

Online Semi-Partitioned Multiprocessor

Scheduling of Soft Real-Time Periodic Tasks

for QoS Optimization

Behnaz Sanati, Albert M. K. Cheng, Nicholas Troutman

Department of Computer Science

University of Houston

Houston, TX, 77204, USA
http://www.cs.uh.edu

Technical Report Number UH-CS-16-02

May 27, 2016

Keywords: Periodic tasks, Quality of service, Partitioning, Multiprocessor

scheduling, Approximation algorithms.

Abstract

In this paper, we propose a novel semi-partitioning approach with an online choice of two approximation

algorithms, Greedy and Load-Balancing, to enhance scheduling of soft real-time periodic tasks in homogeneous

multiprocessor systems. Our objective is to optimize the QoS by minimizing the deadline misses and maximizing

the total benefit (or reward) obtained by completed tasks. We analyze our model for the systems with implicit and

non-implicit deadlines and evaluate them through extensive experiments. Many real-time applications and

embedded systems can benefit from this solution including but not limited to video streaming servers, multi-player

video games, cloud applications and medical monitoring systems.

1

Online Semi-Partitioned Multiprocessor

Scheduling of Soft Real-Time Periodic Tasks for

QoS Optimization

Behnaz Sanati, Albert M. K. Cheng, Nicholas Troutman

Abstract

In this paper, we propose a novel semi-partitioning approach with an online choice of two approximation algorithms, Greedy

and Load-Balancing, to enhance scheduling of soft real-time periodic tasks in homogeneous multiprocessor systems. Our

objective is to optimize the QoS by minimizing the deadline misses and maximizing the total benefit (or reward) obtained by

completed tasks. We analyze our model for the systems with implicit and non-implicit deadlines and evaluate them through

extensive experiments. Many real-time applications and embedded systems can benefit from this solution including but not

limited to video streaming servers, multi-player video games, cloud applications and medical monitoring systems.

Index Terms

Periodic tasks, Quality of service, Partitioning, Multiprocessor scheduling, Approximation algorithms.

I. INTRODUCTION

A. Background

Multiprocessor systems are widely used in a fast-growing number of real-time applications as well as embedded

systems. Two examples of such systems are Cloud applications [1] and IoT [2]. In hard real-time systems, meeting

all deadlines is critical, while in soft real-time (SRT) systems, missing few deadlines does not drastically affect the

system performance. However, it would compromise the quality of the service (QoS).

In such systems, jobs meeting their deadlines will g
1
ain a benefit (also called reward) for the system. Hence,

researchers focus on maximizing benefits to improve the QoS. Besides the total benefit, other factors also influence

QoS, such as overall response time (makespan plus scheduling time) and deadline-miss ratio also called tardiness.

Multiprocessor real-time scheduling algorithms may follow a partitioned or global approach or some hybrid of the

two, called semi-partitioning.

Global scheduling can have higher overhead in at least two respects: the contention delay and the

synchronization overhead for a single dispatching queue is higher than for per-processor queues; the cost of

resuming a task may be higher on a different processor than on the processor where it last executed, due to inter-

processor interrupt handling and cache reloading. The latter cost can be quite variable, since it depends on the

actual portion of a task’s memory that remains in cache when the task resumes execution, and how much of that

remnant will be referenced again before it is overwritten [1].

B. Related Works

The above issues are discussed at some length by Srinivasan et al. [3]. Elnably et al. [1] study fair resource

allocation and propose a benefit-based model for QoS in Cloud applications. In contrast, Alhussian, Zakaria and

Hussin [4] prefer global scheduling and try to improve real-time multiprocessor scheduling algorithms by relaxing

the fairness and reducing the number of preemptions and migrations.

Amirijoo, Hansson and Son [5] have discussed specification and management of QoS in real-time databases

supporting imprecise computations. Benefit-based scheduling of periodic tasks has also been studied by Aydin et

al. [6], and Hou and Kumar [7]. Awerbuck et al. [8] proposed a benefit-maximizing model for scheduling aperiodic

tasks on uniprocessor systems which can also be applied to multiprocessors. We have also previously studied

benefit-based scheduling of aperiodic real-time tasks on multi-processor systems. We proposed two algorithms,

1
 Supported in part by the National Science Foundation under Awards No. 0720856 and No. 1219082

2

GBBA [9] and LBBA [10], and provided performance analysis and comparative experimental results of those

algorithms versus another state-of-the art algorithm [8].

Semi-partitioned real-time scheduling algorithms extend partitioned ones by allowing a subset of tasks to

migrate. Given the goal of “less overhead,” it is desirable for such strategy to be boundary-limited, and allow a

migrating task to migrate only between successive invocations (job boundaries). Non-boundary-limited schedulers

allow jobs to migrate, which can be expensive in practice, if jobs maintain much cached state.

Previously proposed semi-partitioned algorithms for soft real-time (SRT) tasks such as EDF-fm and EDF-os [11]

have two phases: an offline assignment phase, where tasks are assigned to processors and fixed tasks (which do not

migrate) are distinguished from migrating ones; and an online execution phase. In their execution phase, rules that

extend EDF scheduling are used. In EDF-os, the number of processors to which jobs of a migrating task can

migrate to, are limited to two, and also each processor can be assigned to only two migrating tasks. The goal in

these EDF-based semi-partitioning strategies is to minimize tardiness.

