

The Laboratory for Rapid Rewriting Version 3.01

Rakesh M. Verma and Wei Guo

Computer Science Department
University of Houston

Houston, TX, 77204, USA
http://www.cs.uh.edu

Technical Report Number UH-CS-12-01

May 10, 2012

Keywords: Interpreters for Rewriting, Memorization, Congruence-closure based

rewriting, Term Graphs

Abstract

In this paper, we present the design and performance of the Laboratory for Rapid
Rewriting system, LRR. Given a convergent or orthogonal rewrite system, R, and a term
t, LRR computes the normal form of t whenever it exists. LRR consists of two
interpreters: Smaran and TGR, which stands for Term Graph Rewriter. Both Smaran and
TGR use term graphs with varying amounts of sharing. Smaran also stores the history of
all rule applications in a very efficient data structure. A number of optimizations have
been initiated in the implementation of LRR including a preprocessor for rules and the
DS-list data structure. We give an overview of how to use the system, its core algorithms,
data structures, optimizations and features. The performance of LRR on some
benchmarks both favorable and unfavorable is presented and compared with two other
interpreters Maude and Elan.

1 Research supported in part by NSF grant CCF 0306475 and DUE 1062954

The Laboratory for Rapid Rewriting Version 3.0

Rakesh M. Verma and Wei Guo

University of Houston Department of Computer Science
4800 Calhoun Rd., Houston, TX 77004, USA

rmverma@cs.uh.edu

http://www.cs.uh.edu/~rmverma

Abstract. In this paper, we present the design and performance of the
Laboratory for Rapid Rewriting system, LRR. Given a convergent or
orthogonal rewrite system, R, and a term t, LRR computes the normal
form of t whenever it exists. LRR consists of two interpreters: Smaran and
TGR, which stands for Term Graph Rewriter. Both Smaran and TGR
use term graphs with varying amounts of sharing. Smaran also stores
the history of all rule applications in a very efficient data structure. A
number of optimizations have been initiated in the implementation of
LRR including a preprocessor for rules and the DS-list data structure.
We give an overview of how to use the system, its core algorithms, data
structures, optimizations and features. The performance of LRR on some
benchmarks both favorable and unfavorable is presented and compared
with two other interpreters Maude and Elan.

1 Introduction

Fast rewriting is needed for equational programming, rewrite based formal veri-
fication methods, and symbolic computing systems such as Maple/Mathematica.
In any implementation of rewriting techniques efficiency is a critical issue [Hermann 91].
At the University of Houston (UH) we have been developing and evaluating the
LRR system for fast rewriting. There are several motivations for LRR:

1. Theorem proving/formal verification – we have used LRR in a Knuth-Bendix
completion procedure [Verma 99], and we have recently implemented CTL
model checking with it.

2. As a testbed for innovating rewriting algorithms that are fast and efficient
in practice – for example, we have experimented with different reduction
strategies as described below and also different choices of data structures for
congruence closure.

3. As an educational tool for teaching undergraduate and graduate students in
several courses – in the declarative programming course at UH, students use
it to learn equational programming and in the automata theory course we use
it to illustrate tree automata. We have added a graphical interface to LRR

called RuleMaker [Yu 08], so that students can draw finite state string or
tree automata and run them. RuleMaker provides fine-grained control over
LRR so that the student can view the results of every step. The advantage

2 R. Verma and W. Guo

of LRR is that it can be easily programmed for all kinds of automata instead
of developing packages for specific automata from scratch.

In this paper, we give a self-contained introduction to LRR, highlighting its key
original features and present its main innovations. These include: a tree inter-
preter Tree, more reduction strategies, an implementation of new data structure
for speeding up normalization called DS-list and a preprocessor for rules. The
DS-list and the preprocessor can be used to speed up any rewriting system. The
performance of LRR on several benchmarks is given. A Linux version of LRR 3.0

and some examples can be downloaded from the first author’s web page.

LRR 3.0 consists of a pure-tree (i.e., no sharing of common subexpressions)
interpreter Tree, a term graph interpreter TGR, and a term graph rewriter that
tables or stores the history of its reductions, called Smaran, based on the con-
gruence closure normalization algorithm. TGR shares those subexpressions that
match different occurrences of the same variable whereas Smaran has full shar-
ing of common subexpressions. This algorithm treats rules as equations, hence
it keeps equivalence classes of terms. Terms are represented implicitly via signa-

tures and there is at most one special signature in each class called the unreduced

signature of the class (for theoretical justification of the details of this algorithm
please see [Verma 95,Bachmair 99]). The tabling component of LRR is useful in
applications involving certain kinds of nonterminating systems including fixed-
point computations, in dynamic programming, and in retracing/debugging, etc.
The input to LRR is a program representing a convergent rewrite system (a dif-
ferent version allows orthogonal systems) and an input term. Similar to algebraic
specification languages like ASF+SDF [Brand 02], ELAN [Borovansky 02] and
Maude [Clavel 03] a program is composed from modules. Each module defines
its own signature (set of variable, function symbols and constants) and rewrit-
ing rules. A module can import other modules. Terms in LRR are written in
prefix form. LRR contains some predefined common datatypes such as, integers,
booleans, strings, sets, etc. and operators including arithmetic, set, comparison,
and logical operators. The efficient integration of these diverse datatypes into
history-based rewriting is a challenging issue that we believe has been solved
quite successfully in LRR.

LRR also includes a variant detector that can determine if a new term is an
alphabetic variant of an existing term, which is usable with the history option.
If so, the appropriate variant of the result computed for the existing term is
used for further rewriting instead of starting from scratch. LRR provides a set of
commands so that it can be called by other systems for symbolic computation.
This currently requires the UNIX message passing mechanism. This feature of
LRR was used to develop a system called KBS, which integrated an “off-the-
shelf” Knuth-Bendix procedure with an earlier version of Smaran.

Operators can also be declared AC in LRR which supports AC matching of
left-linear rules.

The rest of this paper is organized as follows. We first present some prelim-
inaries including how to use LRR in Section 2. In Section 3, we describe the
main algorithms in LRR and, in Section 4, we outline the data structures and

LRR v3.0 3

optimizations that have already been implemented. The experimental results are
presented in Section 5. We conclude the paper with some promising directions
for future research. Finally, we give an example to illustrate an optimization in
LRR in the Appendix, which also includes the rules for the benchmarks on which
LRR is compared with two other interpreters.

2 Preliminaries

A signature is a set F along with a function arity : F → N. Members of F are
called function symbols, and arity(f) is called the arity of the function symbol
f . Function symbols of arity zero are called constants. Let X be a countable
set disjoint from F that we shall call the set of variables. The set T (F , X)
of F-terms over X is defined to be the smallest set that contains X and has
the property that f(t1, . . . , tn) ∈ T (F , X) whenever f ∈ F , n = arity(f), and
t1, . . . , tn ∈ T (F , X). The set of function symbols with arity n will be denoted
by Fn; in particular, the set of constants is denoted by F0. We will use root(t)
to refer to the outermost function symbol of t. We will use V ar(t) to denote the
set of variables appearing as subterms of a term t.

The size, |t|, of a term t is the number of occurrences of variables and
function symbols in t. So, |t| = 1 if t is a variable, and |t| = 1 + Σn

i=1|ti| if
t = f(t1, . . . , tn). The height of a term t is 0 if t is a constant or a variable, and
1 + max{height(t1), . . . , height(tn)} if t = f(t1, . . . , tn).

