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Abstract 

 

In real-time systems research, validations are usually performed by executing synthetically generated 

tasks through programmatic implementations of derived algorithms or theoretical results.  For every new 

result, real-time researchers have to develop systems, several times from scratch, for generating task sets 

as well as implementing their derivations. Another issue arises when the results are submitted for peer 

review. Reviewers only have access to results in the form of numerical values given in the paper, and 

have no easy way of validating these values themselves. To solve these two issues, we present a new ex-

tensible system for real-time task generation and simulation. Using modern software engineering prin-

ciples of object and reflection-oriented programming, we show how real-time analysis can be partitioned 

into sub-systems, where each such sub-system can be implemented as a run-time „plug-in‟, that can be 

developed by independent research groups. Our system also requires every task set to persist by saving 

task sets in customized file formats, which can then be shared with peer reviewers. Our technique is in-

tended to save real-time researchers the significant amount of time they spent in result validation, as well 

as allow reviewers easy access to the experimental setup of the submitted paper for a more efficient re-

view process. 
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Abstract† 

 

In real-time systems research, validations are usually performed by executing synthetically generated 

tasks through programmatic implementations of derived algorithms or theoretical results.  For every new 

result, real-time researchers have to develop systems, several times from scratch, for generating task sets 

as well as implementing their derivations. Another issue arises when the results are submitted for peer re-

view. Reviewers only have access to results in the form of numerical values given in the paper, and have 

no easy way of validating these values themselves. To solve these two issues, we present a new extensible 

system for real-time task generation and simulation. Using modern software engineering principles of ob-

ject and reflection-oriented programming, we show how real-time analysis can be partitioned into sub-

systems, where each such sub-system can be implemented as a run-time „plug-in‟, that can be developed 

by independent research groups. Our system also requires every task set to persist by saving task sets in 

customized file formats, which can then be shared with peer reviewers. Our technique is intended to save 

real-time researchers the significant amount of time they spent in result validation, as well as allow re-

viewers easy access to the experimental setup of the submitted paper for a more efficient review process. 

 
Index Terms 

 

Real-time Simulation, Response Time Analysis, Real-time Systems, Task Generation, Interface Classes 
 

I. Introduction 

In real-time systems research, synthetic task sets are generally used to validate Real-time Simulation, Response 

Time Analysis, Real-time Systems, Task Generation, Interface Classes theoretical results. These results range an-

ywhere from schedulability tests to algorithms for multi-processor partitioning, which are all classified as real-time 

research contributions (RTRCs) in this paper. These synthetic tasks are generated using random or pseudo-random 

selection or by statistical methods like probability distribution. Since a large number of tasks sets are required, au-

tomated programs are generally used.  These task generation programs are either written by researchers from 

scratch, or some of the publicly available tools are used. Once these tasks are generated, they have to be analyzed 

using the derived theory or RTRC. A separate program, that implements the RTRC is also be written by the re-
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searchers. This program analyzes the generated task sets and outputs numerical results which are then used to pro-

duce validation data in the form of graphs or tables in the research paper.  

In this endeavor, there can be a significant duplicity of work. For example, if the results get published and the 

RTRC is used by another research group they will have to re-program the implementation presented in the paper. 

Sometime it is possible to contact the original researchers and ask for their source code or the binary executable. 

However, since there is no standard to which implementations of RTRC have to comply with, a learning curve is 

involved which reduces the time savings incurred by reusing code written by other research groups. Another dup-

licity of efforts is encountered when generating task sets. There have been several proven methods which can be 

used to generate schedulable task sets. For example, if the RTRC deals with rate-monotonic schedulability, it might 

be desirable to use task sets that are guaranteed to be schedulable. Liu and Layland [14] and Bini et al [6] have pre-

sented sufficient tests for schedulability in rate-monotonic schedulability, hence tasks sets which satisfy both these 

conditions can be generated. Researchers will have to write the programmatic implementation of these schedulabil-

ity tests from scratch. Another research group that needs to use the same schedulability tests will have to write 

their own.  

If these tests are available in a simple to use binary library, research groups can save valuable time. It should 

also be noted, that writing software involves much more than simply writing the programming code. The software 

has to be carefully analyzed and validated against task sets to guarantee it correctness. Any bugs in the code affect 

the correctness of the results, which if used in scientific papers, reduce the quality of the paper. As anyone who 

writes software code will certify, debugging is not a trivial task, and when guaranteed mathematical correctness is 

expected, such as that required in real-time analysis, it can be a frustrating and time-consuming experience. 

