
Regularity-based Partitioning of Uniform Resources in Real-time Systems ∗

Yu Li, Albert M. K. Cheng , and Aloysius K. Mok†

Department of Computer Science
University of Houston

Houston, TX, 77204, USA
http://www.cs.uh.edu

Technical Report Number UH-CS-12-02

April 22, 2012

Keywords: Resource Partitioning, Multiresource, Multiprocessor, Schedulability Bound, Regularity
Bound, Real-time Scheduling

Abstract

Hierarchical scheduling is a hot topic in real-time systems. In a hierarchical real-time system, the
resource partition is the intermediate level between physical resources and real-time tasks. A resource
partition operates on the shared physical resources at a fraction of the rate, and serves as a scheduling
interface to the lower-level real-time tasks or resource partitions. Thus a key problem is how to define
this scheduling interface on resource partitions. Regularity-bounded methodology is one important type of
resource partitioning algorithms. This paper extends Mok and Feng’s Regularity-based Resource Partition
Model from a single-resource platform to a uniform multiresource platform. We present a resource
partitioning algorithm called AAF-Multi Scheduling for solving the time slice overlap problem on a
multiresource platform without violating the schedulability bound given by Feng on a single-resource
platform. AAF-Multi is a global scheduling algorithm with O(Ω · log Ω) time complexity (Ω = resource
amount × hyper period).

∗Supported in part by the National Science Foundation under Award No.0720856.
†Aloysius K. Mok is with University of Texas at Austin.

http://www.cs.uh.edu

1

Regularity-based Partitioning of Uniform Resources
in Real-time Systems ∗

Yu Li, Albert M. K. Cheng , and Aloysius K. Mok†

Abstract

Hierarchical scheduling is a hot topic in real-time systems. In a hierarchical real-time system, the resource
partition is the intermediate level between physical resources and real-time tasks. A resource partition operates
on the shared physical resources at a fraction of the rate, and serves as a scheduling interface to the lower-level
real-time tasks or resource partitions. Thus a key problem is how to define this scheduling interface on resource
partitions. Regularity-bounded methodology is one important type of resource partitioning algorithms. This paper
extends Mok and Feng’s Regularity-based Resource Partition Model from a single-resource platform to a uniform
multiresource platform. We present a resource partitioning algorithm called AAF-Multi Scheduling for solving the
time slice overlap problem on a multiresource platform without violating the schedulability bound given by Feng
on a single-resource platform. AAF-Multi is a global scheduling algorithm with O(Ω · log Ω) time complexity (Ω =
resource amount × hyper period).

Keywords

Resource Partitioning, Multiresource, Multiprocessor, Schedulability Bound, Regularity Bound, Real-time Schedul-
ing

I. INTRODUCTION

In a resource partition model [2], the resource-level scheduler divides the shared resources into temporal partitions
with predefined constraints and requirements. Each task runs on the partition it belongs to, and each partition
schedules the tasks on it with a task-level scheduler. To avoid interactions with tasks in other applications, tasks
pertaining to a specific application are assigned to the same partition.

Furthermore, resource partitioning is a very important aspect of virtualization. There are two different ways
of assigning hardware resources to virtual machines. One is fixing virtual machines on dedicated resources, and
the other is scheduling virtual machines on shared resources. The former is easier and sometimes more efficient
since there is no intervention from the virtual machine monitor. Nonetheless, the latter can provide higher resource
utilization though it needs to implement a more complicated mechanism in the virtual machine monitor.

The resource partitioning problem is much more difficult in real-time systems than in general-purpose systems
because not only the fairness of the resource allocation, but also the real-time characteristic of the resource partitions
needs to be considered. The regularity-based resource partition model [1] characterizes the rate variation of resource
partitions from both the temporal and supply dimensions, and can maintain the utilization bounds of both fixed
and dynamic priority scheduling algorithms on regular partitions as if they are running on dedicated resources.
Feng [3] presented the utilization bounds of both task-level scheduling and resource-level scheduling for the more
general case - irregular partitions, as well as the corresponding scheduling algorithms. However, he only investigated
resource-level scheduling on a single-resource platform. The overlap problem appears when the same resource-level
scheduling algorithm is applied to a multiresource platform (details in Sect. II). In this paper, we attempt to solve
the problem of resource partitioning of a multiresource-based platform with the following premises:
A. All resources are uniform.
B. There is no additional overhead when a resource partition

is re-assigned from one resource to another.
Actually we shall discuss methodologies for reducing the overall overhead of partition migration between resources
in Sect. V if the migration overhead in premise B. is considered.

∗Supported in part by the National Science Foundation under Award No.0720856.
†Aloysius K. Mok is with University of Texas at Austin.

2

The rest of this paper is organized as follows. We overview the related work on hierarchical scheduling in Sect.
II. Then in Sect. III we review definitions and results of the Regularity-Based Partition Model in [1,3] relevant to
our work. Sect. IV defines Binary Partition and two kinds of time slice assignment specifications on it. Our resource
partitioning algorithm for multi-resource is introduced in Sect. V. At last, we draw the conclusion in Sect. VI.

II. RELATED WORK

Shigero et al. [8] originated the concept of regularity, and showed that subsets of time slots called regular (same
as regular partition) can be fully utilized. However, they only presented algorithms that generate two regular subsets.
Mok and Feng [1,2,3] introduced the Regularity-based Resource Partition Model as a more systematic work. They
introduced irregular partition as a more general case than regular partition, and they make general observations
about the schedulabilty bound results both on regular and irregular partitions. Furthermore, they investigated the
resource partitioning problem on a single resource, and gave a resulting algorithm based on the notion of Adjusted
Available Factor. Since their algorithm does not work for a multiresource platform, we introduce a new methodology
for that in this paper.

There are several other hierarchical resource models besides the Regular-based Model, such as the Bounded-
Deday Model [10], the Periodic Model[11] and the EDP Model[12]. A number of these models have been extended
to multiprocessor scenarios. Lipari and Bini [9] applied the Bounded-Delay Model to a multiprocessor platform
by using a partitioned scheduling strategy, which does not allow resource partitions to migrate between processors.
However, to the best of our knowledge, no one has ever extended the Regularity-based Model to multiprocessor
scenarios.

Although our work is for resource partition scheduling, it shares a lot of similarities with multiprocessor real-
time task scheduling if resource partitions are viewed as real-time tasks. However, multiprocessor real-time task
scheduling algorithms such as [6, 7] do not suit us because they are only concerned with the deadline and period
(sometimes they are the same) requirements of real-time tasks, while our partitioning algorithm considers the
regularity bounds of partitions for temporal protection at the inside level. One exception is the pfair approach by
Baruah et al. [4, 5]. The best strength of pfair is that it can provide full utilization for periodic tasks scheduled on
a multiprocessor system. Pfair constrains the task latency (equals minus of instant regularity) in (-1, 1), which can
only ensure that the supply regularity of each task (partition) is 2. Thus the main reason preventing us from using
pfair is that pfair cannot generalize regular partitions.

