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Abstract

Most Hierarchical Real-time Scheduling (HiRTS) techniques have focused on temporal resource
partitions which time units are periodically distributed. Although such periodic partitions could
provide great flexibility for resource partitioning, engineers are stuck when trying to determine the
schedulability of real-time tasks running on them. The main reason is that periodic partitions fail to
effectively bound the difference between the ideal and the actual resource allocation. To solve this
problem, some researchers introduced the Regular Partition, a type of temporal resource partition
which is almost evenly distributed. Recent research has shown that it achieves maximal transparency
for task scheduling. Some classical real-time scheduling problems on a regular partition can be
easily transformed into equivalent problems on a dedicated single resource. However, the resource
partitioning problem for regular partitions is much more complicated than the one for periodic
partitions. Based on a practical 2-layer HiRTS platform, this paper first introduces new resource
partitioning techniques for regular partitions. After that, it compares the overall performance of the
periodic partition and the regular partition. We conclude that the regular partition is a better choice
for the integration of real-time applications.
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Abstract

Most Hierarchical Real-time Scheduling (HiRTS) techniques have focused on temporal resource partitions
which time units are periodically distributed. Although such periodic partitions could provide great flexibility
for resource partitioning, engineers are stuck when trying to determine the schedulability of real-time tasks
running on them. The main reason is that periodic partitions fail to effectively bound the difference between
the ideal and the actual resource allocation. To solve this problem, some researchers introduced the Regular
Partition, a type of temporal resource partition which is almost evenly distributed. Recent research has shown
that it achieves maximal transparency for task scheduling. Some classical real-time scheduling problems on a
regular partition can be easily transformed into equivalent problems on a dedicated single resource. However,
the resource partitioning problem for regular partitions is much more complicated than the one for periodic
partitions. Based on a practical 2-layer HiRTS platform, this paper first introduces new resource partitioning
techniques for regular partitions. After that, it compares the overall performance of the periodic partition and
the regular partition. We conclude that the regular partition is a better choice for the integration of real-time
applications.
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Hierarchical Real-time Scheduling, Temporal Resource Partition, Real-time Task Scheduling, Resource
Utilization, Schedulability Rate

I. INTRODUCTION

Aiming to integrate multiple real-time applications onto one single physical platform, hierarchical real-
time scheduling (HiRTS) allows different real-time applications to share space or time on one computation
resource. This problem is increasingly important as open systems [18] become more popular. Open systems
make it easy to add and remove software applications as well as to increase resource utilization and reduce
implementation cost when compared to systems which physically assign distinct computation resources to run
different applications. In this paper, we focus on how to share time on one computation resource based on
a practical 2-layer HiRTS system shown in Figure 1. A computation resource could be a single resource or
an identical multiresource, and it is temporally divided into a group of Resource Partitions [2], which are
managed by a global resource-level scheduler. On each resource partition, the real-time tasks belonging to a
real-time application is scheduled by its own task-level scheduler.

Fig. 1. A 2-Layer HiRTS System

The resource partition is an intermediate layer in this 2-layer system, and each resource partition only uses
a fraction of the time on the computation resource. There are several HiRTS resource models. Typically, each
HiRTS model has its own definition of resource partition containing some parameters. For example, a resource
partition in the Periodic Model [10] exactly obtains c computation time units in each period p. A time unit is a
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system-defined unit of time for the purpose of scheduling, and there is no (either partition or task) preemption
in it. Therefore, we may assume that all time parameters in this paper are integers without loss of generality.

The parameter values of a resource partition is called its signature. For example, periodic partition (10, 4)
represents a partition which obtains 4 time units in each period of 10 time units. The signature of a resource
partition is the only sharing information between the global resource-level scheduler and its own task-level
scheduler. The resource-level scheduler gathers all the partition signatures in the system and decides how to
assign time units to the partitions. We call it the resource partitioning problem in HiRTS. Meanwhile, on each
resource partition, real-time tasks are usually migrated from a non-hierarchical real-time system where they
were directly running on a dedicated computation resource under a specific scheduling policy, such as Earliest
Deadline First (EDF) or Rate Monotonic (RM) [12]. In most cases, the original schedulability tests for a
dedicated resource do not work for a resource partition which only preempts a fraction of the computation
time. Therefore, new task scheduling techniques have to be developed. We call it the task scheduling problem
in HiRTS.

Then, we start to address the problems we shall discuss in this paper. At the resource level, a basic
problem is how to schedule resource partitions on a single resource. We use (P1) Res-Single to represent
this problem. In the multiresource scenario, there are two dominating categories of scheduling algorithms:
global scheduling and partitioned scheduling. Global scheduling allows resource partitions to migrate between
different computation resource units, while partitioned scheduling does not. They may dominate each other
depending on different characteristics of computation resources. Generally, if the migration overhead is
relatively small, global scheduling could provide higher efficiency; Otherwise, partitioned scheduling could
perform better. Therefore, when considering the resource partitioning problem, we need to investigate both
global scheduling and partitioned scheduling. We call them (P2) Res-Global and (P3) Res-Partitioned problems
respectively.

For task scheduling, we shall discuss the schedulability problems for several popular task models. One task
model we consider is the Periodic Task Model, in which two successive requests of each task are separated
by exactly the same time interval, called its period. In this model, a task ti is denoted by (ci, pi, di, oi), where
ci, pi, di and oi are its execution time, period, deadline and offset, respectively. Most current HiRTS Models
have investigated a simple case of the Periodic Task Model, in which each task’s deadline is same as its period
and offset is 0. We call (P4) Task-Periodic-Simple as the schedulability problem for this simple Periodic Task
Model, and (P5) Task-Periodic-Generic as the one for the general Periodic Task Model. Another considered
task model is the Sporadic Task Model, in which two successive requests of a task are separated by at least
a time interval, called its minimum separation time. Similarly, we use (P6) Task-Sporadic to represent the
schedulability problem for the Sporadic Task Model.

Related Work: There are several HiRTS resource models, such as the Regularity-based Model [1, 3], the
Bounded-Delay Model [2, 3], the Periodic Model [10] and the EDP Model [11]. The Periodic Model (or
Constant Bandwidth Server [16]) is the most popular one due to its simplicity for resource partitioning. Since
a resource partition in this model is defined similarly to a periodic real-time task, the existing periodic task
scheduling techniques can be used for periodic resource partitioning without changes. However, schedulability
tests have been found only in the simplest case (P4) Task-Periodic-Simple for task scheduling in this model.
Due to the blacked-out intervals (Figure 2) without any computation time available, researchers have been
stuck in more complicated problems, such as (P5) Task-Periodic-Generic and (P6) Task-Sporadic.

Fig. 2. Blacked-out Intervals on a Periodic Partition (p, c)

Besides the Periodic Model, other resource models had not received enough attention for a long time because
they lacked effective resource partitioning algorithms. Recently, the Regularity-based Model has been greatly
explored. Other than the Periodic Model, this model tends to evenly distribute the time units on a resource
partition, and a parameter ‘regularity’ is used to restrain the time-unit distribution. A resource partition is
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called a Regular Partition when its regularity is minimal, which causes its time-unit distribution to be almost
even. This idea was originally introduced in [7], and developed in [1, 3] for the single-resource scenario with
some primitive results. Li and Cheng [4, 5] applied it onto a multiresource platform with global scheduling.
Furthermore, they also comprehensively explored task scheduling on regular partitions in [15]. They found that
some classical real-time scheduling problems on a regular partition can be easily transformed into equivalent
problems on a dedicated single resource. Therefore, regular partitions are able to provide maximal transparency
for task scheduling. In Table I, we summarize the current state of the art of the Regularity-based and the
Periodic Models.

Problem the Periodic Model the Regularity-based Model

(P1) Res-Single Converted to a Periodic Task Scheduling
Problem

Primitive Results [1, 3]

(P2) Res-Global Same As Above Optimal Approximation Alogrithm (Magic7
[5])

(P3) Res-Partitioned Same As Above No Result

(P4) Task-Periodic-Simple New Schedulability Tests for Periodic
Partitions [10]

Converted to a Task Scheduling Problem on a
Dedicated Resource [15]

(P5) Task-Periodic-Generic No General Result Same As Above

(P6) Task-Sporadic No General Result Same As Above

TABLE I
THE CURRENT STATE OF THE ART: THE PERIODIC MODEL AND THE REGULARITY-BASED MODEL

Contributions: One major contribution of this paper is to alleviate the weaknesses of the Regularity-based
Model listed in Table I. The first weakness is that the current results on (P1) Res-Single are very primitive.
Since the scheduling problem of regular partitions is announced NP-hard, the current solutions fall into the
category of approximation algorithms. Mok and Feng [1, 3] gave an initial solution to schedule regular
partitions on a single resource, where the weight of each regular partition is approximated by the values in
an infinite sequence 〈1, 12 ,

1
4 ,

1
8 , ...〉. However, they did not consider other approximation sequences, and their

results have not been proved optimal. This paper is the first to comprehensively study (P1) Res-Single for
the Regularity-based Model. It derives its schedulability bound for all feasible approximation sequences, and
finds a group of sub-optimal approximation sequences which achieve higher resource utilization.

