ωj

m1∑
j=1

pj(t)ψj(x)dx =
�

Ωj

m2∑
j=1

pm1+j(t)ψm1+j(x)dx = 0.

Thus, we have velocities v1(t) ∈ Rn1 , v2(t) ∈ Rn2 , vΓ(t) ∈ RnΓ associated with Ω1, Ω2(θ),

and Γ(θ), respectively. We set v(t) = (v1(t),v2(t),vΓ(t))T . The pressures associated with

Ω1, Ω2(θ) are p1(t) ∈ Rm1 , p2(t) ∈ Rm2 . Additionally, we have constants p0,1(t), p0,2(t) ∈

R. We set p0(t) = (p0,1(t), p0,2(t))T and p(t) = (p1(t),p2(t),p0(t))T . Finally, we define

the state variables

x(t) := (v1,p1,v2,p2,vΓ,p0)T , t ∈ [0, T ]. (5.31)

The numerical implementation of domain decomposition for the Stokes equations or lin-

earized Navier-Stokes system is discussed in Appendix B.

With this discretization and partitioning of variables, the matrices A(θ) and B(θ) can

be partitioned as follows

A(θ) =


A11 0 A1Γ

0 A22(θ) A2Γ(θ)

AT
1Γ AT

2Γ(θ) AΓΓ(θ)

 , B(θ) =


B11 0 B1Γ

0 B22(θ) B2Γ(θ)

0 0 B0(θ)

 . (5.32)

Here, A11 ∈ Rn1×n1 , A22(θ) ∈ Rn2×n2 , AΓΓ(θ) ∈ RnΓ×nΓ , AiΓ(θ) ∈ Rni×nΓ , 1 ≤ i ≤ 2, and

B11 ∈ Rm1×n1 , B22(θ) ∈ Rm2×n2 , BiΓ(θ) ∈ Rmi×nΓ , 1 ≤ i ≤ 2, B0(θ) ∈ R2×nΓ . Likewise,

the matrices K(θ),L(θ) and the lumped mass matrix M(θ) admit the decompositions

K(θ) = (K1,K2(θ),KΓ(θ))T L(θ) = (L1,L2(θ),L0(θ))T , (5.33a)

M(θ) = blockdiag(M1,M2(θ),MΓ(θ)), (5.33b)

where Ki(θ) ∈ Rni×k,Li(θ) ∈ Rmi×k, 1 ≤ i ≤ 2, KΓ(θ) ∈ RnΓ×k, LΓ(θ) ∈ R2×k and
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M1 ∈ Rn1×n1 ,M2(θ) ∈ Rn2×n2 , MΓ(θ) ∈ RnΓ×nΓ . We set

E(θ) =


E1 0 0

0 E2(θ) 0

0 0 EΓ(θ)

 , S(θ) =


S1 0 S1Γ

0 S2(θ) S2Γ(θ)

ST
1Γ ST

2,Γ(θ) SΓ(θ)

 , (5.34)

where

E1 =

 M1 0

0 0

 , E2(θ) =

 M2(θ) 0

0 0

 , EΓ(θ) =

 MΓ(θ) 0

0 0

 , (5.35a)

S1 =

 A11 BT
11

B11 0

 , S2(θ) =

 A22(θ) BT
22(θ)

B22(θ) 0

 , (5.35b)

SΓ(θ) =

 AΓΓ(θ) BT
0 (θ)

B0(θ) 0

 , SiΓ(θ) =

 AiΓ(θ) 0

BiΓ(θ) 0

 , 1 ≤ i ≤ 2, (5.35c)

and

N(θ) = (K1 | L1 | K2(θ) | L2(θ) | KΓ(θ) | L0(θ))T . (5.36)

We further denote by C1 ∈ Rq×n1 ,F1 ∈ Rq×m1 ,D1 ∈ Rq×n1 ,d(t) ∈ Rq, t ∈ (0, T ), the

matrices and the vector and by `(v2,vΓ,p2,p0, t, θ) the functional resulting from the semi-

discretization of the inner integrals in J2. We set

J(θ) := J1(v1,p1,p0) + J2(v2(θ),vΓ(θ),p2(θ),p0(θ), θ) (5.37)

where J1 and J2 are given by

J1(v1,p1,p0) =
1
2

T�

0

|C1v1(t) + F1p1(t) + F0p0(t) + D1u(t)− d(t)|2 dt, (5.38a)

J2(v2,vΓ,p2,p0, θ) =

T�

0

`(v2,vΓ,p2,p0, t, θ) dt. (5.38b)
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The semi-discretized, domain decomposed shape optimization problem can be formulated

according to

inf
θ∈Θ

J(θ) (5.39a)

where x = (v1,p1,v2(θ),p2(θ),vΓ(θ),p0(θ))T solves

P(θ)x(t) := E(θ)
d

dt
x(t) + S(θ)x(t) = N(θ)u(t) , t ∈ (0, T ], (5.39b)

M(θ)v(0) = v(0)(θ). (5.39c)

Remark 5.3.1 If the Stokes equations are replaced by the Oseen equations or the lin-

earized Navier-Stokes equations, linearized around a steady state, we also arrive at a semi-

discretized, domain decomposed shape optimization problem that is essentially of the type

(5.39). In this case, the matrix A(θ) and consequently, the matrix S(θ), are no longer

symmetric. However, this nonsymmetry can be easily incorporated and the discussion in

the current and the following sections can be easily extended to classes of problems governed

by the Oseen equation and the linearized Navier-Stokes equations.

Introducing Lagrange multipliers λ(t) ∈ Rn,κ(t) ∈ Rm, t ∈ [0, T ], that are partitioned

accordingly, and setting

µ(t) = (λ1(t),κ1(t),λ2(t),κ2(t),λΓ(t),κ0(t))T ,

the Lagrangian associated with (5.39a)-(5.39c) is given by

L(x,µ, θ) := J(v,p, θ) +

T�

0

µ(t)T (P(θ)x(t)−N(θ)u(t)) dt, (5.40)

and the optimality conditions read

∇xL(x,µ, θ) = 0 , ∇µL(x,µ, θ) = 0 , ∇θL(x,µ, θ)T (θ̃ − θ) ≥ 0 , θ̃ ∈ Θ. (5.41)

104



5.3. DOMAIN DECOMPOSITION

It is obvious that due to the special structure of the decomposed optimization problems,

the optimality conditions (5.41) can be split into a coupled system of optimality conditions

associated with the subdomains Ω1, Ω2(θ), and the interface Γ(θ).

(i) Optimality system associated with subdomain Ω1:

E1
d

dt

 v1(t)

p1(t)

 = − S1

 v1(t)

p1(t)

− S1Γ

 vΓ(t)

p0(t)

+

 K1

L1

u(t), (5.42a)

z1(t) = C1v1(t) + F1p1(t) + F0p0(t) + D1u(t)− d(t), (5.42b)

M1v1(0) = v(0)
1 , (5.42c)

L1u(0) = B11M−1
1 v(0)

1 + B1ΓM−1
Γ v(0)

Γ (θ), (5.42d)

and

−E1
d

dt

 λ1(t)

κ1(t)

 = − S1

 λ1(t)

κ1(t)

− S1Γ

 λΓ(t)

κ0(t)

−

 CT
1

FT
1

 z1(t), (5.43a)

M1λ1(T ) = λ
(T )
1 , (5.43b)

FT
1 z1(T ) = −B11M−1

1 λ
(T )
1 −B1ΓMΓ(θ)−1λ

(T )
Γ (θ). (5.43c)

(ii) Optimality system associated with subdomain Ω2(θ):

E2(θ)
d

dt

 v2(t)

p2(t)

 = − S2(θ)

 v2(t)

p2(t)

− S2Γ(θ)

 vΓ(t)

p0(t)

 (5.44a)

+

 K2(θ)

L2(θ)

u(t),

M2(θ)v2(0) = v(0)
2 (θ), (5.44b)

L2(θ)u(0) = B22(θ)M2(θ)−1v(0)
2 (θ) + B2Γ(θ)MΓ(θ)−1v(0)

Γ (θ), (5.44c)
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and

−E2(θ)
d

dt

 λ2(t)

κ2(t)

 = − S2(θ)

 λ2(t)

κ2(t)

− S2Γ(θ)

 λΓ(t)

κ0(t)

 (5.45a)

−

 ∇v2`(v2,p2,vΓ,p0, t, θ)

∇p2`(v2,p2,vΓ,p0, t, θ)

 ,

M2(θ)λ2(T ) = λ
(T )
2 (θ), (5.45b)

∇p2`(v2,p2,vΓ,p0, t, θ) = −B22(θ)M2(θ)−1λ
(T )
2 (θ) (5.45c)

−B2Γ(θ)MΓ(θ)−1λ
(T )
Γ (θ).

(iii) Optimality system associated with the interface Γ(θ):

EΓ(θ)
d

dt

 vΓ(t)

p0(t)

 = − SΓ(θ)

 vΓ(t)

p0(t)

− ST
1Γ

 v1(t)

p1(t)

 (5.46a)

− ST
2Γ(θ)

 v2(t)

p2(t)

+

 KΓ(θ)

L0(θ)

u(t),

MΓ(θ)vΓ(0) = v(0)
Γ (θ), (5.46b)

L0(θ)u(0) = B0(θ)MΓ(θ)−1v(0)
Γ (θ), (5.46c)

and

−EΓ(θ)

 λΓ(t)

κ0(t)

 = − SΓ(θ)

 λΓ(t)

κ0(t)

− ST
1Γ

 λ1(t)

κ1(t)

− ST
2Γ(θ)

 λ2(t)

κ2(t)


(5.47a)

−

 ∇vΓ`(v2,p2,vΓ,p0, t, θ)

∇p0`(v2,p2,vΓ,p0, t, θ)

−

 0

FT
0

 z1,

MΓ(θ)λΓ(T ) = λ
(T )
Γ (θ), (5.47b)

∇p0`(v2,p2,vΓ,p0, t, θ)+FT
0 z1 = −B0(θ)MΓ(θ)−1λ

(T )
Γ (θ). (5.47c)
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The equations (5.42)-(5.47) have to be complemented by the variational inequality

T�

0

∇θ`(v2,p2,vΓ,p0, t, θ)T (θ̃ − θ) dt (5.48)

+

T�

0

 µ2(t)

µΓ(t)


T  (DθP2(θ)(θ̃ − θ))x2(t)− (DθN2(θ)(θ̃ − θ))u(t)

(DθPΓ(θ)(θ̃ − θ))xΓ(t)− (DθNΓ(θ)(θ̃ − θ))u(t)

 dt ≥ 0

for all θ̃ ∈ Θ.

Remark 5.3.2 Since we are faced with implicit Hessenberg index 2 differential-algebraic

systems, the final values λ(T )
1 ,λ

(T )
2 (θ) and λ(T )

Γ (θ) are in general nonzero and have to be

computed as outlined in [28]. It seems that for most examples considered in the flow control

literature (see, e.g., [1, 57, 85]) the problem structure is such that λ(T )
1 = 0, λ(T )

2 (θ) = 0

and λ(T )
Γ (θ) = 0. For a flow control problem in which the adjoint has a nonzero final time

value see, e.g., [106].

