

Time Petri Nets for Schedulability

Analysis of the Transactional Event

Handlers of P-FRP *

Chaitanya Belwal, Albert M.K. Cheng, Yuanfeng Wen

Computer Science Department

University of Houston

Houston, TX, 77204, USA

http://www.cs.uh.edu

UH-CS-12-04
May 21, 2012

Keywords: Functional programming, Reactive pro-

gramming, Schedulability analysis, Worst-case response

Time, Formal methods, Time Petri Nets

Abstract

Priority-based FRP (P-FRP) is functional programming formalism for reactive systems that guaran-

tees real-time response. Preempted tasks in P-FRP are aborted and have to restart when no higher prior-

ity tasks are present in the execution queue. The abort and eventual restart makes the response time of a

lower priority task completely dependent on the execution pattern of higher priority tasks. Exact

schedulability analysis methods of P-FRP that have been presented so far require the evaluation of all

release scenarios of higher priority tasks. Unfortunately, the number of such scenarios scale exponen-

tially with the size of the task set making exact schedulability analysis of this execution model a com-

putationally expensive proposition. The formal method of Time Petri Net (TPN) has previously been

used for schedulability analysis of preemptive and non-preemptive models. TPNs for P-FRP or other

transaction like execution models have not been developed yet. In this paper, we develop TPN models

for the transactional execution model of P-FRP and show that TPNs offer an efficient alternative for

schedulability analysis of this model. We have implemented our TPNs in the model checker ROMEO

and have validated the correctness of our models through experimental task sets.

*
 This work is supported in part by U.S. National Science Foundation under Award no. 0720856

Abstract

Priority-based FRP (P-FRP) is functional programming formalism for reactive systems that guarantees
real-time response. Preempted tasks in P-FRP are aborted and have to restart when no higher priority
tasks are present in the execution queue. The abort and eventual restart makes the response time of a
lower priority task completely dependent on the execution pattern of higher priority tasks. Exact
schedulability analysis methods of P-FRP that have been presented so far require the evaluation of all
release scenarios of higher priority tasks. Unfortunately, the number of such scenarios scale
exponentially with the size of the task set making exact schedulability analysis of this execution model
a computationally expensive proposition. The formal method of Time Petri Net (TPN) has previously
been used for schedulability analysis of preemptive and non-preemptive models. TPNs for P-FRP or
other transaction like execution models have not been developed yet. In this paper, we develop TPN
models for the transactional execution model of P-FRP and show that TPNs offer an efficient
alternative for schedulability analysis of this model. We have implemented our TPNs in the model
checker ROMEO and have validated the correctness of our models through experimental task sets.

Index Terms

Functional programming, Reactive programming, Schedulability analysis, Worst-case response Time,

Formal methods, Time Petri Nets

1. Introduction

Functional Reactive Programming (FRP) [28] is a declarative programming language for modeling and im-

plementing reactive systems. It has been used for a wide range of applications, notably, graphics [7], robotics

[18], and vision [19]. FRP elegantly captures continuous and discrete aspects of a hybrid system using the no-

tions of behavior and event, respectively. Because this language is developed as an embedded language in

Haskell [12], it benefits from the wealth of abstractions provided in this language. However, Haskell provides

no real-time guarantees and therefore, neither does FRP.

To address this limitation, resource-bounded variants of FRP were studied ([26],[27],[28]). Recently, it

was shown that a variant called priority-based FRP (P-FRP) [14], combines both the semantic properties for

FRP, guarantees resource boundedness, and supports assigning different priorities to different events. In P-

FRP, higher priority events can preempt lower-priority ones. However to maintain guarantees of type safety

and state-less execution, the functional programming paradigm requires the execution of a function to be atomic

in nature. To comply with this requirement as well as allow preemption of lower priority events, P-FRP imple-

ments a transactional model of execution. Using only a copy of the state during event execution and atomically

committing these changes at the end of the event handler (or task), P-FRP ensures that handling an event is an

“all or nothing” proposition. This preserves the easily understandable semantics of the FRP and provides a pro-

gramming model where response times to different events can be tweaked by the programmer, without ever af-

Time Petri Nets for Schedulability Analysis of

the Transactional Event Handlers of P-FRP

Chaitanya Belwal, Albert M.K. Cheng and Yuanfeng Wen

Department of Computer Science,

University of Houston, TX, USA

{cbelwal, cheng, wyf}@cs.uh.edu

fecting the semantic soundness of the program. Thus, a clear separation between semantics of the program and

the responsiveness of the implementation of each handler is achieved.

Prior work in P-FRP has dealt with computing approximate ([14], [21]) response time bounds as well as

methods to determine response time under a given release scenario ([2], [3]). Multi-processor scheduling of P-

FRP has been studied in [22]. For exact schedulability analysis, computing the Worst-Case Response Time

(WCRT) of a task is essential. In the preemptive model of execution, a critical instance of release leading to the

WCRT exists [15]. However as shown in [2], no such critical instant exists in P-FRP and the WCRT can be dif-

ferent for each unique task set. The only known method of computing the exact WCRT for P-FRP requires

evaluation of all release scenarios within a lower and upper bound of release offsets of higher priority P-FRP

tasks. Unfortunately, this technique scales exponentially with the size of the task set and is impractical even for

small sized task sets.

In a seminal paper, Merlin and Farber [16] introduced Time Petri Net (TPN) as a formal method for verifi-

cation of timed systems. TPN was shown to be more expressive than Timed Petri Net (TdPN) which was devel-

oped by Ramachandani [20]. Following Merlin and Farber’s paper, several researchers have developed

techniques which apply TPN for schedulability analysis of real-time systems, notable among these being the

works of [24], [11] and [29]. These available methods only deal with different forms of preemptive and non-

preemptive execution and so far the application of TPN to a transactional execution model like P-FRP has not

been studied.