A position of a term t is a sequence of natural numbers that is used to
identify the locations of subterms of t. The subterm of t = f(s1, . . . , sn) at
position p, denoted t|p, is defined recursively: t|λ = t, where λ is the empty
sequence, t|k = sk, and t|k.l = (t|k)|l for 1 ≤ k ≤ n and undefined otherwise
[Radcliffe 10].

A substitution is a mapping σ : X → T (F , X) that is the identity on all but
finitely many elements of X . Substitutions are generally extended to a homo-
morphism on T (F , X) in the following way: if t = f(t1, . . . , tk), then (abusing
notation) σ(t) = f(σ(t1), . . . , σ(tk)). Oftentimes, the application of a substitu-
tion to a term is written in postfix notation. A term s matches a term t if there
is a substitution σ such that sσ = t. Two terms s and t unify if there is a
substitution σ such that sσ = tσ.

2.1 Term Rewrite Systems

A rewrite rule is a pair of terms, (l, r), usually written l → r, where r does not
contain any variables that do not appear in l (notice that if l is a constant, then
r cannot contain any variables). For the rule l → r, the left-hand side (LHS)
is l, and the right-hand side (RHS) is r. Notice that if l → r and l′ → r′ are
rules in some rule set, then we will assume (without loss of generality) that
(V ar(l) ∪ V ar(r)) ∩ (V ar(l′) ∪ V ar(r′)) = ∅. A rule, l → r, can be applied to a
term, t, if there exists a substitution, σ, such that lσ = t′, where t′ is a subterm
of t; in this case, t is rewritten by replacing the subterm t′ = lσ with rσ. The

4 R. Verma and W. Guo

process of replacing the subterm lσ with rσ is called a rewrite. A root rewrite is
a rewrite where t′ = t.

A term rewrite system (or TRS) is a pair, (T , R), where R is a finite set of
rules and T is the set of terms over some signature, Σ. When the set of terms
is clear from the context, we usually omit it and just refer to R itself as a term

rewrite system. If we think of → as a relation, then
+
→ and

∗

→ will denote
its transitive closure, and reflexive and transitive closure, respectively. We will
denote a root rewrite by s

r
→ t and a non-root rewrite by s

nr
→ t. A derivation

is a sequence of terms, t1, . . . , tn, such that ti → ti+1 for i = 1, . . . , n − 1; this
sequence is often denoted by t1 → t2 → . . . → tn. Given a rewrite system R, a
term t is said to be in normal form, or a normal form, if no rule of R can be
applied to it.

The input to LRR is a term rewriting system R and a given term t0. The
objective is to compute a normal form of t0, tn. We denote the ith rule as
rulei : lhsi ⇒ rhsi. We define that the ith step of the normalization is a process
that builds a new term ti by applying rulej at a subterm of term ti−1, in which
i ∈ N, 0 < i ≤ n. We use ti−1 →(i,j) ti to denote the ith step of the normaliza-
tion. Thus, the whole process of normalization can be denoted as a sequence,
t0 →(1,j) t1, ..., ti →(i+1,j′) ti+1, ..., tn−1 →(n,j′′) tn. Terms t1, ..., ti, ..., tn−1 are
called intermediate results [Verma and Guo 11b].

A defined symbol is a symbol that occurs as the root of some LHS in R. The
rest of the symbols are called constructors. Note that predefined symbol such as
mathematical, relational and set operators, etc., are neither defined symbols nor
constructors since they will be evaluated eventually.

A rule l → r is left-linear if every variable appears no more than once in l

and a rewrite system is left-linear if every rule is left-linear. Two rules l → r

and L → R are overlapping if a non-variable subterm of l unifies with L. If the
two rules are the same, then the subterm must be a proper subterm. A rewrite
system is orthogonal if it is left-linear and non-overlapping. A rewrite system is
confluent if for all terms s, t and u whenever s

∗

→ t and s
∗

→ u, then there is a
term v such that t

∗

→ v and u
∗

→ v. Confluence implies that normal forms of
terms are unique whenever they exist. A rewrite system is terminating if every
rewrite sequence starting from every term is finite. A convergent rewrite system
is both terminating and confluent. For more notions of rewriting we refer the
reader to the excellent survey [Dershowitz 01].

2.2 Running LRR

The input of LRR is a module file with a .m extension representing the rules
R and a term file with a .t extension representing the given term t0. On the
command prompt of a linux machine, use the command below to run LRR.

./lrr [OPTIONS]... MODULEFILE TERMFILE
And ./lrr - -help for help.
An LRR program contains one or more modules which may be stored in one

or more module files. Each module has a unique module name. LRR is case

LRR v3.0 5

sensitive and all reserved words are in lower case. The syntax of a module file is
as follows.

module MODULENAME

rem COMMENTS ;

import IMPORTLIST ;

export EXPORTLIST ;

var VARLIST ;

func FUNCLIST ;

rule RULELIST ;

end module MODULENAME

A module may contains IMPORT, EXPORT, VAR, FUNC and RULE sec-
tions the whose order cannot be changed. The MODULENAME given in “mod-
ule” and “end module” must be the same. All sections are terminated by a
semicolon.

IMPORTLIST is a list of names of other module files without the ”.m”
extension. The modules in the files will be imported. Filenames are separated
by commas.

EXPORTLIST is a list of identifiers that are visible to other module files. The
identifiers can be variables, constants, and functions separated by commas. Other
modules must import this module to use the identifiers in the EXPORTLIST.

VARLIST is a list of names of variables separated by commas.
FUNCLIST is a list of names of functions separated by commas. Constants

are defined here as functions with zero arity. The arity is defined in the paren-
theses after the function name. A function “f” with three parameters is defined
below.

f (3)

Functions of arity two can be declared associative and commutative (AC) in
LRR using the reserved word ac after the list of functions. Predefined functions
will be overridden if they are redefined in this section.

RULELIST is a list of rules separated by semicolons. Each rule is of the form
below.

LeftHandSide => RightHandSide ;

Basic operators and functions are written in prefix order. Every variable used
in the RHS must appear in the LHS. The module file for Fibonacci calculator is
below.

module fib

rem fibonacci calculator;

import ;

export fib ;

var x;

func f(2), fib(1) ;

6 R. Verma and W. Guo

memo f, fib ;

rule fib(x) => f(>(x,1),x) ;

f(true,x) => +(fib(-(x,1)),fib(-(x,2))) ;

f(false,x) => 1 ;

end module fib

Term files define the given terms. For example, a term file for Fibonacci
calculator could contain the term

fib(20)

Basic datatypes and predefined identifiers are built into LRR. Integer,
float, boolean, char, set, and untyped are supported datatypes. Predefined func-
tions consist of set operations including union, intersection, insertion, deletion,
membership, getting the nth element, counting the number of elements; regu-
lar arithmetic operators including addition, subtraction, multiplication, division,
remainder, increment by one, decrement by one; comparison operators includ-
ing greater than, less than, greater or equal, less or equal, equal, not equal and
logical operators including and, or, xor, and not. Apart from integers and reals
written in decimal notation, the predefined constants include true and false.

3 Core Algorithms

3.1 Tree and TGR

In Tree, the given term, intermediate results and the normal form are all stored
as trees, which do not allow any sharing. Tree is the slowest algorithm in LRR.
It is used as a reference point and for the applications in which the semantics of
the rules would be affected by sharing.

TGR is similar to Tree but it allows sharing. For TGR, LRR uses Directed
Acyclic Graphs (DAGs), not trees, to represent t0, t1, ..., tn so that the terms
that match different occurrences of the same variable are shared.

3.2 Smaran

Smaran is the tabling component of LRR. The basic algorithm of Smaran extends
the well-known congruence closure algorithm (CCA) for ground equations.