5.4 Balanced truncation model reduction of the domain de-

composed optimality system

We construct a reduced order model for the optimality system (5.42)-(5.48) by applying

balanced truncation only to the optimality system (5.42),(5.43) associated with the fixed

subdomain Ω1. To do this, we have to examine (5.42)-(5.48) to see how the subsystems

(5.42),(5.43) interact with the remaining subsystems.
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This leads to

E1
d

dt

 v1(t)

p1(t)

 = − S1

 v1(t)

p1(t)

− S1Γ

 vΓ(t)

p0(t)

+

 K1

L1

u(t), (5.49a)

z1(t) = C1v1(t) + F1p1(t) + F0p0(t) + D1u(t)− d(t), (5.49b) zv,Γ(t)

zp,Γ(t)

 = − ST
1Γ

 v1(t)

p1(t)

 , (5.49c)

M1v1(0) = v(0)
1 , (5.49d)

L1u(0) = B11M−1
1 v(0)

1 + B1ΓMΓ(θ)−1v(0)
Γ (θ), (5.49e)

and

−E1
d

dt

 λ1(t)

κ1(t)

 = − S1

 λ1(t)

κ1(t)

− S1Γ

 λΓ(t)

κ0(t)

−

 CT
1

FT
1

 z1(t), (5.50a)

q1(t) = KT
1 λ1(t) + LT

1 κ1(t)−DT
1 z1(t), (5.50b) qv,Γ(t)

qp,Γ(t)

 = − ST
1Γ

 λ1(t)

κ1(t)

−

 0

FT
0

 z1, (5.50c)

M1λ1(T ) = λ
(T )
1 , (5.50d)

FT
1 z1(T ) = −B11M−1

1 λ
(T )
1 −B1ΓMΓ(θ)−1λ

(T )
Γ (θ). (5.50e)

The outputs (5.49c) and (5.50c) are inputs into the subsystems (5.46) and (5.47), respec-

tively. The terms vΓ, p0, λΓ, κ0 are auxiliary inputs into the subsystems (5.49a) and

(5.50a). The output (5.50b) does not feed into any of the subsystems in (5.42)-(5.48),

but is added to emphasize the fact that (5.49) and (5.50) is exactly of the form (5.12) and

(5.13). An important observation is that due to the fact that pressures are discontinuous on

the boundary, the second row block in ST
1Γ is zero (cf., (5.32) and (5.35c)). Consequently,

zp,Γ(t) ≡ 0 and qp,Γ(t) = −FT
0 z1(t). (5.51)
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The subsystems (5.49a-c) and (5.50a-c) can be written as

E1
d

dt

 v1(t)

p1(t)

 = − S1

 v1(t)

p1(t)

+

 −A1Γ 0 K1

−B1Γ 0 L1




vΓ(t)

p0(t)

u(t)

 , (5.52a)


zv,Γ(t)

zp,Γ(t)

z1(t)

 =


−AT

1Γ −BT
1Γ

0 0

C1 F1


 v1(t)

p1(t)

+


0

0

F0p0(t) + D1u(t)− d(t)


(5.52b)

and

−E1
d

dt

 λ1(t)

κ1(t)

 = − S1

 λ1(t)

κ1(t)

+

 −A1Γ 0 CT
1

−B1Γ 0 FT
1




λΓ(t)

κ0(t)

−z1(t)

 , (5.53a)


qv,Γ(t)

qp,Γ(t)

q1(t)

 =


−AT

1Γ −BT
1Γ

0 0

KT
1 LT

1


 λ1(t)

κ1(t)

+


0

FT
0

DT
1

 (−z1(t)). (5.53b)

To be able to apply the balanced truncation model reduction technique outlined in

Section 5.2 we assume that B11 ∈ Rm1×n1 has rank m1, that M11 ∈ Rn1×n1 is symmetric

positive definite, and that the generalized eigenvalues of (A11,M11) have positive real part.

These assumptions are satisfied with a proper spatial decomposition of the problem.

If we apply the techniques introduced in Section 5.2 we obtain the following reduced

optimality system.
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(i) Reduced optimality system associated with the subdomain Ω1:

d

dt
v̂1(t) =−WTA11Vv̂1(t) + WT B̃1


v̂Γ(t)

p̂0(t)

u(t)

 , (5.54a)


ẑv,Γ(t)

ẑp,Γ(t)

ẑ1(t)

 =C̃1Vv̂1(t) + D̃1


v̂Γ(t)

p̂0(t)

u(t)

− H̃1
d

dt


v̂Γ(t)

p̂0(t)

u(t)

 , (5.54b)

v̂(0) =WTΠ1v
(0)
1 (5.54c)

and

− d

dt
λ̂1(t) =−VTA11Wλ̂1(t) + VT C̃T

1


λ̂Γ(t)

κ̂0(t)

−ẑ1(t)

 , (5.55a)


q̂v,Γ(t)

q̂p,Γ(t)

q̂1(t)

 =B̃T
1 Wλ̂1(t) + D̃T

1


λ̂Γ(t)

κ̂0(t)

−ẑ1(t)

+ H̃T
1

d

dt


λ̂Γ(t)

κ̂0(t)

−ẑ1(t)

 , (5.55b)

λ̂1(T ) =VTΠ1λ
(T )
1 . (5.55c)

Here Π1 = I−BT
11(B11M−1

11 BT
11)

−1B11M−1
11 and

B̃1 =(−A1Γ |0 |K1)−A11M−1
11 BT

11(B11M−1
11 BT

11)
−1 (−B1Γ |0 |L1)

C̃1 =


−AT

1Γ

0

C1

−


−BT

1Γ

0

F1

 (B11M−1
11 BT

11)
−1B11M−1

11 A11,
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D̃1 =


0 0 0

0 0 0

0 F0 D1

+


−AT

1Γ

0

C1

M−1
11 BT

11(B11M−1
11 BT

11)
−1 (−B1Γ |0 |L1)

+


−BT

1Γ

0

F1

 (B11M−1
11 BT

11)
−1B11M−1

11 B̃1,

H̃1 =


−BT

1Γ

0

F1

 (B11M−1
11 BT

11)
−1 (−B1Γ |0 |L1) .

Note that the structure of B̃1, C̃1, D̃1, and H̃1 imply

ẑp,Γ(t) ≡ 0 and q̂p,Γ(t) ≡ 0. (5.56)

The reduced optimality system associated with the subdomain Ω1 is coupled to the

following optimality subsystems.

(ii) Optimality system associated with the subdomain Ω2(θ):

E2(θ)
d

dt

 v̂2(t)

p̂2(t)

 = − S2(θ)

 v̂2(t)

p̂2(t)

− S2Γ(θ)

 v̂Γ(t)

p̂0(t)


+

 K2(θ)

L2(θ)

u(t), (5.57a)

M2(θ)v̂2(0) = v(0)
2 (θ), (5.57b)

L2(θ)u(0) = B22(θ)M2(θ)−1v(0)
2 (θ) + B2Γ(θ)MΓ(θ)−1v(0)

Γ (θ), (5.57c)
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and

−E2(θ)
d

dt

 λ̂2(t)

κ̂2(t)

 = − S2(θ)

 λ̂2(t)

κ̂2(t)

− S2Γ(θ)

 λ̂Γ(t)

κ̂0(t)

 (5.58a)

−

 ∇bv2
`(v̂2, p̂2, v̂Γ, p̂0, t, θ)

∇bp2
`(v̂2, p̂2, v̂Γ, p̂0, t, θ)

 ,

M2(θ)λ̂2(T ) = λ
(T )
2 (θ). (5.58b)

(iii) Optimality system associated with the interface Γ(θ):

EΓ(θ)
d

dt

 v̂Γ(t)

p̂0(t)

 =− SΓ(θ)

 v̂Γ(t)

p̂0(t)

+

 ẑv,Γ(t)

ẑp,Γ(t)

 (5.59a)

− ST
2Γ(θ)

 v̂2(t)

p̂2(t)

+

 KΓ(θ)

LΓ(θ)

u(t),

MΓ(θ)v̂Γ(0) =v(0)
Γ (θ), (5.59b)

and

−EΓ(θ)

 λ̂Γ(t)

κ̂0(t)

 =− SΓ(θ)

 λ̂Γ(t)

κ̂0(t)

+

 q̂v,Γ(t)

q̂p,Γ(t)

− ST
2Γ(θ)

 λ̂2(t)

κ̂2(t)

 (5.60a)

−

 ∇bvΓ
`(v̂2, p̂2, v̂Γ, p̂0, t, θ)

∇bp0
`(v̂2, p̂2, v̂Γ, p̂0, t, θ)

 ,

MΓ(θ)λ̂Γ(T ) =λ(T )
Γ (θ). (5.60b)

The equations have to be complemented by the variational inequality
T�

0

∇θ`(v̂2, p̂2, v̂Γ, p̂0, t, θ)T (θ̃ − θ) dt (5.61)

+

T�

0

 µ̂2(t)

λ̂Γ(t)


T  (DθP2(θ)(θ̃ − θ)) x̂2(t)− (DθN2(θ)(θ̃ − θ))u(t)

(DθPΓ(θ)(θ̃ − θ)) x̂Γ(t)− (DθNΓ(θ)(θ̃ − θ))u(t)

 dt ≥ 0 , θ̃ ∈ Θ.
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We have applied domain decomposition and balanced truncation model reduction to

derive the reduced order optimality system (5.54)-(5.61) from the full order optimality

system (5.42)-(5.48). This raises the question whether the reduced order optimality system

(5.54)-(5.61) is the optimality system for a reduced order optimization problem. This is

important, since numerically we solve the shape optimization problem using gradient-based

optimization methods rather than explicitly solving the optimality system.

Theorem 5.4.1 The reduced order optimality system (5.54)-(5.61) represents the first or-

der necessary optimality conditions for the shape optimization problem

min Ĵ(θ) (5.62a)

s.t. θ ∈ Θ

where Ĵ(θ) = Ĵ1(v̂1, v̂Γ, p̂0) + Ĵ2(v̂2, p̂2, v̂Γ, p̂0, θ),

Ĵ1(v̂1, v̂Γ) =
1
2

T�

0

|ẑ1|2 dt, (5.62b)

Ĵ2(v̂2, p̂2, v̂Γ, p̂0, θ) =

T�

0

`(v̂2, p̂2, v̂Γ, p̂0, t, θ) dt. (5.62c)

and where ẑ1, v̂ = (v̂1, v̂2, v̂Γ)T p̂ = (p̂2, p̂0)T , are given as the solution of (5.54), (5.57),

(5.59).

The proof uses standard arguments and is omitted.

5.5 A priori estimate of the modeling error

Let θ∗ ∈ Θ and θ̂∗ ∈ Θ be local minima of the optimization problem (5.39) and its

reduced version (5.62), where the states v = (v1,v2,vΓ)T and p = (p1,p2,p0)T solve

113



5.5. A PRIORI ESTIMATE OF THE MODELING ERROR

(5.42),(5.44),(5.46), and where the reduced states v̂ = (v̂1, v̂2, v̂Γ)T and p̂ = (p̂2, p̂0)T

solve (5.54), (5.57), (5.59). Considering the states as implicit functions of the design

variables, (5.39) and (5.62), can simply be written as

inf
θ∈Θ

J(θ) and inf
θ∈Θ

Ĵ(θ).

We want to derive an upper bound for the modeling error ‖θ∗− θ̂∗‖ in terms of the Hankel

singular values occurring in the BTMR of the optimality system for the fixed subdomain

Ω1. Under the convexity assumption, there exists κ > 0 such that(
∇J(θ̂∗)−∇J(θ∗)

)T
(θ̂∗ − θ∗) ≥ κ ‖θ̂∗ − θ∗‖2. (5.63)

It is easy to see that

‖θ∗ − θ̂∗‖ ≤ κ−1 ‖∇Ĵ(θ̂∗)−∇J(θ̂∗)‖, (5.64)

see, e.g., [14]. Hence, we need to provide an upper bound for the right-hand side in (5.64).