The use of TPN for schedulability analysis in an execution model like P-FRP’s, provides more immediate

benefits than for the standard preemptive or non-preemptive. This is because while several polynomial time

exact schedulability analysis techniques of the preemptive execution model are available, no polynomial time

methods exist for such analysis in P-FRP. Using expressive formalism like TPNs to model the execution of P-

FRP and analyzing the schedulability of the model allows us to leverage highly efficient state space exploration

techniques available in software tools. Hence, TPN offers an efficient alternative for schedulability analysis in

P-FRP.

In this paper, we present Time Petri Net models that can be used for schedulability analysis in P-FRP. The-

se models have been analyzed in a publicly available TPN tool called ROMEO [10]. The results from our TPN

model have been validated against simulations using experimental task sets.

After presenting the notations and execution model of P-FRP (Section 2), we present a primer on Time Pe-

tri Nets and ROMEO (Section 3). We introduce important concepts of our TPN design through a simple TPN

for 2-task sets (Section 4). Using the TPN for 2-task set we show how to build a TPN for 3-tasks (Section 5),

followed by which we present the methodology to design a TPN for any general P-FRP n-Task set (Section 6).

We discuss the results of our experimental analysis (Section 7) followed by which we conclude with a review

of related work (Section 8) and a reflection on our results (Section 9).

There are several other models that utilize some form of transactional execution. Notable among these are

the transactional memory systems [13] and lock-free execution of critical sections [1]. The development of the-

se systems was primarily motivated by the need to avoid concurrency or precedence constraint issues, which

have been a problem in the classical preemptive model [23]. Though the execution semantics of these models

are different, TPN models developed in this paper also serve as a valuable resource for schedulability analysis

of these execution models.

2. Execution Model and Notations

In this section, we introduce the notations used in the rest of the paper. In addition, we review the P-FRP

execution model and assumptions made in this study.

2.1 Notations

The notations and formal definitions used in the paper are as follows:

 Let task set n = {1, 2,…, n} be a set of n sporadic tasks. n is also called a n-task set.

 If i > j then i has a higher priority than j, a convention used in Linux and Windows operating systems.

 i,k represents the k
th
 job of i.

 Tj is the minimum arrival time separation between two successive jobs of j.

 Cj is the worst-case execution time (WCET) for j.

 Dj is the relative deadline of j. In this paper, we assume Dj = Tj.

 Interference on k is the action where the execution of k is interrupted by the release of a higher priority

task.

We now define the execution model and assumptions made in our study.

2.2 Execution Model and Assumptions

In this study, all tasks are assumed to execute in a uniprocessor system with no precedence constraints.

Events which trigger the tasks are sporadic and are converted to a periodic model by assuming minimum time

interval between any two events of the same type. When a job of a higher priority task i is released, it can im-

mediately preempt an executing lower priority task and changes made by the lower priority task are rolled back.

The lower priority task will be restarted when the higher priority task has completed execution. Due to P-FRP’s

transactional nature of execution, all tasks are assumed to run without concurrency constraints. In the algo-

rithms to derive the actual response time of a task j, we have considered the release offset of j to be 0.

When a task is released, it enters an execution queue which is arranged by priority order such that all arriv-

ing higher priority tasks are moved to the head of the queue. The length of the queue is bounded, and no two

instances of the same task can be present in the queue at the same time. This requires a task to complete execu-

tion before the release of its next job. To maintain this requirement we assume a hard real-time system with

task deadline equal to the time period between jobs. Hence,

kn, Dk = Tk.

A task set is schedulable in some time interval only if no task in the set has a deadline miss. While TPNs

are capable of building dense time models, in this work we have only considered modeling in discrete time.

Once i enters the execution queue, two situations are possible. If a task of a priority lower than i is execut-

ing, it will be immediately preempted and i will start execution. If a task having a higher priority than i is exe-

cuting, then i will wait in the queue and start execution only after the higher priority task has completed. When

a task starts execution it creates a temporary copy of the state (represented by variables in register/memory) and

upon completion it overwrites the original state with the temporary copy in an atomic operation. During these

state copy operations, all system interrupts are disabled and no task is allowed to enter the execution queue.

2.3 Preemptive vs. P-FRP Execution Model

The preemptive execution model has been the focus of real-time research over the past decade. Several

state-of-the-art methods including those using Time Petri Nets are available for analysis of this model. Since

our readers may be more familiar with the preemptive execution in this section, we highlight the difference in

execution semantics between the P-FRP and preemptive execution models.

Consider the 3-Task set:

Task Ci Ti

1 4 36

2 4 15

3 3 10

If all tasks are released together, 1 completes at time 14 in preemptive execution (fig. 1(a)). If tasks are ex-

ecuted in P-FRP, 1 completes at time 27 (fig. 1(b)). The response time of 1 is higher due to the abort of 1 at

times 10, 15 and 20. It can also be seen from fig. 1(b), that even though the WCET of 1 is 4, it executes for a

total of 10 time units. Hence, in P-FRP the actual processor time that a task takes to complete execution cannot

be determined solely by using the information available a priori. Note that we have not considered any data

sharing between tasks which require use of locks or other concurrency control mechanism. With data sharing

some tasks can experience blocking in which case the response time of 1 can be different in preemptive execu-

tion. Data sharing between tasks has no effect on the execution semantics of P-FRP since, every task executes

atomically.