III. REGULARITY-BASED PARTITION MODEL

Since our work is an extension of the Regularity-Based Partition Model for task groups with periodic tasks, we
first review some concepts introduced in [1,3] to make our presentation self-contained. We only focus on scheduling
algorithms at the resource level, and skip those at the task level because our paper is devoted to exploring resource-
level partitioning algorithms on a multi-resource platform.

A real-time virtual resource [1] operates at a fraction of the shared physical resources with a varying but bounded
rate. A resource partition is a description of how to assign time intervals periodically on physical resources to a
real-time virtual resource.

Definition 2.1 A resource partition Π is a tuple (Γ, P), where Γ is an array of N time pairs {(S1, E1), (S2, E2)
, ..., (SN , EN)} that satisfies (0 ≤ S1 < E1 < S2 < E2 < ... < SN < EN ≤ P) for some N≥1, and P is the
partition period. The physical resource is available to a task group executing on this partition only during time
intervals (Si + j × P, Ei + j × P), 1 ≤ i ≤ N , j ≥ 0.

Definition 2.2 The availability factor of a resource partition Π is α(Π) = (
∑n

i=1(Ei − Si))/P .

Definition 2.3 The Supply Function S(t) of a partition Π is the total amount of time that is available in Π from
time 0 to t.

The Regularity-based Resource Partition Model studies resource partitioning in the integer domain because
resource partitions in this domain have interesting properties. A major restriction is that the partitions can only
switch from one to another at integer time instances. The following definitions describes Regular Partition and
Irregular Partition by bounding Supply Regularity, which are the most important concepts in [3].

3

Fig. 1. [1] Instant Regularity at Time 4

Definition 2.4 The Instant Regularity Ir(t) at time t on partition Π is given by S(t)− t · α(Π).
Definition 2.5 Let a, b, k be non-negative integers, the Supply Regularity Rs(Π) of Partition Π is equal to the
minimum value of k such that ∀a, b, |Ir(b)− Ir(a)| < k.

Definition 2.6 A Regular Partition is a partition with supply regularity of 1.

Definition 2.7 A k Supply-Irregular Partition is a partition with supply regularity of k, where k > 1.

Regular Partitions and Irregular Partitions, especially the former, can provide wonderful real-time properties. We
shall not mention them here since we only care about the resource partitioning problem in this paper. Next, we
review the algorithms pertaining to how to schedule Regular Partitions and Irregular Partitions. The main idea is to
convert all resource partitions into a group of regular partitions with availability factors of the power of one-half
whose schedulability can be easily checked on a single-resource platform.

Lemma 2.1 When k regular partitions are combined together, they form a partition with supply regularity of k.

Definition 2.8 Given a Partition Π with availability factor α and supply regularity Rs, the Adjusted Availability
Factor AAF (α, Rs) is the total of the availability factors of partitions that are used to compose Π.

The algorithm for calculating AAF can be found in [3]. Here we just give some examples.
AAF (0.67, 2) = 0.5 + 0.25 = 0.75,
AAF (0.67, 3) = 0.5 + 0.125 + 0.0625 = 0.6875,
AAF (0.75, 2) = AAF (0.75, 3) = 0.5 + 0.25 = 0.75.

Theorem 2.1 Given {(αi, ki) : i=1, 2, ..., n} containing the availability factor and supply regularity of irregular
partitions Pi (i=1, 2, ..., n), they are schedulable on a single resource if

∑n
i=1AAF (αi, ki) ≤ 1.

Algorithm – AAF-Single
1. for i := 1 to n do
2. Ai := AAF (αi, ki);
3. end for;
4. finished := 0;
5. l := 1;
6. while (finished < n) do
7. w := 1 / 2l;
8. for i := 1 to n do
9. if (Ai ≥ w) then
10. assign time-slices to Pi at level-l;
11. Ai := Ai − w;
12. if (Ai = 0) finished++;
13. end if ;
14. end for;
15. l++;

4

16. end while;

Figure 2 shows an example of the outcome from Algorithm AAF-Single for {(0.375, 2), (0.3125, 2), (0.3125, 2)}.

Fig. 2. Scheduling Irregular Partitions on Single Resource

Next we present a new theorem which extends the schedulability condition given in Theorem 2.1 for a single-
resource platform to one for a multiresource platform.

Theorem 2.2 Given {(αi, ki) : i=1, 2, ..., n} containing the availability factor and supply regularity of irregular
partitions Pi (i=1, 2, ..., n), they are schedulable on m resources if

∑n
i=1AAF (αi, ki) ≤ m.

Our proof of Theorem 2.2 will be presented in Section IV. Here we briefly explain why the schedulability
condition in Theorem 2.2 cannot be checked by Algorithm AAF-Single. Consider the example in Figure 3, where
{(0.75, 2), (0.625, 2), (0.625, 2)} are AAF and supply regularity of P1, P2, and P3. They cannot be scheduled
by Algorithm AAF-Single because an overlap occurs.

Fig. 3. Scheduling Irregular Partitions on Multiresource

IV. BINARY PARTITION AND BINARY PARTITION INSTANCE

In this section, we shall extend some definitions in Section II for convenience of the coming discussions. We
introduce the concept of binary partition and binary partition instance to describe in more detail the structure of
regular and irregular partitions.

A. Binary Partition

In Sect. II, Feng schedules the irregular partitions after their available factors are transformed to AAF. We
introduce the concept of Binary Partition to describe partitions after such transformations.

Definition 3.1 A Binary Division (BD) D is defined as (l), where l is a positive integer and denotes the level of
D.

The utilization of D is defined as U(D) = 1/2l.

Definition 3.2 A Binary Partition (BP) P is defined as (Π, k). Non-negative integer k denotes the regularity of P ,
and Π is a positive integer set {li : 0 < i ≤ k, 0 < l1 < l2 < ... < lk}. lk denotes the depth of P .

We say P has level-l division if l ∈ Π. The utilization of P is defined as U(P) =
∑k

i=1(1/2
li) < 1.

5

We say P is single while k = 1, is combo while k > 1, and is empty while k = 0.

Definition 3.3 A Characteristic String of binary partition P is a ′(0|1)∗′ string, whose i-th bit is ′1′ if and only if
P has level-i division. Cs(P) represents the characteristic string of P .
A binary partition can be represented by its characteristic string for convenience. For example: ′101′ represents the
binary partition ({1, 3}, 2).

Like binary numbers, we can define +, −, >> and << operations on binary partitions.

Definition 3.4 For binary partitions P, P1, P2, P = P1 + P2 if and if only U(P) = U(P1) + U(P2), and
P = P1 − P2 if and if only U(P) = U(P1)− U(P2).
A Characteristic String can help calculate the sum and difference of binary partitions more easily. For example,
Cs(P1) = ′101′, Cs(P1) = ′0011′, then Cs(P1 + P2) = ′1101′ (like 0.101 + 0.0011 = 0.1101).

Definition 3.5 Given a binary partition P=(Π, k), P>>n represents binary partition ({l + n : l ∈ Π}, k), and
P<<n represents binary partition ({l − n : l ∈ Π}, k) if ∀l ∈ Π, l > n.
For example, if Cs(P) = ′0101′, Cs(P<<1) = ′101′, and Cs(P>>1) = ′00101′.