Based on the new results on (P1) Res-Single, this paper also studies (P3) Res-Partitioned in the Regularity-
based Model for the first time, which is important because the migration overhead cannot be neglected in most
real-time systems [13, 14]. It first derives the schedulability bound when a single approximation sequence
is used. Then it introduces MulZ, a novel algorithm for (P3) Res-Partitioned, which drastically improves
the overall resource utilization by using multiple approximation sequences. Even without considering the
migration overhead due to global scheduling, MulZ outperforms the optimal global scheduling algorithm,
especially on middle-to-large multiresource platforms. Moreover, we conclude that MulZ does not affect the
original schedulability bound.

Another important contribution of this paper is to compare the overall performance of the Periodic and
the Regularity-based Models. Since there has been no general result on (P5) Task-Periodic-Generic and (P6)
Task-Sporadic in the Periodic Model, we can only compare the performance of (P4) Task-Periodic-Simple in
both models with three different resource partitioning scenarios, (P1) Res-Single, (P2) Res-Global and (P3)
Res-Partitioned, respectively. Our experimental result shows that the Regularity-based Model outperforms
the Periodic Model in each scenario. Furthermore, considering the Regularity-based Model is able to handle
comprehensive task models at the task level, it should be a better choice than the Partitioned Model when
applying real-time application integrations, especially after we make up its weaknesses on resource partitioning
in this paper.

Organization: The rest of this paper is organized as follows. We review the Regularity-based Model and
its current approximation algorithm for (P2) Res-Global in Section II. We introduce our solutions for (P1)
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Res-Single and (P3) Res-Partitioned in Sections III and IV, respectively. Section V presents our experimental
results. Finally, we draw the conclusion in Section VI.

II. THE REGULAR PARTITION AND ITS APPROXIMATION GLOBAL SCHEDULING ALGORITHMS

In this section, we review some basic definitions and important results in the Regularity-based Model
introduced in [2, 5]. We make some changes or improvements to them for consistency and brevity. These
prerequisite knowledge falls into two categories: one is about the properties of regular partitions; the other is
about the current approximation algorithms based on global scheduling.

A. Regular Partition

The theoretical definition of a resource partition shows how time units are periodically assigned to it. As
shown in Def. 2.1, it is specified by a period p and a time-unit sequence with length q. WP = q

p denotes the
weight of P . In the Regularity-based Model, the weight of a resource partition is always a rational number
between 0 and 1.

Definition 2.1 A Resource Partition P is a tuple (S, p), where S = 〈s1, s2, ..., sq : 0 ≤ s1 < s2 < ... < sq < p〉
is the time-unit sequence; p is the period and

:::
p, q

::::
are

:::::::::
co-prime.

As shown in Figure 3, SP (t) denotes the Supply Function of P , equal to the total number of time units
that are available in P from time 0 to t; IP (t) = SP (t)− t ·WP denotes the Instant Regularity of P , which
shows the difference between the actual and ideal resource allocation on P at time t.

Lemma 2.1 Suppose P = (S, p) is resource partition where q is the length of S, then ∀t ∈ [0, p),

IA(t+ 1)− IA(t) =

{
1− q

p if t ∈ S;

− q
p otherwise.

Proof: Immediately follows from the definition of Instant Regularity.

Definition 2.2 A resource partition P is a Regular Partition if and only if ∀t1, t2, |IP (t1)− IP (t2)| < 1.

A regular partition minimizes the deviation range of its instant regularity. As shown in Figure 3, the size
of this range is limited to less than 1. We want to point out that this bounded range concept is very similar
to the lag of a P-fair task [8, 9], but the lag range in P-fair is bounded by 2. Therefore, we cannot use the
P-fair algorithm to schedule regular partitions because a regular partition has a much tighter restriction on the
deviation range than a P-fair task.

Fig. 3. A Regular Partition of Weight 4
7

For a given regular partition P , let βP denote the minimum value of P ’s instant regularities. Since IP (0) =
0, by Def. 2.2, it is obvious that βP ∈ (−1, 0]. Suppose p is P ’s period and q

p is its weight where p, q are
co-prime, then by Lemma 2.1, the possible values of βP are {0,−1

p ,−
2
p , ...,−

p−1
p }. Li and Cheng [15] prove

that each value determines a q
p -weight regular partition. Therefore, there are exactly p different q

p -weight
regular partitions.

Definition 2.3 A regular partition P is a Standard Regular Partition when βP = 0.
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Definition 2.4 T0(p, q) represents the time-unit sequence of a standard regular partition with weight q
p .

For example, Figure 3 shows T0(7, 4) = 〈0, 1, 3, 5〉. The motivation to point out such a special regular
partition is that any other regular partition with the same weight can be easily obtained from it by applying
a right-shift operation on its time-unit sequence. Therefore, we usually only need to check the properties of
regular partitions on the standard ones. Figure 4 shows an example containing such kind of right shifts.

Definition 2.5 T (p, q, δ) represents the time-unit sequence right shifted from T0(p, q) by δ time units, where
a modulus operation is applied when a time unit is out of [0, p). Specially, T (p, q, 0) = T0(p, q).

Fig. 4. Right Shifting Regular Partition (T0(3, 2), 3)

The following discussion answers the question of whether a regular partition can be a part of another
one in some special cases. These results are very important for our approximation method of regular partition
scheduling. We always use it to determine counter examples when we check the feasibility of an approximation
sequence. In this paper, we formally define a partial order ≺rp to indicate the containment relation between
regular partitions.

Definition 2.6 q1
p1
≺rp q2

p2
if and only if ∃δ, T (p, q1p1 · p, δ) ⊂ T0(p,

q2
p2
· p), where p = LCM(p1, p2).

For convenience, in this paper, we use RPw to represent a regular partition whose weight is w. Then, we
can also describe ≺rp like this: w1 ≺rp w2 if and only if RPw1

could be contained by RPw2
. This containment

relation is checked frequently while scheduling regular partitions. The following two lemmas investigate this
containment relation in some special cases.

Lemma 2.2 If w1 ≺rp w2 where w1 + w2 < 1 and w2 < 2w1, then ∃n > 0, w1 = n+1
4n+3 , w2 = 2n+1

4n+3 .
Proof: Lemma 4.3 in [5] shows the same property. The proof is also presented Appendix B.

Lemma 2.3 If w2 ≤ 1
3 and w2

2 < w1 < w2, w1 6≺rp w2.
Proof: Immediately follows from Lemma 2.2.

For example, by Lemma 2.3, we easily conclude that a 1
3 -weight regular partition does not contain any 1

4 -weight
one; by Lemma 2.2, a 5

9 -weight regular partition does not contain any 1
3 -weight one.

B. Approximation Algorithms for Regular Partitions’ Global Scheduling

The problem is: given {wi : 1 ≤ i ≤ n} as the weights of n regular partitions, how to schedule them
on an identical multiresource with global scheduling? An approximation method [5] adjusts each wi to the
closest greater or equal value in an Approximation Boundary Sequence (ABS) or an Extended Approximation
Boundary Sequence (E-ABS) that are defined as follows:

Definition 2.7 An Approximating Boundary Sequence (ABS) is an infinite number sequence 〈b1, b2, b3, ...〉,
where ∀i, 0 < bi+1 < bi < 1; lim bn = 0 when n→∞.

Definition 2.8 An Extended Approximating Boundary Sequence (E-ABS) is a tuple (B,B′), where ABSes
B = 〈b1, b2, ...〉, B′ = 〈b′1, b′2, ...〉, and b1 + b′1 < 1.

E-ABS is introduced to achieve lower approximation overhead than ABS because it could contain more
and denser elements used for approximation. For a given E-ABS E = (B,B′), we say b ∈ E if and only if
b ∈ B or 1− b ∈ B′. Sometimes we use 〈..., 1− b′2, 1− b′1, b1, b2, ...〉 to represent an E-ABS for convenience,
though it is not a formal representation for sequences. The following are some important functions for a given
ABS/E-ABS B originally defined in [5]. Specially, if B is an ABS, let B include 1 for boundary control.
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Definition 2.9 Approximation Function RB(w):
RB(w) = min{b : b ∈ B; b ≥ w}.