In their seminal paper, Liu and Layland showed the worst-case response time (WCRT) of a task occurs

when all tasks are released at the same time. Therefore in the preemptive model, the WCRT of 1 is also 14, and

fig. 1(a) shows the worst-case task execution of our sample task set. However in P-FRP, such a release is not

guaranteed to the worst-case. The WCRT of 1 is 33 and occurs when 2, 3 are released at times 3 and 6 re-

spectively (fig. 1(c)). This WCRT was determined by evaluating all possible release scenarios of tasks 2 and 1

in the interval [0,45). Such a method of determining WCRT is computationally intensive and time consuming

and alternate techniques are required.

Time Petri Nets offer an alternate mechanism for schedulability analysis of P-FRP.

3. Time Petri Nets

Merlin and Farber [16] presented Time Petri Net as an extension of classical Petri nets where the firing time

of transitions are bounded in time. For details on classical Petri Net models readers can refer to [17]. The for-

mal definition of a Time Petri Net is given as follows:
A Time Petri Net is a tuple (P, T, B, F, MO, SI) where:

 P = {p1, p2, p3, …, pn} is a finite non-empty set of places.

 T = {t1, t2, t3,…, tn}is a finite nonempty, set of transitions.

 B: P x T  N is the backward incidence function, where N is the set of non-negative integers.

 F: T x P  N is the forward incidence function.

 MO is the initial marking.

(P, T, B, F and MO together define a Petri net).

 SI is a mapping called static interval, tT, SI(t)= [SEFT(t), SLFT(t)], where SEFT(t) is the static earli-

est firing time and SLFT(t) the static latest firing time.

The state of a TPN is a pair where S = (M, I):

 M is a marking.

Figure 1. Task graph highlighting execution semantics (a) Preemptive execution when all tasks are released at the same time (b) P-FRP execution

when all tasks are released at the same time (c) P-FRP execution in the worst-case release scenario

(a)

(b)

(c)

 I is a firing interval set which is a vector of possible firing times. The number of entries in this vector is

given by the number of the transitions enabled by marking M.

3.1 TPN modeling using ROMEO

Developed by IRCCyN in France, ROMEO [10] is a tool that allows for the description and evaluation of

Time Petri Net models. Using a Graphical User Interface (GUI), places and transitions can be drawn and con-

nected by directional arcs. The static earliest and latest firing times are added to the transitions using an user

entry form. Markings are represented by placing tokens in places. In ROMEO, each place has a unique numeri-

cal index associated with it.

Once a TPN model is built, a separate simulation program is activated to simulate and analyze the model.

ROMEO allows for interactive simulation where the user fires a ready transition through a mouse click. The

tokens are dynamically moved to the next place in the forward incidence function after firing the transition.

Reachability of states is analyzed using Timed Computational Tree Logic (TCTL) formatted queries which al-

low for checking the marking of a state in a specified time bound. Reachability analysis in TPN is done by con-

verted a model to it state space graph.

The benefit of using tools like ROMEO is that we can leverage efficient algorithms for state space search

that are implemented in these tools. For example, ROMEO implements the Differential Bound Matrices (DBM)

technique which is an efficient and scalable method for state space search. By building a schedulability model

of P-FRP in TPN, the schedulability problem is reduced to a reachability analysis problem which can be done in

polynomial or pseudo-polynomial through methods like DBM. This allows for efficient schedulability analysis

of P-FRP tasks, irrespective of the size of the task set.

We now demonstrate a simple TPN schedulability model for a P-FRP task set containing 2 tasks.

4. TPN for 2-Task Sets

In this section, we present a TPN model for P-FRP 2-task sets. Important concepts dealing with our TPN

design can be explained with this simple case, and the model is expanded to include multiple tasks in subse-

quent sections. To design our TPN, we use the following task set as a case study:

Task Ci Ti

1 4 12

2 3 10

The TPN derived for this task set can be used for the schedulability analysis of any 2-task set by changing cer-

tain parameters defined in the TPN.

As discussed previously, there is no known single instance of release of higher priority tasks that can lead

to the WCRT of a lower priority P-FRP task. Determination of the WCRT requires analysis of all release order-

ings of higher priority task for their response times. Such a scenario can be modeled quite well in TPN by speci-

fying the SEFT(t) and SLFT(t) values for transition t to bound the release time of higher priority tasks. The first

job of higher priority tasks are released non-deterministically in the specified bounds. In this paper, the general

convention of ROMEO prefixing a place name by ‘P’ and a transition by ‘T’ has been followed. However to

clarify the models, we have changed certain place names to denote their functionality.

We now look at the TPN design that models the periodic releases of tasks.

4.1 Task Release TPN

An important consideration in schedulability analysis of real-time systems, is the release of multiple jobs of

higher priority tasks which can interfere with the execution of lower priority tasks. In TPN, we model the peri-

odic release by introducing tokens in initial places. Each token represents a single job of the task. First the max-

imum number of job releases of a higher priority task i is computed using the following formula:

Number of jobs of i = 








i

j

T

D
 where j is the task whose response time has to be determined.

This is the maximum number of tokens that need to be placed since if j does not complete execution by

time Dj, it is deemed unschedulable. Fig. 2(a) shows the TPN design for the release of jobs of 2 of our sample

2-task set. The deadline of 1 is 12 hence, the maximum number of jobs of 2 that can be released within this

time is 








10

12
= 2, including the 1

st
 job.