Definition 3.6 Given a binary partition P = (Σ, k) and a positive integer X ,
Head(P,X) represents binary partition (Σ′, k′) with Σ′ = {l : l ∈ Σ and l ≤ X},
Tail(P,X) represents binary partition (Σ′′, k′′) with Σ′′ = {l : l ∈ Σ and l > X}.

B. Binary Partition Instance

A Binary Partition Instance(BPI) describes a periodic assignment of time slices to a binary partition. More
specifically, a binary partition instance assigns time slices to each level division of a binary partition with a period
of 2L. We say a BPI is valid if there is no overlap among those assigned time slices; otherwise, it is invalid.

Definition 3.7 A Binary Division Instance (BDI) γ is defined as (D, l, δ). D is a level-l0 binary division. l is an
integer not less than l0. δ is an integer set containing 2l−l0 time integers in [0, 2l).
We say γ is on D. l is the period factor of γ. δ is the (time slice) assigned set of γ.

Definition 3.8 For a binary partition P = (Σ, k), Binary Partition Instance (BPI) Γ is defined as (P,L,∆). L is
an integer not less than the depth of P . ∆ is a set of integer sets {δli : li ∈ Σ} such that ((li), L, δli) is a BDI
for each li ∈ Σ.
We say Γ is on P . L is the period factor of Γ. Integer multiset ∪∆ is the (time slice) assigned set of Γ. γi =
((li), L, δli) is the level-li BDI of Γ, and Γ is composed of γi (i = 1, 2, ..., k).
Γ is valid if and only if ∩∆ = φ.

Next we define some operations on BDI and BPI, such that we can describe the later proofs more concisely.

Definition 3.9 Given an integer set δ and a non-negative integers n, l, define
Sadd(δ, n, l) = {(i+ n) mod 2l : i ∈ δ}.

Definition 3.10 Given a BDI γ = (D, l, δ) and a non-negative integer d, the Scale-out Function is defined as

Scale(γ, d) = (D, l + d,
⋃2d−1
i=0 Sadd(δ, i× 2l, l + d)).

Definition 3.11 Given a BPI Γ = (P, L, ∆) and a non-negative integer d, suppose Γi is composed of γi
(i = 1, 2, ..., k), and Scale(γi, d) = (Di, L+ d, δi). The Scale-out Function is defined as
Scale(Γ, d) = (P, L+ d, {δi : i = 1, 2, ...k}).

Definition 3.12 Given BPIs (Γ1 = (Σ1, k1), L1, ∆1), (Γ2 = (Σ2, k2), L2, ∆2) where Σ1
⋂

Σ2 = φ, suppose
Lmax = max{L1, L2},
Scale(Γ1, Lmax − L1) = ((Σ1, k1), Lmax, ∆′1),
Scale(Γ2, Lmax − L2) = ((Σ2, k2), Lmax, ∆′2).

Define +© operation of two BPIs as

6

Γ1 +©Γ2 = ((Σ1 ∪ Σ2, k1 + k2), Lmax, ∆′1 ∪∆′2).

NOTE: BDI ((l0), l, δ) is automatically transformed into BPI (({l0}, 1), l, {δ}) prior to +© operations.

At the end of this section, we introduce the instant regularity for BDI and valid BPI. For a given BDI γ = (D =
(l0), l, δ), the availability factor α = U(D) = 1/2l0 , and the supply function S(t) can be defined as:

S(t+ 1) =

{
S(t) + 1 if (t mod 2l) ∈ δ;
S(t) otherwise.

Similarly, for a given valid BPI Γ = (P,L,∆), the availability factor α = U(P), and the supply function S(t) can
be defined as:

S(t+ 1) =

{
S(t) + 1 if (t mod 2L) ∈ ∪∆;

S(t) otherwise.

For both BDI and BPI, the instant regularity Ir(t) at time t is given by S(t) − t · α. The definition of instant
regularity is also inherited from the regularity-based partition model (Definition 2.4). The next two subsections will
introduce two special types of BPI whose instant regularity can be easily confined.

C. Regular Binary Partition Instance

Regular Binary Partition Instance(Regular BPI) is extended from regular partition defined in Section II. Before
presenting the formal definition, we first introduce Regular Binary Division Instance(Regular BDI). If all the time
slices assigned to a BDI consist of an arithmetic progression, then it is called a regular BDI.

Definition 3.13 A BDI r=((l0), l, δ) is regular if ∃ρ ∈ [0, 2l0), δ = {ρ+ i ∗ 2l0 : i=0, 1, 2, ..., 2l−l0−1}. ρ is called
the offset of regular BDI r.
For example, given a regular BDI r=((1), 3, δ), if the offset of r is 1, δ is {1, 3, 5, 7}.

Lemma 3.1 The Supply regularity of any regular BDI is 1.
Proof: The instant regularity of r has minimal values at time instants just before r is assigned time slices, and has
maximal values at time instants just after r is assigned time slices. Suppose r is on (l0), and ρ is the offset of r, then
∀a,∀b, |Ir(r, b)−Ir(r, a)| ≤ Ir(r, ρ+1)−Ir(r, ρ) = 1−(1/2l0).

Lemma 3.2 If a BDI r is regular, Scale(r, d) is regular for any positive integer d.

Lemma 3.3 Given a regular BDI r=((l0), l, δ), and l′ = max{l, l0 + 1}, there exist regular BDIs r1=((l0 +
1), l′, δ1), r2=((l0 + 1), l′, δ2), such that δ1 ∪ δ2 = δ′ (δ′ is the assigned set of Scale(r, l′− l)). Specifically, we
say (r1, r2) is a split of r.
Proof: Suppose the offset of r is ρ. We only need to let the offset of r1 be ρ, and let the offset of r2 be ρ+ 2l0 .

Definition 3.14 A BPI is regular if its each level BDI is regular.
For example, BPI (({1, 3}, 2), 3, {{1, 3, 5, 7}, {2}}) is regular.

Lemma 3.4 if a regular BPI R=((Σ, k), L, ∆) is valid, the supply regularity of R is k.
Proof: (Referring Lemma 3.1) Suppose regular BPI R is composed of ri=(Di, li, δi), i = 1, 2, ..., k. Then ∀a,∀b,
|Ir(R, b)− Ir(R, a)| = |

∑k
i=1(Ir(ri, b)− Ir(ri, a))| ≤

∑k
i=1 |Ir(ri, b)− Ir(ri, a)| < k.

Lemma 3.5 If a BPI R is regular, Scale(R, d) is regular for any positive integer d.

Similar to that a binary partition can be easily split, a regular BPI can be also split into two or more regular
BPIs. Lemma 3.6 proves the case of splitting one BPI into two, and Theorem 3.1 presents the more general cases.

Lemma 3.6 Given a regular BPI R=(P, L, ∆), and binary partitions P1, P2 where P1 + P2 = P , there exist
regular BPIs R1=(P1, L

′, ∆1) and R2=(P2, L
′, ∆2), such that L′ = max{L, depth of P1, depth of P2} and

(∪∆1) ∪ (∪∆2) = ∪∆′ (∆′ is the assigned set of Scale(R, L′ − L)). Specifically, We say (R1, R2) is a split of
R on (P1, P2).