CCA divides the set of terms into numbered equivalence classes E. Mem-
bership of a term in an equivalence class is determined by its signature s. The
signature of a term f(t1, ..., tn) is the tuple 〈f #[t1] ... #[tn]〉, in which #[ti] is
the number of the equivalence class containing the signature representing ti. We
define that equivalence class E represents t if E contains a signature represent-
ing t. CCA operates by merging equivalence classes representing terms whose
equivalence follows from the given equations [Verma 00].

To extend CCA for reduction we use the concept of a distinguished signature
in every equivalence class named the unreduced signature [Chew 80], [Verma 89]

LRR v3.0 7

which is used to construct a distinguished term. It has been shown in [Chew 80],
[Verma 89] that it is enough to examine this term to select useful rule instances,
and that it is sufficient to check this term for irreducibility [Verma 00]. If it is
irreducible, the class representing the term contains a normal form. Hence an
instance of a LHS represented by a reduced signature does not result in any
progress towards normal form. Also, terms represented by reduced signatures
cannot be normal forms. Whenever there is a substitution σ such that a rule
lhsi ⇒ rhsi matches the distinguished term t = σ(lhsi) of a class, E, the
signature representing t is marked reduced in E and the class representing t′ =
σ(rhsi) (if any) is merged with E. If there is no class representing t′, Smaran

constructs a signature representing t′, inserts the signature into E, and marks it
the unreduced signature of E.

Smaran starts by constructing the signature s of t0. Then s is inserted into
a class and marked the unreduced signature of the class. Smaran tracks the
number of this class throughout the process of reduction. Signatures of terms are
constructed bottom-up. To illustrate the algorithm, we use Fibonacci calculator
as an example. We number the rules in a top-down order for convenience and
use the symbol ‘*’ to indicate unreduced signature. Let t0 = fib(2).

The initial set of classes is:

0 : {2∗} 1 : {〈fib 0〉∗}

In the 1st step of normalization, LRR calls matching function to find a match
between the unreduced signature of any class and the LHS of any rule and a
match between class 1 and lhs1 occurs. While building the instance of the RHS
rhs1, a signature representing the instance σ(rhs1) is created and inserted into
class 1 as its unreduced signature. Here we do not show signatures, related to
the built-in datatypes that can be evaluated directly and LRR also does not store
them in equivalence classes. At the end of 1st step, the classes are below:

0 : {2∗} 1 : {〈fib 0〉, 〈f 3 0〉∗} 2 : {1∗} 3 : {true∗}

In the 2nd step, class 1 matches lhs2. The instance of rhs2 is fib(1) + fib(0)
which cannot be evaluated. The signature representing this is constructed, in-
serted into class 1 and marked as its unreduced signature. At the end of 2nd step
classes are below:

0 : {2∗} 1 : {〈fib 0〉, 〈f 3 0〉, 〈+ 4, 6〉∗} 2 : {1∗} 3 : {true∗}

4 : {〈fib 2〉∗} 5 : {0∗} 6 : {〈fib 5〉∗}

In the 3rd step, class 4 matches lhs1, and in the 4th step, class 4 matches
lhs3. The term fib(1) which is represented by class 4 reduces to 1 represented
by class 2. Thus class 4 and class 2 are merged into, say 2. The classes at the
end of the 4th step are below:

0 : {2∗} 1 : {〈fib 0〉, 〈f 3 0〉, 〈+ 2, 6〉∗} 2 : {〈fib 2〉, 〈f 7 2〉, 1∗}

8 R. Verma and W. Guo

3 : {true∗} 5 : {0∗} 6 : {〈fib 5〉∗} 7 : {false∗}

Note LRR has updated the signatures which contains class 4 to contain class
2. After the 5th and the 6th steps, the term fib(0), which is represented by class
6 reduces to 1 represented by class 2. Thus class 6 and class 2 are merged, say
into 2. Now we have:

0 : {2∗} 1 : {〈fib 0〉, 〈f 3 0〉, 〈+ 2, 2〉∗}

2 : {〈fib 2〉, 〈fib 5〉, 〈f 7 2〉, 〈f 7 5〉, 1∗} 3 : {true∗} 5 : {0∗} 7 : {false∗}

The unreduced signature of class 1 can be evaluated to term 2, which is in
class 0. Thus class 1 and class 0 are merged, say into 0. At the end of the 6th

step, we get:

0 : {2∗, 〈fib 0〉, 〈f 3 0〉, 〈+ 2, 2〉} 2 : {〈fib 2〉, 〈fib 5〉, 〈f 7 2〉, 〈f 7 5〉, 1∗}

3 : {true∗} 5 : {0∗} 7 : {false∗}

No more matches are found in LRR. Hence Smaran checks for the existence of
a normal form of t0. The unreduced signature of class 1 is 2 which is irreducible.
Therefore, the normal form of fib(2) is 2. Note that LRR needs no more compu-
tation to reduce fib(fib(2)) because it is represented by the signature 〈fib 0〉 in
class 0. Its normal form is also 2. On the other hand, an interpreter that does not
store history would calculate fib(2) twice to get the normal form. The compact
data structure helps exploit the advantages of storing history and can also speed
up normalization [Verma 00].

3.3 Reduction Strategies

There are six reduction strategies in version 3.0: (i) the original reduction strate-
gies for Smaran and TGR, (ii) an efficient version of leftmost-outermost for left-
linear rules for Tree and leftmost-outer for TGR, Smaran, (iii) a hybrid version of
aspects of Smaran original strategy and leftmost-outer strategy for Smaran, (iv)
the DS-list strategy which will be described in detail in Section 4, (v) ALU-list
strategy which will be discussed in Section 4, and (vi) a combination of DS-list
and ALU-list for Smaran and TGR.

The original reduction strategy for Smaran and TGR on a successful
match immediately attempts to reduce the instance of the RHS and its descen-
dants. If LRR finds no match, it backtracks all the way to the root of intermediate
results.

The leftmost-outermost reduction strategy for Tree is a pure strat-
egy which upon a successful match does not attempt to reduce the instance
of the RHS and immediately backtracks to the node m levels up, where m =
min(max{height(lhs)|lhs → rhs ∈ R}, level of rhs instance). It correctly im-
plements leftmost-outermost in pure-tree but not necessarily outermost in TGR

or Smaran due to sharing.

LRR v3.0 9

The hybrid version of original Smaran and leftmost-outer reduction
strategy for Smaran attempts to reduce the instance of the RHS but not its
descendants before backtracking.

The DS-list reduction strategy is based on the DS-list in which a pointer
to the current node is always maintained. In normalization, this pointer is moving
from the current node to the next, trying to match the term represented by the
node. Upon a successful match, LRR updates the list by adding pointers to
any new resultant subterms with defined symbols as the roots, and by deleting
pointers to any obsolete nodes representing the terms that were erased by the
normalization. We will discuss it in more detail in Section 4.

The ALU-list reduction strategy controls the reduction based on results
from a preprocessor for rules which unifies every subterm in every RHS with ev-
ery LHS. In the ALU-list, a current pointer is maintained. During normalization,
the pointer moves from the current node to the next, trying to match the term
represented by the node with some, not all, LHSs according to the unification
results. Upon a successful match, LRR updates the ALU-list by adding pointers
to new resultant subterms according to the unifications, and deleting pointers
to any stale nodes. Details will be discussed in Section 4.

The combination of the DS-list and the ALU-list reduction strat-
egy gives the ALU-list strategy higher priority than DS-list strategy. During
reduction, a subterm in the instance of RHS is checked by the ALU-list strategy
before the DS-list strategy. Terms deleted from the ALU-list are checked by the
DS-list strategy. Only when the ALU-list is empty, the DS-list strategy takes
over the reduction.