The release of the 1
st
 job of a task is considered separately since it can be released at any time in the inter-

val [0, Dj). Subsequent task releases have to follow the periodic order. 2 tokens are placed for the 1
st
 job while










i

j

T

D
 – 1 tokens are placed for periodic releases. In fig. 2(a), 2 tokens are in the place ‘First_Release’ while 1

token is in the place ‘Periodic_Release_Start’. Transition ‘T1’ can non-deterministically fire anytime in the

time interval [0, 12). This semantics is represent by setting SEFT(T1)=0 and SLFT(T1)=12. Since the weight of

the arc from place ‘First_Release’ is 2, after ‘T1’ is fired 1 token is moved to place ‘In_Queue’ while 1 token

moves to the place ‘Temp’ and waits for ‘T2’ to fire. A token present in the place ‘In_Queue’ denotes a job of

2 is present in the execution queue. The token in ‘In_Queue’ is used by the scheduler TPN defined in subse-

quent sections.

As SEFT(T2)=0 and SLFT(T2)=0, ‘T2’ is immediately fired once a token is available in ‘Temp’. After ‘T2’

is fired, all tokens from ‘Periodic_Release_Start’ are moved to ‘Periodic_Release_Temp’. The weight of the

arcs connected these two places has a weight equal to the number of tokens in ‘Periodic_Release_Start’. The

values SEFT(T3)=10 and SLFT(T3)=10 allow ‘T3’ to be fired after 10 time units which is the arrival time peri-

od between jobs of 2. The weight of the arcs connected from ‘T3’ is 1 hence after time intervals of 10, a single

token will be moved from ‘Periodic_Release_Temp’ to ‘Periodic_Release’. Once in ‘Periodic_Release’ the to-

ken reaches ‘In_Queue’ without any time delay since SEFT(T4)=0 and SLFT(T4) = 0. This way after the release

of the 1
st
 job of 2 in the interval [0, D1), rest of the jobs are released at periodic time intervals of T2.

The markings in the TPN after firing ‘T1’ releases a token in the execution queue is seen in fig.2(b). The

token in ‘Periodic_Release_Temp’ will reach ‘Periodic_Release’ when ‘T3’ is fired after 10 time units.

4.2 Scheduler TPN

In this section, we derive the scheduler TPN for a 2-task set which utilizes the task release TPN introduced

earlier. Before that we introduce the important definition of abort costs.

(a) (b)

Figure 2. TPN for periodic task release. This TPN model was built using the GUI drawing tool of ROMEO. (a) Initial markings of places (b)

Markings after the 1st job is present in the execution queue and the periodic job is ready to be released after firing ‘T3’

Definition. In the P-FRP execution model, preempted tasks are aborted. The amount of time spent in aborted

execution of a task j is called the abort cost. When j is preempted immediately after starting, a minimum

abort cost of 1 time unit in added to its response time. If j is preempted just before it is about to complete exe-

cution, maximum abort costs of Cj – 1 time units are added to its response time.

Fig. 3 shows the TPN scheduler model of our 2-task P-FRP set. The task release TPN for 2 has been in-

cluded and when a token is available in the place ‘Tau_2_In_Queue’ it implies that a job of this higher priority

task is available for execution. The execution of 1 which is assumed to be released at time 0, is represented by

places ‘P1’, ‘P3’ and ‘Tau_1_Complete’. A single token to denote the execution state of 1 is placed in ‘P1’

and if the token reaches ‘Tau_1_Complete’ it implies that 1 has completed execution. The maximum abort cost

that can be induced on 1 is (4 – 1) = 3, hence 1 can only be preempted if it has executed for any time in the

interval (0,3]. This semantics is reflected by setting SEFT(T1) = 0 and SLFT(T1) = 3. After ‘T1’ fires, 1 enters

place ‘P3’ and waits for ‘T3’ to fire. SEFT(T3) = 1 and SLFT(T3) =1 which allows ‘T3’ to fire after exactly 1

time unit allowing the marking to reach the place ‘Tau_1_Complete’.

While 1 is executing (tokens in place ‘P1’), it can be preempted by arrival of jobs of 2. The preemption of

2 is denoted by the transition ‘T2’ which can immediately fire (SEFT(T2)=SLFT(T2) = 0) once tokens are

available in ‘P1’ and ‘Tau_2_In_Queue’. After ‘T2’ is fired 2 tokens reach ‘P4’ and wait for ‘T5’ to fire.

SEFT(T5) and SLFT(T5) values are set to the execution time of 2. Note that no other transitions are possible

from ‘P4’ since 2 cannot be preempted by any other task. After ‘T5’ is fired, a token is returned to ‘P1’ and

another token reaches ‘Tau_2_Complete’. The number of tokens in ‘Tau_2_Complete’ denotes the number of

jobs of 2 that have completed execution. Once a token reaches ‘P1’ it waits for ‘T1’ to fire denoting that 1 has

restarted execution. If another token reaches the place ‘Tau_2_In_Queue’ before ‘T1’ is fired, the similar pro-

cess described before is repeated.

After 1 has completed, jobs of 2 can directly execute through transition ‘T12’, which only requires a sin-

gle token to be present in ‘Tau_2_In_Queue’. After ‘T12’ is fired, a token reaches ‘P12’ where after 3 time

units it reaches ‘Tau_2_Complete’. This path is not of particular interest since once the token in ‘P1’ reaches

‘Tau_1_Complete’, it implies that 1 has completed execution. However for completeness of our TPN, it is re-

quired to model the case when no job of 1 is ready for execution.

In our TPN model, it is clear that if jobs of 2 are released at a rate which does not allow transition ‘T1’ to

fire, 1 will never be able to complete execution. We now show how the TPN for 2-task sets can be used to de-

termine schedulability.

4.3 Schedulability Analysis

Figure 3. Time Petri Net model for schedulability analysis of a 2-task P-FRP system.