The gradients of the objective functions J and Ĵ can be expressed using the Lagrangian

in (5.40) and its reduced analogue associated with (5.62). More precisely, we have

(
∇J(θ)−∇Ĵ(θ)

)T
θ̃ =

T�

0

(
∇θ`(v2,vΓ,p2,p0, t, θ)−∇θ`(v̂2, v̂Γ, p̂2, p̂0, t, θ)

)T
θ̃ dt (5.65)

+

T�

0

(
µ̂2(t)

µ̂Γ(t)

)T( (DθP2(θ)θ̃) (x2 − x̂2)(t)

(DθPΓ(θ)θ̃) (xΓ − x̂Γ)(t)

)
dt

+

T�

0

(
(µ2 − µ̂2)(t)

(µΓ − µ̂Γ)(t)

)T( (DθP2(θ)θ̃)x2(t)− (DθN2(θ)θ̃)u(t)

(DθPΓ(θ)θ̃)xΓ(t)− (DθNΓ(θ)θ̃)u(t)

)
dt

where x = (x1,x2,xΓ)T , with xi = (vi,pi)T , i = 1, 2, xΓ = (vΓ,p0)T , and µ = (µ1,µ2,

µΓ)T , with µi = (λi,κi)T , i = 1, 2, µΓ = (λΓ,κ0)T solve (5.42)-(5.47), and where x̂ =

(x̂1, x̂2, x̂Γ)T with x̂1 = v̂1, x̂2 = (v̂2, p̂2)T , x̂Γ = (v̂Γ, p̂0)T and µ̂ = (µ̂1, µ̂2, µ̂Γ)T with

µ̂1 = λ̂1, µ̂2 = (λ̂2, κ̂2)T , µ̂Γ = (λ̂Γ, κ̂0)T solve (5.54)-(5.60).
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In order to estimate (5.65) from above, we have to establish upper bounds for x2 −

x̂2,xΓ − x̂Γ and µ2 − µ̂2,µΓ − µ̂Γ. This will be done in the sequel, where C will denote a

generic positive constant not necessarily the same at each occurrence.

We apply the balanced truncation error bound (5.27) to estimate the error due to the

reduction of the optimality subsystem corresponding to subdomain Ω1. The error bound

applies when v(0)
1 = 0 and λ(T )

1 = 0, which we will assume. This assumption can be relaxed

when a modification of balanced truncation is applied. See Remark 5.2.1 in Section 5.2.

In order to provide an estimate of the errors in the adjoint states, we make the following

assumption on the matrices A(θ),B(θ),M(θ) defined in (5.32), (5.33b), and submatrices

corresponding to subdomain Ω1. This assumption is satisfied under a proper spatial de-

composition of the problem as described in Section 5.3.

(A1) The matrix B(θ) ∈ Rm×n has rank m, the matrix M(θ) ∈ Rn×n is symmetric positive

definite, and the generalized eigenvalues of (A(θ),M(θ)) have positive real part.

The matrix B11 ∈ Rm1×n1 has rank m1, the matrix M11 ∈ Rn1×n1 is symmetric

positive definite, and the generalized eigenvalues of (A11,M11) have positive real

part.

The first part allows the application of Theorem 5.1.1. The assumption on the submatrices

corresponding to subdomain Ω1 were needed for the application of balanced truncation

model reduction to the optimality subsystem (5.52,5.53).

Lemma 5.5.1 Let x = (x1,x2,xΓ)T , where xi = (vi,pi)T , 1 ≤ i ≤ 2, xΓ = (vΓ,p0)T ,

and x̂ = (x̂1, x̂2, x̂Γ)T , where x̂1 = v̂1, x̂2 = (v̂2, p̂2)T , x̂Γ = (v̂Γ, p̂0)T .

If (A1), (5.26) and v(0)
1 = 0 hold and if x and x̂ satisfy (5.42), (5.44), (5.46) and (5.54),
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(5.57), (5.59), respectively, then∥∥∥∥∥∥∥
 v2 − v̂2

vΓ − v̂Γ


∥∥∥∥∥∥∥

L2

≤ cv

(
σk+1 + · · ·+ σn

)
, (5.66a)

∥∥∥∥∥∥∥
 p2 − p̂2

p0 − p̂0


∥∥∥∥∥∥∥

L2

≤ cp

(
σk+1 + · · ·+ σn

)
, (5.66b)

where

cv =
4
α

∥∥∥M−1
∥∥∥
∥∥∥∥∥∥∥
 u

x̂Γ


∥∥∥∥∥∥∥

L2

,

cp = 2
∥∥(BM−1BT )−1BM−1

∥∥( 2
α

∥∥∥M−1
∥∥∥ ‖A‖+ 1

) ∥∥∥∥∥∥∥
 u

x̂Γ


∥∥∥∥∥∥∥

L2

,

and

‖z1 − ẑ1‖L2 ≤ 2
{ 2
α

∥∥∥M−1
∥∥∥ ‖C1‖+

(
‖F1‖+ ‖F0‖

) ∥∥(BM−1BT )−1BM−1
∥∥

( 2
α

∥∥∥M−1
∥∥∥ ‖A‖+ 1

)
+ 1
} ∥∥∥∥∥∥∥

 u

x̂Γ


∥∥∥∥∥∥∥

L2

(
σk+1 + · · ·+ σn

)
. (5.66c)

Proof: We introduce an auxiliary state (ṽ1, p̃1) as the solution of

E1
d

dt

 ṽ1(t)

p̃1(t)

 = − S1

 ṽ1(t)

p̃1(t)

− S1Γ

 v̂Γ(t)

p̂0(t)

+

 K1

L1

u(t), (5.67a)

z̃1(t) = C1ṽ1(t) + F1p̃1(t) + F0p̂0(t) + D1u(t)− d(t), (5.67b) z̃v,Γ(t)

z̃p,Γ(t)

 = − ST
1Γ

 ṽ1(t)

p̃1(t)

 , (5.67c)

M1ṽ1(0) = v(0)
1 , (5.67d)

L1u(0) = B11M−1
1 v(0)

1 + B1ΓMΓ(θ)−1v(0)
Γ (θ). (5.67e)
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Note that because the second row block in ST
1Γ is zero (cf. (5.32) and (5.35c)), we have

z̃p,Γ(t) ≡ 0. (5.68)

This auxiliary system (5.67) is almost identical to (5.49), but has inputs v̂Γ, p̂0 instead

of vΓ,p0. Thus the inputs for (5.67) and the reduced system (5.54) are the same and we

can apply the balanced truncation error bound (5.27) to this subsystem. The balanced

truncation error bound for this subsystem is∥∥∥∥∥∥∥∥∥∥


z̃1 − ẑ1

z̃v,Γ − ẑv,Γ

z̃p,Γ − ẑp,Γ


∥∥∥∥∥∥∥∥∥∥

L2

≤ 2(σk+1 + . . .+ σn)

∥∥∥∥∥∥∥∥∥∥


u

v̂Γ

p̂0


∥∥∥∥∥∥∥∥∥∥

L2

. (5.69)

We set ev = (v1−ṽ1,v2−v̂2,vΓ−v̂Γ)T and ep = (p1−p̃1,p2−p̂2,p0−p̂0)T . It follows

from (5.42), (5.44), (5.46), (5.51) and (5.67), (5.57), (5.59), (5.56), (5.68) that (ev, ep)T

satisfies the system

E(θ)
d

dt

 ev(t)

ep(t)

 = − S(θ)

 ev(t)

ep(t)

 +

 g1(t)

0

 , t ∈ (0, T ], (5.70a)

M(θ)ev(0) = 0, (5.70b)

where

g1(t) =


0

0

z̃v,Γ − ẑv,Γ

 .
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Applying Theorem 5.1.1 to (5.70) yields∥∥∥∥∥∥∥∥∥∥


v1 − ṽ1

v2 − v̂2

vΓ − v̂Γ


∥∥∥∥∥∥∥∥∥∥

L2

≤ 2
α

∥∥∥M−1
∥∥∥ ‖z̃v,Γ − ẑv,Γ‖L2 ,

∥∥∥∥∥∥∥∥∥∥


p1 − p̃1

p2 − p̂2

p0 − p̂0


∥∥∥∥∥∥∥∥∥∥

L2

≤
∥∥(BM−1BT )−1BM−1

∥∥( 2
α

∥∥∥M−1
∥∥∥ ‖A‖+ 1

)
‖z̃v,Γ − ẑv,Γ‖L2 .

(5.71)

The estimates (5.66a,b) follow from (5.69) and (5.71).

To prove (5.66c) we observe that (5.49b) and (5.67b) imply

‖z1 − ẑ1‖L2 = ‖z1 − z̃1‖L2 + ‖z̃1 − ẑ1‖L2

≤ (‖C1‖‖v1 − ṽ1‖L2 + ‖F1‖‖p1 − p̃1‖L2 + ‖F0‖‖p0 − p̂0‖L2) + ‖z̃1 − ẑ1‖L2 .

Together with (5.69) this implies (5.66c). �

In order to provide an estimate of the errors in the adjoint states, we make the following

assumptions.

(A2) F1 = 0 and F0 = 0, i.e, the objective function J1 does not depend explicitly on the

pressure.

(A3) There exists a positive constant L1 such that for all x2,x′2,xΓ,x′Γ and all θ ∈ Θ, t ∈
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[0, T ] there holds

‖∇v`(x2,xΓ, t, θ)−∇v`(x′2,x
′
Γ, t, θ)‖ ≤ L1

(
‖δx2‖2 + ‖δxΓ‖2

)1/2
,

‖∇p`(x2,xΓ, t, θ)−∇p`(x′2,x
′
Γ, t, θ)‖ ≤ L1

(
‖δx2‖2 + ‖δxΓ‖2

)1/2
,

‖∇θ`(x2,xΓ, t, θ)−∇θ`(x′2,x
′
Γ, t, θ)‖ ≤ L1

(
‖δx2‖2 + ‖δxΓ‖2

)1/2
,

where v ∈ {v2,vΓ},p ∈ {p2,p0} and δx2 := x2 − x′2, δxΓ := xΓ − x′Γ.

(A4) There exists a positive constant γ such that for all θ ∈ Θ and θ′ with ‖θ′‖ ≤ 1

max
(
‖DθM2(θ)θ′‖, ‖DθMΓ(θ)θ′‖, ‖DθS2(θ)θ′‖, ‖DθSΓ(θ)θ′‖,

‖DθS2Γ(θ)θ′‖, ‖DθN2(θ)θ′‖‖DθNΓ(θ)θ′‖
)
≤ γ.

Lemma 5.5.2 Let x, x̂ as in Lemma 5.5.1 and µ = (µ1,µ2,µΓ)T , where

µi = (λi,κi)T , 1 ≤ i ≤ 2 , µΓ = (λΓ,κ0)T ,

and µ̂ = (µ̂1, µ̂2, µ̂Γ)T , where µ̂1 = λ̂1 , µ̂2 = (λ̂2, κ̂2)T , µ̂Γ = (λ̂Γ, κ̂0)T .

If (A1)− (A3), (5.26) and λ(T )
1 = 0 hold, and if x,µ and x̂, µ̂, ẑ1 solve (5.42)-(5.47) and

(5.54)-(5.60), respectively, then∥∥∥∥∥∥∥
 λ2 − λ̂2

λΓ − λ̂Γ


∥∥∥∥∥∥∥

L2

≤ cλ

(
σk+1 + · · ·+ σn

)
, (5.72a)

∥∥∥∥∥∥∥
 κ2 − κ̂2

κ0 − κ̂0


∥∥∥∥∥∥∥

L2

≤ cκ

(
σk+1 + · · ·+ σn

)
, (5.72b)
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where

cλ =
2
α

∥∥∥M−1
∥∥∥ [{‖C1‖

( 4
α

∥∥∥M−1
∥∥∥ ‖C1‖+ 1

)
+ L1

( 4
α

∥∥∥M−1
∥∥∥

+ 2
∥∥(BM−1BT )−1BM−1

∥∥ ( 2
α

∥∥∥M−1
∥∥∥ ‖A‖+ 1

)) ∥∥∥∥∥∥∥
 u

x̂Γ


∥∥∥∥∥∥∥

L2

}
+ 2

∥∥∥∥∥∥∥
 ẑ1

µ̂Γ


∥∥∥∥∥∥∥

L2

]
,

cκ =
∥∥(BM−1BT )−1BM−1

∥∥( 2
α

∥∥∥M−1
∥∥∥ ‖A‖+ 1

)
[{
‖C1‖

( 4
α

∥∥∥M−1
∥∥∥ ‖C1‖+ 1

)
+ L1

( 4
α

∥∥∥M−1
∥∥∥

+ 2
∥∥(BM−1BT )−1BM−1

∥∥ ( 2
α

∥∥∥M−1
∥∥∥ ‖A‖+ 1

)) ∥∥∥∥∥∥∥
 u

x̂Γ


∥∥∥∥∥∥∥

L2

}
+ 2

∥∥∥∥∥∥∥
 ẑ1

µ̂Γ


∥∥∥∥∥∥∥

L2

]
.