RB(w) approximates a weight w at the closest greater or equal value in B.

Definition 2.10 Schedulability Bound ΥB:

ΥB = min{ bb′ : b, b′ ∈ B; b < b′;@b′′ ∈ B, b < b′′ < b′}.
ΥB equals the minimal quotient of any two consecutive elements in B, which indicates the low-bound resource
utilization due to the approximation strategy by B.

Definition 2.11 Approximation Overhead OB:
OB determines the average resource utilization of B. We do not present the equation of OB here because this
paper does not use this equation. In Figure 5, the stairs shape indicates RB(w), and OB equals the area of
the slash-filled triangles.

Fig. 5. Approximation Function and Overhead of an ABS

Let us make a naming convention. In this paper, we use m-resource to represent a multiresource with m
identical resource-units. Specially, 1-resource represents a single-resource. Then, we can define the feasibility
of an ABS/E-ABS in Def. 2.12, where {ni × wi : i = 1, 2, ..., k}rp denotes a partition group containing ni
times RPwi

, and 1× wi can be simplified to wi.

Definition 2.12 An ABS/E-ABS B is globally-feasible if and only if ∀bi ∈ B (i = 1, 2, ..., n) where
∑n

i=1 bi ≤
m, {bi : i = 1, 2, ..., n}rp is schedulable on an m-resource via global scheduling.

The thought behind “B is globally-feasible” is: For a group of regular partitions {wi : i = 1, 2, ..., n}rp, we
first approximate the weight of each partition at its closest boundary in B using RB(w). If the sum of these
approximated weights does not exceed m, they are always schedulable on an m-resource via global scheduling.
On the contrary, if we are able to find a partition group as a counter example that is unschedulable after being
approximated by B via global scheduling, we can claim that B is not globally-feasible.

Name Definition Globally-Feasible

Gn,m 〈 1
n·m ,

1
n·m2 ,

1
n·m3 , ...〉 yes

Hn,m 〈n−1
n
, n−2

n
, ..., 1

n
, 1
n·m ,

1
n·m2 ,

1
n·m3 , ...〉 iff n ∈ RMN ∗

Zn,m (Hn,m,Gn,m) iff n ∈ RMN

TABLE II
TYPICAL ABSES AND E-ABSES

Table II describes some types of ABSes/E-ABSes defined in [5] and their feasibility for global scheduling,
and we also list some specific ABSes/E-ABSes as follows, which are widely used in our later discussion.
Specially, Z7,2 is the optimal ABS/E-ABS for global scheduling found in [5].

∗ RMN (Regularity Magic Numbers) is an integer set {2,3,4,5,7}.
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G1,2 = 〈12 ,
1
4 ,

1
8 ,

1
16 ,

1
32 , ...〉

Z2,2 = Z4,2 = 〈..., 3132 ,
15
16 ,

7
8 ,

3
4 ,

1
2 ,

1
4 ,

1
8 ,

1
16 ,

1
32 , ...〉

Z3,2 = 〈..., 2324 ,
11
12 ,

5
6 ,

2
3 ,

1
3 ,

1
6 ,

1
12 ,

1
24 , ...〉

Z5,2 = 〈..., 3940 ,
19
20 ,

9
10 ,

4
5 ,

3
5 ,

2
5 ,

1
5 ,

1
10 ,

1
20 ,

1
40 , ...〉

Z7,2 = 〈..., 5556 ,
27
28 ,

13
14 ,

6
7 ,

5
7 ,

4
7 ,

3
7 ,

2
7 ,

1
7 ,

1
14 ,

1
28 ,

1
56 , ...〉

At the end of this review section, we list the symbols used in this paper in Table III.

B,B′, A ABS or E-ABS

b, b′, b′′, bi item in ABS or E-ABS

w,wi weight of regular partition

RB(w) approximation function of B

ΥB schedulability bound of B

OB approximation overhead of B

T0(p, q) time-unit sequence of standard regular partition

T (p, q, δ) time-unit sequence of regular partition

RPw regular partition of weight w

≺rp containment relation between regular partitions

G, {...}rp regular partition group

TABLE III
SYMBOL TABLE

III. SINGLE-RESOURCE SCHEDULING FOR REGULAR PARTITIONS

Although there already have been some approximation algorithms for single-resource scheduling of regular
partitions, such as AAF [2] and Magic7-Single [5], these algorithms have not been proved optimal. We will
deeply study this problem by also probing into approximation algorithms in this section. First, we define the
ABS/E-ABS feasibility on a single resource as follows. For convenience, we say a regular partition group is
on-1-schedulable if it is schedulable on a single resource.

Definition 3.1 An ABS/E-ABS B is on-1-feasible if and only if ∀bi ∈ B (i = 1, 2, ..., n) where
∑n

i=1 bi ≤ 1,
{bi : i = 1, 2, ..., n}rp is on-1-schedulable.

This definition is very similar to Def. 2.12 for globally-feasible, but on-1-feasible only requires that an
ABS/E-ABS always works on a 1-resource. Therefore, “B is globally-feasible” is

::::::::
sufficient

::::
but

:::
not

:::::::::
necessary

for “B is on-1-feasible”. There are some ABSes/E-ABSes that are on-1-feasible but not globally-feasible.
〈23 ,

1
2 ,

1
6 ,

1
12 ,

1
24 , ...〉 is such an example. We formally examine it as follows.

Observation 1 〈23 ,
1
2 ,

1
6 ,

1
12 ,

1
24 , ...〉 is on-1-feasible.

Proof: Let B denote the given ABS. Following Def. 3.1, we only need to prove that ∀bi ∈ B (b1 ≥ b2 ≥
... ≥ bn) where

∑n
i=1 bi ≤ 1, G = {bi : i = 1, 2, ..., k}rp is on-1-schedulable. CASE 1: b1 ≤ 1

6 . In Table
II, we know G3,2 = 〈16 ,

1
12 ,

1
24 , ...〉 is globally-feasible, then it is also on-1-feasible. It follows that G is on-1-

schedulable in this case. CASE 2: b1 = 1
2 . If b2 = 1

2 , it is easy to schedule G; otherwise, we need to examine
whether G′ = {bi : i = 2, ..., k}rp is schedulable on a 1

2 -weight regular partition, which is equivalent to that
G′′ = {2bi : i = 2, ..., k}rp is on-1-schedulable, where all items in G′′ belong to 〈13 ,

1
6 ,

1
12 ,

1
24 , ...〉. From Table

II, H3,2 = 〈23 ,
1
3 ,

1
6 ,

1
12 ,

1
24 , ...〉 is on-1-feasible, and it follows that G′′ is on-1-schedulable. CASE 3: b1 = 2

3 . It
is obvious that G does not contain 1

2 . Since H3,2 = 〈23 ,
1
3 ,

1
6 ,

1
12 ,

1
24 , ...〉 is on-1-feasible, G is on-1-schedulable.

Observation 2 〈23 ,
1
2 ,

1
6 ,

1
12 ,

1
24 , ...〉 is not globally-feasible.
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Proof: We only need to show that partition group G = {2× 2
3 ,

1
2}rp is unschedulable on a 2-resource. Figure 4

presents the three forms that 2
3 -weight regular partitions have. CASE 1: If the two 2

3 -weight regular partitions
in G is same, without loss of generality, suppose their time-unit sequences are both T0(3, 2). Obviously, the
remaining time units (a couple of 〈2, 5, 8, ...〉) cannot produce a 1

2 -weight regular partition, whose time-unit
sequence should be 〈0, 2, 4, ...〉 or 〈1, 3, 5, ...〉. CASE 2: Otherwise, without loss of generality, suppose G
contains the first two forms of partitions in Figure 4, and the remaining time units 〈0, 2, 3, 5, 6, 8, ...〉 also
cannot produce a 1

2 -weight regular partition.

A. Schedulability Bound on a Single Resource

We figure out the upper limit of the schedulability bound of an on-1-feasible approximation sequence in
Theorem 3.1 by proving that it is not on-1-feasible if its schedulability bound exceeds 0.5.

Lemma 3.1 ∀ on-1-feasible ABS/E-ABS B where ΥB > 0.5 , ∃p ≥ 3, 1
p ∈ B.

Proof: presented in Appendix C.

Lemma 3.2 ∀p > 1, after scheduling (p−1) times 1
p -weight regular partitions on a 1-resource, the remaining

time units compose another 1
p -weight regular partition.

Proof: It is true because T (p, 1, δ) = 〈δ〉 for δ ∈ [0, p).

