
Uniqueness of Normal Forms and Modularity of Confluence for Term Rewriting Systems

Rakesh M. Verma

Department of Computer Science
University of Houston

Houston, TX, 77204, USA
http://www.cs.uh.edu

Technical Report Number UH-CS-11-06

July 6, 2011

Keywords: Term Rewriting Systems, Uniqueness of Normal Forms, Confluence, Combination of
Rewrite Systems

Abstract

Programming language interpreters, proving theorems of the form A = B, abstract data types and
program optimization can all be represented by a finite set of rules called a rewrite system. In this paper,
we study two fundamental concepts, uniqueness of normal forms and confluence, for nonlinear systems
in the absence of termination. This is a difficult topic with only a few results so far. Through a novel
approach, we show that every system with no overlaps and in which every nonoverlap is an inhomogeneity
nonoverlap has unique normal forms. We also prove the confluence of the union (function symbols can be
shared) of a nonlinear system with a left-linear system under fairly general conditions. Persistence plays
a key role in this proof. We are not aware of any confluence result that allows the same level of function
symbol sharing.

Research supported in part by NSF grant CCF 0306475

1

Uniqueness of Normal Forms and Modularity of
Confluence for Term Rewriting Systems

Rakesh M. Verma

Abstract

Programming language interpreters, proving theorems of the form A = B, abstract data types and program
optimization can all be represented by a finite set of rules called a rewrite system. In this paper, we study
two fundamental concepts, uniqueness of normal forms and confluence, for nonlinear systems in the absence of
termination. This is a difficult topic with only a few results so far. Through a novel approach, we show that every
system with no overlaps and in which every nonoverlap is an inhomogeneity nonoverlap has unique normal forms.
We also prove the confluence of the union (function symbols can be shared) of a nonlinear system with a left-linear
system under fairly general conditions. Persistence plays a key role in this proof. We are not aware of any confluence
result that allows the same level of function symbol sharing.

Index Terms

Term Rewriting Systems, Uniqueness of Normal Forms, Confluence, Combination of Rewrite Systems

I. INTRODUCTION

Two of the most challenging and important problems in rewriting are proving the Unique-Normal-Form and
Church-Rosser (also called confluence) properties for non-left-linear (nonlinear, for short) systems, particularly
in the absence of termination. There is considerable progress on proving Church-Rosser theorems for left-linear
systems (systems in which the left-hand sides (lhs’s) of the rules contain at most one occurrence of any variable)
[1], [2], [3], [4]. In contrast, for nonlinear systems there are only a handful of general results and almost all of
them require termination [2], [5], [6], [7], [8] or left-linearity [9], [10].

In this paper, we attack these two fundamental problems and prove the following results:
• We classify nonoverlaps into two classes: nonoverlaps due to inhomogeneity (I-nonoverlaps) and nonoverlaps

due to occurs-check (O-nonoverlaps). We then show that every system with no overlaps in which all nonoverlaps are
I-nonoverlaps has the unique normal form property. This result is a generalization of Chew’s 1981 result [11] in one
direction since it allows more general kinds of nonoverlaps. However, to keep the technical details understandable
we do not permit root overlaps here, which Chew does allow. The approach used in proving this result is also novel
and should be outlined.

We introduce the idea of constraints and their satisfiability in a rewrite system. We then characterize nonoverlaps
as certain kinds of unsatisfiable constraints. We then prove that these kinds of constraints remain unsatisfiable even
when certain kinds of rules are added to a system and exploit this fact to prove the unique normal form property
(UN). We also clarify the relationship between persistence and the unique normal form property. We show that
persistence alone is not sufficient to imply uniqueness of normal forms (correcting a claim in [12]).

Comparison with related work on uniqueness of normal forms. To our knowledge, the following works are
more closely related to the uniqueness of normal forms work presented here, do not require termination, and are
applicable to non-left-linear systems [11], [13], [14], [15], [16]. There is also some work by Gomi, Oyamaguchi
and Ohta in Transactions IPSJ of Japan, which we have not been able to access.

In 1980, Klop [13] proved the Church-Rosser property for the disjoint sum of an orthogonal (i.e., left-linear and
nonoverlapping; see next section for precise definitions) combinatory reduction system and a single nonlinear rule of
various specific forms (e.g., D(x, x)→ x and D(x, x)→ E(x)). In 1987, Toyama [15] proved that the disjoint-sum
of two Church-Rosser rewrite systems is Church-Rosser. In 1992, Oyamaguchi and Ohta [14] considered the Church-
Rosser property for non-E-overlapping right-ground (i.e., right-hand sides contain no variables) rewrite systems.
A weaker result than Church-Rosser, viz., uniqueness of normal forms for strongly nonoverlapping, compatible

Research supported in part by NSF grant CCF 0306475
Chew allows root overlaps provided they are compatible, e.g., x + 0 → x and 0 + x → x root overlap in 0 + 0.

2

systems was claimed by Chew in the 1981 STOC [11] (see also [17] for some unique-normal-form results for
λ-calculus + specific rules). A strongly nonoverlapping system is one that remains nonoverlapping even when the
variables in the lhs’s are renamed to make the rules left-linear. More recently, [16] (see also references cited therein)
gave a new proof of Chew’s theorem using a more sophisticated version of Chew’s approach in which they establish
the confluence of a specialized conditional linearization of the given non-left-linear system. For obvious reasons,
we refer to this approach as indirect. In contrast to the indirect approach, our approach is shorter, direct and uses
proof orderings on equational proofs that do not require termination of the underlying rewrite system. It appears
to us that direct approaches are more promising for subsequent generalization since they do not require a stronger
property than uniqueness of normal forms, viz., confluence.
• We prove that the union (generalization of disjoint sum, function symbols can be shared) of a system R2 with

a left-linear system R1 is confluent provided that the union is semi-terminating (no sequence containing infinite
R2 reductions), persistent and rhs’s of rules in R1 do not share any function symbols with lhs’s of rules in R2.
Finally, we give several sufficient conditions that can be checked syntactically, which ensure that the union has the
properties we need.

Comparison with related work on confluence of non-disjoint combinations. We are not aware of any
confluence result which allows this much function sharing. The closest result is that of Klop’s on CRS’s. However,
Klop’s proof cannot be used directly, since it uses postponement of certain kinds of reductions, which does not
hold for us. Moreover, Klop gets persistence for free because of the specificity of rules in R2. Note that Toyama’s
proof technique cannot be used since it uses the non-increasing nature of ranks of terms, which does not hold for
non-disjoint sums. Rao [7] generalizing a result of [8] proved a confluence result for terminating systems that
allows some sharing provided that the union is a hierarchical combination and constructor-based. In particular, no
sharing of defined symbols is allowed in the lhs’s and only constructors can be shared between lhs of the higher
system with rhs’s of the lower. We note that Rao’s proof is somewhat easier since his conditions ensure that the
union is also terminating. See also [9], [10] for combination results that either do not allow as much function
sharing, or require one of the two properties: termination/left-linearity.