Proof: As in the proof of Lemma 5.5.1, we introduce an auxiliary adjoint state µ̃1 =

(λ̃1, κ̃1)T as the solution of

−E1
d

dt

 λ̃1(t)

κ̃1(t)

 =− S1

 λ̃1(t)

κ̃1(t)

− S1Γ

 λ̂Γ(t)

κ̂0(t)

−

 CT
1

FT
1

 ẑ1(t), (5.73a)

q̃1(t) = KT
1 λ̃1(t) + LT

1 κ̃1(t)−DT
1 ẑ1(t), (5.73b) q̃λ,Γ(t)

q̃κ,Γ(t)

 =− ST
1Γ

 λ̃1(t)

κ̃1(t)

−

 0

FT
0

 ẑ1(t), (5.73c)

M1λ̃1(T ) = λ
(T )
1 , (5.73d)

FT
1 ẑ1(T ) =−B11M−1

1 λ
(T )
1 −B1ΓMΓ(θ)−1λ

(T )
Γ (θ). (5.73e)

Note that due to F1 = 0 the compatibility condition (5.43c) implies the compatibility

condition (5.73e).

Moreover, since the second row block in ST
1Γ is zero (cf. (5.32) and (5.35c)) and F0 = 0,

we have

q̃κ,Γ(t) ≡ 0. (5.74)
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The inputs for (5.73) and the reduced system (5.55) are the same and we can apply the

balanced truncation error bound (5.27) to this subsystem. The balanced truncation error

bound for this subsystem is∥∥∥∥∥∥∥∥∥∥


q̃1 − q̂1

q̃λ,Γ − q̂λ,Γ

q̃κ,Γ − q̂κ,Γ


∥∥∥∥∥∥∥∥∥∥

L2

≤ 2
(
σk+1 + · · ·+ σn

)
∥∥∥∥∥∥∥∥∥∥


ẑ1

λ̂Γ

κ̂0


∥∥∥∥∥∥∥∥∥∥

L2

. (5.75)

We set eλ = (λ1− λ̃1,λ2− λ̂2,λΓ− λ̂Γ)T and eκ = (κ1− κ̃1,κ2− κ̂2,κ0− κ̂0)T . Observing

(5.43),(5.45),(5.47), (5.56) as well as (5.73),(5.58),(5.60), (5.74) it follows that

−E1
d

dt

 eλ(t)

eκ(t)

 = − S(θ)

 eλ(t)

eκ(t)

+

 g1(t)

g2(t)

 , t ∈ (0, T ], (5.76a)

M(θ)eλ(T ) = 0, (5.76b)

where

g1(t) =


−CT

1 (z1 − ẑ1)

−∇v2`(x2,xΓ, t, θ) +∇bv2
`(x̂2, x̂Γ, t, θ)

q̃λ,Γ − q̂λ,Γ −∇vΓ`(x2,xΓ, t, θ) +∇bvΓ
`(x̂2, x̂Γ, t, θ)

 ,

g2(t) =


−FT

1 (z1 − ẑ1)

0

−FT
0 (z1 − ẑ1)

 .
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Applying Theorem 5.1.1 to (5.76) and assumption (A3) we obtain∥∥∥∥∥∥∥∥∥∥


λ1 − λ̃1

λ2 − λ̂2

λΓ − λ̂Γ


∥∥∥∥∥∥∥∥∥∥

L2

≤ 2
α

∥∥∥M−1
∥∥∥ (‖C1‖‖z1 − ẑ1‖L2 +

∥∥∥∥∥∥∥
 q̃λ,Γ − q̂λ,Γ

q̃κ,Γ − q̂κ,Γ


∥∥∥∥∥∥∥

L2

+ L1

∥∥∥∥∥∥∥
 v2 − v̂2

vΓ − v̂Γ


∥∥∥∥∥∥∥

L2

+ L1

∥∥∥∥∥∥∥
 p2 − p̂2

p0 − p̂0


∥∥∥∥∥∥∥

L2

)
.

(5.77)

Inequality (5.72a) follows using (5.75), (5.77) and Lemma 5.5.1.

Application of Theorem 5.1.1 to (5.76) and using Assumption (A3) also yields∥∥∥∥∥∥∥∥∥∥


κ1 − κ̃1

κ2 − κ̂2

κ0 − κ̂0


∥∥∥∥∥∥∥∥∥∥

L2

≤
∥∥(BM−1BT )−1BM−1

∥∥ ( 2
α

∥∥∥M−1
∥∥∥ ‖A‖+ 1

)

(
‖C1‖ ‖z1 − ẑ1‖L2 +

∥∥∥∥∥∥∥
 q̃λ,Γ − q̂λ,Γ

q̃κ,Γ − q̂κ,Γ


∥∥∥∥∥∥∥

L2

+ L1

∥∥∥∥∥∥∥
 v2 − v̂2

vΓ − v̂Γ


∥∥∥∥∥∥∥

L2

+ L1

∥∥∥∥∥∥∥
 p2 − p̂2

p0 − p̂0


∥∥∥∥∥∥∥

L2

)

+ C

(
‖ d
dt

FT
1 (z1 − ẑ1)‖L2 + ‖ d

dt
FT

0 (z1 − ẑ1)‖L2

)
. (5.78)

Since F1 = 0, F0 = 0, inequality (5.72b) follows using (5.75), (5.78) and Lemma 5.5.1. �

The preceding two lemmas lead to the following bound for the gradients of the objective

functions for the full order and the reduced order problem.
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Theorem 5.5.3 If (A1)− (A4), and (5.26) are valid, then there exists cg > 0 such that

‖∇J(θ)−∇Ĵ(θ)‖ ≤ cg

(
σk+1 + · · · + σn

)
.

where

cg =

{
TL1 + γ

∥∥∥∥∥∥∥
 µ̂2

µ̂Γ


∥∥∥∥∥∥∥+ γ (cλ + cκ) (σk+1 + · · · + σn)

}
(cv + cp)

+ γ (cλ + cκ)

{∥∥∥∥∥∥∥
 x̂2

x̂Γ


∥∥∥∥∥∥∥+ ‖u‖

}
,

with cv, cp, cλ, cκ are the constants specified in Lemma 5.5.1 and 5.5.2.

Proof: The gradients ∇J(θ) and ∇Ĵ(θ) applied to an arbitrary θ̃ are given by

∇J(θ)T θ̃ =

T�

0

∇θ`(v2,p2,vΓ,p0, t, θ)T θ̃ dt

+

T�

0

 µ2(t)

λΓ(t)


T  (DθP2(θ)θ̃)x2(t)− (DθN2(θ)θ̃)u(t)

(DθPΓ(θ)θ̃)xΓ(t)− (DθNΓ(θ)θ̃)u(t)

 dt,

∇Ĵ(θ)T θ̃ =

T�

0

∇θ`(v̂2, p̂2, v̂Γ, p̂0, t, θ)T θ̃ dt

+

T�

0

 µ̂2(t)

λ̂Γ(t)


T  (DθP2(θ)θ̃) x̂2(t)− (DθN2(θ)θ̃)u(t)

(DθPΓ(θ)θ̃) x̂Γ(t)− (DθNΓ(θ)θ̃)u(t)

 dt.

The estimate now follows from Lemmas 5.5.1 and 5.5.2 and Assumption (A3). �

Under the convexity assumption (5.63) the bound (5.64) combined with Theorem 5.5.3

gives the desired bound for the error in the solutions computed using the full and the

reduced order model.
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Corollary 5.5.4 If the assumptions of Theorem 5.5.3 hold and the convexity assumption

(5.63) is valid, then there exists cg > 0 as specified in Theorem 5.5.3 such that

‖θ∗ − θ̂∗‖ ≤ cg
κ

(
σk+1 + · · · + σn

)
.

5.6 Numerical examples

5.6.1 Shape optimization of capillary barriers in microfluidic biochips

We saw in Chapter 2 that the induced fluid flow in surface acoustic wave driven microfluidic

biochips is taken care of by an homogenization approach so that the resulting flow pattern,

called acoustic streaming, can be described by instationary compressible Stokes flow. We

refer to [10, 12, 16, 49] for details. The performance of these biochips can be significantly

improved by an optimal design of the walls of the microchannels and the capillary barriers

between the channels and the reservoirs.
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Figure 5.1: The reference domain Ωref (left) and the optimal domain (right)
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As a first step we consider incompressible Stokes flow in a network of microchannels

and reservoirs on top of a microfluidic biochip with capillary barriers between the channels

and the reservoirs that are designed to guarantee a precise filling of the reservoirs with the

DNA or protein probes. The objective is twofold: Firstly, we want to design the walls of

the barriers in such a way that a desired velocity profile vd is attained and secondly, we

want to minimize the vorticity ∇× v in some specific part of the network.

The computational domain Ω ⊂ R2 is displayed in Figure 5.1. It is decomposed into

subdomains Ω1 = Ω \ Ω2, and Ω2 = {1.5, 2.5} × {9, 10}. The boundary ∂Ω is decomposed

into Γin = {0} × (9, 10),Γout = {10} × (0, 1), and Γlat = ∂Ω \ (Γin ∪ Γout).

The data of the problem is chosen as follows. Assume f = 0 in Ω × (0, T ), a Poiseuille

velocity profile vin((x1, x2), t) = 4(x2 − 9)(10− x2)(1− 0.8
15 t)sin(t) on Γin × (0, T ), outflow

boundary conditions on Γout× (0, T ), and no-slip conditions on Γlat× (0, T ). The objective

is to design the shape of the top Γ2,T and the bottom Γ2,B of ∂Ω2 in such a way that a

prescribed velocity profile vd is achieved in Ω2 × (0, T ) and the vorticity is minimized in

Ωobs (four bulb-shaped structures in Figure 5.1). We use a parametrization Ω2(θ) of Ω2 by

means of the Bézier control points θ ∈ Rk, k = kT + kB, of Bézier curve representations of

Γ2,T and Γ2,B, where kT and kB refer to the number of control points for Γ2,T and Γ2,B,

respectively. The shape optimization problem amounts to the minimization of

J(θ) =

T�

0

�

Ωobs

|∇ × v(x, t)|2dxdt+

T�

0

�

Ω2(θ)

|v(x, t)− vd(x, t)|2dxdt
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subject to the Stokes equations

vt(x, t)− µ∆v(x, t) +∇p(x, t) = f(x, t), in Ω(θ)× (0, T ),

∇ · v(x, t) = 0, in Ω(θ)× (0, T ),

v(x, t) = vin(x, t) on Γin × (0, T ),

v(x, t) = 0 on Γlat × (0, T ),

(µ∇v(x, t)− p(x, t)I)n = 0 on Γout × (0, T ),

v(x, 0) = 0 in Ω(θ)

and design parameter constraints

θmin ≤ θ ≤ θmax,

where µ = 1/50 and T = 15. The bounds θmin, θmax on the design parameters are chosen

such that the design constraints are never active in this example. We use kT = 6, kB = 6

Bézier control points to specify the top and the bottom boundary of the variable subdomain

Ω2(θ) with the respective first and last control points being fixed. The desired velocity vd is

computed by specifying the optimal parameter θ∗ and solving the state equation on Ω(θ∗).

The optimal domain Ω(θ∗) is shown in Figure 5.1.

We consider a geometrically conforming simplicial triangulation Th(Ω) of the reference

that aligns with the decomposition of Ω into the subdomains Ω1 and Ω2 as well as the

respective boundaries. The discretization in space is taken care of by P2-P1 Taylor-Hood

elements. For details we refer to Appendix B. For D ⊆ Ω, we denote by Nv,h(D),Np,h(D)

the set of velocity and pressure nodal points in D. We use the domain decomposition

methodology as before and set N (ν)
v,dof = card(Nv,h(Ω̄ν \ ΓI,v)), ν = 1, 2, and N

ΓI,v

dof :=

card(Nv,h(ΓI,v)) so that Nv,dof = N
(1)
v,dof +N

(2)
v,dof +N

ΓI,v

v,dof is the total number of velocity

degrees of freedom. Similarly, Np,dof = N
(1)
p,dof + N

(2)
p,dof is the total number of pressure
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degrees of freedom.