4 Optimizations

In order to achieve efficiency in LRR, we have implemented both high-level and
low-level optimizations. We now discuss some of the key optimizations in LRR.
The low-level optimizations consist of integer encoding, elimination of depen-
dency lists, memory allocation and hashing. The high-level optimizations in-
clude implicit evaluation, discrimination trees, don’t-reduce signatures/terms,
the DS-list and the ALU-list.

4.1 Integer Encoding

All strings, variables, defined symbols, and classes are encoded by numbers to
improve efficiency. LRR encodes all strings appearing in the input files by num-
bers, which eliminates many string operations that are replaced by integer op-
erations. In Smaran the access to the substitution for a variable is needed both
for the creation of the instance of the RHS upon a successful match and for
consistency checking since the same variable appearing in different places must
be instantiated to the same term or class. To achieve efficient access, LRR uses
the integer encoding. The integer of a variable is calculated once and is stored

10 R. Verma and W. Guo

along with the variable. Accessing the value of the variable is now done in con-
stant time by direct indexing, using the integer encoding of the variable as the
index [Verma 93]. Every class E is given a number for efficiency. This is useful
in finding the unreduced signature of a class.

4.2 Elimination of Dependency Lists

In the latest version of LRR, we have completely eliminated dependency lists.
These lists kept track of all the signatures that depended on a class. This infor-
mation was needed to update signatures when a class is merged with another
class. By changing the signature data structure to contain references to classes
instead of class numbers, we avoid this expensive book-keeping and updating.

However, elimination of dependency lists causes a problem with AC oper-
ators, because this information is useful for the flattening process. Hence, to
speed up the flattening process and avoid unnecessary traversals of signatures,
we keep a reference counter to track the number of times a signature appears
in the data structure. The counter for every signature is initially one and sub-
sequent searches for the signature and class unions cause it to increase. If the
counter is more than one and the signature is reduced, only then a traversal is
required otherwise no traversal is needed for flattening. However, a traversal is
still needed to identify duplicates if a subterm is reduced to an already exist-
ing subterm. This is detected by a successful search of the result when we are
constructing its signature.

4.3 Implicit Evaluation

To improve efficiency, LRR predefines regular arithmetic operators, comparison
operators and logical operators. Such operations are evaluated automatically.
Our experience has shown that implementing these operations using rules is
grossly inefficient and increases the number of signatures dramatically [Verma 93].
One important optimization is that LRR immediately evaluates the signatures
in Smaran and terms in TGR with mathematical or relational operators as roots
whose parameters are available directly. LRR stores only results and discards
those signatures or terms. The number of the signatures and terms are reduced
further and the normalization gets faster.

Another important optimization is bottom-up strategy. LRR uses bottom-
up algorithms to compute predefined operations, which improves the efficiency of
built-in datatypes. Take the Fibonacci calculator as an example which requires
relatively more mathematical operations than reductions. The speed-up over the
top-down algorithms ranges from 5 to 10 according to the given term. We use
a queue to store pointers to the built-in operators which are stored in a binary
tree. When LRR builds the instance of the RHS from bottom up, these operators
are added into the queue. After the instance is constructed, LRR evaluates the
queue.

LRR v3.0 11

The procedure for integrating built-in operations with reductions works fairly
efficiently even though it is quite simple. It basically checks the queue for evalu-
ations only when the reduction strategy in effect cannot find any more matches.

4.4 Discrimination Tree

LRR introduces discrimination trees for matching, which show substantial im-
provement in time for large sets of rules and/or terms that requires more than
50, 000 reductions. A variable list for tracking substitutions for variables to han-
dle consistency requirements is also added. We represent the discrimination tree
in a novel way; LRR does a breadth-first scan of the set of rules and links every
level of the tree to remove costly recursive calls. Recall the integer encoding of
strings, and variables, we use the integer encodings of the variables to index
into the variable list. For example, for the input term sieve(from(2, 2000), 500),
which constructs a list of 2000 numbers starting from 2 and then extracts up
to 500 primes from it, the reduction in time is almost 25% when discrimination
trees are used.

Hence, for each rule in LRR, its LHS is stored top-down and in a discrimi-
nation tree to speed up matching and its RHS is stored bottom-up to speed up
building the instance of RHS. These representations facilitate iterative construc-
tion, as opposed to recursive procedures, of right-hand instances and top-down
matching of left-hand sides.

4.5 Don’t-reduce Signatures/Terms

This is an optimization to cut down on unproductive traversals of the intermedi-
ate term during normalization. Don’t-reduce signatures are defined as follows: i)
All constructor constants are don’t-reduce signatures; ii) f(t1, ..., tn) is a don’t-
reduce signature if f is a constructor and the unreduced signatures of classes
#[t1] ... #[tn] are don’t reduced signatures. Don’t-reduce signatures represent
a subclass of normal forms. Hence no rules can match them, which means that
LRR does not need to find any matches below the don’t-reduce signatures. Any
reduction procedure can skip the examination of large portions of the signature
graph as useless for finding new matches. It is obviously unnecessary for LRR to
traverse below a class having a normal form to find any matches. However, we
must attempt to match all rules against the unreduced signature of a class to
detect normal forms, which is more difficult than the detection of a don’t-reduce
signature because it can be done bottom-up without matching (recall that we
build instance of RHS in a bottom-up manner). Furthermore built-in operations
make detection of normal forms more complicated since an unreduced signature
depending on a class whose unreduced signature is an unevaluated mathemat-
ical signature does not match any rules and may or may not match after the
mathematical signature is evaluated. The idea of don’t-reduce signatures also
applies to TGR and Tree by focusing on terms not signatures.

12 R. Verma and W. Guo

4.6 Memory Allocation and Hashing

Because of the potentially large number of terms in TGR and signatures and
classes in Smaran LRR uses free lists for various data structures including signa-
tures, classes, the implicit evaluation queue to recycle space. Also we have our
own routines for allocating and deallocating memory.

We also use new efficiently computable algorithms to hash strings and signa-
tures. Better distribution of values and fewer collisions are obtained by the new
algorithms.

4.7 The DS-list

In the latest version of LRR we have implemented the DS-list in both Smaran

and TGR. The DS-list is a circular doubly linked list that contains pointers to
terms or signatures that have defined symbols as roots. A pointer to the current

node in the list is always maintained [Verma 04].
Reduction with the DS-list is relatively straightforward. As the given

term t0 is parsed, the DS-list is initialized to have pointers to t0’s subterms that
have defined symbols at the top. During normalization, the current pointer moves
from the current node to the next, attempting to match the term represented
by the node. Upon a successful match, the list is updated. When building the
instance of the RHS, pointers to new subterms with defined symbols as roots
in the instance are inserted into the DS-list. Also pointers to stale terms that
were deleted by the normalization are removed. For example, consider that the
expression f(g(a), b) reduces in one step to a, where f, g, b are defined symbols
and a is a constructor symbol. Then, pointers to the subterms f(...), g(a) and
b should all be removed from the DS-list, since these defined subterms have
been erased. After update procedure finishes, normalization continues traveling
around the DS-list, attempting matches. Reduction completes when the DS-list
is empty or when a complete traversal around the list ends without any matches.
Since the list can grow or shrink when a match is found, the efficient detection
of a complete traversal around the list without any matches requires tracking
whether any insertions were made into the DS-list or not.