Another issue comes up during the process of peer-review when a paper is submitted to some conference or 

journal. Currently, reviewers look for the correctness of proofs given in theorems / lemmas, to determine if the pre-

sented RTRC is valid or not. Several papers are also composed of algorithms that vary in complexity. Most papers 

are accompanied by experimental analysis where the authors of the paper assert that the presented theorem or algo-

rithm has been implemented and run through experimental task sets to give the desired results. The reviewers have 

to rely on the authors‟ assertions and  have no way of knowing if the implementation that generated the results is 

correct and if correct task sets were used. Note that these results are provided in good faith, and researchers have 

no intentions of misleading the reviewers. However, situations when there is a flaw in RTRC or the implementa-

tion is not correct without the authors being aware of, are quite possible. This is especially true when there are sev-

eral theorems, or the algorithms are too complex to be analyzed by visual reading. Expecting the reviewers to write 

the implementations presented in the paper and to test them,  is not practical, due to severe time constraints and 

deadlines present in any peer-review process. 

However, if all the task sets as well as the programming implementation used to generate the results, can be 

provided to the reviewers, it offers another venue for critical analysis of the paper. Reviewers will be able to detect 

flaws in the results and alert the authors, allowing them to fix the RTRC or its implementation, thus improving the 

quality of the paper. 

To achieve these goals, a system that allows code modules as well as task sets to be easily shared with re-

searchers and peer-reviewers is required.  

I.I. Contributions 

We present an extensible framework that can be used for both task generation and simulation. This framework 

uses an object-oriented design that allows new binary modules developed by independent researchers to be added 

dynamically. The goal of this framework is to save real-time researchers the effort to implement methods that have 

been previously developed. It also allows peer-reviewers a system to evaluate practical implementations of the 

work they are reviewing.  

After reviewing the definitions used in this paper (Section 1.2) and related work (Section 1.3) ,we 

 

 Present the basics of object and reflection-oriented programming (Section 2) 

 Present the categorization of sub-systems used in real-time analysis (Section 3) 

 Present the design of our framework including class templates and logical flow (Section 4) 

 Present the implementation of our framework in a standard programming language (Section 5) 

 

And, finally conclude with a reflection on current and future work (Section 6).  



 

I.II. Definitions 

The formal definitions of important concepts used in this paper are as follows: 

 

 A task set is a set of n periodic tasks   

 Each task has an associated priority level 

 The arrival time period is time difference between two successive jobs of a task  

 The execution time  of a task, refers to the minimum time each job of the task requires to complete execution 

after its release. In most schedulability studies the execution time is assumed as equal to the Worst-Case Execu-

tion Time (WCET) 

 The release offset of a task is the time of release of its first job 

 The relative deadline of a task is the amount of time within which each job of a task should complete execution 

after its release 

 A binary module refers to a compiled and linked executable or library file 

 Persistence is a property of data to stay valid after the program is unloaded from memory. Persistence is usually 

achieved by systematically storing data in secondary storage  

 A plug-in is a binary module that can be used with another program without requiring any programming effort 

for integration into the main module  

I.III. Related Work 

Several research groups have developed systems for simulating tasks. While several algorithms for task genera-

tion have been proposed ([3],[8],[11]), we are not aware of a library or software available package dedicated to 

task generation. Among the systems for simulating real-time tasks the most notable are RTSIM [17] and Times-

tool [22]. A system called STRESS [2] was developed at York University in the 90‟s, however the current availa-

bility of this tool is unknown. Times-tool features a graphical editor for designing directed graphs, which are veri-

fied for schedulability using timed automata. The tool also has a simulator which can display graphical 

representations of the execution trace. The simulator validates the results derived from the formal verification done 

using timed automata.  

RTSIM , which is an open source project caters to simulation and generation of task execution traces. It fol-

lows a modular design and features four important modules. The first module called  metasim is a library for simu-

lation of discrete event systems. Rtlib is a library which can be used for analyzing tasks through scheduling 

algorithms. The other two libraries ctrlib and jtracer are optional and used for control systems and displaying 

graphical representation of the task execution trace. 