We use automatic differentiation [54, 100] to compute the derivatives with respect

to the design variables θ. The semi-discretized optimization problems are solved using

a projected BFGS method with Armijo line search [71]. The optimization algorithm is

terminated when the norm of projected gradient is less than ε = 10−4. The results in

Figure 5.1(right) and Figures 5.2-5.4 and Table 5.2 were generated using the finest grid

i.e., grid 4 with Nv,dof = 16806. We will explain them as we go along.

We use the multishift ADI method [62] to solve the projected Lyapunov equations. We

use four shifts in the ADI method which were computed as in [62]. Figure 5.2 shows the

largest Hankel singular values. For the model reduction, we select those Hankel singular

values σj , with σj ≥ 10−3σ1. The threshold 10−3σ1 is indicated by the solid line in

Figure 5.2 (left). In this case only twenty-nine Hankel singular values and corresponding

singular vectors determine the reduced order model for the velocities in Ω1.
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Figure 5.2: The left plot shows the largest Hankel singular values and the threshold 10−3σ1.
The right plot shows normalized residuals [62] generated by the multishift ADI for the
approximate solution of the controllability Lyapunov equation (o) and of the observability
Lyapunov equation (∗)

In order to test our model reduction routine we compare full and the reduced order
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semi-discretized integrand

`(θ0, t) =
�

Ωobs

|∇ × v(x, t)|2dx+
�

Ω2(θ0)

|v(x, t)− vd(x, t)|2dx

as a function of time t for the initial value of the design parameter θ0. Note that J(θ) =
� T
0 `(θ) dt. Figure 5.3 displays the results obtained. The full and reduced order models are

both in excellent agreement, which is expected given the theoretical a priori error bound

for the balanced truncation model reduction.
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Figure 5.3: Time response for the full (circle) and the reduced (solid line) integrand `(θ0)
for the initial configuration (= reference domain Figure 5.1(left))

Table 5.1 displays the sizes of the reduced and the full order problems (in degrees of

freedom (dof)) for an initial coarse grid and three levels of refinement. We observe that

the size of the reduced order model is nearly independent of the grid size.

The optimal shape parameters θ∗ and θ̂∗ computed by minimizing the full and the

reduced order model, respectively, are shown in Table 5.2. For the finest grid problem, the

error between full and the reduced order model solutions is ‖θ∗ − θ̂∗‖2 = 8.0751 · 10−3.
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grid
number m N

(1)
v,dof N

(1)bv,dof Nv,dof Nbv,dof

1 149 4752 23 4862 133
2 313 7410 25 7568 183
3 361 11474 26 11700 252
4 537 16472 29 16806 363

Table 5.1: The number m of observations in Ω1, the numbers N (1)
v,dof , N

(1)bv,dof of velocity
dof in Ω1 (full and reduced order), and the numbers Nv,dof , Nbv,dof of velocity dof in Ω (full
and reduced order) for four discretizations

θ∗ (9.8987, 9.7510, 9.7496, 9.8994, 9.0991, 9.2499, 9.2504, 9.0989)
θ̂∗ (9.9026, 9.7498, 9.7484, 9.9021, 9.0940, 9.2514, 9.2511, 9.0956)

Table 5.2: Optimal shape parameters θ∗ and θ̂∗ (rounded to 5 digits) computed by mini-
mizing the full and the reduced order model

The convergence histories of the projected BFGS algorithm applied to the full and

the reduced order problems are shown in Figure 5.4. Except for the final iterations, the

convergence behavior of the optimization algorithm applied to the full and the reduced

order problems is nearly identical.
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Figure 5.4: The convergence histories of the projected BFGS algorithm applied to the full
(+) and the reduced (o) order problems. Left: Objective functionals. Right: Projected
gradients.
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5.6.2 Shape optimization of aorto-coronaric bypass

In this subsection we consider yet another application of the techniques developed in pre-

vious sections to a challenging real life problem. The problem considered is motivated by

[2], where an optimal configuration of a 2D aorto-coronaric bypass is obtained and the

optimal shape obtained looks like a Taylor patch by minimizing the vorticity in the region

of interest.

Consider an arterial bypass bridge configuration shown in Figure 5.5. The dotted region

marked (left) and shown separately in Figure 5.5 (right) represents the geometry of the

complete anastomosis. The angle between the bypass bridge and the main vessel is called

the graft angle. In our optimization problem only the top curved boundary in Figure 5.5

(right) is subject to change during optimization and is the characteristic Bézier curve,

characterized by the control points θ.

main vessell

bypass bridge
y

x
0

x

y

0

occlusion

Figure 5.5: Arterial bypass bridge configuration (left), interesting region with respect to
shape optimization (right), only top curved boundary (right) is subject to change during
optimization.

The computational domain Ω ⊂ R2 is displayed in Figure 5.6. Note we assume that

the graft angle is equal to zero. It is decomposed into subdomains Ω1 = Ω \ Ω2, and

Ω2 = {−1.0, 0}×{0, 1.5}. The boundary ∂Ω is decomposed into Γin = {−3}×(1, 2),Γout =
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{4}×(0, 1)∪Γobs, and Γlat = ∂Ω\(Γin∪Γout), where Γobs = {−3}×(0, 0.8) is the occlusion

wall.
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Figure 5.6: Reference (left) and optimal (right) aorto-coronaric bypass

The data of the problem is chosen as in [2]. Assume f = 0 in Ω × (0, T ), a Poiseuille

velocity profile vin((x1, x2), t) = 0.475(x2 − 1)(2 − x2)(1 − t)sin(3t) which is pulsatile in

nature with a period T = 1s (heart beat) on Γin × (0, T ), outflow boundary conditions on

Γout × (0, T ), and no-slip conditions on Γlat × (0, T ). The input velocity vin is chosen so

that the Reynolds number Re has the order 103, the mean Reynolds number is 1250, the

maximum is 2500. For details we refer to [2].

The objective is to design the shape of the top Γ2,T with Γ2,B fixed of ∂Ω2 in such a

way that a prescribed velocity profile vd is achieved in Ω2× (0, T ) and the velocity is equal

to zero on Γobs. We use a parametrization Ω2(θ) of Ω2 by means of the Bézier control

points θ ∈ Rk, k = kT + kB, of Bézier curve representations of Γ2,T and Γ2,B, where kT

and kB refer to the number of control points for Γ2,T and Γ2,B, respectively. The shape

optimization problem amounts to the minimization of

J(θ) =

T�

0

�

Γobs

|v(x, t)|2dxdt+

T�

0

�

Ω2(θ)

|v(x, t)− vd(x, t)|2dxdt

subject to the Stokes equations as in the previous subsection and design parameter con-

straints

θmin ≤ θ ≤ θmax,

131



5.6. NUMERICAL EXAMPLES

where µ = 4 · 10−6m2/s is the blood kinematic viscosity. The bounds θmin, θmax on the

design parameters are chosen such that the design constraints are never active in this

example. We use kT = 5, kB = 1 Bézier control points to specify the top and the bottom

boundary of the variable subdomain Ω2(θ) with the respective first and last control points

being fixed. The desired velocity vd is computed by specifying the optimal parameter θ∗

(which is chosen according to the optimal shape obtained in [2]) and solving the state

equation on Ω(θ∗). The optimal domain Ω(θ∗) is shown in Figure 5.6.

Again automatic differentiation is used to compute the derivatives with respect to the

design variables θ. The semi-discretized optimization problems are solved using a projected

BFGS method with Armijo line search [71]. The optimization algorithm is terminated when

the norm of projected gradient is less than ε = 10−6.
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Figure 5.7: The left plot shows the largest Hankel singular values and the threshold 10−8σ1.
The right plot shows normalized residuals [62] generated by the multishift ADI for the
approximate solution of the controllability Lyapunov equation (o) and of the observability
Lyapunov equation (∗).

We use the multishift ADI method [62] to solve the projected Lyapunov equations. We

use four shifts in the ADI method which were computed as in [62]. Figure 5.7 shows the
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largest Hankel singular values. For the model reduction, we select those Hankel singular

values σj , with σj ≥ 10−8σ1. The threshold 10−8σ1 is indicated by the solid line in

Figure 5.7 (left).

Table 5.3 displays the sizes of the reduced and the full order problems (in Degrees of

Freedom (dof)).

grid
number m N

(1)
v,dof N

(1)bv,dof Nv,dof Nbv,dof

1 251 27554 815 32226 5487

Table 5.3: The number m of observations in Ω1, the numbers N (1)
v,dof , N

(1)bv,dof of velocity
dof in Ω1 (full and reduced order), and the numbers Nv,dof , Nbv,dof of velocity dof in Ω (full
and reduced order)

The optimal shape parameters θ∗ and θ̂∗ computed by minimizing the full and the

reduced order model, respectively, are shown in Table 5.4. The error between full and the

reduced order model solutions is ‖θ∗ − θ̂∗‖2 = 4.5 · 10−3.

θ∗ (1.00, 1.2148, 1.2668, 1.3646, 1.00, 0.00)
θ̂∗ (1.00, 1.2179, 1.2675, 1.3679, 1.00, 0.00)

Table 5.4: Optimal shape parameters θ∗ and θ̂∗ (rounded to 5 digits) computed by mini-
mizing the full and the reduced order model

The convergence histories of the projected BFGS algorithm applied to the full and the

reduced order problems are shown in Figure 5.8. The convergence behavior of the opti-

mization algorithm applied to the full and the reduced order problems is nearly identical.
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Figure 5.8: The convergence histories of the projected BFGS algorithm applied to the full
(+) and the reduced (o) order problems. Left: Objective functionals. Right: Projected
gradients.

5.7 Concluding remarks

In this chapter, we have integrated domain decomposition and balanced truncation model

reduction for the numerical solution of a class of shape optimization problems governed by

the Stokes equations. This approach can be applied when only small part of the overall

domain can be modified by the optimization. Our approach leads to a reduced optimization

problem with the same structure as the original one, but of potentially much smaller

dimension. We have derived an estimate for the error between the solution of the original

optimization problem and the solution of the reduced problem. The estimate is largely

determined by the balanced truncation error estimate. The approach can be easily extended

to shape optimization problems governed by the Oseen equations or the linearzed Navier-

Stokes equations, linearized around suitable steady flows.
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CHAPTER 6

Reduced order modeling based shape optimization of microfluidic

biochips

In this chapter we provide a detailed documentation of simulation results for the microflu-

idic biochips that illustrate both the validity of our model as well as the feasibility of the

model reduction based optimization.

Using the notation from previous chapters and denoting by θ∗ and θ̂∗ the optimal de-

signs obtained for the full and the reduced order model, respectively, under the assumptions

that J is strictly convex, J1 does not depend explicitly on the pressure p, and some further

assumptions, Corollary 5.5.4 gives

‖θ∗ − θ̂∗‖ ≤ cg
κ

(
σk+1 + · · ·+ σn

)
, (6.1)
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(Note: The error estimates derived in Chapter 5 hold for biochip systems as well) where

σ1 ≥ . . . ≥ σk > σk+1 + . . .+σn ≥ 0 are the Hankel singular values provided by BTMR for

the Ω1 optimality subsystem and cg is the constant from Theorem 5.5.3.

6.1 Numerical results

In actual numerical simulations of acoustic streaming, we consider (2.12a)-(2.12e) in di-

mensionless form according to

V T

L

dv1

dt
− V T 2

L3
(ν̃1∆v1 + ν̃2∇(∇ · v1)) +∇p1 = 0 in Ω× (0, T1], (6.2a)

L3

c20V T
3

dp1

dt
+∇ · v1 = 0 in Ω× (0, T1], (6.2b)

V T

L
v1 =

du
dt

on ΓD × (0, T1] , σ1n = 0 on ΓN × (0, T1], (6.2c)

v1(·, 0) = 0 , p1(·, 0) = 0 in Ω, (6.2d)

where the parameters and their meanings are shown in Table 6.1. Similarly, the dimen-

sionless form of (2.18a)-(2.18e) is as follows:

V T

L

dv2

dt
− V T 2

L3
(ν̃1∆v2 + ν̃2∇(∇ · v2)) +∇p2 = 〈fv〉 in Ω× R+, (6.3a)

∇ · v2 = 〈fp〉 in Ω× R+, (6.3b)

v2 = 〈(∇v1)u〉 on ΓD × R+ , σ2n = 0 on ΓN × R+, (6.3c)

v2(·, 0) = 0 , p2(·, 0) = 0 in Ω, (6.3d)

where

fv := −V
2T 2

L2
(∇ · v1)v1 + (∇v1)v1 , fp := − L2

T 2c20
∇ · (p1v1).