Theorem 3.1 ∀ on-1-feasible ABS/E-ABS B, ΥB ≤ 0.5.
Proof: If ΥB > 0.5, by Lemma 3.1, ∃p ≥ 3, 1

p ∈ B. And by Def. 2.10, ∃w ∈ B,w ∈ ( 1
2p ,

1
p). Then

{(p − 1) × 1
p , w}rp is not on-1-schedulable because w 6≺rp 1

p (Lemmas 3.2, 2.3). This is a counter example
against that B is on-1-feasible. It follows that ΥB cannot be great than 0.5.

B. Sub-optimal Approximation on Single Resources

Next, we start to consider the approximation overhead. Based on the shapes shown in Figure 5, intuitively,
the approximation overhead will decrease if we add more elements into the sequence. So we first define the
containment relation between approximation sequences.

Definition 3.2 Suppose A,B are ABSes/E-ABSes, A ⊆ B if ∀b ∈ A, b ∈ B; A ⊂ B if A ⊆ B but B 6⊆ A.

The next conclusion is obvious from Figure 5:

Lemma 3.3 Suppose A,B are ABSes/E-ABSes, OA < OB if A ⊂ B.

Lemma 3.3 shows that a feasible approximation sequence can reach its minimum approximation overhead
if we cannot add any element into it without violating its feasibility. This conclusion leads to the idea of
‘Saturated’.

Definition 3.3 An ABS/E-ABS A is saturated if A is on-1-feasible, and ∀b /∈ A, A ∪ 〈b〉 is not on-1-feasible.

Furthermore, we say a saturated approximation sequence is sub-optimal if it also reaches the maximal
schedulability bound.

Definition 3.4 An ABS/E-ABS A is sub-optimal if A is saturated and ΥA = 0.5.

In this paper, we find a group of sub-optimal E-ABSes based on the idea of Regularity Magic Numbers
[5]. Reminder that Zn,2 has been defined in Table II.

Theorem 3.2 Zn,2 is sub-optimal if n ∈ {3, 4, 5, 7}.
Proof: It is obvious that ΥZn,2

= 0.5 and Zn,2 is on-1-feasible. We only need to prove that Zn,2 is saturated.
Since Zn,2 = 〈..., 4n−14n , 2n−12n , n−1n , n−2n , ..., 1n ,

1
2n ,

1
4n , ...〉, ∀b 6∈ Zn,2, there are four cases:

CASE 1: b ∈ ( 1
2kn ,

1
2k−1n) where k > 0.

{(2k−1n− 1)× 1
2k−1n , b}rp is not on-1-schedulable because b 6≺rp 1

2k−1n (Lemmas 3.2, 2.3).
CASE 2: b ∈ (1− 1

2k−1n , 1−
1

2kn) where k > 0.
{b, 1

2kn}rp is not on-1-schedulable because 1
2kn 6≺rp (1− b) (Lemmas 3.2, 2.3).
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CASE 3: b ∈ (k−1n , kn) and b+ k
n < 1, where 1 < k < n.

{1− k
n , b}rp is on-1-schedulable ⇒ b ≺rp k

n

⇒ ∃m > 0, b = m+1
4m+3 and k

n = 2m+1
4m+3 (Lemma 2.2)

⇒ m = 1, n = 7, k = 3, b = 2
7 .

This result contradicts b > k−1
n .

CASE 4: b ∈ (k−1n , kn) and b+ k
n > 1, where 1 < k < n.

{b, 1− k
n}rp is on-1-schedulable ⇒ (1− k

n) ≺rp (1− b)
⇒ ∃m > 0, k

n = 3m+2
4m+3 and b = 2m+2

4m+3 (Lemma 2.2)
⇒ m = 1, n = 7, k = 5, b = 4

7 .
This result also contradicts b > k−1

n .

IV. PARTITIONED MULTIRESOURCE SCHEDULING FOR REGULAR PARTITIONS

We have deeply studied the single-resource scheduling problem for regular partitions. A maximum schedu-
lability bound and some sub-optimal E-ABSes have been found. Next, we start to investigate the partitioned
multiresource scheduling problem for regular partitions.

There are two steps in a common partitioned scheduling algorithm: (1) allocate resource partitions (or real-
time tasks) to resource-units; and (2) schedule them on each resource-unit. Step 1 has two concerns when
allocating a resource partition: one is which resource-units can contain it; the other is that if multiple resource-
units can do it, which one should be chosen. These two issues correspond to the single-resource scheduling
algorithm and the allocation algorithm, respectively.

We adopt the naming convention in [6], where SA-RA denotes the partitioned scheduling algorithm combin-
ing a reasonable allocation algorithm RA and a single-resource scheduling algorithm SA. For example, Z3,2-WF
represents the combination of the Worst Fit First resource allocation algorithm and the approximation single-
resource scheduling algorithm using Z3,2. Also, ΥSA-RA denotes the Schedulability Bound of SA-RA.

A. Using a Single Approximation Sequence

There are some particularity when scheduling regular partitions. Since we use an approximation methodology
for single-resource scheduling, we can approximate the regular partitions before the allocation step. If the
approximation algorithm is based-on a single approximation sequence, we only need to guarantee that the
total weight allocated to each resource-unit does not exceed 1. We easily conclude that the schedulability
bound of such a partitioned algorithm cannot exceed 0.5.

Theorem 4.1 ∀ ABS/E-ABS B, ΥB-RA ≤ ΥB .
Proof: Since the weight of each regular partition has to be approximated by B, no matter how these partitions
are allocated, ΥB-RA cannot exceed ΥB .

Corollary 4.1 ∀ ABS/E-ABS B,ΥB-RA ≤ 0.5.

We assume that the weight of each regular partition is static, such that we can sort the regular partitions
by their weights before the allocation step. Some allocation algorithms are based on this assumption, such as
First Fit Decreasing (FFD) and Best Fit Increasing (BFI). We first notice that G1,2-FFD and Z2,2-FFD reach
the maximal schedulability bound shown in Corollary 4.1.

Lemma 4.1 ΥG1,2-FFD = 0.5.
Proof: From Table II, G1,2 = 〈12 ,

1
4 ,

1
8 , ...〉, and ΥG1,2 = 0.5. Suppose {ni × 1

2i : i = 1, 2, 3, ...}rp is the
approximated partition set. Obviously, these partitions can be successfully allocated to an m-resource by FFD
when

∑
i>0

ni

2i ≤ m. Therefore, G1,2-FFD always works when the total weight of the original partitions is
not greater than 0.5. It follows ΥG1,2-FFD ≥ 0.5. By Corollary 4.1, ΥG1,2-FFD = 0.5.

Lemma 4.2 ΥZ4,2-FFD = 0.5.
Proof: Z4,2 = 〈..., 78 ,

3
4 ,

1
2 ,

1
4 ,

1
8 , ...〉. Let’s compare the scheduling of Z4,2-FFD and G1,2-FFD. Suppose {Ni×

(1− 1
2i ) : i = 2, 3, ...;ni× 1

2i : i = 1, 2, 3, ...}rp is the approximated partition set by Z4,2, then {(
∑

i>1Ni)×
1; ni× 1

2i : i = 1, 2, 3, ...}rp is the one by G1,2. Figure 6 shows the partition allocations of these two algorithms.
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Fig. 6. Z4,2-FFD and G1,2-FFD

Their allocations of heavy partitions (weight ≥ 1
2 ) are exactly the same. The difference is between the light-

partition allocations. Since Z4,2-FFD leaves some blanks in the heavy part, some light partitions could be
assigned into these blanks. Nevertheless, these changes do not negatively impact the schedulability.

Then we prove that each approximation sequence with the maximal schedulability bound has to contain 1
2 .

Lemma 4.3 If 1
2 6∈ B, then ∀ RA, ΥB-RA ≤ max{0, b : b ∈ B, b < 1

2}.
Proof: Let b1 = max{0, b : b ∈ B, b < 1

2} and b2 = min{1, b : b ∈ B, b > 1
2}. Schedule {(m+1)×(b1+ε)}rp

on an m-resource with B, where ε < b2−b1. This set is approximated to {(m+1)×b2}rp. It is unschedulable
for any allocation algorithm because b2 > 1

2 . It follows ΥB-RA ≤ (m+1)·(b1+ε)
m → b1 when m→∞ and ε→ 0.

Therefore, ΥB-RA ≤ b1.

Corollary 4.2 If 1
2 6∈ B, then ∀RA, ΥB-RA < 0.5.

Theorem 4.2 shows that Z4,2 is the only sub-optimal sequence reaching the maximal schedulability bound.