To determine the schedulability of a 2-Task set we have to determine if lower priority task 1 can complete

execution before its deadline. In our TPN model this problem is translated to the place ‘Tau_1_Complete’ get-

ting marked with a token within bounded time. Or, we have to check if any release scenario of higher priority

task 2 exists in which the token present in ‘P1’ does not reach ‘Tau_1_Complete’ after the deadline of 1 has

passed.

ROMEO allows such queries on a TPN model using the syntax of Time Computational Tree Logic (TCTL)

which is derived from the original syntax of Computational Tree Logic (CTL). Readers can refer to [8] for a

syntactical reference on CTL. The TPN model defined by the user is converted to a state space graph. Every

possible state that can be reached using the markings and time values defined in the TPN is contained in the

graph. Efficient state space search techniques like DBM are used to find specific states defined in the TCTL

query. Details on implementation of TCTL in ROMEO are given in [6]. The ROMEO TCTL query on the TPN

model of fig. 3 for determining schedulability of 1 in our sample task set is:

EF[13,13](M(22) = 0).

The query returns a Boolean true or false depending whether it is satisfied or not. The query specifies that

starting at time 13 and ending at time 13, is it possible for the place at index number 22 (index for place

‘Tau_1_Complete’) not to be marked with a single token ? If true, then there exists a scenario in which the to-

ken at ‘P1’ is unable to reach ‘Tau_1_Complete’ within the given time bound. Since, the deadline of 1 is 12, if

‘Tau_1_Complete’ is unmarked after this time it implies that there exists a worst-case release scenario of 2 in

which 1 misses its deadline and the task set is unschedulable. Hence, for 1 to be schedulable in all release sce-

narios the query EF[13,13](M(22)=0) should return a Boolean value of false.

4.4 Generality

The TPN model of fig. 3, can be used for schedulability analysis of any general P-FRP 2-task set. For a task

set 2 = {1, 2}, all that has to be done is change SEFT and SLFT values for various transactions as described

below:

 SLFT(T18) = T1.

 SEFT(T17) = SLFT(T17) = T2.

 SEFT(T5) = SLFT(T5) = C2.

 SEFT(T13) = SLFT(T13) = C2.

 SEFT(T1) = SLFT(T1) = C1 – 1.

The weight of arcs connected to ‘T9’ and the number of tokens in ‘P5’ is set to: 








2

1

T

D
– 1. The TCTL query

to check the schedulability of 2 will be EF[D1+1, D1+1](M(22)=0).

5. TPN for 3-Task Sets

We extend the 2-task TPN presented earlier, for schedulability analysis of a 3-task set. As before, we use a

sample task set to illustrate the model of the TPN. The task set considered for the 3-task set is the same as con-

sidered in section 2.3.The TPN model for this task set is given in fig. 4.

Places ‘Tau_3_First_Release’, ’P18’, ‘P5’, ’P20’, ‘Tau_3_Periodic_Release’, ’Tau_3_In_Queue’ deal with

the first and periodic release of jobs of 3. SEFT and SLFT values of transitions ‘T18’ and ‘T17’ are assigned

relevant values. Places ‘Tau_2_First_Release’, ’P14’, ‘P15’, ’P16’, ‘Tau_2_Periodic_Release’,

’Tau_2_In_Queue’ deal with the first and periodic release of jobs of 3, and SEFT, SLFT values of transitions

‘T15’ and ‘T14’ are assigned values accordingly. Places ‘P1’ and ‘P3’ deal with the execution of 1. As in 2-

task sets, a single token is placed in ‘P1’ and when the token reaches ‘Tau_1_Complete’ it implies that 1 has

completed execution.

T1 = 36, hence the number of jobs of 2 that can be released till the deadline of 1 are, 








15

36
= 3. Therefore,

2 tokens are placed in ‘P15’ which is part of the release TPN of 2. Similarly, 








10

36
– 1 = 3 tokens are places in

‘P5’ for jobs of 3. Arcs from transitions ‘T16’ and ‘T9’ are assigned weights accordingly.

Once a job of 2 is released, a token is placed in ‘Tau_2_In_Queue’ and the token moves through places

‘P9’, ‘P10’ and finally, ‘Tau_2_Complete’. ‘P9’ is reached after firing ‘T7’ which requires a token to be pre-

sent in ‘P1’ and ‘Task_2_In_Queue’. This way 1 is not allowed to execute once 2 commences execution. After

‘T3’ fires, 2 has completed execution and one token is returned to ‘P1’ while the other reaches

‘Tau_2_Complete’.

An important consideration is that while 2 can preempt 1, it can itself be preempted by 3. This semantics

is reflected by firing transition ‘T12’ once tokens are available in ‘P9’. To fire, ‘T12’ also requires a token to be

present in ‘Tau_3_In_Queue’. Note that once ‘T12’ is fired, the token which was originally in ‘P1’ is now in

‘P12’. After ‘T13’ is fired 3 completes execution and a token is returned to ‘Tau_2_In_Queue’ while the re-

maining tokens reach ‘P1’ and ‘Tau_3_Complete’. SEFT(T13) = SLFT(T13) = 3, to denote the execution of 3.

Like for 3 the execution of 2 is broken into two parts. SEFT(T8) and SLFT(T8) values are set to the maximum

abort costs that can be induced on 2. Once 2 executes for its maximum abort cost, ‘T8’ is fired allowing a to-

ken to reach ‘Tau_2_Complete’ once ‘T3’ fires after a single time unit.

If 3 is released and no job of 2 is executing or ready to execute, then 3 preempts the execution of 1. This

semantics is reflected in transitions ‘T2’ and ‘T5’. ‘T5’ denotes the execution of 3 therefore, SEFT(T5) =

SLFT(T5) = 3. After ‘T5’ fires, a single token is returned to ‘P1’ while the other reaches ‘Tau_3_Complete’.