II. PRELIMINARIES

We assume familiarity with basic notions of rewriting (see [18], [19] for excellent surveys). Let V be a countable
set of elements called variables and Σ be a countable set of function symbols with Σ ∩ V = ∅. T is the set of
all terms of a first-order language constructed from V and Σ. It is convenient to think of terms as ordered rooted
trees. T (S) denotes that the terms are constructed from function symbols in S (the set V of variables is implicit).
The size of a term s is denoted by |s|. The height (resp. size) of a term s is 0 (resp. 1) if s is a variable or
a constant, and 1 + max iheight(si) (resp. 1 +

∑m
i=1
|si|) if s = f(s1, . . . , sm). The root symbol of a term is:

root(t) = f if t = f(t1, . . . , tn), and root(t) = t if t ∈ V . Consider an extra constant � called a hole and the set
T ′ = T (Σ∪ {�}). Then C ∈ T ′ is called a context on Σ. We use the notation C[, . . . ,] for the context containing
n holes (n ≥ 0). A is a subterm of B if B = C[A] for some context C .

The notion of a path or occurrence is used to refer to subterms in a term as follows. A path is either the empty
string λ that reaches the root or o.i (o is a path and i an integer) which reaches the ith argument of the root of
the subterm reached by o. t/o refers to the subterm of t reached by o and t[o ← s] denotes the term obtained
by replacing the subterm t/o by s. We define the prefix relation (notation: ≤) on occurrences o ≤ q whenever
∃p o.p = q; if p 6= λ also, then o < q (proper prefix). For any term t its set of occurrences is denoted O(t).

A substitution maps variables to terms. An instance σ(s) of a term s is obtained by substituting σ(x) for every
variable x in s. A rule is a pair of terms l→ r, such that l /∈ V and every variable occurring in r also appears in
l (variables are implicitly universally quantified). A system R is a finite set of rules. We say that a rule A → B
is a rule instance of the rule l → r if we can substitute terms for the variables in l → r to get A → B. As the
variables of each rule are universally quantified we assume hereafter that any two distinct rules do not share any
variable. Terms s and t are unifiable if and only if there is a ground term C which is an instance of both s and
t. We say s overlaps t if and only if a non-variable proper subterm u of one of the two terms unifies with the
other term. (When checking for overlaps it is best to relabel the variables in s and t so that they do not share
any variables.) A set S ⊆ T is nonoverlapping if and only if for all s, t ∈ S, not(s overlaps t). (Since s and t
could be equal, the definition of nonoverlapping does not allow self-overlapping rules like associativity.) We say
that s and t root overlap if and only if they are left-hand sides of two distinct rules in the system and they unify.

3

Note that our definition of nonoverlapping allows root overlaps. Therefore, whenever necessary we will use the
phrase no overlaps to forbid both root and nonroot overlaps. A rewrite system with root overlaps is consistent if
σ(r) = σ′(R) whenever σ(l) = σ′(L) for two distinct rules l→ r and L→ R.

We say that s rewrites to t in one step at position p (by R), denoted by s →R,p t, if s|p = lσ and t = s[rσ]p,
for some l→ r ∈ R and substitution σ. If p = λ, then the rewrite step is said to be applied at the topmost position
(at the root) and is denoted by s

r
→R t; it is denoted by s

nr
→R t otherwise.

Notation. The letters v, x, y, z denote variables, and f, g, h, etc., denote function symbols of nonzero arity. We use
=R to represent the least equivalence relation containing →R. We also say that a =R b is an equational proof.
When the set of rules R is clear from the context, we drop the subscripts from →. The reflexive-transitive closure
of → is denoted by ∗

→ , the transitive closure by +
→ , and symmetric closure by ↔. We use p : A

∗
→ B to

give the name p to the reduction sequence (|p| denotes its length). We use r
→ to indicate root reduction (i.e.,

reduction of the entire term) and nr
→ to indicate nonroot reduction (i.e., reduction at a proper subterm). Similarly,

nr∗
−→ represents a sequence of zero or more nonroot reductions, etc. For every natural number n, [n] denotes
{1, 2, . . . , n}, [0] = ∅. If s is any term, then V ar(s) denotes the set of variables in s. We say that an equational
proof q : a =R b contains a root reduction if there are a1 and a2 in the proof such that q : a =R a1

r
←→ a2 =R b.

Strictly speaking every equational proof has its associated multiset of occurrences at which the individual proof
steps are made but we often omit it for convenience. Let q : a = a0 ↔R a1 ↔R . . . ↔R an = b (n ≥ 0) be an
equational proof, then n the number of steps is its length (also denoted by |q|), and equational proof p is a subproof
of q provided p : ai =R aj for some 0 ≤ i ≤ j ≤ n. We use [] to denote multisets.

Proposition 1 (Basic facts of equational proofs): (i) s =R t implies σ(s) =R σ(t) for any substitution σ (sta-
bility under substitution). (ii) s =R t implies C[s] =R C[t] for any context C (stability under contexts). (iii) Let
s =R t and let O be the set of occurrences at which reductions are carried out in this proof. If o ∈ O is any
minimal occurrence, then s/o =R t/o (projection property).
Proof: For (i) a simple induction on the length of the equational proof suffices, using the fact that the rewrite
relation is stable under substitutions. For (ii) again an induction using the stability of the rewrite relation under
contexts. The proof of (iii) is obvious. �

Remark. Note that these facts can be used together with the subproof operation and the reflexive, symmetric and
transitive properties of equational proofs to obtain equational proofs from a given equational proof. For example
if R = {a → b} and the given proof is f(a) =R f(b), then we can apply projection to get the proof a =R b and
stability under contexts to get the proof f(f(a)) = f(f(b)), etc. Similarly, if R = {a→ b, b→ c}, then the proof
a =R c also yields the proofs a =R b and b =R c.

Definition 2: We say that an equational proof q yields an equational proof p (or that p can be obtained from q),
if p can be obtained by applying some sequence of steps to q, where each step is either a projection, a subproof
operation, or use of an equivalence property of equational proofs.
This definition can be made even more precise as a sequence just as the concept of proof is defined in any book
on formal logic. Note that our notion of yields only gives proofs of terms that are subterms of terms appearing in
the given proof since we do not use the “expansive” stability under contexts operation. We say that relation → is
confluent (CR) if and only if ∀A,B,C A

∗
→ B and A

∗
→ C implies ∃ D such that B

∗
→ D and C

∗
→ D.

Definition 3: Let R be a rewrite system. A term t is a normal form if there is no term u such that t → u. A
term t has a normal form if there is a normal form u such that t

∗
→ u. R (or →R) is uniquely normalizing (is

UN→) if for all terms A, B, C such that A
∗
→ B and A

∗
→ C and B, C are normal forms we have B = C .

R (or →R) has unique normal forms (is UN) if for all normal forms A, B with A =R B we have A = B. R is
terminating if there are no infinite reduction sequences t0 → t1 →

Lemma 4: For every system R: CR⇒ UN ⇒ UN→. Reverse implications generally do not hold.
Proof: The proofs of both statements are standard (see, for example [13]). We include examples refuting the reverse
implications. UN→ 6⇒ UN . Let R = {a→ b, a→ c, c→ c, d→ c, d→ e}. R is UN→, but not UN since b =R e
and b, e are distinct normal forms. UN 6⇒ CR. Let R = {a → b, b → b, a → c, c → c}. R is UN (a, b and c are
not normal forms) but R is not CR since b and c do not have a common reduct. �

III. NONOVERLAPS, CONSTRAINTS AND OCCURRENCE SETS

Let R be a rewrite system and let l → r, l′ → r′ be two rules (not necessarily distinct) in R. Assume, for
simplicity, that the rules do not share any variables (make a copy with new variables if necessary). Let Unif

4

denote the unification algorithm given below and Unif∞ denote the algorithm “without the occurs-check”. We say
that a nonoverlap of l with a non-variable subterm u of l′ (proper subterm, if the two rules are the same) is due to
occurs-check (O-nonoverlap) if l and u unify with Unif∞ (but not with Unif). We say that a nonoverlap is due
to inhomogeneity (I-nonoverlap), if l and u do not unify even with Unif∞.
Example. The nonoverlap of f(x, g(x)) and f(x, x) at the root is due to the occurs-check, whereas the non-overlaps
of all non-variable subterms of h(z, g(z), a) with non-variable subterms of h(x, x, b) are due to inhomogeneity.