C. Our Objective

Our objective in this study is to enhance the QoS by minimizing missed deadlines and maximizing the total

benefit obtained by completed periodic tasks. Hence, we allow different jobs of any task to be assigned to different

processors (migration at job boundaries) based on their benefit-based priorities and workload of the processors.

This method can also be used as a framework to direct SRT systems with mixed set of tasks (aperiodic and

periodic) by defining their deadlines accordingly.

D. Our Contribution

We previously proposed the LBBA method for scheduling aperiodic tasks [12], which achieved significant

improvements in reducing the overall response time (i.e., scheduling time plus makespan of the task sets),

maximizing the total benefit and minimizing missed deadlines, all of which enhance QoS. However, that method is

designed for scheduling one instance (i.e., aperiodic) tasks, and cannot be used for solving the problem of

scheduling periodic soft real-time tasks on multi-processor systems, on which relatively very little research has

been done.

In this work, we propose a new online benefit-based semi-partitioning approach to schedule periodic soft real-

time tasks in homogeneous multiprocessor systems. Scheduling is based on the task priority, depending on the

benefit density function of each task. We apply an online choice of two approximation algorithms (Load-Balancing

and Greedy approximation) for partitioning lower priority tasks that are waiting, at job boundaries. No migration is

allowed after a job (or sub-task) is assigned to a processor. This technique provides:

 An optimized usage of the processing time by approximately balancing the workload of the processors,

which reduces the idle times and makespan

 Reduces the NP-hard problem of multiprocessor real-time scheduling to uniprocessor scheduling

 When different benefit density functions are assigned to different tasks in a system, it maximizes the

total gained benefit by prioritizing tasks based on their benefit density functions.

 This method, has advantages over existing semi-partitioning schedulers, such as:

o No prior information is needed for scheduling. Hence, unlike other semi-partitioning methods,

there is no offline phase.

o In EDF-os, the number of processors on which different jobs of each task can be processed in

limited to two, and also the each processor cannot accept jobs from more than two migrating

tasks. There is neither of such limitations in our proposed method.

o It reduces overhead by not allowing migration in the middle of job executions.

In the next section, we explain our novel semi-partitioning hybrid model, which combines benefit and cost

models, for optimizing quality of service in soft real-time systems. In section III, we provide the theoretical analysis

of this algorithm (LBBA for periodic tasks) and propose two more variations of LBBA, one with different deadline

definition and the other one with a different factor considered for load-balancing. Section IV includes the

performance analysis of all three proposed approaches based on the results of our extensive simulation experiments

on synthetic task sets. Section V, concludes the advantages of this work and suggests the future work.

3

II. LBBA FOR PERIODIC TASKS

In this section, we define the system and task model, methodology and notations/phrases used in our proposed

LBBA algorithm for periodic tasks.

A. System and Task Model

A multiprocessor system with m identical processors is considered for semi-partitioned, preemptive scheduling

of periodic soft real-time task sets with implicit deadline (or non-implicit, depending on the application). Each

processor has its own pool (for ready tasks), stack (for preempted and running tasks) and garbage collection (for

completed and tasks which missed deadlines). Each task may be released at any time. Tasks are independent in

execution and there are no precedence constraints among them. Pre-emption is allowed. A desired property of the

system in this method is the possibility to delay jobs without drastically reducing the overall system performance.

B. Methodology

We propose a hybrid model (combining benefit and cost models) for online scheduling of periodic tasks in SRT

systems. In this method, we apply our novel partitioning technique, in addition to online choice of approximation

algorithms as follows.

1) Semi-Partitioning Model:

 This algorithm applies online semi-partitioning. In our partitioning approach, no job migration is allowed. In

other words, each job, i.e., an instance of a task, will be assigned to a processor at release time, based on its priority

and worst-case execution time, and also the current workloads of the processors, and it has to stay with that

processor during its entire runtime in the system. However, different instances of a periodic task may be assigned to

different processors. This method is possible since instead of using a shared pool, each processor has its own pool

for the ready tasks assigned to it. Partitioning jobs at their release time reduces the NP-hard problem of

multiprocessor scheduling to multiple cases of uniprocessor scheduling.

2) Online Choice of Approximation Algorithms:

 We consider Greedy and Load-balancing approximation algorithms, one of which will be chosen online based

on the conditions of the system at each time instance, for partitioning and scheduling task instances. We proposed

this approximately balanced partitioning method in earlier phases of this research [10] as a part of our proposed

scheduling method, LBBA (for aperiodic tasks), and showed some advantages of applying this technique in [10]

and [12], such as CPU usage optimization by reducing idle times and makespan.

Figure 1, summarizes our methodology for LBBA scheduling of periodic soft real-time task sets on

multiprocessor systems.

Fig. 1. Our Methodology

4

C. Definitions

We provide the definitions of the phrases and notations used in this paper as follows:

1) Periodic Tasks:

A periodic task, in real-time systems, is a task that is periodically released at a constant rate. Usually, two

parameters are used to describe a periodic task Ti; its worst-case execution time wi as well as its period pi. An

instance of a periodic task Ti (i.e release) is known as a job and is denoted as Ti,j, where j = 1, 2, 3, … . The implicit

deadline of a job is the arrival time of its successor. For example, the deadline of the j
th
 job of Ti, which is Ti,j,

would be the arrival time of job Ti,(j+1), that is at jpi. However, it can be non-implicit and defined based on

objectives and criticalities of the systems and applications.