Lemma 4.4 Given an on-1-feasible ABS/E-ABS B where ΥB = 0.5, if 1
2 ∈ B, then ∀k > 0, 1

2k ∈ B and
∀w ∈ ( 1

2k+1 ,
1
2k ), w /∈ B.

Proof: Use an inductive method.
:::::
When

::::::
k = 1, 1

2 ∈ B. Assume ∃w ∈ (14 ,
1
2), w ∈ B. Check the schedulability

of {12 , w}rp on a 1-resource. Suppose RP 1

2
preempts all the time units at even numbers. No matter in which

case among 1
w ∈ (2, 3), 1

w ∈ (3, 4) and 1
w = 3, there exist two consecutive time units on RPw whose distance

is 3. It follows that {12 , w}rp is not on-1-schedulable because all the time units at even numbers are already
preempted by RP 1

2
. Thus, ∀w ∈ (14 ,

1
2), w 6∈ B.

:::::
When

::::::
k > 1, by the inductive assumption, 1

2k−1 ∈ B and
∀w ∈ ( 1

2k ,
1

2k−1 ), w /∈ B. Then 1
2k ∈ B (otherwise, ΥB < 0.5 by Def. 2.10). Assume ∃w ∈ ( 1

2k+1 ,
1
2k ),

w ∈ B. Let p = 2k ≥ 4, then {(p − 1) × 1
p , w}rp is not on-1-schedulable because w 6≺rp 1

p (Lemmas 3.2,
2.3). Therefore, ∀w ∈ ( 1

2k+1 ,
1
2k ), w /∈ B.

Theorem 4.2 If B is a sub-optimal ABS/E-ABS and ΥB-FFD = 0.5, then B = Z4,2.
Proof: By Lemma 4.2 and Corollary 4.2, we only need to show that Z4,2 is the only sub-optimal ABS/E-ABS
containing 1

2 . Suppose B is such a sequence. By Lemma 4.4, ∀k > 0, 1
2k ∈ B and ∀w ∈ ( 1

2k+1 ,
1
2k ), w /∈ B.

On the other hand, ∀k > 0, ∀w ∈ (1 − 1
2k , 1 − 1

2k+1 ), w 6∈ B; otherwise, {w, 1
2k+1 }rp is on-1-schedulable

⇒ 1
2k+1 ≺rp (1−w), which contradicts Lemma 2.2. It follows B ⊆ Z4,2. Since B is saturated, B = Z4,2.

B. Using Multiple Approximation Sequences

The performance of a partitioned scheduling algorithm strongly depends on its approximation overhead. For
a given weight, the approximation overhead is not the same on different approximation sequences. For example,
RZ4,2

(0.45) = 0.5 and RZ7,2
(0.45) = 0.57. This fact inspires us to use multiple approximation sequences in

a partitioned scheduling algorithm. We call it MulZ when we use Z3,2, Z4,2, Z5,2, Z7,2 simultaneously, and
present its pseudocode as follows.
——————————————————————————————
(0) resource-units R := {Rj{factor = 0, rest = 1} : j ∈ [1,m]};
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(1) partitions P := {Pj{weight, res-unit = 0} : j ∈ [1, s]};
—————————————————–
(2) bool MulZ FFD()
(3) sort P in non-increasing order;
(4) for j = 1 to s do
(5) Pj .resource := MulZ FFD Alloc(Pj .weight);
(6) if Pj .resource = 0 return false;
(7) od
(8) return true;

—————————————————–
(9) int MulZ FFD Alloc(w)
(10) for i = 0;n ∈ {3, 4, 5, 7}; i++ do
(11) Ai = RZn,2

(w);
(12) od
(13) for k = 1 to 4 do
(14) r := the k-th minimum item in array A;
(15) f := n, where w is approximated at r by Zn,2;
(16) for j = 1 to m do
(17) if Rj .factor = f and Rj .rest ≥ r do
(18) Rj .rest := Rj .rest − r;
(19) return j;
(20) od
(21) else if Rj .factor = 0 do
(22) Rj .factor := f ;
(23) Rj .rest := 1− r;
(24) return j;
(25) od
(26) od
(27) od
(28) return 0;

—————————————————————————————-

The first two lines define and initialize the data structures. In line (0), a positive value of “factor”, n,
indicates that a resource-unit is not empty and the partitions on it are approximated by Zn,2. In line (1),
a positive value of “res-unit”, m, indicates that a partition is assigned to the m-th resource-unit. Function
MulZ FFD first sorts the resource partitions in non-increasing order, and then calls MulZ FFD Alloc within a
loop to allocate resource for each partition. Lines 10-12 compute the approximated weights of the sub-optimal
E-ABSes, and store them as an array. The loop of lines 16–26 checks the availability of each resource-unit
one by one for the current partition, where line 14 determines which E-ABS is chosen for approximation in
the current iteration; lines 17–20 search available non-empty resource-units using the chosen E-ABS; lines
21–25 assign the current partition to an empty resource-unit if the condition in line 17 fails for all non-empty
resource-units (always having lower indexes in R). If there are empty resource-units remaining when starting
function MulZ FFD Alloc, the loop of lines 16–26 must terminate at either line 19 or line 24 when k = 1.
Therefore, the branch of lines 21–25 is only executed when k = 1. It follows that an empty resource-unit
always chooses its working E-ABS such that the minimum approximation overhead is achieved for its first
assigned partition.
A Partitioning Example of MulZ-FFD:
Partition G = {0.65, 0.6, 0.55, 0.5, 0.35, 0.3, 3× 0.25}rp on a 4-resource. Let U(G,n) =

∑
w∈GRZn,2

(w). It
is easy to check that ∀n ∈ {3, 4, 5, 7}, U(G,n) > 4. Therefore, any single Zn,2 does not work in this scenario,
even if we use a global scheduling strategy without considering migration overhead. However, MulZ-FFD is
able to do that. Let’s see how the first partition 0.65 is assigned. When n = 3, 4, 5, 7, its approximated weight
equals 2

3 ,
3
4 ,

4
5 ,

5
7 , respectively. We choose the minimum one 2

3 , and the working E-ABS is Z3,2. Then we assign
this partition to the No. 0 resource-unit because currently all the resource-units are empty. Meanwhile, the
working E-ABS on the No. 0 resource-unit is set to Z3,2. The rest can be done in the same manner, and the
final result is shown in Table IV. The overall resource utilization is 92.5%. Notice that although Z7,2 cannot
achieve the minimum approximated overhead for the last remaining 0.25-weight partition, this partition is
still assigned to the No. 2 resource-unit because the other three resource-units cannot accommodate it at that
moment.

MulZ-FFD is an intuitive algorithm, which is unable to promise optimal performance theoretically. Nev-
ertheless, our experimental results in the next section show that it has better performance than the current
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optimal global scheduling algorithm. Meanwhile, Theorem 4.3 shows that the maximal schedulabiltiy bound
0.5 is still kept.

Lemma 4.5 Suppose weights w1, w2, ..., ws (w1 ≥ w2 ≥ ... ≥ ws > 0) are already assigned to a resource-unit
by MulZ-FFD, where Zn,2 (n ∈ {3, 4, 5, 7}) is its working E-ABS, and

∑s
i=1wi < 0.5. ∀ws+1 ∈ (0, ws], this

resource-unit is still able to accommodate ws+1.
Proof: We only check Z7,2 here. The others can be checked similarly. Let ri = RZ7,2

(wi) be the approximated
weight of wi for i = 1, 2, ..., s + 1. Notice wi ≤ ri < 2wi. Since Z7,2 is sub-optimal, we need to show
U =

∑s+1
i=1 ri ≤ 1.

CASE 1: w1 ∈ (37 ,
1
2), r1 = 4

7 . This case is impossible. When MulZ-FFD assigns w1 to an empty resource-unit,
it should choose Z4,2 as the working E-ABS because RZ4,2

(w1) = 1
2 < r1.

CASE 2: w1 ∈ (27 ,
3
7 ], r1 = 3

7 . Similarly, to choose Z7,2 as the working E-ABS when assigning w1, w1

must be in (25 ,
3
7 ]. If s = 1, then U ≤ 2r1 < 1; otherwise, s > 1 ⇒

∑s
i=2wi < 0.5 − w1 < 0.1 ⇒ U <

r1 + 2
∑s

i=2wi + 2ws+1 ≤ 3
7 + 4

∑s
i=2wi < 1.