We now formalize the concept of constraints introduced by unification of two terms and the set of occurrences
through which the Unification algorithm generates a constraint. For this purpose, we modify a “naive” unification
algorithm given in [20], which is presented below. To present this algorithm we introduce first some notation from
[20].

In contrast to the algorithm of [20], the input to the algorithm below are two labeled, rooted, directed trees G and
H with two distinguished nodes (roots) u and v, which represent the two given terms to be unified. The algorithm
constructs and maintains a relation R as undirected edges in G∪H . The relation R is symmetric and reflexive by
its representation. In order to make R a c-e relation, both correspondence and equivalence must be satisfied. Setting
children equivalent, when their parents are equivalent is called propagation. For R to be an equivalence relation
one must also enforce transitivity. Since we do not allow any sharing in the input, ensuring transitivity in our
algorithm takes the slightly modified form given below, which we also call consistency. After creating the minimal
c-e relation R for which uRv the algorithm tests for homogeneity. The relation R is said to be homogeneous if for
any two nodes pRq, the labels of p and q are not different function symbols. If the check succeeds a new labeled
graph G′ is constructed by coalescing classes of nodes in G. If G′ is acyclic the input is unifiable. If G′ is not
acyclic, the input is Unif∞ unifiable. For an example of the algorithm, see [20].
Notation: let x be any node in a rooted tree T . The term represented by x is denoted tx. Further, ox denotes the
edge labels on the unique directed path from the root to x in T .
Proc Naive-unification(U,V) /* G and H are implicit */

set URV ; O(U, V) = {λ}
while (R is not a c-e relation) do
propagation: while (there exist pRq having corresponding

ith children pi, qi not related by R) do
set piRqi; O(pi, qi) = O(qi, pi) = O(p, q) ∪ {op.i, oq.i} od;

transitivity: while (there exist mRn and pRq such that m and p
are labeled by the same variable, but n, q are not related by R) do
set nRq; O(q, n) = O(n, q) = O(m,n) ∪O(p, q) ∪ {om, op} od od ;

if R not homogeneous then print Ununifiable
else {coalesce equivalence classes to produce labeled graph G′}

Occurs check: if G′ has a cycle then print Ununifiable but Unif∞ unifiable
else print Unifiable

This process may be viewed pictorially on the labeled trees G and H by starting with an undirected edge between
the two roots and then adding undirected edges between nodes based on propagation and transitivity. If the two
terms tu, tv do not unify and this root nonoverlap is an I-nonoverlap, then (by definition) the algorithm fails in the
check for homogeneity. We can then extract all pairs of nodes (p, q) from the input such that tp and tq are maximal
subterms with root(tp) 6= root(tq) and pRq. We call such a pair, an inhomogeneity witness and the pair (tp, tq) a
constraint introduced by unification. Associated with pRq is the occurrence set O(p, q) that gives the “unification
proof” of pRq. It is clear that any equational proof between instances of tu and tv is also a way of adding edges
between the nodes of G and H where the edges are equational proofs. Finally, it follows that any equational proof
between instances of tu and tv must “obstruct” all unification proofs of inhomogeneity witnesses, or more formally
the occurrence set of any equational proof must intersect with O(p, q) for every inhomogeneity witness (p, q).

IV. NORMAL FORM UNIQUENESS RESULTS

In this section we first define persistence and then give sufficient conditions that imply the UN property. Finally,
we discuss the relationship of persistence and the UN property. Intuitively, persistence requires that the template of

5

the lhs in a redex is untouched by nonroot reductions, and any root reduction after a sequence of nonroot reductions
starting from a redex of l (l→ r ∈ R) can only be applied with the same rule. Hence all the terms in the sequence
of nonroot reductions are instances of the template of l. (This property is the inspiration for the term persistence.)

Definition 5: R (or →R) is persistent if for every term A such that (i) A
r
→R B via l → r ∈ R, (ii)

A
nr∗
−→R A′, and (iii) A′ →R B′ via l′ → r′ ∈ R applied at o ∈ O(A′), either (1) A′ r

→R B′ and l′ → r′ =
l→ r, or (2) there is a u ∈ O(l), u ≤ o, and l/u is a variable.
Note that persistence implies that the system must be nonoverlapping, but the converse is false, e.g., let R =
{f(x, x) → a, f(x, g(x)) → a, b → g(b)}. The above definition of persistence is a slight modification of the
definition in [21] to avoid root overlaps.

A. Sufficient Condition for UN

We begin with some definitions. Let lhs(R) (resp. rhs(R)) denote the set of distinct (distinct means distinct
even after variable renaming) lhs’s (resp. rhs’s) of rules in R and let SL(R) (resp. SR(R)) denote the set of all
distinct non-variable subterms of the terms in lhs(R) (resp. rhs(R)).

We now give our first sufficient condition for uniqueness of normal forms and prove the following characterization
theorem, which is used later in the proof.
Notation. For any equational proof q, O(q) is the set of occurrences at which reductions are made in q.

Definition 6: We say that an equational proof between instances of two terms l, L, p : σ(l) =R σ′(L) is harmless
if l and L unify and for every reduction at occurrence o ∈ O(p) either (i) there is a variable in l at an occurrence
which is a prefix of o, or (ii) there is a variable in L at an occurrence which is a prefix of o.

Definition 7: An interval is a harmless equational proof A =R B satisfying A = σ(s) and B = σ′(s) for some
non-variable term s ∈ lhs(R) ∪ rhs(R).

Definition 8: A reduction in an equational proof q is covered by an interval p of q if both of its endpoints are
part of p. A term in an equational proof q is in the middle of an interval p of q if the up to two reductions the
term is involved in q are covered by p.
Observe that any root reduction of an equational proof q cannot be covered by a single interval because of the two
conditions on every rule of the rewrite system (cf. the Preliminaries section) except for rules of the form l → r
where l and r unify. We assume that each such rule has been replaced by the two rules l → h(x1, . . . , xn) and
h(x1, . . . , xn)→ r, where h is a new function symbol and the xi’s are all the variables in l. Note that the unique
normal form property is (trivially) preserved by such a transformation. Note also that we cannot simply eliminate
such rules since deleting such rules expands the set of normal forms on the original signature of the rewrite system
and hence can destroy the uniqueness of normal forms property.

Definition 9: Let q be an equational proof. The set (resp. multiset) of all the rule instances applied in q are called
q’s set (resp. multiset) of associated rule instances, denoted by RI(q) (resp. RI[q]). Let q be a non-null equational
proof of the form q : a = a1 ↔R a2 ↔R . . .↔R an = b for n > 1. We call the set {a2, . . . , an−1} the set of inner
terms of q.
For example, if rewrite system R contains the rules a → b, f(x) → x and q is the proof f(a) → f(b) → b, then
RI[q] = RI(q) = {a → b, f(b) → b}. Note how the context of the first rule, a → b, applied in q is “lost” in the
process.