2) Task Utilization:

Another important parameter used to describe a task Ti is its utilization and is defined as ui = wi / pi. The

utilization of a task is the portion of time that it needs to execute after it has been released and before it reaches its

deadline.

3) Notations:

We define the notations used throughout this paper as follows:

pi – period of task Ti

wi – worst-case execution time of task Ti, considered as workload of task Ti in this paper

ri,j – release time of job Ti, j

si,j – start time of job Ti, j

ci,j – completion time of job Ti,,j

Bri,j – benefit-based break point of job Ti,,j, is:

Bri,j = si,j +2wi (1)

 This means if twice the execution time of a running job has passed from its start time and it has not finished its

execution yet, then it cannot gain any benefit for the system.

βi(t) – benefit density function of task Ti at time t, for (t ≥ wi), which is a non-increasing, non-negative function,

with the following restriction to be satisfied for each βi(t):

 Note: for t < wi, there would be no benefit gained by job Ti,j, since it has certainly not completed its execution at

time t. The above condition guaranties that in case a job is delayed as long as its worst-case execution time, then its

gained benefit decreases at most by the constant .

f i,j – flow time of job Ti,j:

 fi,j= ci,j - ri,j (2)

b i,j – benefit, gained by a completed job Ti,j :

 b i,j = wi. β i (f i,j)

 Since βi is a non-negative, non-increasing function, the sooner a job finishes the more benefit it gains. Also,

between two jobs with the same benefit density function and same flow time, the one with larger execution time

adds more benefit to the system.

d i,j (t) – variable priority of job Ti,j at time t, before scheduling (t < si,j):

d i,j (t) = β i (t + wi - ri,j)

d i,j – fixed priority of job Ti,j, when it is scheduled and starts running:

di,j = β i (s i,j + wi - ri,j)

5

Di,j – deadline of job Ti,,j,

 Note: We propose and analyze our model with two different types of deadlines, implicit and non-implicit.

Implicit deadline (Next- Job- Release time):

 Di,j = ri,(j+1)

 Di,j = ri,j + pi (3)

Non-implicit deadline (Next-Job-Completion time):

 Di,j = ci,(j+1)

U – maximum possible utilization of the system with m identical processors:

 U = m

ui – utilization of every job of the task Ti :

 ui = wi / pi

£i – laxity of job Ti,j :

£i = pi - wi (4)

δ i,j – delay of job Ti,j , that is the time Ti,j has to wait after it is released until it is scheduled and starts its

execution:

δ i,j = si,j - ri,j (5)

φi,j(k) – time elapsed during the k
th

preemption of Ti,j

D. Our Algorithm

In this system, the tasks are periodic and the events are new job (or sub-task) arrival, job completion, and

reaching the break point of a job. The algorithm takes action when a new job arrives, a running job completes, or

when a running job reaches its break point. When new jobs arrive, they will be prioritized, then either scheduled

and start running on the assigned processors or partitioned and sent to the pools of the processors. The job on top of

each stack is the job that is running and all other jobs in the stacks are preempted. The jobs on the stacks or the ones

in the pools cannot migrate to any other processor. However, different jobs of a task can be assigned to different

processors at their arrival time. We call this algorithm LBBA-bid, that is LBBA with benefit-aware implicit

deadlines.

The summary of the algorithm is provided in pseudo-codes on the next page and consists of the following phases:

1) Prioritizing

 The priority of each ready and unscheduled job (located in each pool) at time t which is denoted by di.j(t) (for t

si,j) is variable with time. However, when a job Tk (k can be any i,j) starts its execution, its priority is calculated as

d’k = β k (sk + wk – rk) (lines 19 and 68 of the pseudo-code). The notation d’k is used for the fixed priority of the

running job Tk on top of the stack. This priority is given to the job Tk when it starts its execution. Its start time, sk , is

used in the function instead of variable t, therefore its priority is no longer dependent on time. Since sk , wk and rk

are all constants, the priority of a job will not change after its start time (for t > sk).

2) B. Scheduling / Execution / Preemption

 Once a new job Ti,j is released, if there is a processor such that its stack is empty (lines 11 through 22), then the

newly released job is pushed onto the stack and starts running. If there is no idle processor, but for any running

processor di,j(t) > 4d’k (lines 58 through 66), the job Ti,j preempts the currently running one, and starts its execution.

This preemption condition (di,j(t) > 4d’k) not only plays role in constant ratio competitiveness being equal to 10C
2

[8], but also limits the number of preemptions and the overhead caused by them. This is provided by preventing a

new job Ti,j from preempting the running jobs with lower priorities unless its priority is at least four times higher

than theirs.