CASE 3: w1 ∈ (17 ,
2
7 ], r1 = 2

7 . To choose Z7,2, w1 must be in (14 ,
2
7 ]. If s ≤ 2, then U ≤ 3r1 < 1; otherwise,

s > 2⇒
∑s

i=2wi < 0.5− w1 <
1
4 :

CASE 3.1: w2 ∈ (17 , w1], then
∑s

i=3wi <
1
4 −

1
7 = 3

28 .
U < r1 + r2 + 2

∑s
i=3wi + 2ws+1 ≤ 4

7 + 4
∑s

i=3wi < 1.
CASE 3.2: w2 ≤ 1

7 .
CASE 3.2.1: ws ≤ 1

14 , then U < r1 + 2
∑s

i=2wi + 2ws+1 <
2
7 + 1

2 + 1
7 < 1.

CASE 3.2.2: ws > 1
14 , then 1

7 ≥ w2 ≥ w3 ≥ ... ≥ ws > 1
14 . Since

∑s
i=2wi <

1
4 , s ≤ 4. U = r1 +

∑s
i=2 ri +

rs+1 ≤ r1 + 4r2 = 2
7 + 4 · 17 < 1.

CASE 4: w1 ≤ 1
7 , then (i) for i = 1, 2, ..., s+ 1, ri ∈ {17 ,

1
14 ,

1
28 ,

1
56 , ...}; (ii) r1 ≥ r2 ≥ ... ≥ rs ≥ rs+1. Since∑s

i=1wi < 0.5 and ri < 2wi, (1−
∑s

i=1 ri) > 0. By (i) and (ii), ∀i ∈ [1, s], ri is divisible by rs+1. It follows
(1−

∑s
i=1 ri) is divisible by rs+1. Therefore, rs+1 ≤ 1−

∑s
i=1 ri ⇒ U ≤ 1.

Theorem 4.3 ΥMulZ-FFD = 0.5.
Proof: (i) Since {(m + 1) × (0.5 + ε)}rp is unschedulable on an m-resource by MulZ-FFD, ΥMulZ-FFD ≤
(m+1)·(0.5+ε)

m → 0.5 when m → ∞ and ε → 0. It follows ΥMulZ-FFD ≤ 0.5. (ii) Suppose {w1, w2, ..., wn :
1 ≥ w1 ≥ w2 ≥ ... ≥ wn > 0}rp is unschedulable on an m-resource by MulZ-FFD. Find the proper t where
{wi : i = 1, 2, ..., t}rp is schedulable and {wi : i = 1, 2, ..., t+1}rp is unschedulable. If

∑t
i=1wi < 0.5, there is

a resource-unit whose utilization is less than 0.5. By Lemma 4.5, it is able to accommodate a regular partition
of weight wt+1. This contradicts that {wi : i = 1, 2, ..., t+ 1}rp is unschedulable. Therefore,

∑t
i=1wi ≥ 0.5.

It follows that the total weight of any unschedulable partition set is greater than 0.5 and ΥMulZ-FFD ≥ 0.5.

V. EXPERIMENTAL RESULTS

A. Regular Partition Scheduling on Mulitresources

Let us briefly explain this part of the simulation experiments. For each weight percentile, we generate 50000
random partition sets. In these sets, the weight of each regular partition is randomly chosen in the interval

Resource-Unit E-ABS Partitions Approx.
Weights

No. 0 Z3,2 0.65, 0.3 2
3
, 1
3

No. 1 Z5,2 0.6, 0.35 3
5
, 2
5

No. 2 Z7,2 0.55, 0.25 4
7
, 2
7

No. 3 Z4,2 0.5, 0.25,
0.25

1
2
, 1
4
, 1
4

TABLE IV
A PARTITIONING EXAMPLE OF MulZ-FFD
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Θ = (low, high). Then we simulate different partitioned scheduling algorithms and count their schedulability
rates.

When a single approximation sequence is applied, Figure 7 shows that Z7,2-FFD has the highest overall
schedulability rate due to its lowest approximation overhead.

Fig. 7. Schedulability % of Zn,2-FFD on a 64-resource

Fig. 8. MulZ-FFD Greatly Improves Schedulability %

Figure 8 compares the schedulability rate among MulZ-FFD, Z7,2-FFD and Z7,2-Global. We have shown
that Z7,2-FFD achieves the optimal overall resource utilization with a single E-ABS. Meanwhile, Z7,2-Global
(Magic7 [5]) is the current optimal global scheduling algorithm for regular partitions. We ignore its migration
overhead because it is hard to estimate a proper value for it. This kind of overhead depends on the physical
platform architecture, which is beyond the scope of this paper. Meanwhile, this absence will not impact our
conclusions.

The simulation results indicate that MulZ-FFD has better performance than the others. First, each chart shows
that MulZ-FFD outperforms Z7,2-FFD, which means MulZ-FFD drastically improves the overall resource
utilization by using multiple approximation sequences to reduce the approximation overhead. Second, even
without considering the migration overhead due to global scheduling, MulZ-FFD performs better or no worse
than Z7,2-Global when Θ = (0, 1), and significantly outperforms Z7,2-Global for light-weight partitions where
Θ = (0, 0.5). Moreover, MulZ-FFD performs even better on middle-to-large multiresource platforms.

B. Compare the Periodic and the Regularity-based Models

Then we compare the overall resource utilization between the Periodic and the Regularity-based Models.
As shown in Table I, for task-level scheduling in the Periodic Model, we can only find solutions for the simple
periodic task model. Therefore, our comparison only focuses on this task model, where a periodic task ti is
defined as (ci, pi). ci and pi are ti’s execution time and period, respectively.

At the beginning of the simulation, a size of the computation resource, m, is selected. The main body is
a 10000-run loop. In each run, we generate a group of periodic task sets {T0, T1, ...Tn : Ti = {ti0, ti1, ...}}
for each weight percentile r, where the total weight of these task sets is exactly m · r/100 and the weight
of each task set is randomly chosen in the interval Θ = (low, high). It follows two major phases. Phase I
simulates task scheduling. For each task set Ti, we determine a resource partition Pi which has the exact
size to accommodate it with the EDF policy. And Phase II simulates resource partitioning. We determine the
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schedulability of resource partitions P0, P1, ..., Pn on an m-resource. After the 10000-run main loop, we count
the schedulability rate.

We implement our simulation in three scenarios: on a single resource, on a multiresource with global
resource scheduling and on a multiresource with partitioned resource scheduling. In all of them, we apply
schedulability tests in [10] and [15] for task scheduling in the Periodic and the Regularity-based Models,
respectively. Figure 9 shows our experimental results on a single resource. We apply EDF and Z7,2 for
resource scheduling in the two models respectively. The results show that the Regularity-based Model has
higher schedulability rate most of the time. Figure 10 shows the experimental results on a 64-resource with
global resource scheduling. P-fair and Magic7 are applied for resource scheduling. We find that the Regularity-
based Model also outperforms the Periodic Model especially when task sets are light (Θ = (0, 0.5)). Figure 11
shows the experimental results on a 64-resource with partitioned resource scheduling. EDF-FFD and MulZ-
FFD are applied for resource scheduling. The results show that the Regularity-based Model outperforms the
Periodic Model in both scenarios, no matter the task sets are heavy or light. In general, the Regularity-based
Model achieves higher schedulability rate than the Periodic Model, which shows that it also provides higher
overall resource utilization.

Fig. 9. Schedulability % on a Single Resource

Fig. 10. Schedulability % on a 64-Resource with Global Resource Scheduling

Fig. 11. Schedulability % on a 64-Resource with Partitioned Resource Scheduling

VI. CONCLUSION

The Periodic Model is the most popular resource model for HiRTS due to its simplicity in resource
partitioning. However, it has not solved most classical task scheduling problems because of the significant
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blacked-out intervals on its resource partitions. The Regularity-based Model achieves maximal transparency
for task scheduling, but its resource partitioning problem is complicated due to the very strict timing constraint
on regular partitions. To alleviate the weaknesses of the Regularity-based Model, this paper introduces new
resource partitioning techniques for it. After applying these new techniques, our simulation results show
that the Regularity-based Model achieves higher overall resource utilization than the Periodic Model. Since
the Regularity-based Model can also handle much more task models at the task level, we conclude that
the Regularity-based Model is a better choice than the Partitioned Model for the integration of real-time
applications.
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APPENDIX A

Lemma A1 shows that the time slices on a regular partition are always evenly distributed. For convenience, a
span denotes two neighboring time slices on a regular partition. Meanwhile, the size of a span is the distance
between the two time slices it represents.