We note that 〈fv〉 represents the time averaged sound velocity in the fluid which is com-

monly referred to as the effective force.

136



6.1. NUMERICAL RESULTS

Parameter Value and units Description
V 1.0 · 10−1 m/s Dimensionless velocity scale
L 1.0 · 10−7 m Dimensionless length scale
T 1.0 · 10−8 s Dimensionless time scale
f 1.0 · 108 Hz Frequency of the SAW device
c0 1.484 · 103 m/s Small signal sound speed in water
ρ 1.0 · 103 kg/m3 Density of liquid
u0 1.0 · 10−9 m Maximal SAW displacement
Cd 8.06 · 103 1/m Damping parameter of the LSAW
ν̃1 1.002 · 10−6 m2/s Kinematic viscosity of water
ν̃2 1.002 · 10−6 m2/s Kinematic bulk viscosity of water

Table 6.1: Numerical and physical parameters for the numerical simulation of acoustic
streaming

In Subsection 6.1.1 we model part of a microfluidic biochip with a square domain

which acts as a fluid-filled cavity. The main purpose of this subsection is to validate our

implementation using the numerical example 6.1.1 from [75] as a benchmark. The purpose

of Subsection 6.1.2 is twofold: Firstly, we simulate a simplified biochip geometry used for

experimental measurements in [41]. Secondly, we compare the results with those obtained

by a reduced order model using BTMR. Finally, in Subsection 6.1.3 we discuss the model

reduction based shape optimization of a capillary barrier using DDBTMR combined with

a gradient type minimization algorithm.

6.1.1 Fluid-filled cavity

In this subsection we model parts of a microfluidic biochip with a square domain which

acts as a fluid-filled cavity. The main purpose of this subsection is to validate our imple-

mentation using the numerical Example 6.1.1 from [75] as a benchmark. We consider a

fluid-filled square cavity Ω = [0, 1 mm]2 with SAW displacements u = (u1, u2)T prescribed
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at the bottom by

u1(t, x1) = 0.6ε exp(−Ĉdx1) sin(2π(−k̂x1 + ft)),

u2(t, x2) = −ε exp(−Ĉdx1) cos(2π(−k̂x1 + ft))

with parameters ε = u0/L , Ĉd = CdL , k̂ = L/λ , f̂ = fT , where λ = 24 µm is the SAW

wavelength (cf. Table 6.1). The velocity v1 is set to zero on the other three boundaries.

The SAW propagates from left to right with exponential attenuation. The fluid is assumed

to be initially at rest, i.e., v1 = 0, p1 = 0. We use P2-P1 Taylor-Hood finite elements for

discretization in space and the Crank-Nicolson scheme for discretization in time.

We iterate until a periodicity condition for the pressure is fulfilled at some time tend:

We first compute pressures for k time steps. Then, we choose an offset number of time

steps m = 2π
ωτ1

where ω = 2πf and τ1 = 0.1 denote the angular frequency and the time

step size. We vary n from m to k and stop as soon the periodicity condition∥∥∥∥∥ 1
m

n∑
i=n−m

p
(i)
1 − p

(i−m)
1

∥∥∥∥∥
L2

/‖p(n)
1 ‖L2 ≤ ε

is satisfied. Otherwise, we go back and increase k. We assume that the iteration stops for

some n = N which implies tend = τ1N .

Figure 6.1 displays the computed pressure at t = 1.25 µs (left) and the associated

velocity field v2 (right). Both coincide well with experimental measurements reported in

[75].

6.1.2 BTMR of a microfluidic biochip

A simplified biochip geometry as used for measurements in [41] is shown in Figure 6.2

(left). The IDT is placed at x1 = 0 aligned with the top wall of the biochip. Since the
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Figure 6.1: Fluid-filled cavity: Pressure at t = 1.25 µs (left) and Velocity field v2 in m/s
(right)
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Figure 6.2: Typical biochip geometry (units in m) (left) and pressure at tend = 1.0 µs
(right)
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width of the IDT is 0.6 mm, we set Γin = {0} × (9.4, 10) mm2. The function u describing

the SAW excitation on Γin is chosen according to

u1(t, x1) = 0.6ε sin(2π(−k̂x1 + ft)),

u2(t, x1) = −ε cos(2π(−k̂x1 + ft)),

where the constants are the same as in Subsection 6.1.1. We further choose Γout =

{10}× (0, 1) mm2 which ensures the uniqueness of the pressure for the acoustic streaming

subproblem. On Γlat = ∂Ω \ (Γin ∪ Γout), the velocity is set to be zero. The geometry and

the IDT specifications are exactly the same as in the experimental measurements performed

in [41].

As a first task, we solve the acoustic subproblem (6.2). We iterate from t = 0 to

tend = 1.0 µs with time step τ1 = 0.1. Figure 6.2 (right) shows the computed pressure at

tend which is in excellent agreement with the measurements in [41]. The solution (v1, p1)

is used to generate the right-hand side and the boundary data for the acoustic streaming

subsystem (6.3) which is solved from t = 0 to tf = 0.1 ms.

The second task is to apply BTMR to the subsystem (6.3) observing the vorticity

output in some part of the domain. More specifically consider that the output is the mean

of the integral of the curl of the velocity

z(t) =
�

Ωobs

∇× v2 dx , Ωobs = (1.5, 2.5)× (9, 10) mm2 (6.4)

in some part Ωobs of the domain. The semidiscretization of this problem leads to a system

(5.12), where the inputs u in (5.12a) correspond to the inputs u in (6.3c) and the outputs

z in (5.12c) correspond to (6.4). This is a simulation problem and BTMR as described

in [62] can be applied directly. No domain decomposition or optimization is involved yet.

The purpose of this numerical example is to explore the potential of BTMR for the shape

140



6.1. NUMERICAL RESULTS

optimization problem.
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Hankel singular values

grid Nv Np Nbv
1 7770 1223 25
2 11334 1716 26
3 32818 4617 31
4 132506 17607 35

Figure 6.3: Left: The largest Hankel singular values and the threshold 10−12σ1 for the
fine grid problem. Right: The degrees of freedom Nv, Np for the velocity and the pressure
in the full order model and the degrees of freedom Nbv for velocity in the reduced order
model for four different grids.

We apply BTMR to semi-discretizations of (6.3) on several grids, where ‘1’ refers to the

coarsest grid and ‘4’ refers to the finest grid. Figure 6.3 shows the largest Hankel singular

values for problem on the finest grid. We note that the computed velocity obtained from

the full order model on the finest mesh is of the order 10−4 m/s which is the same as

obtained in the experimental results in [41]. For BTMR, we truncate the Hankel singular

values by selecting the smallest index k for which σk+1 < 10−12σ1. The threshold 10−12σ1

is indicated by the solid line in Figure 6.3 (left). The truncation level 10−12σ1 is small

compared to what one usually sees in the literature for BTMR. This truncation level is

motivated by the shape optimization problem discussed in the next subsection and by the

scaling of the problem. In this section a coarser level could have been used, but we chose

10−12σ1 to be comparable with the results in the next subsection.

The table on the right in Figure 6.3 shows the numbers Nv and Np of velocity and

pressure degrees of freedom (dof) for the full order models generated with the four different
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grids. The same table also shows the velocity degrees of freedom Nbv in the reduced order

model (5.24). In particular, we see that BTMR is very effective and dramatically reduced

the size of the system.

To illustrate the BTMR error bound (5.27a) we show the time domain response of the

output z for the full order model and ẑ for the reduced order model in Figure 6.4. As

predicted by the theory, the reduced order model approximates the full order model very

accurately.
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full
reduced

Figure 6.4: Time response for the full (circles) and for the reduced order model (solid line)

6.1.3 DDBTMR applied to shape optimization of capillary barriers

We consider fluid flow described by subsystem (6.3) in a network of microchannels and

reservoirs on top of a microfluidic biochip with capillary barriers between the channels and

the reservoirs that are designed to guarantee a precise filling of the reservoirs with the

DNA or protein probes. The objective is twofold: Firstly, we want to design the capillary

barriers in such a way that a desired velocity profile vd is attained, and secondly, we want
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Figure 6.5: The reference domain Ωref (left) and the optimal domain (right)

to minimize the vorticity ∇× v in some specific part of the network.

The computational domain Ω ⊂ R2 is displayed in Figure 6.5. It is decomposed into

subdomains Ω1 = Ω\Ω2, and Ω2 = (1.5, 2.5)× (9, 10) mm2. The boundary ∂Ω is split into

Γin = {0} × (9.4, 10),Γout = {10} × (0, 1) mm2, and Γlat = ∂Ω \ (Γin ∪ Γout). We assume

that an IDT of width 0.6 mm is placed at Γin and that the input velocity profile (u1, u2) is

the same as in Subsection 6.1.2. The forces (fv, fp) in Ω× (0, T ) are computed by solving

the acoustic subproblem (6.2) for 0 = t0 ≤ t ≤ tend = 1 µs with step size τ1 = 0.1 and

is equal to the right hand side in (6.3a-b). We further choose a constant velocity profile

vin(x1, x2) on Γin× (0, T ) as given by (6.3c), outflow boundary conditions on Γout× (0, T ),

and no-slip conditions on Γlat× (0, T ). The objective is to design the shape of the top Γ2,T

and the bottom Γ2,B of ∂Ω2 in such a way that a prescribed velocity profile vd is achieved

in Ω2 × (0, T ) and that the vorticity is minimized in Ωobs (two bulb-shaped structures

associated with the lower reservoir in Figure 6.5). The subdomain Ω2 is parametrized

by Bézier curves representing the top (Γ2,T ) and bottom (Γ2,B) boundaries with Bézier
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control points `T and `B, respectively. This leads to a parametrization Ω2(θ) of Ω2 with

parameters θ ∈ R`T +`B . We use `T = `B = 6.

The shape optimization problem amounts to the minimization of

J(θ) =

tend�

0

�

Ωobs

|∇ × v(x, t)|2dxdt+

tend�

0

�

Ω2(θ)

|v(x, t)− vd(x, t)|2dxdt (6.5)

subject to subsystem (6.3) and design parameter constraints

θmin ≤ θ ≤ θmax,

where tend = 0.1 ms. The bounds θmin, θmax on the design parameters are chosen such

that the design constraints are never active in this example. The optimal domain Ω(θ∗) is

shown in Figure 6.5.

We consider a geometrically conforming simplicial triangulation Th(Ω) of Ω that aligns

with the decomposition into the subdomains Ω1 and Ω2 as well as the respective boundaries.

The semi-discretization in space is performed as described in Subsections 5.1, 5.3 and

Appendix B. Let N (1)
v , N (2)

v , NΓ
v be the number of velocity degrees of freedom in the

subdomains Ω1 \Γ,Ω2 \Γ and in Γ, respectively, and set Nv = N
(1)
v +N (2)

v +NΓ
v . Similarly,

let N (1)
p , N (2)

p be the number of pressure degrees of freedom in the subdomains Ω1,Ω2 and

let Np = N
(1)
p +N

(2)
p be the total number of pressure degrees of freedom.

We solve the semi-discretized optimization problems using a projected BFGS method

with Armijo line search [71]. The optimization algorithm is terminated when the norm of

the projected gradient is less than ε = 2 · 10−8. We use automatic differentiation [54, 100]

to compute the derivatives with respect to the design variables θ.