Integration of DS-list into Smaran proceeds as follows. Each node in the
DS-list contains a pointer to a class whose unreduced signature is labeled by a
defined symbol in the current term being reduced.

As the given term is parsed, the existing code calls the function to insert the
signatures into classes. This initializes the DS-list to contain pointers to classes
of subexpressions with defined symbols at the root occurring in the given term.

Since terms are represented by classes, it is possible to simply track the
creation, modification, and union of classes to determine the operations to be
performed on the DS-list. Monitoring the classes for three simple conditions is
the only measure necessary to maintain the list. First, if the unreduced signature
of a newly created class is a defined signature, then the class should be inserted
into the DS-list. Second, when inserting a new unreduced signature which is a
constructor into a pre-existing class and that class number is marked current in

LRR v3.0 13

the DS-list, this class is deleted from the list. Third, when merging two classes,
if the unreduced signature of the resultant class is labeled by a constructor, then
the pointer to the class whose unreduced signature was reduced is removed from
the DS-list. Deletions during (cascading) unions may occur anywhere within
the DS-list and therefore could require a costly linear search through the list.
To avoid repeated searching it is best to batch the deletions. Finally, classes
containing defined unreduced signatures representing defined subterms that are
erased during a reduction could also be deleted from the DS-list, but this can
be even more expensive to determine than deletions caused by cascading unions.
For this reason, we chose not to implement this last deletion condition. Since the
only time a class is added to the DS-list is when it is created, and since classes
are shared, the DS-list naturally contains only one reference to each class and
so terms are not repeated.

Integrating into TGR is similar to the integration into Smaran. The DS-list
is initialized to have pointers to the defined subterms in the given term. The DS-
list is implemented on top of the DAG data structure of the intermediate result
itself by updating the links to subterms. During reduction, the current pointer
goes from current node to the next, trying to match the term represented by the
node. The list is also updated by adding pointers to new defined subterms in
the instance of RHS. DS-list deletion for TGR is subtle. At first glance it seems
that it can be implemented efficiently by storing the pointers to the defined
subterms of the current term (which may be a subterm of the current term for
normalization) being matched. If the match is successful, then the stored list
of pointers can be used to delete the stale subterms from the DS-list. If the
match is unsuccessful, then we just reclaim the space for this temporary list of
references. However, note that if a defined subterm is below a variable, i.e., in
the substitution part, in the LHS it may never be traversed. Moreover, if this
variable also appears in the corresponding RHS, e.g., if the rule is f(x) → g(x),
then, for efficiency, the defined subterm should remain in the DS-list whereas
if the variable is erased, e.g., if the rule is f(x) → a, then the defined subterm
should be deleted from the DS-list.

Because of these subtleties, a comprehensive DS-list deletion procedure for
TGR is not yet implemented. This means that some time could be wasted in
reducing the stale subterms. At present the deletion happens only when the ref-
erence to be deleted is pointed to by current. In future, the required information
about variable erasure could be made part of the preprocessor for rules that we
describe in the next section.

Optimizations for the DS-list can be made on the basic DS-list structure
presented above. The first optimization is to delete (or to avoid insertion of) nor-
mal forms with defined symbols at the root. However, this requires matching the
rules at least once against all the defined subterms of the expression. An easier
to implement version of this optimization is to do it only for defined expressions
that contain only constructors (or variables) at non-root occurrences. These can
be computed easily by combining the don’t-reduce optimization mentioned above
with one round of matching at the top.

14 R. Verma and W. Guo

A second optimization involves moving both forward and backward through
the DS-list when searching for matches by using two pointers into the list instead
of moving in one direction. Empirically, it was found that this generally reduces
the time spent in traversing the DS-list looking for a match when the DS-list
size is beyond a certain threshold.

A third optimization for Smaran is to modify the behavior of a class union
on the DS-list. Deleting every class which loses its unreduced signature in the
union would require a costly linear search for every class union in which this
occurs. Even if deletions are batched, one complete scan through the list may be
required in the worst case. It is cheaper to simply do nothing for the non-current
classes to be deleted instead of searching for them. The classes could be deleted
while LRR traverses the list searching for matches (This “smarter” deletion is
left for the future.).

4.8 The ALU-list

The latest optimization in LRR is the ALU-list. The ALU-list is a preprocessor
for rules that tries to take advantage of the fact that a match of a rule inside the
template part of a new RHS instance implies that an LHS of a rule unifies with
a non-variable subterm of an RHS of a possibly different rule. These unifications
can be determined and stored for static rule sets and for dynamic rule sets when a
new rule is created. We have implemented the ALU-list in both Smaran and TGR.
The ALU-list is a singly linked list that contains pointers to terms according to
the unification results. LRR always maintains a pointer to the current node in
the ALU-list.

An extension of almost linear unification (ALU) is to extend the
regular ALU algorithm which uses a DAG to store terms and requires variables
to be shared (Please see [Baader 99] for details) by allowing unifications between
terms with predefined operators at the top and their possible results. To illustrate
this, consider that the expression > (x, 1) in the Fibonacci calculator. Term true

or false is the result. Hence we consider that > (x, 1) unifies with true and false.
How does ALU help in normalization? We find that if a subterm t = r|p

from a RHS r can unify with a LHS l, there is a great chance to find a match
between the instance of t, denoted as σ(t), and l when the σ(t) is built by
r. Hence before reduction starts, we add a preprocessor for rules which unifies
every subterm in every RHS with every LHS using ALU and stores the successful
unification results. During reduction, we introduce the ALU-list and let it help
to find a match based on the successful unifications. To find a match in a step
of reduction, LRR starts from current node of the list instead of scanning all
subexpressions of the term to be normalized and all rules. To illustrate this,
consider the unification result and two steps of normalization in Figure 1. The
preprocessor has the information that a subterm x = rhsj |p unifies with lhsk.
In step ti−1 →(i,j) ti, LRR finds a match between a subterm u of ti−1 and lhsj .
Then v, the instance of rhsj replaces the subterm u. We get ti. Term v obviously
shares the same overall structure as rhsj and x unifies with lhsk. Hence there
is a great chance that term w = v|p, the instance of term x matches lhsk in the

LRR v3.0 15

next step. In the i + 1th step, reduction directly tries the term w and lhsk. If a
match is found, term w is replaced by the instance of rhsk .

Fig. 1. Unification results can help in normalization

We give a concrete example in the Appendix to illustrate the operation of
the ALU-list.

Actually, significant parts of all the intermediate results, t1, ..., ti, ..., tn−1

and the normal form tn are constructed from the RHSs and much of the overall
structure of terms can be safely predicted from the RHSs (the exceptions are the
variable substitutions and unexplored parts of the intermediate terms). However,
not all the successful unifications guarantee successful matches. The ALU-list
alone cannot control the reduction and under some cases, LRR must revert to
traversing the term.

Reduction with ALU-list needs the successful unifications collected by
the preprocessor. We use a pair (C, P) to denote the unification results. In Fig-
ure 1, lhsk unifies with subexpression x from rhsj . We define that rulek is a
candidate and here C = k. We define the position a point and here P = p. We
store the position not the term x because reduction needs to find w by following
P from v. For every RHS, LRR uses a singly linked list to store the pairs. The
first step of normalization is carried out by traversing the term since at this point
there is no information from the previous step. When building t1, the ALU-list
is initialized to contain pointers to 3-tuple (i, c, s), where i indicates the ith step
of normalization, c indicates a candidate, in which c = C, and s represents the
term that is possible to match lhsc, such as w = v|P in Figure 1. During normal-
ization, the current node (i′, c′, s′) pops out and the current pointer moves to the
next node, attempting to match lhsc′ with the term represented by s′. Upon a
successful match, the list is updated. New nodes pointing to the instances of the
subterms that unify with LHSs are added. Pointers to stale nodes are deleted,
which will be discussed in the optimization section. After update procedure fin-
ishes, normalization continues traveling around the ALU-list. Since not every
unification result leads to a successful match, when the ALU-list is empty, LRR

must resort to term traversal to find the next match. When the ALU-list is not
empty, it controls the normalization procedure. The ALU-list cannot either start
the reduction or end the reduction. However it helps reduction in between.