7

Proof: i) When k=0, P is an empty BP, so P1 and P2 are both empty BPs. Thus ((P1, L, φ), (P2, L, φ)) is a
split of R on (P1, P2).

ii) Suppose when k < K (K is a positive integer), regular BPI can always be split. When k = K, suppose the first
′1′ in Cs(P) occurs at the x-th bit from left . Since Cs(P1) + Cs(P2) = Cs(P), there are two cases on the x-th
bits of Cs(P1) and Cs(P2).

Case 1: one x-th bit is ′1′, the other is ′0′. Suppose the x-th bit of Cs(P1) is ′1′. Change the x-th bit of Cs(P) from
′1′ to ′0′, and get a new BP P ′. And get another new BP P ′1 by the same change to P1. Suppose r=((x), L, δx)
is the level x regular BDI of R, let R′=(P ′, L, ∆− {δx}). Since P ′=P ′1+P2, and the regularity of P ′ is K−1,
by the induction assumption, there exists ((P ′1, L

′, ∆′1), (P2, L
′, ∆2)) which is a split of P ′ on (P ′1, P2). Then

((P ′1, L
′, ∆′1) +© r, (P2, L

′, ∆2)) is a split of R on (P1, P2).

Case 2: Both the x-th bits are ′0′. Since Cs(P1) + Cs(P2) = Cs(P), at least one of the x+1-th bits is ′1′. There
are two cases on the (x+1)-th bits.

Case 2.1: Both (x+1)-th bits are ′1′. Change the x-th bit of CS(P) from ′1′ to ′0′, and get a new BP P ′. Change
the (x+1)-th bits of CS(P1) and CS(P2) from ′1′ to ′0′, and get two new BP P ′1 and P ′2. Suppose r=((x), L, δx)
is the level x regular BDI of R, let R′=(P ′, L, ∆− {δx}). Since P ′=P ′1+P

′
2, and the regularity of P ′ is K−1,

by the induction assumption, there exists ((P ′1, L
′, ∆′1), (P

′
2, L

′, ∆′2)) which is a split of R′ on (P ′1, P
′
2). By

Lemma 3.3, ∃(r1, r2) which is a split of r. Then ((P ′1, L
′, ∆′1) +© r1, (P ′2, L

′, ∆′2) +© r2) is a split of R on
(P1, P2).

Case 2.2: Only one of (x+1)-th bits is ′1′; suppose it is P1’s. Since Cs(P1) + Cs(P2) = Cs(P), the (x+1)-th
bit of CS(P) must be ′0′. Change the x-th bit of CS(P) from ′1′ to ′0′, the (x+1)-th bit from ′0′ to ′1′, and
get a new BP P ′. Change the x-th bit of CS(P1) from ′1′ to ′0′, and get P ′1. Suppose r=((x), L, δx) is the
level x regular BDI of R, and (r1, r2) is a split of r. Let R′ = (P ′, L, ∆ − {δx}) +© r1. Since P ′=P ′1+P2, if
∃((P ′1, L′, ∆′1), (P2, L

′, ∆2)) is a split of R′ on (P ′1, P2), we can get that ((P ′1, L
′, ∆′1) +© r2, (P2, L

′, ∆2))
is a split of R on (P1, P2). So it only need R′ be split. The regularity of R′ is K, and the first ′1′ in CS(P ′)
occurs at the (x+1)-th bit from left, so we can return step ii). The recursive procedure must end because of the
finiteness of P , P1 and P2.

Theorem 3.1 Given a regular BPI R = (P, L, ∆), and binary partitions Pi (i=1, 2, ..., n) where P =
∑n

i=1 Pi,
there exist regular BPIs Ri=(Pi, L

′, ∆i) (i=1, 2, ..., n), such that L′ = max{L, maxni=1(depth of Pi)} and⋃n
i=1(∪∆i) = ∪∆′ (∆′ is the assigned set of Scale(R, L′−L)). Specifically, We say (R1, R2, ..., Rn) is a split of

R on (P1, P2, ..., Pn).
Proof: can be easily concluded from Lemma 3.6.
For example:
R = (P, 4, {{0, 2, 4, 6, 8, 10, 12, 14}, {1, 9}, {3}}), Cs(P) = ′1011′. Suppose Cs(P1) = ′011′, Cs(P2) =

′0101′, then
R1 = (P1, 4, {{0, 4, 8, 12}, {1, 9}}),
R2 = (P2, 4, {{2, 6, 10, 14}, {3}}).

Definition 3.15 Right Shift Operation of regular BDI and regular BPI.
Given a regular BDI r=((l0), l, δ) with offset ρ, r>>n is a regular BDI ((l0 + n), l + n, δ′) with offset ρ× 2n.
Given a regular BPI R=(P, L, ∆) composed of ri (i=1, 2, ..., k), R>>n is a regular BPI (P>>n, L+n, ∆′)

composed of ri>>n (i=1, 2, ..., k).

D. Sub-Regular Binary Partition Instance

The initial idea of Sub-Regular Binary Partition Instance (Sub-Regular BPI) came from the effort to avoid overlaps
while scheduling irregular partitions on multiresource platforms (mentioned in Section II). Take a look at Figure
4. How good is the idea of swapping those overlapped time slices with other partitions?
Definition 3.16 BDI s=((l0), l, δ) is sub-regular if there exist regular BDI r=((l0), l, δ0) and integer set λ ⊂ δ0
where δ = δ0 − λ ∪ Sadd(λ, 1, l).

8

Fig. 4. Swapping Overlapped Time slices with Other Partitions

We say r is the origin of s, and s is shifted from r. λ is the (time slice) shifted set of s. Time slice t is shifted on
s if (t mod 2l) ∈ λ.
Regular BDI is a special case of sub-regular BDI when the shifted set is empty.
For example: s is a sub-regular BDI shifted from ((1), 3, {1, 3, 5, 7}) with shifted set {1, 5, 7}, then
s = ((1), 3, {2, 3, 6, 0}).

Lemma 3.7 Given a sub-regular BDI s, ∀a, ∀b, |Ir(s, b)− Ir(s, a)| ≤ 1.
Proof: Suppose s is shifted from r = ((l0), l, δ). Then

Ir(s, t) =

{
Ir(r, t−1)− (1/2l0) if t−1 is shifted,

Ir(r, t) otherwise.

So according to Lemma 3.1 and its proof,
|Ir(s, b)− Ir(s, a)| ≤ |Ir(r, b′)− Ir(r, a′)|+ (1/2l0) ≤ 1
(b′ = b or b− 1; a′ = a or a− 1).

Lemma 3.8 If a BDI s is sub-regular, Scale(s, d) is sub-regular for any positive integer d.

Lemma 3.9 Given a sub-regular BDI s = ((l0), l, δ), and l′ = max{l, l0 + 1}, there exist sub-regular BDIs
s1 = ((l0 + 1), l′, δ1), s2 = ((l0 + 1), l′, δ2), such that δ1 ∪ δ2 = δ′ (δ′ is the assigned set of Scale(s, l′ − l)).
Specifically, we say (s1, s2) is a split of s.
Proof: Similar to Lemma 3.3. The only difference is that splitting sub-regular BDIs requires splitting their time
slice shifted sets.