As before, the BTMR of the optimality subsystem is computed using the approach

described in [62]. For BTMR, we truncate the Hankel singular values by selecting the
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Figure 6.6: Left: The largest Hankel singular values computed for the fine grid problem
and the threshold 10−12σ1. Right: The number of observations m, the numbers N (1)

v , Nv

of velocity degrees of freedom in subdomain Ω1 and in Ω, respectively, for the full order
model, and the number N (1)bv , Nbv of velocity degrees of freedom in subdomain Ω1 and in
Ω, respectively, for the reduced order model.

smallest index k for which σk+1 < 10−12σ1. We apply DDBTMR to semi-discretizations

generated using four grids. Figure 6.6 shows the largest Hankel singular values computed

for the fine grid problem. The threshold 10−12σ1 is indicated by the solid line in Figure 6.6

(left). The table in in Figure 6.6 shows the sizes N (1)
v , Nv of the full order models on the

four grids as well as the sizes N (1)bv , Nbv of the reduced order models in subdomain Ω1 and

in Ω. Note that we apply BTMR only on subdomain Ω1. For the fine grid, BTMR reduced

the size of the Ω1 subproblem from N
(1)
v = 48324 to N (1)bv = 766. The velocity degrees of

freedom in Ω2∪Γ are not reduced. On the fine grid these are N (2)
v +NΓ

v = 914. Therefore,

the reduced order problem has Nbv = 914 + 766 = 1680 degrees of freedom.

We notice that the reduction by BTMR is not as large as the one reported for the

simulation problem in the previous subsection. There are two reasons for this. One reason

is that in the simulation problem reported in the previous subsection we had only one ob-

servation. Now the observations are determined by the semi-discretization of ∇× v(x, t),

x ∈ Ωobs, See (6.5). Thus the number m of observations is determined by the degrees of
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freedom in Ωobs. The second reason is that the subsystem corresponding to Ω1 involves

auxiliary inputs and outputs that are determined by the interface conditions between sub-

domains 1 and 2. Thus, the number of inputs and outputs for the subsystem corresponding

to Ω1 is larger than they were in the example problem discussed in the previous subsection.

Therefore, the reduction achieved by BTMR on the Ω1 subsystem is less. Of course, since

the Ω2(θ) subsystem is not reduced, this problem size will also determine the size of the

coupled reduced order problem, indicated by Nbv.

The constant cg in the estimate (6.1) or the error between the optimal design parameters

computed by the full and the reduced order problems, respectively, depend on quantities

like α in Theorem 5.1.1(ii), derivatives of A(θ) with respect to θ, etc., which in turn depend

on the application data given in Table 6.1. In particular using Theorem 5.5.3

cg =

{
TL1 + γ

∥∥∥∥∥∥∥
 µ̂2

µ̂Γ


∥∥∥∥∥∥∥+ γ (cλ + cκ) (σk+1 + · · · + σn)

}
(cv + cp)

+ γ (cλ + cκ)

{∥∥∥∥∥∥∥
 x̂2

x̂Γ


∥∥∥∥∥∥∥+ ‖u‖

}
,

with cv, cp, cλ, cκ are the constants specified in Lemma 5.5.1 and 5.5.2. Here γ is the

bound over the matrix norm of the derivatives of A(θ), etc., with respect to θ. Numerical

experiments indicate that for the current scaling of the problem, the constant cg in the

estimate (6.1) is large, for example, for the finest grid α ∈ (−10−4,−10−8), ‖A‖ ≈ 10−2,

‖DθA(θ)‖ ≈ 10−2. Under the current scaling of the problem Lemma 5.5.1 and 5.5.2 implies

cκ ≈
‖A‖2

α2
, cp ≈

‖A‖
α

, γ ≈ ‖DθA(θ)‖ ,

then

cg ≈
‖A‖3 ‖DθA(θ)‖

α3
∈ (104, 1016).
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Therefore, we require a rather small truncation level of σk+1 < 10−12σ1 for the Hankel

singular values.

The optimal shape parameters θ∗ and θ̂∗ computed by minimizing the full and the

reduced order model, respectively, are shown in Table 6.2. For the finest grid, the error

between the full and the reduced order model solutions is ‖θ∗ − θ̂∗‖ = 3.9165 · 10−5.

θ∗ (9.8833, 9.7467, 9.7572, 9.8671, 9.1336, 9.2015, 9.1971, 9.1310)×10−3

θ̂∗ (9.8694, 9.7374, 9.7525, 9.8628, 9.1498, 9.2044, 9.1895, 9.1204)×10−3

Table 6.2: Optimal shape parameters θ∗ and θ̂∗ computed by minimizing the full and the
reduced order model
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For shape optimization problems, we have developed an adaptive multilevel interior-point

method of barrier type featuring a predictor-corrector continuation method with an adap-

tive choice of the barrier parameter along the barrier path. The predictor relies on a nested-

iteration type tangent continuation, and the corrector is a Newton-multigrid method for

the KKT system. Despite the fact that this approach leads to a considerable reduction

in the computational work compared to more standard optimization strategies (see Chap-

ter 3), the amount of computational time is still significant, and there is a need for further

reductions. This goal can be achieved by model reduction-based optimization methods

using reduced order models for the underlying state equations (see Chapters 4-6).

We have integrated domain decomposition and model reduction for systems governed

by time dependent advection-diffusion with small localized nonlinearities and the Stokes

system in Chapters 4 and 5 respectively. In our case, nonlinearities arise from the depen-

dence on the design variables.
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We have proven estimates for the error between the solution of the original and the reduced

order problem. These error estimates depend on balanced truncation error estimates.

Reduced order modeling based shape optimization for microfluidic biochips is presented

in Chapter 6, where the theoretical error estimates derived in Chapter 5 for the Stokes

system still apply in the original form. The results obtained are in good agreement with

experimental measurements. Two more challenging real life applications are presented in

Chapters 4 and 5. In Chapter 5, we compute the optimal configuration of a 2D aorto-

coronaric bypass, and in Chapter 4 we reduced river pollution using our technique applied

to an optimal control problem.

Our approach presented in Chapters 4-6 can be extended in various ways. It is possible

to admit localized nonlinearities in the PDE, such as those considered in [108, 109]. Using

model reduction techniques for nonlinear systems such POD (see e.g., the overview [64])

or extensions of balanced truncation to nonlinear systems [76] one can apply our approach

to nonlinear PDEs. However, currently no a priori error estimates exist for these model

reduction techniques and, consequently, no estimate for the error between the solution of

the original optimization problem and of the reduced problem can be obtained.

One of our future goals is to improve the understanding and the analysis of nonlinear

model reduction. Also, we think that we can simultaneously reduce the discretization

error and the model reduction error by space-time adaptivity relying on time-like and

space-like error indicators and model adaptivity by means of associated weighted residuals.

The error indicators can be derived by the goal-oriented dual weighted approach well-

known from adaptive finite element methods for PDEs and for PDE constrained optimal

control problems [5]. Later on, we would like to replace BTMR by other model reduction

techniques such as POD or reduced basis methods. The error estimates in [14, 15] hold
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for all parameters and thus make our reduced order models interesting for probabilistic

analysis/optimization under uncertainty as well.
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Auxiliary Lemmas

Lemma A.1.1 Let A ∈ RN×N and B ∈ RN×m. If there exists α > 0 such that

vTAv ≤ −α‖v‖2 ∀v ∈ RN , (A.1)

then the solution of

y′(t) = Ay(t) + Bu(t), t ∈ (0, T ), y(0) = y0 (A.2)

obeys

‖y‖L2 ≤
√

2√
α
‖y0‖+

2
α
‖Bu‖L2 ≤

√
2√
α
‖y0‖+

2‖B‖
α

‖u‖L2 .
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Proof: We multiply the differential equation (A.2) by y(t)T to obtain

1
2
d

dt
‖y(t)‖2 = y(t)TAy(t) + y(t)TBu(t)

≤ −α‖y(t)‖2 + y(t)TBu(t).

If we multiply the previous inequality by exp(αt) we arrive at

d

dt

(
eαt‖y(t)‖2

)
≤ 2eαty(t)TBu(t).

Integration from 0 to t gives

‖y(t)‖2 ≤ e−αt‖y0‖2 +
� t

0
2eα(τ−t)y(τ)TBu(τ)dτ

and integrating the above inequality from 0 to T yields

� T

0
‖y(t)‖2dt ≤

� T

0
e−αtdt ‖y0‖2 +

� T

0

� t

0
2eα(τ−t)y(τ)TBu(τ)dτdt

≤ 1− e−αT

α
‖y0‖2 +

� T

0

� T

τ
2eα(τ−t)dt y(τ)TBu(τ)dτ

=
1− e−αT

α
‖y0‖2 +

� T

0

2(1− eα(τ−T ))
α

y(τ)TBu(τ)dτ

≤ 1
α
‖y0‖2 +

� T

0

2
α
‖y(τ)‖ ‖Bu(τ)‖dτ

≤ 1
α
‖y0‖2 +

� T

0

1
2
‖y(τ)‖2 +

2
α2
‖Bu(τ)‖2dτ,

which implies the desired inequality. �

Lemma A.1.2 Let M ∈ RN×N be symmetric positive definite, A ∈ RN×N and B ∈

RN×m. If there exists α > 0 such that vTAv ≤ −αvTMv for all v ∈ RN , then the

solution of

My′(t) = Ay(t) + Bu(t), t ∈ (0, T ) (A.3)

152



APPENDIX A

with y(0) = y0 obeys

‖y‖L2 ≤
√

2‖M−1/2‖‖M1/2‖√
α

‖y0‖+
2‖M−1‖

α
‖Bu‖L2 .

Proof: If we multiply (A.3) by M−1/2 and apply Lemma A.1.1 to the resulting system

we obtain the estimate

‖M1/2y‖L2 ≤
√

2√
α
‖M1/2y0‖+

2
α
‖M−1/2Bu‖L2 .

This implies

‖y‖L2 = ‖M−1/2M1/2y‖L2

≤
√

2‖M−1/2‖√
α

‖M1/2y0‖+
2‖M−1/2‖

α
‖M−1/2Bu‖L2

≤
√

2‖M−1/2‖‖M1/2‖√
α

‖y0‖+
2
α
‖M−1‖‖Bu‖L2 .

�
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Implementation of DD Stokes

B.1 Model problems

We consider the following model problem

αv −∆v +∇p = f in Ω, (B.1a)

∇ · v = 0 in Ω, (B.1b)

(∇v − pI)n = 0 on Γout, (B.1c)

v = g on Γin, (B.1d)

v = 0 on ∂Ω \ (Γin ∪ Γout), (B.1e)
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where α ≥ 0. The problem (B.1) with α > 0 arises as a subproblem in time stepping

methods for the time dependent Stokes equation. In this context, α is determined by the

time step size.

The weak form is given by

�
Ω
αv ·ψ dx+

�
Ω
∇v : ∇ψ dx−

�
Ω
p∇ ·ψ dx =

�
Ω

f ·ψ dx ψ ∈ V, (B.2a)
�

Ω
∇ · v φ dx = 0 φ ∈ L2(Ω), (B.2b)

where V =
{
v ∈ H1(Ω) : v = 0 on ∂Ω \ Γout

}
. The Stokes equation (B.2) has a unique

solution (v, p) ∈ H1(Ω)× L2(Ω).

We assume that the domain Ω is decomposed into three subdomains as shown in Fig-

ure B.1. The interface between subdomains Ωj and Ωj+1 is denoted by Γj,j+1 = Ωj ∩Ωj+1.

Ω1 Ω3Ω2 ΓoutΓin

Figure B.1: Example domain

Now we consider the following Stokes equation on subdomain 1.