Figure 4. Time Petri Net model for schedulability analysis of a 3-task P-FRP system.

5.1 Schedulability Analysis

As for 2-task sets, schedulability analysis requires determining if 1 can complete execution before its dead-

line in all release scenarios. In ROMEO, this can be accomplished by the following TCTL query:

EF[37,37](M(22)=0).

The query specifies that at time 37 is it possible for place at index 22 (i.e. ‘Tau_1_Complete’) to have no

tokens. If at time 37, ‘Tau_1_Complete’ has no token it implies that a release scenario of higher priority tasks

exists in which 1 misses it deadline. Hence for 1 to be schedulable, the query EF[37,37](M(22)=0) should be

a Boolean value of false.

In certain task sets it may be possible that even though 1 completes execution before its deadline, some

jobs of 2 have a deadline miss. To ascertain the schedulability of the overall task set it is important to check for

this condition as well. TCTL queries are powerful enough to allow us to check for these conditions in the same

TPN. There are two ways in which this can be done. First, we can use the same query format as for 1. Note that

the non-deterministic release of the 1
st
 job of 3 in the interval [0,36) will also determine the WCRT of 2.

Hence, we have to check if it is possible for the 1
st
 job of 2 to not complete before its deadline. This is achieved

by the following TCTL query:

 EF[16,16](M(6)=0).

The place at index 6 is ‘Tau_2_Complete. For 2 to be schedulable this query should return a Boolean false.

Another query that can determine the schedulability of 2 is described below.

In the period [0, 16), the maximum number of tokens that can be present in the place ’Tau_2_Complete’ is

1 to account for a single job of 2 that is released in the interval [0, 16). If this job of 2 is schedulable under all

release scenarios of 3 in the time period [0, 16), only one job of 2 will be executing. Hence the sum of the

number of tokens in ‘P16’ and ‘Tau_2_Complete’, will not be less than (3 – 1) = 2. This check can be accom-

plished by the following TCTL query:

EF[0,16](M(16)+M(6)<2).

This query specifies to look for a state between times 0 and 16, where the sum of tokens in state ‘P16’ (index

16) and ‘Tau_2_Complete’ (index 6) is less than 2. If such a state exists it means that in the time interval [0,

16) there exists a scenario when more than one job of 2 is executing or in the execution queue resulting a dead-

line miss. Hence, for 2 to be schedulable this query should also return a Boolean false.

5.2 Generality

The TPN model of fig. 4 can be used for schedulability analysis for any general P-FRP 3-task set 3 = {1,

2, 3} by making the following changes:

 SLFT(T15) and SLFT(T18) = T1.

 SEFT(T14) = SLFT(T14) = T2.

 SEFT(T17) = SLFT(T17) = T3.

 SEFT(T1) = SLFT(T1) = C1 – 1.

 SEFT(T8) = SLFT(T8) = C2 – 1.

 SEFT(T5) = SLFT(T5) = C3.

 SEFT(T13) = SLFT(T13) = C3.

The weight of arcs connected to ‘T9’ and the number of tokens in ‘P5’ is set to: 








3

1

T

D
– 1, while the

weights of arcs connected to ‘T16’ and the number of tokens in ‘P15’ is set to 








2

1

T

D
– 1. The TCTL queries to

verify the schedulability of 2 and 1 are:

 EF[D2+1,D2+1](M(6)=0) and

 EF[D1+1, D1+1](M(22)=0), respectively.

The query:

 EF[0, D2+1](M(16)+M(6)<2),

can also be used to determine the schedulability of 2.

6. TPN for n-Task Sets

In previous sections, we have derived TPN model for 2-task and 3-task sets. It is clear that unique TPN’s

are required for task sets of different sizes. It is not feasible to present TPN models for every incremental task

set size. However all the TPN models use the same design philosophy hence, constructing a TPN for any gen-

eral P-FRP n-task set is straightforward using the 2-task and 3-task TPN models presented earlier as references.

The following steps are required to build a TPN model for any general n-task set n = {1, 2, …, n}.

 A release TPN as shown in fig. 2 is required for tasks n through 2. Required number of tokens depending

on the number of the jobs of that task in the interval [0, T1] are placed in the release TPN. Once a job has

been released it is made available in the place ‘Tau_i_In_Queue’ for task i.

 The execution of tasks 1 through n-1 is done in 2 transitions. For any task k the SEFT and SLFT values of

the 1
st
 transition are set to its maximum abort costs Ck – 1, while the SEFT and SLFT values for the 2

nd
 tran-

sition are set to 1. This can be seen in transitions ‘T8’, ‘T3’ for 2 and ‘T1’ and ‘T4’ for 1 in fig.4. The ex-

ecution of the highest priority task n is represented by a single transition.

 When a lower priority task k is executing it can be preempted by a higher priority task. Hence, places

which denote the execution of k should have arcs connected to transitions which fire when a token of high

priority task i is available in the place ‘Tau_i_In_Queue’. Such transitions have to be put in the TPN for all

tasks which have higher priority than k, for 1  k < n. For example, in fig. 4 transitions ‘T2’ and ‘T7’ are

fired when jobs of 1 and 2 respectively, are available. When ‘T2’ and ‘T7’ are fired they consume the to-

ken available in ‘P1’. Once the higher priority task has completed, the token which denotes the execution of

k has to be returned. In fig. 4, the token is returned to ‘T1’ after ‘T5’,’T13’ and ‘T3’ are fired.