16 R. Verma and W. Guo

4.9 Optimizations for the ALU-list

In order to improve the efficiency of integration of the preprocessor and the
normalization procedure, we implemented the following optimizations.

Elimination of path lists saves the traversal time when LRR locates the
term s in the instance of the RHS to store it into the 3-tuple which will be added
into the ALU-list. The preprocessor used to have a list for keeping the path info
of the point P . During reduction, LRR followed the path to find s. Much time
is wasted on traversal. The current preprocessor flags the term t at the point
P in the RHS. Building the instance needs two pointers: one traverses the RHS
and the other traverses the instance simultaneously. When the former one visits
t which was flagged by the preprocessor, the latter pointer visits the instance
s = σ(t) and LRR stores s.

Mutually exclusive detection cuts unnecessary addition into the ALU-
list caused by the extension of the almost linear-time unification algorithm as
mentioned above. The preprocessor considers every possible result of a built-in
function as a candidate. Every pair containing a possible result will be added
in to the ALU-list by the preprocessor. However, only one tuple will succeed in
matching. Therefore, LRR calls mutually exclusive detection after evaluating the
instance of the predefined functions to push the “right” tuple into the list.

Candidate elimination contains three ways to remove tuples from the
ALU-list. Same point elimination cuts unnecessary matching attempts. Tuples
that contains same i and same s apply at the same point in the same instance.
Once we match the first tuple among these tuples, the remaining tuples are
deleted since the intermediate term probably will change in the next normal-
ization step. Descendants elimination also cuts unnecessary matching attempts.
If the parent matches, LRR will not match its children since the intermediate
term probably will change. Changed signature check cuts unnecessary matching
attempts when the ALU-list works with Smaran. LRR checks if the unreduced
signature of the class in the current tuple has changed since the tuple was pushed
into the ALU-list. If yes, LRR pops the tuple directly without trying to match.

The V-list helps the ALU-list reduction strategy to scan the unexplored
parts of the intermediate terms caused by the variable substitutions. It is a
singly-linked list with current pointer. When building t1, the V-list is initialized
to contain pointers to the instance of the variable that occurs in the RHS and is
instantiated. During reduction, the list is updated. Pointers to the instances of
variables are added into the list. Only when the ALU-list is empty, the current
pointer of the V-list moves to the next node, looking for a match for the term
represented by the node. Since the V-list contains the pointer to the term without
the candidate information, LRR traverses the term to find the next match for
normalization. V-list controls the reduction when the ALU-list strategy cannot
advance and routes the reduction to the unexplored parts instead of tracking
back all the way to the top.

LRR v3.0 17

5 Experimental Results

All of the optimizations described above are mature except for DS-list deletion
and the preprocessor for rules, which still have some room for improvement.
A Linux version of LRRv3.0 and some examples can be downloaded from the
first author’s web page and also http:/www.cs.uh.edu/~evangui. We compare
LRR against Maude 2.6 32-bit version, which can be found at http://maude.

cs.uiuc.edu/download, and the ELAN interpreter 3.6g, which can be found at
http://webloria.loria.fr/equipes/protheo/SOFTWARES/ELAN/manual/index-manual.

html.
Performance Results. We present the experimental results on nine bench-

marks (rules can be found the Appendix) to illustrate the level of efficiency.
LRR is implemented in C and runs on Linux. Normalization times are on a
2.67GHz Intel i5 560M Ubuntu 10.10 Linux kernel 2.6.35-22 system with 8GB
of memory using gcc compiler (v. 4.4.5) with optimization level 3. We are aware
of the difficulties of comparing different software systems. Each benchmark for
three systems uses exactly the same algorithm. Rules for the benchmarks are of
course semantically identical. Syntactic differences are due to differences in the
rule specifications for the three interpreters. Table 1 shows the average results of
10 executions in seconds for nine benchmarks, which can be found at the URL
given above.

Table 1. Experimental Results on Normalization Time

Benchmark ELAN Maude LRR

w/o memo w/ memo Smaran Smaran+ALU TGR TGR+ALU

binsort(1500) 164.2228 0.6936 463.6586 1.2165 1.7305 0.8669 1.2885

bintree(380) 0.1152 0.0044 0.0936 0.0092 0.0092 0.0072 0.0060

dfa(1363) 0.0016 0.0000 0.0008 0.0312 0.0312 0.0240 0.0260

fib(20) 1.4416 0.0272 0.0000 0.0000 0.0000 3.8658 3.7494

merge(20000) 17.8455 0.0404 70.2658 0.0296 0.0380 0.0152 0.0196

qsort(1800) 66.6180 1.1872 30.7426 7.6769 7.0912 1.7753 2.3857

rev(19900) 66.6304 0.0380 129.6359 0.0308 0.0372 0.0156 0.0200

rfrom(19996) 1.7005 0.0408 44.1588 0.0236 0.0268 0.0092 0.0148

sieve(10000) 169.6300 0.4900 29.6235 1.1249 1.3365 0.4108 0.5624

Tables 2 and 3 give more detailed information about the various strategies
available in Smaran and TGR respectively. In these tables, LMOM represents the
approximation of leftmost-outermost mentioned above.

18 R. Verma and W. Guo

Table 2. Experimental Results based on Smaran Strategy

Benchmark Smaran

Smaran DS List LMOM ALU List DS List + ALU List

binsort(1500) 1.2165 1.6129 1.4505 1.7305 2.1873

bintree(380) 0.0092 0.0032 0.0052 0.0092 0.0056

dfa(1363) 0.0312 0.0020 0.0004 0.0312 0.0020

fib(20) 0.0000 0.0000 0.0000 0.0000 0.0000

merge(20000) 0.0296 0.0372 4.3471 0.0380 0.0440

qsort(1800) 7.6769 6.2944 7.4089 7.0912 7.3593

rev(19900) 0.0308 0.0360 0.0332 0.0372 0.0432

rfrom(19996) 0.0236 0.0208 0.0244 0.0268 0.0304

sieve(10000) 1.1249 1.3781 1.3061 1.3365 1.5781

Sum. 10.1427 9.3846 14.5758 10.3006 11.2499

Table 3. Experimental Results based on TGR Strategy

Benchmark TGR

TGR DS List LMOM ALU List DS List + ALU List

Binsort(1500) 0.8669 1.0957 1.0593 1.2885 1.2581

bintree(380) 0.0072 0.0064 0.0044 0.0060 0.0060

dfa(1363) 0.0240 0.0276 0.0000 0.0260 0.0000

fib(20) 3.8658 3.9447 3.9999 3.7494 3.8110

merge(20000) 0.0152 0.0116 2.4930 0.0196 0.0180

qsort(1800) 1.7753 2.3257 2.3641 2.3857 2.2389

rev(19900) 0.0156 0.0144 0.0160 0.0200 0.0188

rfrom(19996) 0.0092 0.0076 0.0108 0.0148 0.0140

sieve(10000) 0.4108 0.8897 0.5196 0.5624 0.5348

Sum. 6.9900 8.3234 10.4671 8.0724 7.8996

LRR v3.0 19

From Table 1, even though we find that Maude without memo is the fastest
option in most benchmarks, Smaran and/or TGR are close. It is interesting to
see that Smaran is not far behind even in examples that do not use history,
despite saving the entire history of rule applications. ELAN interpreter runs
slow in most cases. We are aware that the ELAN project focuses more on the
compiler than the interpreter. Maude with memo runs faster for fib(20) and
dfa but is much slower for the other benchmarks tested. The preprocessor does
not completely beat TGR or Smaran. Apparently there is some inefficiency in
the implementation of the preprocessor. We think we can improve it in the
following ways. First, we plan to write a new function for matching since we have
a great accuracy in prediction. The new function should explore the unification
results deeper. The other, when the preprocessor cannot initiate a match, LRR

should find the next match in a more efficient way. Although, the preprocessor
of rules runs slower than original methods in most examples, but it cuts the
unnecessary matching attempts significantly. Although it does not yet control the
normalization independently, the percentage of successful matches is relatively
high.