6

LBBA Algorithm for Periodic Tasks

1 Required: One or more jobs arrive at time t ≥ 0

2 {

Job Arrival

 3 /* TempList: list of ready jobs waiting for

 4 distribution among processors */

 5

 6 Append the arrived job(s) to the TempList

Benefit-Based Scheduling

7 Calculate the priority of each job j in the

 8 TempList:

 9 dj(t) = Bj(t + wj – rj)

 10 Sort TempList based on the priority

 11 If (at least one stack is empty)

 12 {

 13 Push the highest priority job(s) j

 14 onto empty stack(s) of idle processor(s) i;

 15 Add its execution time wj to total workload

 16 of the stack of the processor i (∑ Wsi),

 17 Recalculate total workload of processor i:

 18 Wi = ∑ Wpi + ∑ Wsi

 19 Calculate the fixed priority of j using its

 20 start time sj:

 21 d’j(t) = Bj(sj + wj – rj)

 22 Start executing j,
 23 }

 24 Else

 25 {

 26 /* no stack is empty */

 27 /* preempt if possible otherwise distribute

 28 among the pools */

29 Compare the priority of the ready jobs in

30 TempList with the priority of the running

31 jobs (indicated by index k) on top of the

32 stacks:

33 If (dj(t) ≤ 4d’k for (each job j in TempList

34 and each running job k))

35 {

36 /* no preemption allowed */

37 /* partition the ready jobs among

38 pools of the processors */

Load-Balancing Approximation (for Partitioning)

39 For (each job j in TempList)

40 {

41 Sort the processors in ascending order of

42 their total remaining workload on their

43 pools and stacks :

44 Wi = ∑ Wpi + ∑ Wsi

45 Append the job j with largest

46 execution time wj to the pool of the

47 processor i with minimum remaining

48 work load; /* load balancing */

49 Remove j from TempList;

50 Add its execution time wj to total

51 workload of the pool of processor i

52 (∑ Wpi);

53 Recalculate total workload of

54 processor i:

55 Wi = ∑ Wpi + ∑ Wsi

56 }

57 }

58 Else

59 /* if (dj(t) > 4d’k) then (j preempts k)*/

Greedy Approximation (multiple-choice Preemption)

60 /* If j has more than one choice of

61 processors, it will be pushed onto

62 the stack whose processor has the

63 least work load (greedy) */

64 {

65 Stop the execution of job k (preempt k),

66 Push the job j onto the stack on top of k,

67 Start executing j,

68 Calculate the fixed priority of j using its

69 Start time sj,: d’j(t) = Bj(sj + wj – rj)

70 Add the execution time of j to the total

71 workload of that stack (∑ Wsi),

72 Recalculate total workload of the

73 Processor i:

74 Wi = ∑ Wpi + ∑ Wsi

75 }

Check for missed Deadlines (Benefit-aware/Implicit)

76 /* at each time instance t, if any of the running

77 jobs on top of the stacks have reached its break

78 point: t > min (Di,j , Bri,j), Bri,j = si,j +2wi

79 remove the job from the stack and send

80 it to the processor Garbage Collection;

81 otherwise, if not preempted, continue its

82 execution */

Benefit Gained by Completed Jobs

83 /* for every completed job j calculate bj */

84 bj = wj. βj(fj)

85 }

Total Benefit Calculation

86 /* calculate the sum of all benefits gained,

87 q being the number of completed jobs */

89 B =

90 }

7

3) Online Partitioning (Load-Balancing/Greedy)

 If more than one high priority job is able to preempt some running job(s), to decide which job should be sent to

which stack, we send the largest job to the processor with the minimum remaining work load, the second largest job

to the processor with the second smallest remaining work load, so on so forth. This way we are able to balance the

work load among the processors.

 However, in case there is only one high priority job at a time instance which can preempt more than one running

job, we assign it to the stack of the processor with minimum remaining execution time (Greedy approximation). If

the priority of the released job is not high enough to be scheduled right away, it will be partitioned among the pools

of the processors using an online choice of load balancing or Greedy approximation (lines 39 through 75).

4) Reaching Break Point or Deadline:

If a job reaches its break point or deadline (line 78) and its execution is not completed yet, it will not be able to

gain any benefit; therefore, it will be popped from the stack and sent to the garbage collection. The deadline of a job

is its period (Next-Job-Release time of the same task) and its break point is twice its execution time after it starts

running. A job must finish its execution before its deadline or break point (whichever is less) to be considered as

completed (lines 76-82).

5) Completion / Discarding / Benefit Calculation:

When a currently running job on a processor completes, it is popped from the stack. Then, the processor runs the

next job on its stack (i.e., resumes the last preempted job) if di,j(t) ≤ 4d’k for all the jobs Ti,j in its pool. Otherwise, it

gets the job with max di,j(t) from its pool, pushes it onto the stack and runs it. The completed jobs or those that

reach their break points are going to be sent to the garbage collection. If a job completes, its gained benefit is

calculated and added to the total benefit (lines 83 through 90).