Definition 10: Given an equational proof q we define a covering of a proof by intervals as follows:
1) If q is an interval, then a possible covering of q is q itself.
2) If q : C[s1, . . . sn] =R C[t1, . . . , tn] for a non-empty context C , n ≥ 1 and qi : si =R ti for all i, then either

we may cover each qi separately (called lower intervals), or we may cover q itself by intervals, then cover
the remaining parts of q by lower intervals.

3) If q has at least one root reduction, we split q at the root reductions and then cover each part separately using
(1) or (2).

4) The intervals in any covering must be edge-disjoint, i.e., no two intervals can share a step of the proof.
We are only interested in certain kinds of coverings, called maximum coverings, which we define in two steps.
A maximal covering of q is any covering in which no interval can be added, nor can any existing interval be
extended to an interval that includes one more step of q without violating condition (4). A maximum covering of q
is a maximal covering that covers the greatest number of reductions of q. There may be more than one maximum
covering. Next we define an interval forest structure of a proof.

6

Definition 11: Given an equational proof q we define an interval forest structure by first finding all, not necessar-
ily edge-disjoint, intervals in q. Then a DAG structure is defined by considering all the intervals that are just below
an interval (immediately nested) and intersect with it as the children of an interval. Doing this for each interval
gives rise to a forest of DAGs of intervals. The height of an interval I , notation h(I) is the length in number of
nodes of a longest path from I to a leaf interval that is I’s descendant in the forest. The height of a leaf interval
is 1 since we count nodes not edges.
With these definitions, we can define the complexity of a proof.

Definition 12: Let q : σ(l) =R σ′(L) be an equational proof. We define the complexity of q with respect to a
set S of intervals, denoted C(q, S) and the complexity of q, denoted N(q), as follows. Let S be any maximum
covering of q, S = {p1, . . . , pk}, k ≥ 0. Let C(q, ∅) be the multiset [|t| | t ∈ RI[q]]. Next suppose S is nonempty.
For each interval pi : ai =R bi ∈ S, let N(pi) = [h(pi) + |t| | t = max{|s| | s → . . . ∈ RI(pi)}]. Now, let
C(q, S) = ∪k

i=1
N(pi) ∪ [|t| | t→ . . . ∈ RI[q]− ∪pi∈SRI[pi]]. Finally, N(q) = minS{C(q, S)}.

We use the multiset extension of the the usual ordering on the numbers to compare the complexities of proofs. For
multisets, the ∪ symbol denotes multiset union.
Example: Let R contain the rules a → b and f(x) → x and let q be the proof a ← f(a) → f(b) → b. Then,
RI[q] = RI(q) = {f(a) → a, f(b) → b, a → b} and N(q) = [2, 2, 2]. One 2 is contributed by the interval (2 =
1 + |a|) and the other two are the sizes of lhs’s f(a) and f(b) of rules in RI[q].

Fact 13: If p is a subproof of q, then N(p) ≤ N(q). Further, if p is a proper subproof of q that is missing at
least one reduction of q not covered by any interval, then N(p) < N(q).
Proof: Let S be the set of intervals that minimizes N(q) and S ′ = {I ∈ S | Both endpoints of I are in the proof
p}. We show that C(p, S ′) ≤ N(q). The result then follows from the fact that N(p) ≤ C(p, S ′) by definition of
N . To see that C(p, S ′) ≤ N(q), note that RI[p] ⊂ RI[q] and that any interval I ∈ S of q that is cut by p and no
longer an interval contributes more to N(q) than to C(p, S ′) (at least [1+ max lhs size in RI(I)] versus multiset
of lhs sizes in RI(I)).

When p is a proper subproof that is missing at least one reduction, say s→ t, of q not covered by any interval,
then there is one more occurrence of |s| in N(q) than in N(p) and combining this with N(p) ≤ N(q) it follows
that N(p) < N(q). �

The following lemma is used in the proof of the characterization theorem.
Lemma 14: Let l, L ∈ SL(R) and let q : σ(l) =R σ′(L) be any equational proof containing at least one root

reduction.
(1) Suppose that there is one end, let it be a = σ(l), of q such that the root reduction in q closest to a is directed

away from a. Consider the subproof p of q, where p is the proof from a to the first root reduction of q. Then,
N(p) < N(q), where

q : a = σ(l)
nr∗
←→ s

r
→ t =R σ′(L), p : a = σ(l)

nr∗
←→ s

(2) Suppose that q contains two consecutive root reductions using the same rule that are directed away from each
other towards its ends, i.e.,

q : σ(l) =R t1
r
← s1

nr∗
←→ s2

r
→ t2 =R σ′(L)

Let Q denote the equational proof obtained from q by replacing the subproof p : t1 =R t2 of q by a harmless
subproof p′ : t1 =R t2 with N(p′) < N(p). Then, N(Q) < N(q). Further if p is a proper subproof of q, then
N(p) < N(q).
Proof: For (1) we note that q has at least one root reduction, and no root reduction can be covered by a single
interval. So, let S be any set of intervals for which N(q) = C(q, S). Then, each interval in S is either an interval of
p also or completely disjoint from p, i.e., no interval spans over a subproof of p and the subproof of q disjoint from
p. Hence we may partition S into Sp and S−Sp, where Sp are the intervals in S that are contained in p. It is now
easily seen that if S minimizes C(q, S) then Sp minimizes C(p, Sp) simultaneously. Moreover, N(p)∪[|s|] ⊆ N(q).
Hence N(p) < N(q).

For (2) we reason as follows. The root reductions of q cannot be covered by single intervals for computing
N(q). The intervals that cover the subproof q1 of q from σ(l) to t1 can also cover the corresponding subproof
of Q. Similarly, for the subproof q2 of q from t2 to σ′(L). Therefore, N(q) = N(p) ∪ N(q1) ∪ N(q2) and
N(Q) ≤ N(p′) ∪N(q1) ∪N(q2). From the first equation we get N(p) ≤ N(q). and also N(p) < N(q) when p is

7

a proper subproof of q since in that case one of the N(qi)’s must be nonempty. From the two relations for N(q)
and N(Q) we get N(Q) < N(q) since N(p′) < N(p). �

Definition 15: Define an ordering on equational proofs q : C =R D and p : A =R B as follows: p < q if either
(i) N(p) < N(q) or (ii) N(p) = N(q) and the multiset [A,B] < [C,D], where < is the multiset-extension of
the usual subterm ordering, or (ii) N(p) = N(q), [A,B] = [C,D], and |p| < |q|. In other words, a lexicographic
combination of N value, multiset of endpoints, and length, in order as stated.
Clearly, the ordering < on equational proofs is well-founded.
Notation: From now on, when we use the phrase minimal proof, it means minimal in the proof ordering above.