Definition 3.17 A BPI is sub-regular if its each level BDI is sub-regular.
Additionally, the origin of a sub-regular BPI is the regular BPI composed of the origin of its each level BDI.
For example, the origin of sub-regular BPI
(({1, 2}, 2), 3, {{0, 3, 4, 7}, {1, 6}}) is
(({1, 2}, 2), 3, {{0, 2, 4, 6}, {1, 5}}).

Lemma 3.10 if a sub-regular BPI S=((Σ, k), L, ∆) is valid, and k > 1, the supply regularity of S is k.
Proof: Suppose S is composed of sub-regular BDIs si (i=1, 2, ..., k), then according to Lemma 3.7, ∀a, ∀b,
|Ir(S, b)− Ir(S, a)| = |

∑k
i=1 Ir(si, b)− Ir(si, a)| ≤ k.

If |Ir(S, b)− Ir(S, a)| = k, each Ir(si, b)− Ir(si, a) must be 1 (or each be −1). That is impossible because the
instant regularity of si (i=1, 2, ..., k) can not reach maximal (or minimal) values at the same time instant when S
is valid.

Lemma 3.11 If a BPI S is sub-regular, Scale(S, d) is sub-regular for any positive integer d.

Theorem 3.2 Given a sub-regular BPI S=(P, L, ∆), and binary partitions Pi(i=1, 2, ..., n) where P=
∑n

i=1 Pi,
there exist sub-regular BPIs Si=(Pi, L

′, ∆i) (i=1, 2, ..., n), such that L′=max{L, maxni=1(depth of Pi)} and⋃n
i=1(∪∆i) = ∪∆′ (∆′ is the assigned set of Scale(S, L′ − L)). Specifically, we say (S1, S2, ..., Sn) is a split of

R on (P1, P2, ..., Pn).

9

Proof: Similar to the proof of Theorem 3.1.

Definition 3.18 Right Shift Operation of sub-regular BDI and sub-regular BPI.
Given a sub-regular BDI s shifted from r with shifted set λ, s>>n is a sub-regular BDI shifted from r>>n

with shifted set {t× 2n : t ∈ λ}.
Given a sub-regular BPI S=(P, L, ∆) composed of si (i=1, 2, ..., k), S>>n is a sub-regular BPI (P>>n, L+

n, ∆′) composed of si>>n (i=1, 2, ..., k).

V. AAF-MULTI RESOURCE PARTITIONING ALGORITHM

As discussed in the previous section, a sub-regular BPI can guarantee that its supply regularity does not exceed
the regularity of the BP it is on, except in the case where it is on a single BP (Lemma 3.10, 3.7). We shall determine
how to schedule sub-regular BPIs on a multiresource platform while avoiding the problem on single BPs.

Definition 4.1 (S1, S2, ..., Sn) is called a Sub-Regular Binary Partition Scheduling (AAF-Multi Scheduling) of
(P1, P2, ..., Pn) on m resources if Si (i=1, 2, ..., n) is a valid sub-regular BPI on binary partition Pi, and each
time slice is assigned at most m times to S1, S2, ..., Sn.

A. Inductive Algorithm of AAF-Multi Scheduling

An inductive algorithm of AAF-Multi Scheduling is presented in this subsection, which can conclude Theorem
2.2 given in Sect. II.

Lemma 4.1 Given an array of binary partitions P1, P2, ..., Pn where
∑n

i=1 U(Pi) = m. L is the maximal depth of
Pi (i=1, 2, ..., n), and τ is an arbitrary integer in [1, n]. There exists AAF-Multi Scheduling of (P1, P2, ..., Pn) on
m resources - (S1, S2, ..., Sn), such that

1) Sτ is regular.
2) L is the period factor of Si (i=1, 2, ..., n).

Proof: i) When m=1, such AAF-Multi Scheduling exists(see Theorem 2.1 and Algorithm AAF-Single).

ii) Suppose When m<M (M>1), such AAF-Multi Scheduling always exists. Consider m=M .
First merge the given BPs like this: each time select two BPs with the lowest utilization, and if the sum of their

utilization is less than 1, replace these two BPs by their sum in the array. The merging process stops when the
utilization sum of any two BPs in the array is ≥ 1.

After merging, we get a new BPs array P ′1, P
′
2, ..., P

′
n′ . suppose Pτ is merged into P ′τ ′ , and L′ (L′ ≤ L) is the

maximal depth of P ′i (i=1, 2, ..., n′). Notice that if we can find a AAF-Multi Scheduling of (P ′1, P
′
2, ..., P

′
n′) on M

resources and P ′τ ′ gets a regular assignment, the resulting AAF-Multi Scheduling of (P1, P2, ..., Pn) can be easily
obtained through splitting and scale-out (see Theorem 3.1, 3.2, and Lemma 3.5, 3.11).

Suppose the two BPs having the lowest and second lowest unitization in (P ′1, P
′
2, ..., P

′
n′) are P ′α and P ′β .

Case 1: If U(P ′α) + U(P ′β) = 1, schedule P ′α and P ′β on one of the given resources, and schedule the remaining
BPs on the other M − 1 resources. According to the induction assumption, such SRP scheduling exists.

Case 2: If U(P ′α) +U(P ′β) > 1. Suppose there are N time BPs in P ′1, P
′
2, ..., P

′
n′ having utilization > 1/2. Because∑n′

i=1 U(P ′i) = M and the sum of any two BPs in P ′1, P
′
2, ..., P

′
n′ is great than 1, N must be in [M, 2M). On the

other hand, there is at most one BP having utilization ≤ 1/2, and suppose it is P ′min (P ′min could be empty).

Case 2.1: if N∈(M, 2M), separate P ′1, P
′
2, ..., P

′
n′ into three groups. Group A contains M−1 time BPs (A1, A2, ..., AM−1)

having utilization > 1/2 and excluding P ′τ ′ , and Group B contains N−M time BPs (B1, B2, ..., BN−M) having
utilization > 1/2 and excluding P ′τ ′ . Group C includes the remaining two BPs (C1, C2 = P ′min). Notice that P ′τ ′
is in group C.

As shown in Figure 5, assign time slices 1, 3, 5, ... to the level-1 BDs of C1 (getting BDI s1) and A1, A2, ..., AM−1
(getting BDIs s2, s3, ..., sM correspondingly), and assign time slices 0, 2, 4, ... to the level-1 BDs of B1, B2, ..., BN−M
(getting BDIs sM+1, sM+2, ..., sN correspondingly).

Q1 = Tail(C1, 1),

10

Fig. 5. Assigning after Merging (Lemma4.1 Case2.1)

Q1+i = Tail(Ai, 1), i = 1, 2, ...,M−1
QM+i = Tail(Bi, 1), i = 1, 2, ..., N−M
QN+1 = C2.

Let Q′i = Qi<<1 (i=1, 2, ...N+1). Then∑N+1
i=1 Q′i = 2

∑N+1
i=1 Qi = 2(M − (N/2)) = 2M−N .