Lemma A1 The size of any span on a regular partition is either b 1wc or d 1we, where w is the partition weight.
Both types of spans coexist if 1

w is a fraction.
Proof: Suppose w = q

p where p, q are co-prime. We only need to check the property on the standard regular
partition P with time-slice sequence T0(p, q). By Def. 2.3, the first time slice preempted on P must be 0;
otherwise, the instant regularity at time 1 is less than 0. Notice that ∀n ∈ (0, q), bn·pq c·

q
p ≤ n; (bn·pq c+1)· qp > n

⇒ bn·pq c·
q
p ∈ (n− q

p , n]. Consider the second time slice on P . By Lemma 2.1, a preempted time slice increases
the instant regularity of P by (1− q

p), and a non-preempted time slice decreases it by q
p . To ensure the value

of every instant regularity in [0,1) (Def.s 2.2 and 2.3), the second preempted time slice must be bpq c because

bpq c ·
q
p ∈ (1− q

p , 1] †. Similarly, the third time slice must be b2pq c; ... the q-th time slice must be b (q−1)pq c.
Therefore, T0(p, q) equals 〈0, bpq c, b

2p
q c, ..., b

(q−1)p
q c〉. ∀k ∈ (0, q], let span(k) denote the distance between

the k-th and (k+1)-th time slices in T0(p, q) ∪ 〈p〉, then span(k) = bk·pq c − b
(k−1)·p

q c ∈ [bpq c, b
p
q c+ 1]. When

p
q is a fraction, ∃k, span(k) = bpq c+ 1; otherwise, the total size of all spans in T0(p, q) ∪ 〈p〉 is q · bpq c < p.

APPENDIX B

Proof of Lemma 2.2: We only need to show that if T (p, r, δ) ⊂ T0(p, q) where q + r < p and r < q < 2r,
then ∃n > 0, q

p = 2n+1
4n+3 ; rp = n+1

4n+3 .

Let S (resp. S′) denote the infinite sequence including all time slices on the regular partition T0(p, q) (resp.
T (p, r, δ)), then S′ is a subsequence of S. Let d = bpq c and d′ = bpr c. By Lemma A1, any span size in S

(resp. S′) is either d or d + 1 (resp. d′ or d′ + 1). Meanwhile, since q + r < p and r < q < 2r, we have
d ≤ d′ ≤ 2d+ 1.
CASE 1: d ≥ 3. Since d ≤ d′ ≤ 2d+ 1 and 2d > (d+ 1) + 1, the size of any span in S′ can only be chosen
from either {d, d+1} or {2d, 2d+1}. The first case is impossible because there must be a pair of neighboring
time slices in S′ separated by a time slice in S − S′, the distance of which is not less than 2d. In the second
case, the time slices in S must be assigned to S′ and S − S′ alternately. It follows q = 2r, which contradicts
q < 2r.

CASE 2: d = 1. Then
⌊
p
q

⌋
= d = 1; p > q + r; r < q < 2r

⇒ 1
2p < q < 2

3p;
1
4p <

1
2q < r < 1− q < 1

2p

⇒ 1
2 <

q
p <

2
3 ; 2 < p

r < 4.

From 1
2 <

q
p <

2
3 , there are no neighboring 1-size spans in S ‡; from 2 < p

r < 4, d′ = bpr c = 2 or 3.

CASE 2.1: d′ = 2. Suppose there are x (resp. y) times 1-size (resp. 2-size) spans in the first period of S.
Then x+ 2y = p, x+ y = q ⇒ y = p− q.

As shown in the figure, since there are no neighboring 1-size spans in S, each 2-distance span in S′ corresponds
to a 2-distance one in S, and each 3-distance span in S′ corresponds to a 1-distance one and a 2-distance
one in S. Suppose there are x′ (resp. y′) times 3-size (resp. 2-size) spans in the first period of S′, then
x′ = x, y′ = y − x⇒ r = x′ + y′ = y ⇒ r = p− q, which contradicts q + r < p.

† Suppose the second preempted time slice is t. If t < b p
q
c, then IP (t + 1) ≥ 1. If t > b p

q
c, then IP (t) < 0. Both cases

contradict that ∀t′, IP (t′) ∈ [0, 1).
‡ Three consecutive preemptive time slices increase the instant regularity on S by 3 · (1− q

p
) > 1, which contradicts Def. 2.2.

16



CASE 2.2: If d′ = 3, any span size in S′ is 3 or 4, then each span in S′ corresponds to at least two consecutive
spans (size 1 or 2) in S. It follows q ≥ 2r, which contradicts q < 2r.
CASE 3: d = 2. Then 2 ≤ d′ ≤ 5.
CASE 3.1: d′ = 2 is impossible because there must be a pair of neighboring time slices in S′ separated by a
time slice in S − S′, the distance of which is not less than 2d = 4.
CASE 3.2: If d′ = 4 or 5, the time slices in S must be assigned to S′ and S − S′ alternately. It follows
q = 2r, which contradicts q < 2r.
CASE 3.3: If d′ = 3, the span size in S′ is 3 or 4. As shown in the figure, each 3-size (resp. 4-size) span
in S′ corresponds to a 3-size span (resp. two consecutive 2-distance spans) in S. Also, 4-distance spans must
exist in S′; otherwise, r = q, which contradicts r < q.

Suppose there is a series of consecutive 2-size spans between two nearest 3-size spans in S, whose number
is 2n > 0, then p

q ∈ (2 + 1
2n+2 , 2 + 1

2n) §. Thus, the number of consecutive 2-size spans between any two
nearest 3-size spans in S equals 2n. It follows that q

p = 2n+1
4n+3 and r

p = n+1
4n+3 .

APPENDIX C

From Lemma A1, we know that the distance between two neighboring time slices on a regular partition
is either b 1wc or d 1we, but we are still interested in how these distances (or spans) are distributed. To show
that, we define T ′(p, q) as a sequence containing the sizes of these spans in T0(p, q) in order. For example,
T0(15, 4) = 〈0, 3, 7, 11〉, then T ′(15, 4) = 〈3, 4, 4, 4〉. Figure 12 shows the details. Due to space limitation of
the figure, we use letter ′a′ instead of number ′10′, and so on.

Definition C1 T ′(p, q) = 〈ti+1 − ti : 0 ≤ i < q〉, assuming T0(p, q) = 〈ti : 0 ≤ i < q〉 and tq = p.

We define L(p, q) as a sequence containing the indexes of those long spans in T ′(p, q) in order. For example,
T ′(15, 4) = 〈3, 4, 4, 4〉 ⇒ L(15, 4) = 〈1, 2, 3〉. Since T0(p, q) has q spans totally where (p mod q) of them
are long spans with size bpq c+ 1, |L(p, q)| = p mod q.

Definition C2 L(p, q) = 〈i : t′i = bpq c+ 1〉, assuming T ′(p, q) = 〈t′i : 0 ≤ i < q〉.

Fig. 12. Compute L′(15, 4) from T0(15, 4)

Also, we define L′(p, q) to determine the difference between two neighboring elements in L(p, q). For
example, L′(15, 4) = 〈1, 1, 2〉. By decreasing the values in L′(p, q) by 1, we directly deduce the number of
short spans between two neighboring long spans. Figure 12 shows the computation from T0(15, 4) to L′(15, 4).

Definition C3 L′(p, q) = 〈li+1 − li : 0 ≤ i < r〉, assuming L(p, q) = 〈li : 0 ≤ i < r〉 and lr = q + l0, where
r = p mod q .

Lemma C1 shows that not only T0(p, q), but also L(p, q) are evenly distributed.

§With the following preemptive time slice, 2n times consecutive 2-size spans increase the instant regularity by 2n+1−(4n+1) q
p
<

1 (Def. 2.2) ⇒ p
q
< 2 + 1

2n
. Similarly, excluding the first preemptive time slice, two times 3-size spans and 2n times 2-size spans

decrease the instant regularity by (4n+ 5) q
p
− (2n+ 1) < 1⇒ p

q
> 2 + 1

2n+2
.
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Lemma C1 ∀p, q where p > q > 1 and p,q are co-prime, max{l′ : l′ ∈ L′(p, q)}−min{l′ : l′ ∈ L′(p, q)} ≤ 1.
Proof: Let d = bpq c ≥ 1.
(I) First, let’s study the case when all the elements of L′(p, q) are equal to n. n = 1 is impossible; otherwise,
all the elements of T ′(p, q) are equal to (bpq c + 1). Then n > 1 ⇒ |L′(p, q)| = 1; otherwise, T ′(p, q) can
be divided into several identical segments, which contradicts the fact that p, q are co-prime (For example,
if L′(p, q) = 〈2, 2〉, T ′(p, q) = 〈d, d + 1, d, d + 1〉 ⇒ p = 4d + 2, q = 4). Therefore, there is only one
element of (d+ 1) in T ′(p, q), together with (n− 1) elements of d (Def.s 3.3, 3.4). Then q = |T ′(p, q)| = n;
p = nd + 1 (Def. 3.2) ⇒ p

q = d + 1
n . Vice versa, if p

q = d + 1
n where n > 1 and p, q are co-prime, then

p = nd+ 1, q = n ⇒ T0(p, q) = 〈0, d, 2d, ..., (n− 1)d〉 (Def.s 2.2, 2.3, 2.4) ⇒ T ′(p, q) = 〈d, d, d, ..., d+ 1〉
(Def. 3.2) ⇒ L(p, q) = 〈n− 1〉 (Def. 3.3) ⇒ L′(p, q) = 〈n〉 (Def. 3.4).
(II) If there are elements with different values in L′(p, q), ∃n > 0, pq ∈ (d+ 1

n+1 , d+ 1
n)⇒ q

p ∈ ( n
nd+1 ,

n+1
nd+d+1).