Fact 16: If equational proof p is a shortest proof obtained from an equational proof q : σ(l) =R σ′(L), where l
and L do not unify, by steps that mimic a unification algorithm on the ends of q (i.e., by projection and equivalence
operations on proofs extracted from q after projection), then N(p) ≤ N(q).
Proof: Obvious from definitions of N , projection and equivalence operations since projection does not increase
RI[q], and potentially decreases it, nor can equivalence operations on subterms of the ends of q increase RI[q]. To
see this, let p : s =R t and p′ : t =R u be two proofs on subterms of the ends of q. Then RI[p]∪RI[p′] ⊆ RI[q], so
an equivalence operation yields a proof p′′ : s =R u with RI[p′′] ⊆ RI[q]. Note that projection of an interval in q
may give rise to proofs with no intervals or smaller intervals. This does not create any problems since the union of
the complexities of a collection of smaller intervals is by definition smaller than the complexity of a large interval
that spans all of them because the nesting depth of the larger interval is at least one more than its descendant
intervals. Moreover, since we consider only maximum coverings in the definition of complexity of a proof, it is not
possible to obtain intervals after projection and equivalence operations on a proof that had no intervals to begin
with in its maximum covering (i.e., its only maximum covering was empty). Since p is a shortest proof it cannot
contain any redundant steps, which can potentially increase the complexity. �

Lemma 17: Let R be any rewrite system with no overlaps with every nonoverlap an I-nonoverlap. Let q be any
minimal equational proof in the proof ordering above such that q : σ(l) =R σ′(L) between two terms σ(l) 6= σ′(L)
where l and L are two terms in SL(R) that do not unify. Then q contains a root reduction.
Proof: Let O = O(q). Since l and L do not unify (and their nonoverlap is an I-nonoverlap), there are non-variable
maximal subterms s and S of {l, L} such that root(s) 6= root(S) and Unif∞(l, L) generates the constraint s = S.
Without loss of generality, we assume that there is only one such constraint. Let O1, . . . , Ok, be the different sets of
occurrences through which Unif∞(l, L) generates this constraint. Here k is the number of different ways in which
this constraint can be generated. Any equational proof of l, L either interferes with all of these proofs, where by
interfere we mean that for each Oi there must be an occurrence oi ∈ O such that oi is a prefix of some occurrence
in Oi, or yields an equational proof between instances of s, S.

Hence, in either case we can obtain using one of the Oi’s or O an equational proof q′ = b1 ↔R ...↔R bm from
q of an instance of a non-variable subterm, say s′, of l or L that contains an instance of s, and a non-variable
subterm, say S ′, of l or L that contains an instance of S, which contains a root reduction. We let q ′ denote a shortest
such proof. A root reduction can be ensured by repeatedly applying projection and equivalence properties on proofs
extracted from q by projection (mimicking the steps of a unification algorithm). Now since root(s) 6= root(S) and
s and S are non-variable subterms, s and S do not unify, which also means that the superterms of s and S do
not unify as well. Further, if q does not contain a root reduction and q ′ does, then q′ is obtained by applying at
least one projection operation from q, which means s′ and S′ are proper subterms and N(q′) ≤ N(q) (Fact 16).
Thus, q′ also violates the conditions of the theorem and q ′ < q since [s′, S′] < [a, b], which contradicts the choice
(minimality in < ordering) of q. Thus the claim is proved. �

Theorem 18: Let R be any rewrite system with no overlaps and in which every nonoverlap is an I-nonoverlap.
Then, there is no (non-null) equational proof q : σ(l) =R σ′(L) between two terms σ(l) 6= σ′(L) where l and L
are two terms in SL(R), unless either:

1) at least one of l or L is in lhs(R) and q contains a root reduction, or
2) l and L unify and there exists a harmless proof p : σ(l) =R σ′(L) with N(p) ≤ N(q).

Proof: Suppose there is a non-null equational proof between two instances of terms in SL(R), a = σ(l) and
b = σ′(L) such that a 6= b, which violates both conditions. Choose q, a, b such that q : a =R b is a minimal such
proof. Let O = O(q).

If proof p is obtained by applying a projection to a minimal equational proof q with an occurrence not equal to λ, then p < q.

8

Case A: l and L do not unify. This case also covers the case when at least one of l or L is in lhs(R) with l 6= L
because of the no-overlap requirement. By Lemma 17, since q is a minimal proof, q contains a root reduction,
λ ∈ O. Since λ ∈ O and q violates the theorem, neither l nor L is in lhs(R), so l, L ∈ SL(R) − lhs(R). There
are two cases.

(i) There is at least one end of q such that the first root reduction from it is directed towards the opposite end
of q. Wlog, let this end be a = σ(l). Consider the (non-null) subproof q ′ between a and the term closest to a
to which a root reduction is applied in q. The proof q ′ is between an instance of an lhs l′ and an instance of
l ∈ SL(R) − lhs(R). Because of the no overlap requirement, l′ does not unify with l. Thus, the proof q′ also
violates the theorem and N(q′) < N(q) (Lemma 14), which contradicts the minimality of q.

(ii) Otherwise there are two consecutive root reductions (i.e., there is no root reduction in between the two) in q
that are directed towards the ends of q and away from each other. So let t1 and t2 be the corresponding inner terms
of q such that t1 = ai and t2 = aj for some i, j ∈ [m − 1] and i ≤ j. Let R1 : σ1(l1) = t1

r
→ t′1 = σ1(r1) and

R2 : σ2(l2) = t2
r
→ t′2 = σ2(r2) be the root reductions applied to terms t1 and t2 in q. If t1 = t2, then because

of the no-overlap requirement l1 = l2 and t′1 = t′2. Hence we may delete from q: t1, the associated root reductions
R1 and R2 and also one of the terms t′1 = t′2, getting a shorter proof p from q, which contradicts the choice of q.
Hence we must have t1 6= t2. Let q′ be the non-null proof between t1 and t2. If lhs’s l1 and l2 are distinct, then
the proof q′ satisfies N(q′) < N(q) (by definition of complexity since N(q′) ∪ [|t1|, |t2|] ⊆ N(q)) and is between
instances of distinct lhs’s (and distinct lhs’s do not unify since R has no overlaps). Thus its existence contradicts
the choice of q. If l1 = l2, then by the minimality of q, q′ cannot violate the theorem. This implies that there is a
harmless proof p′ : t1 =R t2 corresponding to q′ such that N(p′) ≤ N(q′) (p′ may be the same as q′).

Since p′ is harmless and l1 = l2 there is a harmless proof P : σ1(r1) =R σ2(r2) (r1 = r2) with N(P) < N(q′′),
where q′′ : t′1 =R t′2 is the subproof of q. It is obtained by removing the terms t1 and t2, the root reductions R1 and
R2, and applying the steps of the harmless proof p′ (which are between instances of variables in the lhs l1) between
the instances σ1(x) and σ2(x) for each variable x in r1 = r2 (since every variable in the rhs also appears in the
lhs). Note that by construction of P and definition of N(P), N(p′) we get N(P) ≤ N(p′) since the associated
rule instances of P are a subset of the associated rule instances of p′ and either both are intervals or only P is not.
Also since N(q′′) = N(q′) ∪ [|t1|, |t2|] we get N(P) < N(q′′) since N(p′) ≤ N(q′). Let Q be the proof obtained
from q by replacing the subproof between t′1 and t′2 in q by P . By Lemma 14, N(Q) < N(q) and Q also violates
the theorem, which contradicts the choice of q.

Case B: Terms a and b are instances of terms l, L in SL(R) that unify and there is no harmless proof p : a =R b
with N(p) ≤ N(q). In particular, this means that q itself is not harmless, i.e., there is at least one reduction in q at
an occurrence o ∈ O such that l/o and L/o are nonvariable subterms of l and L respectively and σ(l/o) 6= σ ′(L/o).
Further, every harmless proof p : a =R b must satisfy N(p) > N(q). Note that in Case B, if either l ∈ lhs(R) or
L ∈ lhs(R), then so must the other term, and therefore l = L by the no overlap requirement. Since q violates the
theorem, then λ 6∈ O.