6.1 Schedulability Analysis

After the complex task of converting the schedulability model to TPNs is done, the difficult problem of

schedulability analysis is reduced to a simple TCTL query. The TCTL query is done on a state-space graph

built internally by ROMEO, which has unique states representing all possible release scenarios of higher priori-

ty tasks. To determine if a task k is schedulable the following TCTL query is sufficient:

EF[Dk+1,Dk+1](M(idxk)=0),

where idxk represents the index of the place ‘Tau_k_Complete’. This queries tells the system to search the en-

tire state-space graph for a case where the number of tokens at state M(idxk) is 0, in the time range

[Dk+1,Dk+1]. The query returns either a boolean true or false. If the query returns true then there exists a situa-

tion when the token does not reach M(idxk) in the time [Dk+1,Dk+1]. Since a token reaches M(idxk) only when

k has completed execution, a true answer implies that k has not completed execution by time Dk+1 and hence

is unschedulable.

While we have checked that k is schedulable under all possible release scenarios, it is also important to

check no other higher priority task has a deadline miss till k has completed execution. Hence, we need to check

that all jobs of a higher priority task i:i > k are able to completed execution. This is achieved through the fol-

lowing TCTL query:

EF[0,Dk+1](M(idxi) < 








i

k

T

D
– 1), i:i > k.

Here idxi represents the index of the place ‘Tau_i_Complete’for a task i:i > k.

7. Experimental Results

We have tested our TPN models against the example task sets used in this paper. To validate our models

more rigorously, we also tested our models against experimental task sets having 2, 3 and 4 tasks. 50 task sets

of sizes varying between 2 and 4 tasks were synthetically generated. The execution times for these task sets

were selected from the range [5, 15], while their arrival periods were selected from [30,100]. Each of the task

sets were unique in the sense that at least one task is different between any two task tests. All task sets were

generated using the TGSIMEx system and the values from which task execution times and arrival periods were

selected were intentionally kept small to reduce the time taken to run the simulations.

For each of the task sets, the schedulability of the lowest priority task was determined by enumerating all

release scenarios and then determining the WCRT for each scenario using the method developed in [2], again

using TGSIMEx. If the WCRT of the lowest priority task was more than then the task set was deemed

unschedulable. The time taken in determining the WCRT for every task set through TGSIMEx was noted.

 We then modified the TPN model to determine the schedulability for each of the task sets (by manually

changing SEFT and SLFT values of related transitions). The results from these two approaches were the same,

confirming the accuracy of TPN. Since currently, ROMEO has no inbuilt system to measure the time taken to

run the TCTL queries, we informally mention about the time comparisons between simulation and TPN for do-

ing the schedulability analysis.

Simulations took an average of 1, 8 and 20 minutes to run the simulation of 2, 3 and 4-task sets respectively

in an Intel dual-core machine with Microsoft Windows Vista. The queries on TPN models using ROMEO were

also executed on the same machine. For all the task sets the query results were almost instantaneous, with a de-

lay of 3-4 seconds for a few 4-task sets. This clearly shows the effectiveness of the optimized state space analy-

sis techniques available for TPN’s and available for use in tools like ROMEO.

8. Related Work

Related work includes schedulability techniques developed for P-FRP as well as using Time Petri Nets for

schedulability analysis in other execution models. Apart from a minimal discussion on response time given by

Kaibachev et al [14], an algorithm to compute approximate values of WCRT is given by Ras and Cheng [21].

Though the average approximation factor of the WCRT derived by this algorithm is unknown, for several task

sets it fails to give a result. This algorithm has also been used for response time analysis of P-FRP in multi-

processor systems by Ras and Cheng [22]. Important contributions on schedulability analysis of P-FRP have

also been made by Belwal and Cheng ([2], [3]).

One of the first papers that studies actual TPN models for schedulability analysis in real-time systems was

presented by Tsai et al [24]. In this paper, methods to transform a schedulability model to Time Petri Nets are

presented and the authors prove that schedulability analysis is reduced to a state reachability problem. Xu et al

[29] do schedulability analysis using TPN by separating timing and behavioral properties. They present TPN

models which allow for easy schedulability analysis. The Petri Net models presented in [24] and [29] are theo-

retical in nature since they have not been implemented in a software tool, and thus not been validated. Furfaro

and Negro [9] also have present Time Petri Models for schedulability analysis. In [9], the TPN models have

been translated to a Timed Automata model and validated in the modeling tool UPPAAL [25]. A formal mech-

anism to convert Time Petri Nets to corresponding Timed Automata models has been given by Gu and Shin

[11]. However, all these prior works on Time Petri Nets deal only with the preemptive or non-preemptive mod-

els of execution and cannot be directly applied for schedulability analysis in P-FRP.

9. Conclusions

P-FRP is a new functional programming formalism for implementing real-time embedded systems. Due to

the state-less execution of functional programs, preempted tasks in P-FRP have to be aborted. The abort of

preempted tasks leads to an execution semantics which is different from preemptive or non-preemptive execu-

tion and makes the schedulability analysis of this model complicated. We have presented TPN models for the

schedulability analysis of P-FRP and shown that TPN offers an efficient alternative to existing polynomial time

methods.

Even though the transactional execution model is more complex than the classical preemptive model, we

feel that use of TPN’s for the schedulability analysis of P-FRP is actually much easier that using TPN’s in the

preemptive model. This is because in the latter, the number of execution steps performed by preempted tasks

has to be stored and several extra transitions and places have to be added for this purpose. Since preempted

tasks have to restart there is no need to ‘remember’ the execution steps in P-FRP.

In future work, we will be modifying our TPN models to do schedulability analysis lock-free execution [1]

and transactional memory [13], which are execution models that use similar transactional execution semantics.