III. ANALYSIS

A. LBBA-bid Analysis

In LBBA-bid, a job must complete by the end of period, i.e., before the next job of the same task is released. The

benefit-awareness attribute of LBBA also requires a job not to take longer than twice its worst-case execution time

after its start time to complete; otherwise, it would be discarded from the system without gaining any benefit. This

restriction will induce an upper bound on the delay each job may have after release till it is scheduled and starts its

execution. From the definition of break point (eq. (1)),

Bri,j = si,j +2wi

If Bri,j > Di,j, then Ti,j can continue until the next job arrives, and if Ti,j is not preempted while running, the

following condition must hold for it to meet its deadline:

si,j + wi ≤ Di,j

From eq.(3):

si,j + wi ≤ ri,j + pi

 si,j – ri,j ≤ pi - wi

From (4) and (5):

δi,j ≤ £i

Therefore, the maximum delay in starting a job execution is equal to its laxity. This defines the upper bound on

the start time as follows:

Max (si,j) = ri,j +£i

Schedulability Condition - If this occurs to a job, then it cannot be preempted during its execution, to be able to

meet its deadline. If a higher priority job is scheduled on the same processor and preempts it, then it will miss the

deadline and will not gain any benefit.

Corollary 3.1.1 – If a job Ti,j is scheduled at its Max (si,j), then in order to meet its deadline it should not get

preempted.

8

Theorem – If the utilization of a job Ti,j is equal to or more than half (wi ≥ ½ pi) and (Bri,j ≤ Di,j), then it has to

start running as soon as it is released, without preemption, to be able to meet its deadline.

If Bri,j ≤ Di,j, then

 si,j +2wi ≤ Di,j

si,j +2wi ≤ ri,j + pi

si,j – ri,j ≤ pj - 2wi

 δ i,j ≤ pi - 2wi (6)

If ui ≥ ½,

pi ≤ 2wi

, and from (6):

Max (δ i,j)= 0

So, the theorem is proved. ■

 On the other hand, in order to gain any benefit, the following condition must hold:

fi,j ≤ pi

By definition, eq. (2):

ci,j - ri,j ≤ pi

Assume Ti,j has been preempted k times, then the total time elapsed during preemptions of Ti,j is denoted by i,j .

Therefore,

wi + i,j + δ i,j ≤ pi (7)

Corollary 3.1.2 - The upper bound on preemption time is the laxity of the job Ti,j, and that is when it starts at

release time without any delay (from eq. (7)).

Max (i,j) = £i

This condition holds for the highest priority jobs which can preempt another job at their release time, or get

immediately scheduled on an idle processor. Jobs that are partitioned into the pools and have a waiting time (delay)

cannot have preemption time up to their laxities; otherwise, they would miss their deadline.

Hence, there would be cases of missed deadlines if the delay in scheduling and/or total time a job spends in

preemptions would pass the upper bounds or the above conditions are violated. We offer the following propositions

in order to allow more jobs to complete without compromising the QoS.

B. Propositions

We explain two propositions to modify deadline and load-balancing factors and study their effects on the

performance of the system.

1. Non-Implicit Deadline (LBBA-bnc)

Proposition 1 – In order to let more jobs continue their execution until they complete and gain some benefit for the

system, we relax the benefit aware implicit deadline (bid) by changing to benefit-aware non-implicit deadline of

next-job-completion time (bnc):

Di,j = ci,(j+1)

This can be done if the applications’ expectation of job completion allows this relaxation of deadline. Then, if

Ti,j is running on one processor and before its completion Ti,j+1 is released, there would be two possible cases. One is

that the priority of Ti,j+1 is not high enough and it has to be partitioned and sent to a pool. If it is not on the same

processor of Ti,j , and Ti,j completes while Ti,j+1 is waiting or it has started and still running, the benefit gained by Ti,j

is added to the total benefit and its processing time has not been wasted. Also, if Ti,j+1 is waiting on the pool of the

same processor Ti,j is running on, then it has to complete before the laxity of Ti,j+1 ends. In this case, both jobs meet

their deadlines.

We will evaluate LBBA-bid and LBBA-bnc by comparing their total benefits and the number of completed jobs

through experiments.

9

2. Utilization Balancing (UBBA)

Many EDF-based algorithms consider the utilization of the tasks (u) instead of the workload or execution time

(w), with the objective of making the task sets schedulable and reducing tardiness. LBBA is balancing the workload

among processors. Therefore, to be able to study the difference in the performance, we propose another version of

our algorithm which balances the utilizations among the processors.

Proposition 2 – In the UBBA (utilization-balanced benefit-aware) algorithm, we replace the load-balancing part

with the following:

Utilization-Balancing Approximation (for Partitioning)

39 For (each job j in TempList)

40 {

41 Sort the processors in ascending order of

42 their total remaining utilization on their

43 pools and stacks :

44 Ui = ∑ Upi + ∑ Usi // i is proc. index

45 Append the job j with largest

46 utilization time uj to the pool…

The same method applies to the greedy approximation, and also every time a job is added to a pool or pushed on

a stack its utilization will be added to the total remaining utilization of that processor (instead of w).

C. An Example

We demonstrate how the proposed algorithms schedule a set of tasks through an example. Assume a system with

2 identical processors and three periodic tasks as shown in the Table 1.