From Tables 2 and 3 it is clear that DS-list strategy is the winner for Smaran

but not for TGR, which seems to be a direct consequence of the incomplete
DS-list deletion algorithm that hurts TGR but not Smaran since Smaran only
considers unreduced signatures for potential matches. So the only consequence
of an incomplete DS-list deletion algorithm for Smaran is a DS-list that is longer
than necessary and the time lost in traversing a longer than optimal list, which
appears to be small from the timings.

Other Related Work. We did an extensive search for rule-based program-
ming interpreters using the papers [Hermann 91,Vittek 96] and the Rewriting
Page on the web, but we have been unable to find any other interpreters that
come close in terms of the range of optimizations in LRR. Apart from Maude,
in [Vittek 96] a compiler for rules is described, but there is no comparable effort
on speeding up normalization. The only other interpreter that we could find is
CRSX [Klop 93], which does not include built-ins and could only handle a string
of length 819 in the dfa example.

6 Conclusions and Future Work

In this paper we have presented LRR an efficient interpreter for rule-based pro-
gramming and term rewriting, and described the key optimizations that make it
efficient. LRR is unique in its efficient tabling component Smaran and a relatively
efficient non-tabling component as well. As far as future work is concerned, the
ALU-list can be made more efficient, the DS-list deletion algorithm can be com-
pleted and support for AC operators can be provided in the DS-list and ALU-list
structures. Furthermore, the backtracking procedure can take advantage of uni-
fications between RHSs and subterms of the LHSs, the converse of the ALU-list
procedure.

20 R. Verma and W. Guo

Acknowledgments. We want to thank Jieh Hsiang, K.B. Ramesh, S. Kolli for
initial work on Smaran, S. Senanayake and H. Shi for work on LRR, J. Thigpen
for work on DS List, and Z. Liang for the CTL model checking program.

References

[Baader 99] Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge Univ.
Press, (1999)

[Bachmair 99] Bachmair, L., Ramakrishnan, C., Ramakrishnan, I. and Tiwari, A.: Nor-
malization via Rewrite Closures. Lecture Notes in Computer Science pp. 190–204.
(1999)

[Borovansky 96] Borovansky, P., Kirchner, H., Moreau, P.E., Vittek, M.:ELAN: A log-
ical framework based on computational systems. In: Proceedings of the first interna-
tional workshop on rewriting logic. Asilomar (1996).

[Borovansky 02] Borovansky, P., and others: ELAN User Manual. (2002)
[Brand 02] van den Brand, M., Heering, J., Klint, P., Olivier, P.: Compiling Rewrite

Systems: The ASF+SDF Compiler. ACM Transactions on Programming Languages
and System pp. 334 – 368. (2002)

[Chew 80] Chew, P.: An Improved Algorithm for Computing with Equations. focs, pp.
108 – 117. (1980)

[Clavel 00] Clavel, M., Eker, S., Lincoln, P., Meseguer, J.: Principles of Maude. Elec-
tronic Notes in Theoretical Computer Science. (2000)

[Clavel 03] Clavel, M., Durán, F., Eker, S. and others: The Maude 2.0 System. Rewrit-
ing Techniques and Applications (RTA 2003) Lecture Notes in Computer Science pp.
76 – 87. (2003)

[Dershowitz 01] N. Dershowitz and D. Plaisted. Rewriting. In J. A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, volume 1, chapter 9, pages
535–610. Elsevier Science, 2001.

[Hermann 91] Hermann, M., Kirchner, C., Kirchner, H.: Implementations of term
rewriting systems. The Computer Journal, 34(1), pp. 20–33. (1991)

[Klop 93] Klop, J.W., Oostrom, V.V., and Raamsdonk, F.V.: Combinatory Reduction
Systems: Introduction and Survey, Theoretical Comp. Sci. 121, pp. 271-308 (1993).

[Radcliffe 10] Radcliffe, N., Verma, R.: Uniqueness of Normal Forms is Decidable for
Shallow Term Rewrite Systems. In: IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science. pp. 284–295. (2010)

[Shi 00] Shi, H.: Integrating associative and commutative matching in the LR
2 Lab-

oratory for fast, efficient and practical rewriting techniques. University of Houston.
(2000)

[Verma 89] Verma, R.: Equations, Nonoblivious Normalization, and Term Matching
Problems. State University of New York at Stony Brook. (1989)

[Verma 93] Verma, R.: Smaran: A congruence-closure based system for equational com-
putations. In: Proceedings of the 5th International Conference on Rewriting Tech-
niques and Applications, pp. 457–461. (1993)

[Verma 00] Verma, R.: Static Analysis Techniques for Equational Logic Programming.
In: Proceedings of the 1st ACM SIGPLAN Workshop on Rule-based Programming.
(2000)

[Verma 95] Rakesh M. Verma. A theory of using history for equational systems with
applications. Journal of the ACM, 42(5):984–1020, 1995. Also in the 32nd IEEE
FOCS Symposium, 1991.

LRR v3.0 21

[Verma and Guo 11] Verma, R. and Guo, W.: Does Unification Help In Normalization?
University of Houston Computer Science Department Technical Report, UH-CS-11-
05, June 2011.

[Verma and Guo 11b] Verma, R., Guo, W.: Does Unification Help in Normalization.
The International Workshop on Unification (2011)

[Verma 99] Verma, R., Senanayake, S.:LR
2 : A Laboratory for Rapid Term Graph

Rewriting. In: Proceedings of the 10th International Conference on Rewriting Tech-
niques and Applications, pp. 252–255. (1999)

[Verma 04] Verma, R., Thigpen, J.: DS-forest: A Data Structure for Fast Normalization
and Efficiently Implementing Strategies. In: Proceedings of the 4th International
Workshop on Reduction Strategies in Rewriting and Programming. pp. 45 – 49.
(2004)

[Vittek 96] Vittek, M. :A Compiler for Nondeterministic Term Rewriting Systems. In:
Proceedings 7th Conference on Rewriting Techniques and Applications. pp. 154-168
New Brunswick, New Jersey, USA (1996).

[Yu 08] Wenshan Yu and Rakesh M. Verma. Visualization of rule-based programming.
In ACM SAC, Graphics and Visualization Track, 2008.