Let M ′=2M−N , M ′∈(0, M). According to the induction assumption, ∃AAF-Multi Scheduling of (Q′1, Q
′
2, ..., Q

′
N+1)

on M ′ resources - (S′′1 , S
′′
2 , ..., S

′′
N+1), such that

1) S′′1 is regular if P ′τ ′ = C1 , otherwise S′′N+1 is regular.
2) All period factors are L′−1. (L′ is max depth of Q1, Q2, ..., QN+1).

This AAF-Multi Scheduling can help construct the target AAF-Multi Scheduling on (C1, A
′
1, ..., A

′
M−1, B

′
1, ..., B

′
N−M , C2)

through the following two steps. (Figure 6 can help understand the next two paragraphs)

Fig. 6. Scheduling Example (Lemma4.1 Case2.1)

Step 1 - Balance Shifted Time slices
Let S′i = S′′i >>1 (i= 1, 2, ..., N+1). Because each time slice in {0, 1, 2, 3...} is assigned to S′′1 , S

′′
2 , ..., S

′′
N+1

M ′ times, each times slice {0, 2, 4, 6...} should be assigned to S′1, S
′
2, ..., S

′
N+1 M

′ times if there was no shifted
time slice. Consider those shifted time slices. ∀ an even integer t ∈ [0, 2L

′
), suppose time slice T (t−2) (T (t) =

t mod 2L
′
) is shifted x times in S′1, S

′
2, ..., S

′
n. Until now in all BPIs S′1 +©s1, S′2 +©s2, ..., S′N +©sN , S′N+1, t is assigned

M+x times and T (t−1) is assigned M−x times, which is unbalanced. We can solve this problem by replacing
time slice T (t−1) by time slice t x times in s2, s3, ..., sM . Suppose t is assigned to S′2, S

′
3, ..., S

′
M y times, and

11

assigned to S′M+1, S
′
M+2, ..., S

′
N z times, then x+y+z ≤M ′ ≤M−1 because t/2 is assigned to S′′1 , S

′′
2 , ..., S

′′
N+1

M ′ times. So there are at least x+ z time slice T (t−1) in s2, s3, ..., sM which could be replaced by t. Choose x
of them, and perform the replacements (if T (t−2) is shifted in S′j(j ∈ [2,M]), choose sj first. Thus the overlaps
between sj and S′j can be removed). After balancing the shifted time slices for all even integers t ∈ [0, 2L

′
), each

time slice in [0, 2L
′
) should be assigned to S′1 +©s1, S′2 +©s2, ..., S′N +©sN , S′N+1 M times. Furthermore, we only

changed s2, s3, ..., sM from regular to sub-regular, and did not touch the other parts.

Step 2 - Remove Overlaps
Another problem we need to solve is the overlaps between sM+1, sM+2, ..., sN and S′M+1, S

′
M+2, ..., S

′
N . As

mentioned in Step 1, time slice t is assigned to S′M+1, S
′
M+2, ..., S

′
N z times. Unfortunately, all of them are

overlapped with sM+1, sM+2, ..., sN . Our strategy is to exchange those overlapped time slice t in sM+1, sM+2, ..., sN
with time slice T (t−1) in s2, s3, ..., sM (according to the analysis in step 1, there are still at least z time slice T (t−1)
in s2, s3, ..., sM which could be replaced by t). This solution can keep sM+1, sM+2, ..., sN sub-regular and valid
because time slice t and T (t−1) cannot be assigned to the same S′j (j ∈ [M+1, N]) simultaneously (because t/2 can
only be assigned to S′′j at most once). So after performing all of the exchanges, S′1 +©s1, S′2 +©s2, ..., S′N +©sN , S′N+1

become valid.
(S′1 +©s1, S′2 +©s2, ..., S′N +©sN , S′N+1) is the target AAF-Multi Scheduling of (C1, A

′
1, ..., A

′
M−1, B

′
1, ..., B

′
N−M , C2).

Let’s check the two conditions it must satisfy.
1) It can guarantee P ′τ ′ gets a regular BPI (We never changed the assigned sets of s1, S′1 and S′N+1).
2) The common period factor is L′.
Ignoring the order, C1, A

′
1, ..., A

′
M−1, B

′
1, ..., B

′
N−M , C2 is same as P ′1, P

′
2, ..., P

′
n′ . So we have constructed

the AAF-Multi Scheduling of (P ′1, P
′
2, ..., P

′
n′) on M resources. As mentioned before, the resulting AAF-Multi

Scheduling of (P1, P2, ..., Pn) can be constructed through splitting and scale-out.

Case 2.2: if N = M . There must be M+1 time BPs in P ′1, P
′
2, ..., P

′
n′ , so n′ = M+1. In this case, only one BP

has utilization < 1/2, and each of others has utilization > 1/2.

Case 2.2.1: if U(P ′τ ′) > 1/2. Suppose X is the minimum level at which P ′1, P
′
2, ..., P

′
M+1 have M+1 time BDs .

Without loss of generality, suppose P ′τ ′ = P ′1, and U(P ′M+1) < 1/2.

Case 2.2.1.1: if U(P ′M) < 2−(X−1), P ′M starts from level X . As shown in Figure 7, assign time- slices (1, 3, 5...)×
2(i−1) to each BD of P ′1, P

′
2, ..., P

′
M at level i for i = 1, 2, ..., X−1 (getting BDI si,j at level i of P ′j). Assign time-

slices (1, 3, 5...)× 2(X−1) to P ′2, P
′
3, ..., P

′
M+1 at level X (getting BDI sX,(j mod M) in P ′j), and assign time-slices

(0, 2, 4...)× 2(X−1) to P ′1 at level X (getting BDI s0).

Fig. 7. Assigning after Merging (Lemma4.1 Case2.2.1.1)

Let Qi=Tail(Pi, X), Q′i=Qi<<X , i=1, 2, ...,M+1, then
∑M+1

i=1 U(Q′i) = M−1. According to the induction
assumption, ∃SRBP scheduling of (Q′1, Q

′
2, ..., Q

′
M+1) on M−1 resources - (S′′1 , S

′′
2 , ..., S

′′
N+1), such that

12

1) S′′1 is regular.
2) All period factors are L′−X . (L′ is max depth of Q1, Q2, ..., QM+1).

Let S′i=S
′′
i >>X , i=1, 2, ...,M+1. The following processing is very similar to that in Case 2.1. We need to

balance the shifted time-slices in S′1, S
′
2, ..., S

′
M+1, and remove overlaps between S′1 and s0. For conciseness, we

may skip some details later in this case.
Step 1 - Balance Shifted Time-slices
∀ t · 2X ∈ [0, 2L

′
). Suppose time-slice T ((t−1) · 2X) (T (t) = t mod 2L

′
) is shifted in S′1, S

′
2, ..., S

′
M+1 x

times. Time-slice t · 2X is assigned to S′1 y times (y is 0 or 1), and assigned to S′2, S
′
3, ..., S

′
M z times. Then

x+y+z ≤ M−1. Similar to Case 2.1, our balancing strategy is to replace time-slice T ((t−1) · 2X+ 1) by t · 2X
in si,j (i=1, 2, ..., X , j=2, 3, ...,M) x times. Meanwhile, we need to keep si,j sub-regular. We can achieve such
one replacement in s1,ψ, s2,ψ, ..., sX,ψ by Algorithm 4.1.