TABLE 1

 AN EXAMPLE OF 3 PERIODIC TASKS

 T1 T2 T3

W 3 2 7

P 5 3 10

The LCM of their periods is 30. Therefore, we illustrate the scheduling processes within the first 30 units of

time. During this time period, 6 instances of T1, 10 instances of T2 and 3 instances of T3 will be released. Their total

utilizations will be 59/30 (18/30 + 20/30 + 21/30). This is less than 2, i.e., the maximum possible utilization of a 2

processor system. Therefore, the necessary condition for the task set to be schedulable is met, although it is not

sufficient. Assuming that the tasks are synchronous and released at time t = 0, with the same benefit density

function (e.g., f(x) = 1/x), the LBBA-bid scheduling process is as follows:

 The priority of each task is calculated and the tasks are sorted in a descending order of their priorities. T2,1 (the

first instance of T1) with the highest priority is pushed on the stack of processor 1, denoted as P1, T1,1 with the

second highest priority is scheduled on P2 and T3,1 with the lowest priority has to wait. Since the current workload

on P1 is 2 and on P2 is 3, T3,1 is partitioned and sent to the pool of P1, with the lowest current workload or execution

time.

 At time t = 2, T2,1 is completed and its benefit is calculated and equals 1 for the given benefit density function.

Then, T3,1 is transferred from the pool to the stack of P1 and starts running. T1,1 is completed at t = 3, the same time

that the next instance of T2 (denoted as T2,2) is released and having P2 idle, it starts running on P2 immediately. The

benefit of T1,1 is calculated and added to the total benefit. The chronological status of the system is listed below:

t = 5:

 T2,2 finishes, T1,2 is released and starts on P2.

 Total benefit = 3

10

t = 6:

T2,3 is released; its priority is set to 1/2 (1/ (6+2-6)), compared to the priority of the running jobs, 1/3 for

T1,2, and 1/9 for T3,1, T2,3 preempts T3,1 (1/2 > 4/9) and starts on P1.

t = 8:

T1,2 finishes on P2; T2,3 finishes on P1; and their benefits are calculated and added to the total benefit. Total

benefit =5

 T3,1 resumes on P1.

t = 9:

 T2,4 is released and starts on P2.

t = 10:

T1,3 and T3,2 are released; No preemption is possible. Current remaining workload of each processor is as

follows:

 W1 = 1 (remained from T3,1)

W2 = 1 (remained from T2,4)

 So, the scheduler sends T1,3 to the pool of P1 and T3,2 to the pool of P2.

t = 11:

T3,1 and T2,4 finish. T1,3 and T3,2 are transferred from the pools to the stacks of P1 and P2 respectively, and

start. The benefits of T3,1 (w31/f31 = 7/11) and T2,4 (2/2 = 1) are added to the total benefit resulting in 6.64.
t = 12:

T2,5 is released. Its priority is not high enough to preempt any of T1,3 and T1,2. It is sent to the pool of P1 with

the least current workload:

 W1 = 2 (remained from T1,3)

 W2 = 6 (remained from T3,2)

t = 14:

 T1,3 finishes on P1. Its benefit (3/4) is added to the total benefit resulting in 7.39. T2,5 starts on P1.

t = 15:

T1,4 and T2,6 are released. T2,5 is incomplete and hence misses the deadline and gains no benefit. T2,6 starts

on P1 after T2,5 is sent to garbage collection. T1,4 is sent to the pool of P1, because:

 W1 = 2 (after starting T2,6)

 W2 = 3 (remained from T3,2)

t = 17:

 T2,6 finishes and T1,4 starts on P1.

 Total benefit = 8.39

t = 18:

 T3,2 finishes on P2. Its benefit is 7/8.

 Total benefit = 9.265

 T2,7 is released and starts on P2.

t = 20:

 T1,4 and T2,7 finish.

 Their benefits are 3/5 and 2/2 respectively.

Total benefit = 10.865

T1,5 and T3,3 are released and start on P1 and P2, respectively.

t = 21:

 T2,8 is released. It cannot preempt any jobs.

T2,8 is sent to the pool of P1 (W1 = 2 vs. W2 = 6)

t = 23:

 T1,5 ends. Its benefit is 1 (3/3).

 Total benefit = 11.865

 T2,8 starts on P1.

t = 24:

 T2,9 is released.

 T2,8 is incomplete, and misses its deadline.

 T2,9 replaces T2,8 and starts on P1.

t = 25:

11

 T1,6 is released.

 W1 = 1 (remained from T2,9)

 W2 = 2 (remained from T3,3)

 T1,6 is sent to the pool of P1.

t = 26:

 T2,9 finishes on P1. Its benefit is 1 (2/2).

 Total benefit = 12.865

 T1,6 starts on P1.

t = 27:

 T3,3 ends on P2. Its benefit is 1 (7/7).

 Total benefit = 13.865

 T2,10 is released and starts on P2.

t = 29:

 T1,6 ends on P1. Its benefit is 0.75 (3/4).

 T2,10 ends on P2. Its benefit is 1 (2/2).

 Total benefit = 13.865 + 0.75 +1 = 15.615

 Now, we use LBBA-bnc for scheduling the same set of tasks on 2 identical processors. The priority settings,

scheduling higher priority jobs and partitioning the rest of the ready jobs among the pools of the processors are the

same as LBBA-bid, except for the case of having a job released when the

Previous job of the same task is not completed, yet. The example of such scenario is at t = 15, when T2,5 is still

running and T2,6 is released; and at t = 24, when T2,9 is released and T2,8 is incomplete.