Appendix

6.1 A Concrete Example

To illustrate the details of the ALU-list reduction strategy, we use the Fibonacci
calculator as an example. We label the rules as below.

fib(x) ⇒ f(> (x, 1), x) (1)

f(true, x) ⇒ +(fib(−(x, 1)), fib(−(x, 2))) (2)

f(false, x) ⇒ 1; (3)

The preprocessor tries to unify every subterm of every RHS with every LHS.
Remember we extend the ALU algorithm, f(> (x, 1), x) in rhs1 unifies with
lhs2:f(true, x), lhs3:f(false, x). Since we eliminate the path info, we flag the
term,f(> (x, 1), x) for which we build a list of candidates lhs2 and lhs3. In rule2,
fib(−(x, 1)) has a candidate lhs1 and fib(−(x, 2)) has a candidate lhs1. Before
elimination of the path info, we build a list of two pairs (2, λ), (3, λ) for rule1

and a list of two pairs (1, (1)), (1, (2)) for rule2.
The normalization process using TGR under a depth-first left-most order and

the process using Smaran discussed above is below:

fib(2) →(1,1) f(true, 2)

→(2,2) +(fib(1), fib(0))

→(3,1) +(f(false, 1), fib(0))

→(4,3) +(1, fib(0))

→(5,1) +(1, f(false, 0))

→(6,3) 2 (4)

22 R. Verma and W. Guo

In the 1st step, since the ALU-list has not been initialized due to the lack
of information, LRR calls Smaran or TGR to find a match. LRR picks rule1 and
t1 = f(true, 2). When building the instance f(true, 2) in a bottom-up manner
with the unification info, LRR checks every subterm in the instance. If it is flagged
as a point, LRR updates the ALU-list. Without Mutual Exclusive Detection, LRR

adds two 3-tuples (1, 2, s) and (1, 3, s), in which s indicates the term f(true, 2).
With the detection, only one 3-tuple (1, 2, s) is added.

In the 2nd step, LRR pops the 3-tuple (1, 2, s) from the list and tries to match
lhs2 with f(true, 2) while the the original LRR attempts to match f(true, 2) with
all 3 rules. After the successful match, LRR tries to clean the list. However, the
ALU-list is empty now. LRR builds the instance and adds (2, 1, s′) where s′

indicates the term fib(1) and (2, 1, s′′) where s′′ indicates the term fib(0) into
the list.

In the 3rd step, under a depth-first left-most order, LRR pops (2, 1, s′) first
and match fib(1) with lhs1 successfully while the original LRR traverses from the
root of +(fib(1), fib(0)) searching for a match. LRR tries to eliminate candidates
but finds nothing to remove. t3 = +(f(false, 1), fib(0)). After 6 steps, LRR stops
at 2 which is the normal form.

In the ALU-list strategy based on Smaran, s in the 3-tuple (i, c, s) stores
the number of the class representing the term and the pointer to the unreduced
signature in step i. In later steps, LRR pops this tuple and calls changed signature
check to check if the current unreduced signature stays as same as the one in
step i. If yes, LRR matches the unreduced signature of the class with lhsc. If
no, LRR abandons the tuple and pops the next one if there is. In the ALU-list
strategy based on TGR s is the pointer to the term.

6.2 Benchmarks

We use nine benchmarks for ELAN, Maude, and LRR. The rules are listed below.
All benchmarks for 3 interpreters are also available at http:/www.cs.uh.edu/

~evangui.
1. binsort. Binary insertion sort. This program sorts a list by inserting

values into a binary search tree.

ins(x, nil) ⇒ node(nil, x, nil) (5)

ins(x, node(l, v, r)) ⇒ instest(x, > (x, v), < (x, v), l, v, r)) (6)

instest(x, false, true, l, v, r) ⇒ node(ins(x, l), v, r) (7)

instest(x, true, false, l, v, r) ⇒ node(l, v, ins(x, r)) (8)

instest(x, false, false, l, v, r) ⇒ node(l, v, r) (9)

cat(: (x, y), z) ⇒ : (x, cat(y, z)) (10)

cat(nil, z) ⇒ z (11)

binsort(: (x, y)) ⇒ bs(ins(x, nil), y) (12)

bs(n, : (x, y)) ⇒ bs(ins(x, n), y) (13)

bs(n, nil) ⇒ makelist(n) (14)

LRR v3.0 23

makelist(node(l, v, r)) ⇒ cat(makelist(l), : (v, makelist(r))) (15)

makelist(nil) ⇒ nil (16)

2. bintree. This program inserts a value into a binary search tree.

ins(x, nil) ⇒ node(nil, x, nil) (17)

ins(x, node(l, v, r)) ⇒ instest(x, > (x, v), < (x, v), l, v, r)) (18)

instest(x, false, true, l, v, r) ⇒ node(ins(x, l), v, r) (19)

instest(x, true, false, l, v, r) ⇒ node(l, v, ins(x, r)) (20)

instest(x, false, false, l, v, r) ⇒ node(l, v, r) (21)

3. dfa. This program simulates a deterministic finite automaton.

a(q0) ⇒ q1 (22)

b(q0) ⇒ q0 (23)

a(q1) ⇒ q0 (24)

b(q1) ⇒ q1 (25)

4. fib. This program calculates the nth Fibonacci numbers. Please refer to
the concrete example

5. merge. This program merges two lists into one.

merge(nil, nil) ⇒ nil (26)

merge(: (x, y), nil) ⇒ : (x, y) (27)

merge(nil, : (x, y)) ⇒ : (x, y) (28)

merge(: (x, y), : (u, v))) ⇒ : (x, : (u, merge(y, v))) (29)

6. qsort. This program implements quicksort on a list of natural numbers.

cat(: (x, y), z) ⇒ : (x, cat(y, z)) (30)

cat(nil, z) ⇒ z (31)

sort(nil) ⇒ nil (32)

sort(: (x, y)) ⇒ cat(sort(smaller(x, y)),

cat(: (x, nil), sort(larger(x, y)))) (33)

smaller(x, nil) ⇒ nil (34)

smaller(x, : (y, z)) ⇒ f(< (x, y), x, y, z) (35)

f(true, x, y, z) ⇒ smaller(x, z) (36)

f(false, x, y, z) ⇒ : (y, smaller(x, z)) (37)

larger(x, nil) ⇒ nil (38)

larger(x, : (y, z)) ⇒ g(< (x, y), x, y, z) (39)

g(true, x, y, z) ⇒ : (y, larger(x, z)) (40)

g(false, x, y, z) ⇒ larger(x, z) (41)

24 R. Verma and W. Guo

7. rev. This program reverses a list.

rev(x) ⇒ apprev(x, nil) (42)

apprev(: (x, y), z) ⇒ apprev(y, : (x, z)) (43)

apprev(nil, w) ⇒ w (44)

8. rfrom. This program outputs a list of natural numbers in a reverse order.

rfrom(x, y) ⇒ rffrom(> (y, 0), x, y) (45)

rffrom(true, x, y) ⇒ : (x, rfrom(−(x, 1),−(y, 1))) (46)

rffrom(false, x, y) ⇒ nil (47)

9. sieve. This program outputs a list of prime numbers from a list of natural
numbers greater than 1.

fsieve(true, x, l, y) ⇒ : (x, sieve(filter(x, l),−(y, 1))) (48)

fsieve(false, x, l, y) ⇒ nil (49)

filter(n, : (x, l)) ⇒ ffilt(= (%(x, n), 0), n, x, l) (50)

filter(n, nil) ⇒ nil (51)

ffilt(true, n, x, l) ⇒ filter(n, l) (52)

ffilt(false, n, x, l) ⇒ : (x, filter(n, l)) (53)

sieve(: (x, l), y) ⇒ fsieve(> (y, 0), x, l, y) (54)

sieve(nil, y) ⇒ nil (55)

sieve(x, 0) ⇒ nil (56)

	UH-CS-12-01-fp
	mscsrewriting2012_submission_24