Let o′ be a minimal occurrence in O such that l/o′ and L/o′ are maximal subterms with a (non-null) equational
subproof q′ : σ(l/o′) =R σ′(L/o′) induced by q, σ(l/o′) 6= σ′(L/o′), and there is no harmless proof p corresponding
to q′ with N(p) ≤ N(q′). There must exist such an occurrence for, if not, then there is a harmless proof
corresponding to q and no bigger than q - a contradiction. It is obtained by using the harmless proofs corresponding
to the q′’s. Now, by our choice of o′, q′ must contain a root reduction. Since q does not contain a root reduction and
q′ does, q′ is obtained by applying projection with an occurrence not equal to λ and so l/o′, L/o′ ∈ SL(R)−lhs(R)
and also N(q′) ≤ N(q). The rest of the argument for this subcase is similar to that of Case A starting at “There
are two cases,” the contradiction is that we get a proof q ′′ such that N(q′′) < N(q′) ≤ N(q) that also violates the
theorem.

The other subcase is when l, L ∈ SL(R)−lhs(R). Let o′ be a minimal occurrence in O such that l/o′ and L/o′ are
maximal subterms with a (non-null) equational subproof q ′ : σ(l/o′) =R σ′(L/o′) induced by q, σ(l/o′) 6= σ′(L/o′),
and there is no harmless proof p corresponding to q′ with N(p) ≤ N(q′). There must exist such an occurrence for,
if not, then there is a harmless proof corresponding to q and no bigger than q - a contradiction. It is obtained by

When r1 = r2 is a variable
Note that we do not exploit the non-unification of l and L in Case A except to argue for a root reduction in the proof, hence the unification

of l/o′ and L/o′ does not affect the rest of the argument, which only uses the fact that l and L are in SL(R) − lhs(R).

9

using the harmless proofs corresponding to the q′’s. Now, by our choice of o′, q′ must contain a root reduction,
since otherwise the chosen q′ satisfies q′ < q and also violates the theorem, contradicting the choice of q. The rest
of the proof is similar to that of Case A and hence omitted. �

B. Unique Normal Form Property

We assume that for every rewrite systems R, we may extend the signature of R by two new constants and a
new unary function symbol.

Theorem 19: Every system R with no overlaps and which contains only I-nonoverlaps has the unique normal
form property UN .
Proof: (i) Suppose that R does not have the unique normal form property. Then, there are R-normal forms A and
B such that A =R B and A 6= B. Let σ be any substitution such that σ(A) 6= σ(B) and both σ(A) and σ(B)
are ground R normal forms. Then, R′ = R ∪ {h(σ(A)) → a, h(σ(B)) → b} also has no overlaps and furthermore
has only I-nonoverlaps, but violates Theorem 18 since h(σ(A)) =R′ h(σ(B)) and h(σ(A)), h(σ(B)) do not unify
since they are distinct ground terms, which is a contradiction. �

Remark: The reason for insisting on distinct ground normal forms A and B in the above proof and using a
ground substitution in the above proof is to avoid the possibility of adding overlapping rules to R. For example, if
f(x) =R f(y) and we add the rules h(f(x)) → a, h(f(y)) → b, then we create an overlap. A simple example of
a rewrite system R with this property is {g(x, y)→ f(x), g(x, y)→ f(y)}.

C. The relationship of persistence and UN

We now give an example to show that persistence does not imply UN→, hence it also does not imply UN .
Theorem 20: Persistence does not imply uniquely normalizing (UN→).

Proof (by counterexample): Consider the following nonoverlapping system which contains only one O-nonoverlap:

c → g(c) (1)
g(x) → f(x, g(x)) (2)

f(x, x) → e (3)
F (e, e) → G(H(e, g(e))) (4)
H(e, e) → F (e, g(e)) (5)
I(x, x) → a (6)

I(x,G(x)) → b (7)

Consider the term A = I(H(c, c), F (c, c)). Now A
nr+
−→ I(F (e, g(e)), F (e, g(e))

r
→ a and

A
nr+
−→ I(H(e, g(e)), G(H(e, g(e))))

r
→ b, hence the system is not uniquely normalizing. However, it is not hard

to show that the system is persistent, since e and g(e) are not joinable. �

The above example can be extended to show that the following condition is not sufficient for persistence.
Theorem 21: The condition: R is nonoverlapping and for every O-nonoverlap in R at least one constraint of

the form (x,C[...x...]) introduced by Unif is not left-reducible (see [12] for definition), does not imply that R is
persistent.
Proof (by counterexample): Consider the previous system extended by two rules. This system contains only one
O-nonoverlap and the constraint (x,G(x)) is clearly not left-reducible.

c → g(c) (8)
g(x) → f(x, g(x)) (9)

f(x, x) → e (10)
F (e, e) → G(H(e, g(e))) (11)
H(e, e) → F (e, g(e)) (12)
I(x, x) → a (13)

I(x,G(x)) → b (14)

10

J(x, x) → d1 (15)
J(a, b) → d2 (16)

Consider the term B = J(A,A), where A is the term of Theorem 20. Now B is an instance of the lhs of Rule 15
and B

nr+
−→ J(a, b) (since A

∗
→ a and A

∗
→ b), which is an instance of the lhs of Rule 16. Hence the system

is not persistent. �

V. THE CHURCH-ROSSER PROPERTY OF THE UNION

For brevity’s sake the following hypothesis are assumed in all the lemmas of this section: Let R1 be any left-
linear system. Let R2 be any system such that every function symbol appearing in the lhs of any rule in R2

does not appear on the rhs of any rule in R1 (we say that R2 and R1 are lr-disjoint; similarly one can define
ll-disjoint, etc). Further, assume that R = R1 ∪ R2 is persistent and satisfies the following finiteness condition
called semi-termination. (F) There is no sequence of R-reductions from any term t containing an infinite number
of R2 reduction steps.

Note that (F) immediately implies that R2 is terminating, but termination of R2 is not sufficient for semi-
termination of R as is easily seen by the following example.
Example. Let R1 = {a → b}, R2 = {h(x, x) → h(a, b)}. Now R1 and R2 are both terminating (in fact, simply
terminating, i.e., their termination can be established by simplification orderings; see [22] for a definition), but R
has the following cyclic derivation: h(a, b) →R h(b, b) → h(a, b). The example can be easily modified so that R
is not even quasiterminating. Note that all conditions except (F) are satisfied.

We now prove that R is confluent and then give sufficient conditions that ensure persistence and finiteness of
R. Observe that Toyama’s [15] technique cannot be used since it depends on the non-increasing property of ranks
w.r.t. reductions, which does not hold for us. We need the following lemmas for the proof of confluence.

Lemma 22: For all A,B,C such that A
∗
→R1

B and A
∗
→R C , there exists D such that C

∗
→R1

D and
B

∗
→R D.

Proof: An easy argument using the confluence of R1 shows that it is sufficient to prove the following statement: for
all A,B,C such that A

∗
→R1

B and A→R2
C , there exists D such that C

∗
→R1

D and B
∗
→R D. Let A = C[u],

where u is the redex contracted in the reduction A → C , and let l → r ∈ R2 be the rule used. So, there exists a
substitution σ such that u = σ(l) and C = C[σ(r)].