Algorithm 4.1
1. l := 1;
2. d := 1;
3. Y := X;
4. t′ := (t · 2X − 1) mod 2L

′
;

5. for i := 1 to (2X − 1) do
6. shift time-slice t′ in sl,ψ;
7. t′−−;
8. if (l = 1) then
9. l = 1 + d++;
10. if (d = Y) then
11. d := 1;
12. Y−−;
13. fi;
14. else
15. l := 1;
16. fi;
17. od for;

Fig. 8. Scheduling Example (Lemma4.1 Case2.2.1.1)

Step 2 - Remove Overlaps
There exist overlaps only between S′1 and s0. We can remove the overlaps by exchanging time-slice t · 2X in S′1

with T (t · 2X − 2X−1) in s1,ψ, s2,ψ, ..., sX,ψ by Algorithm 4.1.

13

Case 2.2.1.2: if U(P ′M) ≥ 2−(X−1), P ′M starts before level X . For each BD of P ′M before level X , borrow it to the
partition without BD at the same level. Then we can perform scheduling as in Case 2.2.1.1, and after that return
all borrowed BDs to P ′M (notice that the returning will not bring out overlaps because the distance between any
two BDIs on P ′M is greater than 1 if there is no shifted time-slice). A scheduling example is presented in Figure 9.

Fig. 9. Scheduling Example (Lemma4.1 Case2.2.1.2)

Case 2.2.2: if U(P ′τ ′) < 1/2. Suppose X+1 is the minimum level at which P ′τ ′ has BD. Without loss of generality,
suppose P ′τ ′ = P ′1. As shown in Figure 10, we assign time-slices (1, 3, 5...)×2(i−1) to each BD of P ′2, P

′
2, ..., P

′
M+1

at level-i for i=1, 2, ..., X .

Fig. 10. Assigning after Merging (Lemma4.1 Case2.2.2)

Let Qi=Tail(P ′i , X), Q′i=Qi<<X (i = 1, 2, ...,M+1). Then
∑M+1

i=1 Q′i = M , and U(Q′1) ≥ 1/2. According
to case 2.2.1 (if there are M time BDs on level X+1) or case 2.1 (if there are M+1 time BDs on level X+1), ∃
SRBP scheduling of (Q′2, Q

′
2, ..., Q

′
M+1) on M resources - (S′′2 , S

′′
2 , ..., S

′′
M+1), such that

1) S′′1 is regular.
2) The common period factor is L′−X (L′ is the maximum depth of P ′2, P

′
2, ..., P

′
M+1).

Let S′i=S
′′
i >>X (i=1, 2, ...,M+1). We only need to balance the shifted time-slices in S′2, S

′
3, ..., S

′
M+1. ∀

t · 2X ∈ [0, 2L
′
), Suppose time-slice T ((t−1) · 2X) (T (t) = t mod 2L

′
) is shifted x times in S′2, S

′
3, ..., S

′
M+1, and

t · 2X is assigned to S′2, S
′
3, ..., S

′
M+1 y times, then x+ y ≤M . We can achieve balancing through Algorithm 4.1.

14

Lemma 4.2 Given an array of single BPs P1, P2, ..., Pn in order of non-increasing utilizations. If
∑n

i=1 U(Pi) ≥ 1,
there exists a positive integer j ∈ (1, n], such that

∑j
i=1 U(Pi) = 1.

Proof: If not so, there must exist a positive integer k < n where
∑k

i=1 U(Pi) < 1, and
∑k+1

i=1 U(Pi) > 1. Let
S =

∑k
i=1 U(Pi), then S is a multiple of U(Pk), because U(P1), U(P2), ..., U(Pk) are all multiples of U(Pk). And

since 1 is a multiple of U(Pk), 1−S (great than 0) is a multiple of U(Pk), so 1−S must be a multiple of U(Pk+1).
This means 1−S ≥ U(Pk+1), which contradicts

∑k+1
i=1 U(Pi) = S + U(Pk+1) > 1.

Theorem 4.1 Given an array of binary partitions P1, P2, ..., Pn where
∑n

i=1 U(Pi) = m. Suppose the regularity
of Pi is ki (i = 0, 1, ..., n). There exists AAF-Multi Scheduling of (P1, P2, ..., Pn) on m resources - (S1, S2, ..., Sn),
such that the supply regularity of Si is ki (i = 0, 1, ..., n).
Proof: The resulting AAF-Multi Scheduling must satisfy that each single BP gets a regular BPI instead of a
sub-regular BPI because the supply regularity of a single sub-regular BPI could be 2 (see Lemma 3.7).

i) When m=1, such AAF-Multi Scheduling exists (see Theorem 2.1). Furthermore, all assigned BPIs are regular
BPIs.

ii) Suppose such AAF-Multi Scheduling always exists when m<M , consider m=M . Suppose the BP array
Q1, Q2, ..., Qh contains all single BPs in P1, P2, ..., Pn in order of non-increasing untilizations. The BP array
C1, C2, ..., Cn−h contains the remaining BPs. Let U =

∑h
i=1Qi.

Case 1: if U≥1, there exists integer j ∈ [1, h] where
∑j

i=1 U(Qi) = 1 (according to Lemma 4.2). Single BPs
Q1, Q2, ..., Qj can be scheduled on one of the given resources, each getting a regular BPI. And according to the
induction assumption, the remaining BPs Qj+1, Qj+2, ..., Qh and C1, C2, ..., Cn−h can be scheduled on the other
M−1 resources.

Case 2: if U<1, let binary partition Q =
∑h

i=1Qi. According to Lemma 4.1, ∃(S′, S′′1 , S′′2 , ..., S′′n−h) which
is a AAF-Multi Scheduling of (Q,C1, C2, ..., Cn−h) on M resources, where S′ is regular. Then according to
Theorem 3.1, S′ can be split into a regular BPI array S′1, S

′
2, ..., S

′
h on Q1, Q2, ..., Qh correspondingly. There-

fore, (S′1, S
′
2, ..., S

′
h, S

′′
1 , S

′′
2 , ..., S

′′
n−h) is the resulting AAF-Multi Scheduling of (Q1, Q2, ..., Qh, C1, C2, ..., Cn−h).

Theorem 2.2 Given {(αi, ki) : i=1, 2, ..., n} containing the availability factor and supply regularity of irregular
partitions Pi (i=1, 2, ..., n), they are schedulable on m resources if

∑n
i=1AAF (αi, ki) ≤ m.

Proof: Irregular partition Pi corresponds to a binary partition Qi = (Πi, k
′
i) where U(Qi) = AAF (αi, ki) and k′i ≤

ki. According to Theorem 4.1, Pi (i=1, 2, ..., n) can be scheduled on m resources.

B. Time Complexity of AAF-Multi Scheduling

We now consider the time complexity of the inductive algorithm presented in Lemma 4.1. Suppose n BPs are
scheduled on m resources, and the maximum depth of these BPs is l. This inductive algorithm finishes after k
iterations. In the i-th iteration (i=1, 2, ..., k), the amount of resources is Mi, the amount of BPs is Ni, and their
maximum depth is Li. Then Mk=m, Nk=n, Lk=l. In each iteration, the time-consuming part focuses on three
kinds of operations - merging BPs, splitting sub-regular BPIs, and adapting time slices according to the result of
the previous iteration. The time complexity is simplified based on: k ≤ L, n ≤ m · 2L. k ≤ L is because Li is
strictly decreasing, and n ≤ m · 2L is because there are only m · 2L time slices.