 In LBBA-bnc, a job misses its non-implicit deadline if the next job of the same task completes (on another

processor). Therefore, it allows two consecutive jobs of a task to have their executions, on two different processors,

partially overlapped. Therefore, if the job that is released first completes first, it meets the deadline and can add its

gained benefit to the total benefit. Hence, this relaxation of the deadline would reduce the tardiness (i.e., the number

of missed deadlines) as shown in Figure 2.

At t = 15:

T1,4 and T2,6 are released. T2,5 continues. T2,6 and T1,4 are sent to the pools of P2 and P1, respectively, in order

to balance the workload.

W1 = 1, W2 = 3 (before partitioning)

W1 = 4, W2 = 5 (after partitioning)

 The rest of the scheduling process is illustrated in Figure 2, along with the schedules provided by LBBA-bid and

UBBA.

Fig. 2. Scheduling Diagrams

12

The UBBA will act the same at t = 12, for balancing the load based on utilizations, because the utilization of P1

(2/3) is less than P2 (6/7). However, its scheduling is different from LBBA-bid at t =15, since utilization of P1 (2/2)

is more than P2 (3/7). Therefore, T1,4 will be sent to the pool of P2.

As shown in the Figure, LBBA-bnc schedules all the jobs in this example, while two jobs in LBBA-bid and

three jobs in UBBA method miss their deadlines.

IV. EXPERIMENTAL EVALUATION

Through extensive experiments on synthetic periodic task sets, we conduct comparative performance evaluation

for the three proposed algorithms.

 LBBA-bid (with benefit-aware-implicit deadline),

 LBBA-bnc (with benefit-aware-next-job-completion time deadline),

 UBBA (Utilization-Balanced Benefit-Aware)

Benefit maximization in LBBA has been proved for aperiodic tasks by theoretical and experimental analysis in

[12]. Therefore, comparing with other state-of-the-art benefit-aware algorithms is not in the scope of this paper. We

compare the schedulability (job completion rate) and the number of preemptions in the proposed algorithms with

Global EDF, which is known as an optimal method for scheduling periodic tasks, to show how close these benefit-

based scheduling methods are to the optimal solution, in term of schedulability, while maximizing the total benefit.

A. Performance Metrics

In this research, we considered the following measurements to evaluate and compare the performance of the

three proposed algorithms:

 Total benefit gained by completed jobs

 Schedulability or Job Completion rate

 Number of preemptions

B. Experimental Setting

We implemented the algorithms using Netbeans 8.0.2, on Intel core i7- 2630QM CPU at 2 Ghz speed, 64 bit OS,

8 GB RAM and 6 MB cache. We randomly generated periodic task sets with uniform distribution of periods in the

range of [1, 30] for 2, 4, 6, and 8 processors. The task utilizations were generated with uniform distribution as

follows:

 30% with light utilization in range of [0.001, 0.1]

 40% medium utilization within [0.1, 0.4]

 30% heavy utilization within [0.5, 0.9]

We generated the tasks until the total utilization passed the number of processors (100%), and then discarded the

last generated task. We ran hundreds of trials for each multiprocessor setting and calculated the average amount of

recorded results for the metrics.

C. Results and Discussion

The results of our extensive experiments are shown in the following graphs. Figure 3 implies that the total

benefits gained by all three algorithms are very close so that they are shown as one line (on top of each other) in the

graph. Please note that the benefits are in millions due to the very large LCM on 6 and 8 processors, which caused

millions of jobs to be scheduled.

We did not include Global EDF in this graph, since it is not a benefit-aware algorithm and the gained benefit is

not applicable to it.

13

0.00

20.00

40.00

60.00

80.00

100.00

120.00

2P 4P 6P 8P

M
IL
LI
O
N
S

TOTAL BENEFIT

LBBA-bid LBBA-bnc UBBA

Fig. 3. Total benefit gained on average by LBBA-bid, LBBA-bnc and UBBA for 2, 4, 6, and 8 processors

0

2

4

6

8

10

12

14

16

2 P 4 P 6 P 8 P

M
IL
LI
O
N
S

NUMBER OF PREEMPTIONS

LBBA-bid LBBA-bnc UBBA GLOBAL EDF

Fig. 4. Total number of preemptions on average by LBBA-bid, LBBA-bnc, UBBA and Global EDF, for 2, 4, 6, and 8

processors

Figure 4 compares the total number of preemptions on average, caused by each algorithm including Global EDF.

The result showed that UBBA has the lowest number of preemptions during scheduling. The difference in their

performance is more obvious when the number of processors increases. Since the system utilization in all cases is

very close to 100%, there is a sharp increase in the number of jobs to be scheduled, with more processors in the

system. Also, Global EDF had at least 30% more preemptions than our methods for 8 processor systems.

86.00%

88.00%

90.00%

92.00%

94.00%

96.00%

98.00%

100.00%

102.00%

2P 4P 6P 8P

JOB COMPLETION RATE

LBBA-bid LBBA-bnc UBBA GLOBAL EDF

Fig. 5. Average job completion percentage on average by LBBA-bid, LBBA-bnc, UBBA and Global EDF, for 2, 4, 6, and 8

processors

Figure 5, demonstrates the schedulability of the algorithms in comparison with Global EDF with almost 100%

job completion rate. The algorithms with implicit deadlines (LBBA-bid and UBBA) had the same rate of 96% on 2

processors which slightly decreased to 94% on 8 processors in LBBA-bid. Considering that these results are

14

achieved for worst-case execution times of the tasks, in actual soft real-time applications this minor amount of

tardiness would be sustainable. The rate for UBBA decreased to 92% for 4, 6 and 8 processors.