Let u = C ′[A1, A2, . . . , Am], where C ′ is the template of l, l = C ′[x1, x2, . . . , xm] for some variables xj (not
necessarily distinct) and α = 〈x1, . . . , xm〉 ∝ β = 〈A1, . . . , Am〉 (i.e., xi = xj implies Ai = Aj , i, j ∈ [m]; see
[15] for formal definition of ∝). Let r = Cr[xi1 , . . . , xik

], where ij ∈ [m]. Then, σ(r) = Cr[Ai1 , . . . , Aik
]. Now,

we mark the redex u in A and all its descendants (see [3] for a formal definition) in the reduction sequence q:
A

∗
→R1

B. Therefore, B contains n ≥ 0 marked terms of the form C ′[Bi
1, B

i
2, . . . B

i
m] for i ∈ [n]. Note that

the template of l is unchanged in all the marked terms in B because of the persistence of R. Also, observe
that all the marked terms in B are disjoint (because they are all descendants of the same redex) so we can write
B = C ′′[C ′[B1

1 , B1
2 , . . . B1

m], . . . , C ′[Bn
1 , Bn

2 , . . . Bn
m]] for some context C ′′. The reduction sequence q can be divided

into an inner part and an outer part with respect to the marked subterms. Call a step in q inner if it takes place inside
one of the marked terms of the form C ′[. . .] and outer otherwise. Let Qo be the reduction sequence obtained from
q by replacing every marked term in it by some new variable, say v. Let Qo be the reduction sequence C

∗
→R1

E
obtained from Qo, where v is replaced by σ(r). Then, E = C ′′[σ(r), . . . , σ(r)].

Now note that the inner part of q consists of reductions that change the Ai’s in A. Let γi denote 〈Bi
1, . . . , B

i
m〉 for

i ∈ [n]. Then, more precisely in the inner part of q we have β
∗
→R1

γi for each i ∈ [n]. Because R1 is confluent,
we have CR(Ai) for all i ∈ [n]. Therefore, we can find δi such that β

∗
→R1

γi
∗
→R1

δi and β ∝ δi. Therefore,
let F = C ′′[C ′[δ1], . . . , C

′[δn]]. Then, B
∗
→R1

F . Now, since β ∝ δi and α ∝ β, we have α ∝ δi (by transitivity),
so each C ′[δi] is an instance of l. So let δi = σi(l) and let D = C ′′[σ1(r), . . . , σn(r)]. Obviously, F

∗
→R2

D and
E

∗
→R1

D and the lemma is proved. �

We classify the set of function symbols that appear in R into linear and nonlinear as follows: if a function
symbol f appears in the lhs of any rule in R2, then f is nonlinear and linear otherwise.

Note the use of the fact that a confluent rewrite system remains confluent even if the signature is expanded. The Ai’s may contain function
symbols not appearing in the rules of R1, but this cannot affect the confluence of R1.

11

Definition 23: The nonlinear height of a term t (notation |t|n) is the maximum number of nonlinear symbols on
any path from the root of t to a leaf.

Lemma 24: If A→R2
B, A

∗
→R1

C ′ and C ′ →R2
C , then there is a D such that B

∗
→R D and C

∗
→R D.

Proof (sketch): The full proof of this lemma is somewhat long, but not difficult. The reader can easily fill in
the details. By Lemma 22 we have D′ and E such that C ′ ∗

→R1
D′, D′ ∗

→R2
E and B

∗
→R1

E. Also, all the
reduction steps from C ′ to D′ are covered by the steps from D′ to E. We consider three cases: (i) the reduction
step Rs from C ′ to C is independent (this makes sense since the steps from D ′ to E are performed at occurrences
in O(C ′)) of all the steps from D′ to E, (ii) Rs is covered by a single step (single because the steps from D ′ to
E are disjoint) from D′ to E, and (iii) Rs covers some (possibly all) of the reductions steps from D ′ to E. Case
(i) is easy. For cases (ii) and (iii) we use persistence of R and the confluence of R1 to find the desired term D.
For case (iii), we also use the fact that the same rule is applied at disjoint occurrences in the reduction sequence
from D′ to E. �

Remark. The above lemma uses the lr-disjointness condition in an essential way to control the interference of R2

steps after an R1 reduction step has been applied. We now define the nonlinear derivation height (notation DHn)
of a term.

Definition 25: DHn(t) = max{n | ∃u, t
∗
→R u with n R2-reductions }.

Lemma 26: (1) DHn(t) is finite for every t. (2) If t →R u, then DHn(t) ≥ DHn(u). If t →R2
u, then

DHn(t) > DHn(u).
Proof: Use the definition of DHn, transitivity of ∗

→ , and the finiteness (F) conditions. �

Theorem 27: If R1 is left-linear, R = R1 ∪R2 is lr-disjoint, persistent and semi-terminating, then R is Church-
Rosser.
Proof: We prove that CR(A) by induction on DHn(A). The base case is DHn(A) = 0. In this case, the only
derivations possible from A consist solely of R1-reductions. Since R is persistent so is R1 and since every left-
linear persistent system is confluent [3], [4], [2], the claim holds for the base case. Assume CR(A) for DHn(A) < m
(m > 0). We show the following claim:
Claim. A →R2

B, A
∗
→R1

C ′, and C ′ ∗
→R2

C implies there is a D such that B
∗
→R D and C

∗
→R D for the

case DHn(A) ≤ m.
Proof of claim: If there are zero reductions from C ′ to C , then we use Lemma 22 to get the desired term D.
Otherwise, let C ′ →R2

C ′′ be the first R2-reduction step. By Lemma 24 we have a D′ such that B
∗
→ D′ and

C ′′ ∗
→ D′. Now, DHn(C ′′) < DHn(C ′) ≤ DHn(A) by Lemma 26, therefore by the induction hypothesis for the

theorem, i.e., CR(C ′′), we have a D such that D′ ∗
→ D and C

∗
→ D. �

Induction Step: We now prove CR(A) when DHn(A) = m. So suppose that A
∗
→R B and A

∗
→R C . If all the

reductions in either A
∗
→R B or A

∗
→R C are R1-reductions, then we are done by Lemma 22. Otherwise we have

the following situation: A
∗
→R1

C ′ →R2
C ′′ ∗
→ C , and A

∗
→R1

B′, B′ →R2
B′′ and B′′ ∗

→ B, where C ′ → C ′′

and B′ → B′′ are the first reductions from R2 on the respective derivations. Now, we have the following derivations.
By confluence of R1 (see base case) we have a D′ such that B′ ∗

→R1
D′ and C ′ ∗

→R1
D′. By Lemma 22 we have

a D′′ such that D′ ∗
→R1

·
∗
→R2

D′′ and C ′′ ∗
→R1

D′′. By the above claim, we have an E such that B ′′ ∗
→R E

and D′′ ∗
→R E. By Lemma 26, DHn(B′′) < DHn(B′) ≤ DHn(A) and DHn(C ′′) < DHn(C ′) ≤ DHn(A).