Analysis of efforts involved to scale up the model for multi-processor system will also be undertaken.

References

[1] J. H. Anderson, S. Ramamurthy, K. Jeffay. “Real-time computing with Lock-free Shared Objects”. ACM Transactions

on Comp.Sys. 5(6), pp.388-395, 1997.

[2] C. Belwal, A.M.K. Cheng. “Determining Actual Response Time in P-FRP”. Practical Aspects of Declarative Lan-

guages (PADL)’11, Lecture Notes in Computer Science, Springer, 2011.

[3] C. Belwal, A.M.K. Cheng. “Determining Actual Response Time in P-FRP using Idle-Period Game Board”. IEEE

ISORC’11, 2011.

[4] C. Belwal, A.M.K. Cheng. “Schedulability Analysis of P-FRP using Time Petri Nets”. RTCSA’11 WiP session, 2011.

[5] C. Belwal and A.M.K. Cheng. “An Extensible Framework for Real-time Task Generation and Simulation”. IEEE

RTCSA’11, 2011.

[6] H. Boucheneb,G. Garde, O. H. Roux. “TCTL Model Checking of Time Petri Nets”. Journal of Logic and Computation,

vol. 90, pp. 1509-1540, 2009.

[7] C. Elliott, P. Hudak. “Functional reactive animation”. ICFP’97, pp. 263-273, 1997.

[8] E.A. Emerson. “Temporal and modal logic”. Handbook of Theoretical Computer Science, Jan van Leeuwen, vol. B.

MIT Press. pp. 955–1072, 1990.

[9] A. Furfaro, L. Nigro. “Modelling and Schedulability Analysis of Real-time Sequence Patterns using Time Petri Nets

and UPPAAL”. International Workshop on Real Time Software (RTS'07), October 16 , pp. 821-835, 2007.

[10] G. Gardey, D. Lime, M. Magnin, O.H. Roux. “Roméo: A tool for analyzing time Petri nets”. CAV’05, Lecture Notes in

Computer Science, Springer, 2005.

[11] Z.Gu, K.G. Shin. “Analysis of Event-Driven Real-Time Systems with Time Petri Nets: A Translation-Based Ap-

proach”. Design and Analysis of Distributed Embedded Systems DIPES '02, pp.31-40, 2002.

[12] Haskell, http://www.haskell.org.

[13] M. Herlihy, J.E.B. Moss. “Transactional memory: architectural support for lock-free data structures”. ACM SIGARCH

Computer Architecture New (Col. 21, Issue 2), pp.289-300, 1993.

[14] R. Kaiabachev, W. Taha, A. Zhu. “E-FRP with Priorities”.

EMSOFT’07, pp.221-230, 2007.

[15] C. L. Liu, L. W. Layland. “Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environment”. Journal

of the ACM (Volume 20 Issue 1), pp. 46-61, 1973.

[16] P.M. Merlin, D.J. Farber. “Recoverability of Communication Protocols - Implications of a Theoretical Study”. IEEE

Transactions on Communications, vol.24, pp.1036-1043, 1976.

[17] T. Murata. “Petri nets: Properties, analysis and applications”, Proceedings of the IEEE, Vol. 77 Issue 4,pp. 541-580,

1989.

[18] J. Peterson, G. D. Hager, P. Hudak. “A Language for Declarative Robotic Programming”. IEEE ICRA’99, 1999.

[19] J. Peterson, P.Hudak, A.Reid, G. D. Hager. “FVision: A Declarative Language for Visual Tracking”. PADL’01, 2001.

[20] C. Ramchandani, “Analysis of asynchronous concurrent systems by Timed Petri Nets,” MIT, Project MAC, Tech. Rep.

120, 1974.

[21] J. Ras, A.M.K. Cheng. “Response Time Analysis for the Abort-and-Restart Task Handlers of the Priority-Based Func-

tional Reactive Programming (P-FRP) Paradigm”. RTCSA’09, 2009.

[22] J.Ras, A.M.K. Cheng. “Response Time Analysis of the Abort-and-Restart Model under Symmetric Multiprocessing”.

ICESS-‘10, 2010.

[23] L. Sha, R. Rajkumar, J. P. Lehoczky. “Priority Inheritance Protocols: An approach to Real Time Synchronization”.

Transactions on Computers Volume 39, Issue 9, pp.1175-1185, 1990.

[24] J.J. P. Tsai, S. J. Yang, Y.H. Chang. “Timing Constraint Petri Nets and Their Application to Schedulability Analysis of

Real-Time System Specifications”. IEEE Trans. Softw. Eng. 21, 1 (January 1995), pp. 32-49, 1995.

[25] http://www.uppaal.org/

[26] Z. Wan, W. Taha, and P. Hudak. “Real - time FRP”. ICFP’01, pp. 146-156, ACM Press, 2001.

[27] Z. Wan, W. Taha, P. Hudak. “Task driven FRP”. PADL’02, 2002.

[28] Z. Wan, P. Hudak. “Functional reactive programming from first principles”. Programming Language Design and Im-

plementation, pp.242-252, 2000.

http://en.wikipedia.org/wiki/Jan_van_Leeuwen
http://www.labri.fr/perso/gardey/
http://www.irccyn.ec-nantes.fr/~lime/
http://www.irccyn.ec-nantes.fr/~magnin/
http://www.irccyn.ec-nantes.fr/~olivier/
http://www.haskell.org/

[29] D.Xu, X.He,Y.Deng. “Compositional schedulability analysis of real-time systems using time Petri nets”. IEEE Trans.

On Software Engineering, vol 28, issue 10, pp. 984-996, 2002.