Merging - Obviously, the total amount of BP merging operations in all iterations is smaller than n, and the time
complexity of each merging operation is O(L). So the time complexity of merging is

T1 = O(n · L) = O(m · L · 2L).

Splitting - Notice that the time consumption of splitting sub-regular BPIs stems primarily from that of splitting
those involved time slice shifted sets. The amount of all time slices is m · 2L, and each time slice is involved in
BD splitting at most L times, because it would be assigned to a lower level BD after splitting the BD owning it.
So the overall time complexity of splitting is

T2 = O(m · L · 2L).

15

Adapting - In the i-th iteration, there are Mi−1 · 2Li−1 time slices coming from the previous iteration. For each
time slice shifted or overlapped, the time complexity of adapting is O(2Li−Li−1). So the overall time complexity
of this part is

T3 = O(
∑k

i=1(Mi−1 · 2Li−1 · 2Li−Li−1)) = O(m · 2L).

In summary, the time complexity of AAF-Multi Scheduling is

T = T1 + T2 + T3 = O(m · L · 2L).

Let Ω = m · 2L, Ω is the total amount of time slices in AAF-Multi Scheduling. The time complexity is also
presented as

T (Ω) = O(Ω · log Ω).

C. Reducing Partition-Migration Overhead

Since AAF-Multi is a global scheduling algorithm, the partition migrations between resources cannot be fully
avoided. We mentioned in Sect. I that we could develop some methodologies to reduce the overall migration
overhead.

Fig. 11. Resource Allocation of the Case in Figure 6

Figure 7 shows two tables. The first one is the resulting AAF-Multi scheduling of the case in Figure 6. It can
be observed from the table that at each time instant, three and only three partitions get time slices. The second
table determines how the three resources R1, R2, R3 choose the partitions on them at each time instant. A simple
strategy is applied such that the partitions are picked by the fixed order from top to bottom in the first table. 18
times partition-migration happen in those cells with circles.

These partition-migrations can be grouped into two categories. A partition-migration is in Type-One category if
it happens after a time slice that this partition just get executed. Otherwise, it is a Type-Two partition-migration.
For example, the first migration of partition A1 is Type-One, and the first migration of partition A2 is Type-Two.
These two types of partition-migration have different impacts on the performance, especially on an SMP platform,
which can provide an identical latency for memory access from different processors. Obviously, Type-One partition-
migrations would get much more penalty from TLB and cache misses than Type-Two partition-migrations.

A simple strategy can eliminate all the Type-One migrations. When the resources pick the partitions at a specific
time instant, those partitions that are just executed in the previous time slice would remain on the same resources.
Figure 8 shows the better result after optimization. We extend the hyper period to 48 to eliminate Type-One
migrations crossing consecutive periods.

D. Simulation

We show the performance of AAF-Multi in this subsection by simulation. We generate regular or irregular
partitions whose availability factors are randomly chosen in (0, 1), and supply regularities are randomly chosen in

16

Fig. 12. Resource Allocation after optimization

[1,MaxReg], where MaxReg is a varying parameter. Figure 9 and 10 show the schedulable ratio of randomly
generated partition sets on 2 resources and 16 resources. The horizontal axis represents the utilization ratio of
randomly generated partition sets, and the vertical axis represents the schedulable ratio of these partitions sets
by AAF-Multi. From the charts, we can see that irregular partitions require less utilization overhead than regular
partitions when their Availability Factors are converted to AAF for scheduling.

Fig. 13. Schedulable Ratio of AAF-Multi on 2 Resources

Fig. 14. Schedulable Ratio of AAF-Multi on 16 Resources

17

VI. CONCLUSION

In this paper, we investigate the problem of applying the regularity-based temporal resource partition model to
a uniform multiresource platform. We introduce the concept of binary partition, and develop an inductive resource
partitioning algorithm (AAF-Multi) for it on a multiresource platform. Meanwhile, the schedulability bound remains
the same as in the former result on a single resource.

Our partitioning techniques can supply compositionality and isolation for real-time applications on a multiresource
platform such that they appear to execute on their dedicated resources. In a virtualization environment, our techniques
can also help the virtual machines monitor provide virtual resources to real-time virtual machines with more temporal
protection. Meanwhile, our partitioning algorithm can guarantee very good time complexity.

There are still many open issues in this problem. First, the time consumption of AAF-Multi Scheduling could
be reduced. Second, the schedulability bound may not be sufficiently tight, and could be improved by algorithms
similar to pfair [4, 5]. Last but not least, resource partitioning of a non-uniform multiresource platform still needs
further investigation. As a future work, we shall implement our resource partition model in a real-time Linux kernel
running on an SMP platform.

REFERENCES

[1] A. K. Mok and X. Feng. Towards compositionality in real-time resource partitioning based on regularity bounds. RTSS, 2001.
[2] A. K. Mok, X. Feng, and D. Chen. Resource partition for real-time systems. RTAS, 2001.
[3] X. Feng. Design of real-time virtual resource architecture for largescale embedded systems. Ph.D. dissertation, Department of Computer

Science, The University of Texas at Austin, 2004.
[4] S. Baruah, N. Cohen, G. Plaxton, and D. Varvel. Proportionate progress: A notion of fairness in resource allocation. Algorithmica, 1996.
[5] S. Baruah, J. Gehrke, and G. Plaxton. Fast scheduling of periodic tasks on multiple resources. IPPS, 1995.
[6] D.-I. Oh and T. P. Baker. Utilization bounds for n-processor rate monotonescheduling with static processor assignment. Real-Time Syst,

1998.
[7] S. Baruah and N. Fisher. The partitioned multiprocessor scheduling of deadline-constrained sporadic task systems. IEEE Transactions

on Computers, 2006.
[8] S. Shigero, M. Takashi, and H. Kei. On the schedulability conditions on partial time slots. RTCSA, 1999.
[9] G. Lipari and E. Bini. A framework for hierarchical scheduling on multiprocessors: from application requirements to run-time allocation.

RTSS, 2010.
[10] A. Mok, X. Feng, and D. Chen. Resource partition for realtime systems. In RTAS, 2001.
[11] I. Shin and I. Lee. Periodic resource model for compositional real-time guarantees. In RTSS, 2003.
[12] A. Easwaran, M. Anand, and I. Lee. Optimal compositional analysis using explicit deadline periodic resource models. In RTSS, 2007.

	Introduction
	Related work
	Regularity-Based Partition Model
	Binary Partition and Binary Partition Instance
	Binary Partition
	Binary Partition Instance
	Regular Binary Partition Instance
	Sub-Regular Binary Partition Instance

	AAF-Multi Resource Partitioning Algorithm
	Inductive Algorithm of AAF-Multi Scheduling
	Time Complexity of AAF-Multi Scheduling
	Reducing Partition-Migration Overhead
	Simulation

	Conclusion
	References