Therefore, by the induction hypothesis of the theorem, i.e., CR(B ′′) and CR(C ′′), we have a D such that B
∗
→R D

and C
∗
→R D and the proof is complete. �

Remarks. The above result can be generalized in several different ways, we omit proofs of the generalizations for
lack of space. First, we can drop the finiteness requirement and prove CR(A) for only those terms A for which
DHn(A) is finite. Second, we do not really need full persistence of R, a slightly weaker form is sufficient. This
is important because it permits some kinds of harmless root and nonroot overlaps in R. Finally, note that this
proof shows some similarity to Klop’s proof. However, as noted earlier Klop’s proof cannot be used since it uses
postponement of nonlinear reductions, which does not hold for us and also persistence is immediate there.

We now give sufficient conditions that ensure persistence and semitermination of the union. First, we note that
nonoverlapping and semitermination imply persistence.

Lemma 28: If the lr-disjoint union R of a left-linear system R1 and any system R2 containing only I-nonoverlaps
is nonoverlapping and semi-terminating, then R is persistent.
Proof: A left-linear rule can have only I-nonoverlap with another (not necessarily left-linear) rule. Therefore, there
are no O-nonoverlaps in R. Hence Theorem 18 applies. �

12

We can drop the requirement that R2 should have only I-nonoverlaps provided that there are no collapsing rules
in R1 by generalizing the proof of Lemma 14. It seems that even the collapsing requirement can be dropped, but
this has been difficult to prove.

Theorem 29: The following conditions are sufficient for the semi-termination of a nonoverlapping system R.
R1 is linear (i.e., left-linear & right-linear), and (1) No function symbol that appears in the lhs of any rule in R2

appears in the rhs of any rule, or (2) All R2 rules are height decreasing, i.e. ht(l) > ht(r) for all l → r ∈ R2, or
(3) All R2 rules are nonlinear-height decreasing, i.e, |l|n > |r|n for every rule l→ r ∈ R2.
Proof: Straightforward. �

We give an example to show that the finiteness requirement cannot be dropped completely. Let R1 = {a → b}
and R2 = {f(x, x) → e, g(x) → f(x, g(x)), h(x, x) → g(h(a, b))}. Obviously the lr-disjoint conditions and
persistence are satisfied. But, the union is not confluent since h(b, b)

∗
→ e and h(b, b)

∗
→ g(e) but e and g(e) do

not have a common reduct. An example due to Klop also shows that the lr-disjoint condition cannot be completely
dropped. Let R2 = {f(x, x)→ a, f(x, g(x)) → b} and R1 = {c→ g(c)}. Since the R2 rules need an f and strictly
decrease the number of f ’s and the R1 rules cannot increase this number the finiteness condition is obvious. The
union is of course not confluent as is easily seen.

VI. CONCLUSION

In this paper we have studied two fundamental concepts, uniqueness of normal forms and confluence, for nonlinear
systems in the absence of termination. This is a difficult topic with only a few results so far. We classified nonoverlaps
into two classes: nonoverlaps due to inhomogeneity (I-nonoverlaps) and nonoverlaps due to occurs-check (O-
nonoverlaps). Through a novel approach, we then proved that every nonoverlapping system in which all nonoverlaps
are I-nonoverlaps has the unique normal form property. This result is tight and a substantial generalization of previous
work. We also proved the confluence of the union of a nonlinear system with a left-linear system under fairly general
conditions. Persistence plays a key role in this proof. There are several promising directions for future work. First,
we note that the finiteness requirement can be weakened somewhat although it cannot be dropped completely. The
proof of this is likely to be difficult but fruitful since it might lead to new techniques for dealing with unions (or
decompositions) rather than disjoint sums. Second, our work here suggests some natural generalizations to deal
with non-persistent systems. Any progress along these two lines will obviously be of considerable importance to
rewriting and its applications.

REFERENCES

[1] A. Church and J. Rosser, “Some properties of conversion,” Transactions of the AMS, vol. 39, pp. 472–482, 1936.
[2] G. Huet, “Confluent reductions: Abstract properties and applications to term rewriting systems,” Journal of the ACM, vol. 27, no. 4,

pp. 797–821, 1980, also in 18th IEEE FOCS, 1977.
[3] M. O’Donnell, Computing in Systems Described by Equations, ser. Lecture Notes in Computer Science. Springer-Verlag, 1977, vol. 58.
[4] B. Rosen, “Tree manipulating systems and church-rosser theorems,” Journal of the ACM, vol. 20, pp. 160–187, 1973, also in the 2nd

ACM Symposium on Theory of Computing.
[5] D. Knuth and P. Bendix, “Simple word problems in universal algebra,” in Computational Problems in Abstract Algebra, J. Leech, Ed.,

Oxford. Pergammon Press, 1970, pp. 263–297.
[6] M. Newman, “On theories with a combinatorial definition of equivalence,” Ann. Math., vol. 43, pp. 223–243, 1942.
[7] M. K. Rao, “Completeness of hierarchical combinations of term rewriting systems,” in Proc. Conf. on Foundations of Software

Technology & Theoretical Comp. Sci., 1993.
[8] A. Middeldorp and Y. Toyama, “Completeness of combinations of constructor systems,” in Proc. Conf. on Rewriting Techniques &

Applications, 1991, pp. 188–199.
[9] F. Baader and T. Nipkow, Term Rewriting and All That. Cambridge University Press, 1998.

[10] E. Ohlebusch, Advanced Topics in Term Rewriting. Springer, 2002.
[11] P. Chew, “Unique normal forms in term rewriting systems with repeated variables,” in Proc. ACM Symp. on Theory of Computing,

vol. 13, 1981, pp. 7–18.
[12] R. M. Verma, “Unique normal forms and confluence for rewrite systems,” Proc. Int’l Joint Conf. on Artificial Intelligence, pp. 362–368,

1995.
[13] J. Klop, “Combinatory reduction systems,” Ph.D. dissertation, Mathematisch Centrum, Amsterdam, 1980.
[14] M. Oyamaguchi and Y. Ohta, “Church rosser property of right-ground systems,” Trans. of the IEICE, vol. J76-D-I, 1992, in Japanese.
[15] Y. Toyama, “On the church-rosser property for the direct sum of term rewriting systems,” Journal of the ACM, vol. 34, no. 1, pp.

128–143, 1987.
[16] K. Mano and M. Ogawa, “Unique normal form property of compatible term rewriting systems: a new proof of Chew’s theorem,”

Theoretical Computer Science, vol. 258, no. 1–2, pp. 169–208, 2001.

13

[17] J. Klop and R. de Vrijer, “Unique normal forms for lambda calculus with surjective pairing,” Information and Control, vol. 80, pp.
97–113, 1989.

[18] N. Dershowitz and D. Plaisted, “Rewriting,” in Handbook of Automated Reasoning, J. A. Robinson and A. Voronkov, Eds. Elsevier
Science, 2001, vol. 1, ch. 9, pp. 535–610.

[19] J. Klop, “Rewrite systems,” in Handbook of Logic in Computer Science. Oxford, 1992.
[20] C. Dwork, P. Kanellakis, and J. Mitchell, “On the sequential nature of unification,” Journal of Logic Programming, vol. 1, pp. 35–50,

1984.
[21] R. M. Verma, “A theory of using history for equational systems with applications,” Journal of the ACM, vol. 42, no. 5, pp. 984–1020,

1995, also in the 32nd IEEE FOCS Symposium, 1991.
[22] N. Dershowitz, “Termination of rewriting,” Journal of Symbolic Computation, vol. 3, pp. 69–116, 1987.