Assume n+k ∈ L′(p, q) where k ≥ 2. Consider the changes of the supply regularity in T0(p, q). A short span
increases the supply regularity by (1− q

p · d). With the following preempted time slice, (n+ k − 1) straight
short spans increase the supply regularity by: (n+ k− 1)(1− d · qp) + (1− q

p) ≥ (n+ 1)(1− d · qp) + (1− q
p)

= n + 2 − (nd + d + 1) · qp > 1. It contradicts the definition of regular partition (Def. 2.2). Therefore,
∀k ≥ 2, n+ k /∈ L′(p, q). Similarly, if n− k ∈ L′(p, q) where k ∈ [1, n), excluding the first preempted time
slice, two neighboring long spans and the (n−k−1) straight short spans between decrease the supply regularity
by: d · qp−(n−k−1)(1−d · qp)−(1− q

p)+d · qp ≥ 2d · qp−(n−2)(1−d · qp)−(1− q
p) = (nd+1) · qp−(n−1) > 1.

It also contradicts the definition of regular partition. Therefore, ∀k ∈ [1, n), n− k /∈ L′(p, q). The only two
possible values in L′(p, q) are n and n+ 1.

A. Schedulability Bound on a Single-resource

Then we check the following case. ∀p, q and p > q, the time-slice sequences T (p, q, δ) (δ = 0, 1, ..., bpq c−1)
can be accommodated on a 1-resource without conflict, and each long span of T0(p, q) leaves its last time slice
unused in the end. In Figure 5, time slices labeled by ′6′,′ a′ and ′e′ are left out from T0(15, 4), T (15, 4, 1) and
T (15, 4, 2). Let D(p, q) denote these remaining time slices. Obviously, |D(p, q)| = p− q · bpq c = p mod q.

Definition C4 D(p, q) = 〈0, 1, ..., p− 1〉 −
⋃b p

q
c−1

δ=0 T (p, q, δ).

Also, we define D′(p, q) to show the distances between the neighboring time slices in D(p, q). For example,
D(15, 4) = 〈6, 10, 14〉, D′(15, 4) = 〈4, 4, 7〉.

Definition C5 D′(p, q) = 〈ti+1− ti : 0 ≤ i < r〉, assuming D(p, q) = 〈ti : 0 ≤ i < r〉 and tr = t0 + p, where
r = p mod q.

Lemma C2 shows how to compute D′(p, q) from L′(p, q). Notice that they both have the size of (p mod q).

Lemma C2 Suppose L′(p, q) = 〈l′i : 0 ≤ i < r〉 and D′(p, q) = 〈d′i : 0 ≤ i < r〉 where r = p mod q, then
d′i = l′i · b

p
q c+ 1 for 0 ≤ i < r.

Fig. 13. Compute D′(p, q) from L′(p, q)

Proof: As shown in Figure 13, D(p, q) is composed of the last time slices of the long spans (labeled by
′4′ in the example). Since (l′i − 1) is the number of short spans between two neighboring long spans, d′i =
(l′i − 1) · bpq c+ (bpq c+ 1) = l′i · b

p
q c+ 1 for 0 ≤ i < r.

Lemma C3 Suppose q
p <

1
2 where p, q are co-prime, and r = (p mod q) > 0. If {bpq c ×

q
p , w}rp is on-1-

schedulable and w ∈ ( r2p ,
r
p), then p · w is an integer.
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Proof: Let d = bpq c, then d ≥ 2. By Lemma C1, there are two cases for the values in L′(p, q).
CASE 1: L′(p, q) only contains n. We have examined this case in the proof part (I) of Lemma C1, where we
have proved |L′(p, q)| = 1. It follows that |D(p, q)| = 1 (Lemma C2), and D(p, q) is the time-slice sequence
of a 1

p -weight regular partition. Hence, {bpq c ×
q
p , w}rp is not on-1-schedulable because w 6≺rp 1

p (Lemma
2.3).
CASE 2: L′(p, q) contains both n and n+ 1 where n > 0. By Lemma C2, D′(p, q) contains both nd+ 1 and
nd+ d+ 1, as shown in the next figure. Let short = nd+ 1 and long = nd+ d+ 1, then long > short+ 1
and long < 2 × short. Since {bpq c ×

q
p , w}rp is schedulable, suppose Pw is the w-weight regular partition,

then the time-slice sequence on Pw is a part of D(p, q) within their hyper period. And because w ∈ ( r2p ,
r
p),

Pw contains more than a half of time slices in D(p, q). Let d′ = b 1wc, and the size of each span on Pw is
either d′ or d′ + 1. Then, d′ + 1 ≥ long ∗ and d′ < 2× long † ⇒ d′ ∈ (short, 2× long).
CASE 2.1: 1

w is an integer. The time-slice sequence of Pw is an arithmetic one and the size of each span
is d′ (Lemma A1). Since d′ ∈ (short, 2 × long) and 2 × short > long, the only possible values of d′ are
long, 2 × short and long + short. (i) If d′ = long, Pw cannot go over any short span of D(p, q) because
short < d′ < 2 × short. (ii) If d′ = 2 × short, Pw cannot go over any long span of D(p, q) because
long < d′ < long+ short. (iii) If d′ = long+ short, Pw contains exactly a half of the time slices in D(p, q)
because it selects time slices from D(p, q) alternately. It follows w = r

2p , which contradicts the assumption
w ∈ ( r2p ,

r
p).

CASE 2.2: 1
w is a fraction. There are two sizes of spans on Pw: d′, d′ + 1. Since d′ ∈ (short, 2 × long),

the only possible values of d′ and d′ + 1 are long, 2 × short, long + short, and 2 × long, where long <
2 × short < long + short < 2 × long ⇒ long + 1 = 2 × short OR 2 × short + 1 = long + short OR
long + short + 1 = 2 × long ⇒ long = 2 × short − 1 (because long > short + 1) ⇒ n = 1 (apply
short = nd + 1 and long = nd + d + 1). Therefore, short = d + 1, long = 2d + 1, d′ = long and
d′+ 1 = 2× short. Also, the number of the short spans between each two neighboring long spans on D(p, q)
must be even. As shown in the next figure, Pw and D(p, q) always keep synchronized — a short span of Pw
corresponds to a long span of D(p, q), and a long span of Pw corresponds to two short spans of D(p, q).
Since p is a period of D(p, q), p is also a period of Pw. It follows p · w is an integer.

Proof of Lemma 3.1: From Def.s 2.7, 2.8, ∃ q0p0 ∈ B, where q0
p0
< 1

2 and p0, q0 are co-prime. If q0 = 1,
just let p = p0; otherwise, let r0 = p0 mod q0, then r0 > 0. Since ΥB > 0.5, by Def. 2.10, ∃w ∈ B,w ∈
( r0
2p0
, r0p0 ). Since B is on-1-feasible, {bp0q0 c×

q0
p0
, w}rp is on-1-schedulable. By Lemma C3, p0 ·w is an integer.

Suppose w = q1
p1

where p1, q1 are co-prime. Then p0 · q1p1 is an integer ⇒ p0 is divisible by p1. Therefore,
q1
p1
< r0

p0
< q0

p0
⇒ q1 <

p1
p0
· q0 ≤ q0. Repeat the same argument from p1 and q1 ..., and eventually, we can find

pn, qn such that qn
pn
∈ B and qn = 1. Meanwhile, qn

pn
< q0

p0
< 0.5⇒ 1

pn
< 0.5⇒ pn ≥ 3. Let p = pn.

∗ If d′ + 1 < long, Pw cannot go over any long span of D(p, q).
† Because Pw contains more than a half of the time slices in D(p, q), d′ ≤ average span size of Pw < 2 ×

average span size of D(p, q) < 2× long.
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