αv −∆v +∇p = f in Ω1, (B.3a)

∇ · v = f in Ω1, (B.3b)

v = g on Γin, (B.3c)

v = vΓ on Γ1,2, (B.3d)

v = 0 on ∂Ω1 \ (Γin ∪ Γ12), (B.3e)
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The weak form is given by

�
Ω1

αv ·ψ dx+
�

Ω1

∇v : ∇ψ dx−
�

Ω1

p∇ ·ψ dx =
�

Ω1

f ·ψ dx ψ ∈ H1
0(Ω1), (B.4a)

�
Ω1

∇ · v φ dx =
�

Ω1

fφ dx φ ∈ L2(Ω1). (B.4b)

From (B.4b) we obtain (for sufficiently smooth φ)

�
Ω1

fφ dx =
�

Ω1

∇ · vφ dx =
�

∂Ω1

v · nφ ds−
�

Ω1

v · ∇φ dx,

which for φ = 1 gives the compatibility condition

�
Ω1

f dx =
�

Γin

g · n ds +
�

Γ12

vΓ · n ds, (B.5)

which must be satisfied to guarantee the existence of a solution. If (B.5) is satisfied, then

the Stokes equation (B.3) has a unique solution (v, p) ∈ H1(Ω1)× L2
0(Ω1).

For the following Stokes equation on subdomain 2 a similar result holds.

αv −∆v +∇p = f in Ω2, (B.6a)

∇ · v = f in Ω2, (B.6b)

v = vΓ on Γ12 ∪ Γ23, (B.6c)

v = 0 on ∂Ω2 \ (Γ12 ∪ Γ23). (B.6d)

If the compatibility condition

�
Ω2

f dx =
�

Γ12∪Γ23

vΓ · n ds (B.7)

is satisfied, then the Stokes equation (B.6) has a unique solution (v, p) ∈ H1(Ω2)×L2
0(Ω2).
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Since the subdomain 3 subproblem

αv −∆v +∇p = f in Ω3, (B.8a)

∇ · v = f in Ω3, (B.8b)

(∇v − pI)n = 0 on Γout, (B.8c)

v = vΓ on Γ23, (B.8d)

v = 0 on ∂Ω3 \ (Γ23 ∪ Γout) (B.8e)

has an outflow condition, no compatibility condition is needed and the Stokes equation

(B.8) has a unique solution (v, p) ∈ H1(Ω3)× L2(Ω3).

Thus the solution of local Stokes problems which only have Dirichlet boundary condi-

tions, such as (B.3) and (B.6) require a consistency condition on the data. Moreover, the

pressure for these subproblems is not uniquely defined. Among all pressure solutions (which

vary only by a constant), one has to choose the one that corresponds to the restriction of

the global pressure onto the respective subdomain. This is typically done by expressing

the pressure on the Dirichlet subdomains as the sum of a constant and a pressure with zero

average. The constant is determined from a global problem, the pressure with zero average

is uniquely determined by the subproblem (provided that the consistency conditions are

satisfied).

B.2 Discretization

To simplify the presentation, we assume the inflow velocity is zero, g = 0. Let T be a

triangulation of Ω and let {xj} be the set of nodes (vertices and edge midpoints) in the

triangulation. In the Taylor-Hood finite element approximation the spaces of discretized
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velocities and pressures are given by

Vh =
{
vh ∈ C(Ω) : vh|K ∈ P2, ∀K ∈ T , v = 0 on ∂Ω \ Γout

}
, (B.9a)

Q̃h =
{
qh ∈ C(Ω) : qh|K ∈ P1, ∀K ∈ T

}
, (B.9b)

respectively. The space of velocities is decomposed in a standard manner.

Vh
j =

{
vh ∈ Vh : vh(xk) = 0 for all xk /∈ Ωj

}
, j = 1, 2, 3, (B.10a)

Vh
Γ =

{
vh ∈ Vh : vh(xk) = 0 for all xk /∈ Γ12 ∪ Γ23

}
. (B.10b)

Note that

Vh = Vh
1 ⊕Vh

2 ⊕Vh
3 ⊕Vh

Γ.

The pressures in subdomains Ω1 and Ω2 are represented as the sum of a constant and a

pressure with average zero. This leads to the spaces

Q̃h
j =

{
qh ∈ C(Ωj) : qh|K ∈ P1, ∀K ∈ T

}
, j = 1, 2, (B.10c)

Qh
j =

{
qh ∈ C(Ωj) : qh|K ∈ P1, ∀K ∈ T ,

�
Ωj

qh dx = 0

}
, j = 1, 2, (B.10d)

Qh
3 =

{
qh ∈ C(Ω3) : qh|K ∈ P1, ∀K ∈ T

}
, (B.10e)

Qh
0 =

{
q1χΩ1

+ q2χΩ2
: q1, q2 ∈ R

}
, (B.10f)

where χS is the characteristic function corresponding to a set S. Note that

Q̃h ( Qh def= Qh
1 ⊕Qh

2 ⊕Qh
3 ⊕Qh

0 .

Furthermore, note that if

φ̃j
i , i = 1, . . . ,mj

are piecewise linear basis functions (hat functions) for Q̃h
j , then

φj
i

def= φ̃j
i −

1
|Ωj |

�
Ωj

φ̃j
i dx, i = 1, . . . ,mj − 1,
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are basis functions for Qh
j , where |Ωj | is the measure of Ωj .

The discretization of (B.2) is now given as follows: Find

vh = vh
1 + vh

2 + vh
3 + vΓ ∈ Vh

1 ⊕Vh
2 ⊕Vh

3 ⊕Vh
Γ,

ph = ph
1 + ph

2 + ph
3 + p0 ∈ Qh

1 ⊕Qh
2 ⊕Qh

3 ⊕Qh
0 ,

such that

�
Ω
αvh ·ψh dx+

�
Ω
∇vh : ∇ψh dx−

�
Ω1

ph∇ ·ψ dx =
�

Ω
f ·ψ dx (B.11a)

∀ψ ∈ Vh
1 ⊕Vh

2 ⊕Vh
3 ⊕Vh

Γ,�
Ω

∇ · vh φh dx = 0 (B.11b)

∀φ ∈ Qh
1 ⊕Qh

2 ⊕Qh
3 ⊕Qh

0 .

The condition

−
�

Ω
∇ · (vh

1 + vh
2 + vh

3 + vΓ)φh dx = 0, ∀φ ∈ Qh
1 ⊕Qh

2 ⊕Qh
3 ⊕Qh

0

leads to 

B11 0 0 B1Γ

0 B22 0 B2Γ

0 0 B33 B3Γ

0 0 0 B0





v1

v2

v3

vΓ


=



0

0

0

0


.

Note that for ψ ∈ Vh
j and constant χΩj

�
Ωj

∇ ·ψ χΩj
dx =

�
∂Ωj

ψ · nχΩj
ds−

�
Ωj

ψ · ∇χΩj
dx = 0

since ψ = 0 on ∂Ωj , j = 1, 2, 3. Hence we have zero blocks in the last row block. The
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condition

�
Ω
α(vh

1 + vh
2 + vh

3 + vΓ) ·ψh dx+
�

Ω
∇(vh

1 + vh
2 + vh

3 + vΓ) : ∇ψh dx

−
�

Ω1

(ph
1 + ph

2 + ph
3 + ph

0) ∇ ·ψ dx =
�

Ω
f ·ψ dx

for all ψ ∈ Vh
1 ⊕Vh

2 ⊕Vh
3 ⊕Vh

Γ leads to



A11 0 0 A1Γ

0 A22 0 A2Γ

0 0 A33 A3Γ

AΓ1 AΓ2 AΓ3 AΓΓ





v1

v2

v3

vΓ


+



BT
11 0 0 0

0 BT
22 0 0

0 0 BT
33 0

BT
1Γ BT

2Γ BT
3Γ BT

0





p1

p2

p3

p0


=



f1

f2

f3

fΓ


.

In the following we use

ψj
k, k = 1, . . . , nj , j = 1, 2, 3,

ψΓ
k , k = 1, . . . , nΓ,

to denote the piecewise linear basis functions for the velocities corresponding to Ωj , j =

1, 2, 3, and corresponding to the interface Γ. Furthermore,

φ̃j
i , i = 1, . . . ,mj , j = 1, 2, 3,

are piecewise linear basis functions (hat functions) for Q̃h
1 , Q̃h

2 , Qh
3 = Q̃h

3 , and

φj
i

def= φ̃j
i −

1
|Ωj |

�
Ωj

φ̃j
i dx, i = 1, . . . ,mj − 1, j = 1, 2,

are basis functions for Qh
j , j = 1, 2, where |Ωj | is the measure of Ωj , and

φ3
i

def= φ̃3
i i = 1, . . . ,m3.
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For the computation of the matrix Bjj ∈ R(mj−1)×nj , j = 1, 2, with entries

(Bjj)ik =
�

Ωj

∇ ·ψj
k φ

j
i dx

we note that

�
Ωj

∇ ·ψj
k φ

j
i dx =

�
Ωj

∇ ·ψj
k

(
φ̃j

i −
1
|Ωj |

�
Ωj

φ̃j
i dx

)
dx

=
�

Ωj

∇ ·ψj
kφ̃

j
i dx−

�
Ωj

∇ ·ψj
k dx

1
|Ωj |

�
Ωj

φ̃j
i dx.

Hence if we compute B̃jj ∈ Rmj×nj with entries

(B̃jj)ik =
�

Ωj

∇ ·ψj
k φ̃

j
i dx

and the averages ci
def= 1

|Ωj |
�
Ωj
φ̃j

i dx, then, since
∑mj

i=1 φ̃
j
i = 1, we have

�
Ωj

∇ ·ψj
k dx = (eT B̃jj)k,

where e = (1, . . . , 1)T ∈ Rmj and

(Bjj)ik = (B̃jj)ik − (eT B̃jj)k ci.

The same observation applies to the computation of the matrices BjΓ ∈ R(mj−1)×nΓ ,

j = 1, 2.

The matrix B0 ∈ R2×nΓ , with entries

(B0)jk =
�

Ωj

∇ ·ψΓ
k dx j = 1, 2

can be computed from the matrices B̃jΓ ∈ Rmj×nΓ , j = 1, 2, with entries

(B̃jΓ)ik =
�

Ωj

∇ ·ψΓ
k φ̃

j
i dx

using

(B0)jk = (eT B̃jΓ)k.

161



APPENDIX C

Notation and symbols

N Set of nonzero natural numbers

R Set of real numbers

∂A Boundary set of a set A ⊂ Rd

A> Transpose of a matrix A ∈ Rn×m

A : B For matrices A,B ∈ Rn×m the scalar product A : B :=
∑

i,j AijBij

SPD Symmetric and positive definite

BTMR Balanced truncation model reduction

DD Domain decomposition

(v, w) Scalar product of v and w

L(E,F ) Space of bounded linear mappings between two normed spaces E and F
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E∗ Dual space of a Banach space E, defined as the space of bounded linear

functionals on E

〈g, f〉E×E∗ Duality pairing of f ∈ E∗ with g ∈ E

‖x‖ Euclidean l2-norm of x ∈ Rn, defined as ‖x‖ =
(∑n

i=1 xi
2
)1/2

Ω Bounded polygonal or polyhedral domain ⊂ Rd, d ∈ {2, 3} with Lipschitz

boundary Γ = ∂Ω

Lp(Ω) Lebesgue space of scalar p-integrable functions on Ω

Lp(Ω) Vector p-integrable functions on Ω

Lp
0(Ω) Scalar p-integrable functions with mean zero over Ω

Hm(Ω) Sobolev space of scalar functions with weak derivatives up to order m in

L2(Ω)

Hm(Ω) Sobolev space of vector valued functions; Hm(Ω) := (Hm(Ω))d

Hm
0 (Ω) Subpace of Hm(Ω) with functions of zero trace

H1/2(Γ) Trace space

H1/2
00 (Γ) Sobolev space defined as a set of functions {u ∈ H1/2(Γ) | Eu ∈

H1/2(∂Ω)}, where Γ is a proper subset of ∂Ω and Eu is the extension by

zero of u to ∂Ω

‖u‖m,Ω Norm of the Sobolev space Hm(Ω) or Hm(Ω)

‖u‖0,Ω Norm of the space L2(Ω) or L2(Ω)

(·, ·)m,Ω Inner product of the Sobolev space Hm(Ω) or Hm(Ω)

(·, ·)0,Ω Norm of the space L2(Ω) or L2(Ω)
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dungsorientierte Einführung. Springer, 2000.
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