On the other hand, LBBA-bnc with non-implicit deadline showed substantial improvement in job completion

rate and appeared very close to optimal schedulability (99.5% to 99.8%).

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a new semi-partitioning approach to schedule soft real-time periodic task sets on

identical multiprocessor systems. This method allows task migration at job-boundaries, i.e., different instances (or

jobs) of each task can be assigned to any of the processors in the system at their release time. However, after they

are partitioned, no migration is allowed. We used our hybrid scheduling method, LBBA, which maximizes total

benefit while balancing the workload among the processors for lowering cost and reducing tardiness. We have

demonstrated these advantages of LBBA (for aperiodic tasks) in our previously published papers. In this paper, we

provided the upper bounds on the delays and preemptions in accordance to the task utilizations, and schedulability

conditions of periodic tasks.

In this work, we studied the performance of our model in RTS systems with implicit and non-implicit deadlines,

in terms of total gained benefit, job completion rate and total number of preemptions.. In addition, we proposed a

modified version of our model to balance the task utilizations among the processors instead of their execution

times. We have conducted experimental performance analysis of the LBBA algorithm for periodic tasks with

implicit deadlines, along with two propositions (LBBA-bnc with non-implicit deadlines, and UBBA with

utilization-balancing) for more benefit accrual and higher percentage of completed jobs.

In order to evaluate their performance, we considered metrics such as total gained benefit, schedulability in the

term of job completion rate, and total number of preemptions. The experimental results show that LBBA for the

tasks with non-implicit deadlines is near optimal, with the same performance on benefit maximization as in the

other two methods with implicit deadlines. Also, our algorithms have fewer numbers of preemptions than Global

EDF as the number of processors increases.

For the future work, these algorithms can be compared to the state-of-the-art in semi-partitioning such as EDF-

os and EDF-fm, and also to other benefit-based scheduling algorithms.

REFERENCES

[1] A. Elnably, K. Du, P. Varman, “Reward scheduling for QoS in cloud applications,” in Proceedings of the 12th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing, 2012.

[2] J. Gubbi, R. Buyya, S. Marusic , M. Palaniswami, “Internet of Things (IoT): A vision, architectural elements, and future

directions,” Future Generation Computer Systems vol. 29, pp. 1645–1660, 2013.

[3] A. Srinivasan, P. Holman, J. H. Anderson, and S. Baruah, “The case for fair multiprocessor scheduling,” in Proceedings of

the 11th International Workshop on Parallel and Distributed Real-time Systems, April 2003.

[4] H. Alhussian, N. Zakaria, F. A. Hussin, “An efficient real-time multiprocessor scheduling algorithm,” Journal of

Convergence Information Technology, January 2014.

[5] M. Amirijoo, J. Hansson, and S. H. Son, “Specification and management of QoS in real-time databases supporting

imprecise computations,” IEEE Transactions on Computers, vol. 55, pp. 304–319, March 2006.

[6] H. Aydin, R. Melhem, D. Mosse and P. M. Alvarez, “Optimal reward-based scheduling for periodic real-time tasks,” IEEE

Transactions on Computers, vol. 50, no. 2, February 2001.

[7] I-H. Hou, P.R. Kumar, ”Scheduling periodic real-time tasks with heterogeneous reward requirements,” in Proceedings of

the 32nd IEEE Real-Time Systems Symposium, 2011.

[8] B. Awerbuch, Y. Azar, and O. Regev, “Maximizing job benefits online,” in Proceedings of the 3
rd

 International

Workshop, APPROX, Germany, September 2000.

[9] B. Sanati and A.M.K. Cheng, “Maximizing job benefits on multiprocessor systems using a greedy algorithm,” in WiP

session of the 14th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), April, 2008.

[10] B. Sanati and A.M.K. Cheng, “Efficient Online Benefit-Aware Multiprocessor Scheduling Using an Online Choice of

Approximation Algorithms,” in Proceedings of the 11th IEEE International Conference on Embedded Software and

Systems (ICESS 2014), Paris, France, August 20-22, 2014.

[11] J.H. Anderson, J.P. Erickson, U.C. Devi, B.N. Casses, “Optimal semi-partitioned scheduling in soft real-time systems,”

in Proceedings of the 20th IEEE International Conference on Embedded and Real-Time Computing Systems and

Applications (RTCSA), August 20-22, 2014.

[12] B. Sanati, A.M.K. Cheng, “LBBA: An efficient online benefit-aware multiprocessor scheduling for QoS via online choice

of approximation algorithms,” Future Generation Computer Systems, vol. 59, pp. 125–135, June 2016, (Available online

December 2015).

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Erickson,%20J.P..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Devi,%20U.C..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Casses,%20B.N..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6900045
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6900045
https://scholar.google.com/scholar?oi=bibs&cluster=9923064689653300800&btnI=1&hl=en
https://scholar.google.com/scholar?oi=bibs&cluster=9923064689653300800&btnI=1&hl=en
http://www.sciencedirect.com/science/journal/0167739X/59/supp/C