While these tools are very useful in their own right, they do not have any well structured system of task genera-

tion. We have designed a fine grained model for task generation and have developed interface templates that serve 

as the „protocol‟ for any new module to follow. Using the principle of reflection, any new user developed binary 

module that uses the interface templates can be used in our framework without writing any code. Hence, every user 

developed module behaves like a plug-in which integrates seamlessly into the framework.  Every task set is also 

persisted by saving them into files. By persisting task sets, they can be shared with peer-reviewers or used in other 

experiments. 

The commonality between RTSIM / Times-tool and our framework in the area of task simulation. Our simula-

tion framework is also a separate module that can be called automatically after task generation.  We allow re-

searchers (users) to write their own simulation modules, and require their implementations to conform to a 

template defined in the framework. Every simulation module is expected to return a task execution trace which can 

also be written into a file. The users can define their own trace file formats to allow analysis in separate third party 

programs, such as RTSIM‟s jtracer module. Note, that each of the modules required by our framework can be writ-

ten in isolation without having access to the source code of the framework. 

In this respect, being an open source project, RTSIM  also is extensible and has an object oriented structure. 

However, RTSIM is not explicitly designed for easy extensibility and does not require have any defined „protocol‟ 

which new modules have to comply with. Integrating new modules in RTSIM requires serious programming effort, 

as well as a learning curve to understand the code design. 

  



II. Programming Paradigms 

In this section, we review the object and reflection-oriented programming paradigms. A detailed description of 

these paradigms is outside the scope of this work and can be find in respective texts ([4],[9],[19],[20]).  

 

II.I. Object-Oriented  

The object-oriented programming paradigm has been in existence for a long time and is widely used in industry 

and academia. The important concepts of this paradigm relevant to our design are given below. 

 

 Classes 

Classes are the  basic building blocks in object-oriented programming. They provide a template for building ob-

jects, which are actual data representation of the class. A class consists of variables, properties and functions, 

which are called class members. While a value can be read from and written to a variable,  properties are special 

kind of variables to which read / write access can be controlled. Objects are actual memory representations of the 

class and though they will have the same template, the data in each object can be different. Any  number of objects 

can be created from a single class.   

All functionality of our framework is implemented in classes. We use a special type of class called Interface 

which contains declarations of functions but not their implementation. In this paper, user classes refer to those 

classes which are not part of the framework, but are developed by real-time researchers as extensions to the 

framework. 

 

 Encapsulation 

This property allows classes to hide implementation details from other classes. Using the notion of public and 

private variables, properties and functions in a class can either be hidden or made visible to other classes. In our 

context, encapsulation allows different task generation and simulation classes to be used through their publicly 

available members, without knowledge of their implementation details.  

 

 Inheritance 

This is an important property for extensibility in object-oriented programming. Inheritance allows a class to be 

derived from another class, which is called the base class. The derived class retains most of the functionality of the 

base class, and has additional functionality of its own. Derived classes can also overwrite implementations of me-

thods which were used in the base class. All functional classes that are used in our system have to be derived from 

Interface classes provided by the framework. Classes which inherit from an Interface class are said to implement 

that interface. 

 

 Polymorphism 

Polymorphism gives the functionality for an object of the base class to call methods in the derived class. Only 

those functions can be called which are also declared in the base class. In our framework, all user classes have to 

be derived from one of the Interface classes, and functions inside these classes are called using objects of the Inter-

face classes. This allows our framework to use the functionality in user classes without having to know their exact 

name or other implementation details.   

II.II. Reflection-Oriented 

Reflection is the ability of a programming language to analyze and modify the programming logic at run-time. 

Originally proposed in Smith‟s Ph.D. Thesis [19] as an extension to Lisp, it is now available in several commercial 

languages.   Reflection allows extension modules to be independently developed and compiled into executable or 

library files. These can then be loaded by the executable of other programs, and functions inside the extension 

modules can be called. This allows extension modules to be distributed as binary files and attached to the main 

module by a simple process like copying these modules to the file system.  

Reflection is implemented by maintaining separate meta-data information of the executable. In the object-

oriented programming context, meta-data contains information on all variables, properties and functions that are 



used by each class. For detailed information on implementation aspects of  reflection, readers can refer to ([9], 

[20]). 

Reflection is important for the ease of integration of extension modules in our framework. A classical approach 

for extending capability of software is to write code and  compile them into object modules or dynamic link libra-

ries. After making required modifications in the main routine to integrate the object modules or libraries,  the main 

module needs to be compiled and linked again to use the extended functionality. In this approach, even a simple 

program extension requires changes to the source code, and compilation and linking steps have to be replicated. 

This model is time consuming due to several reasons. First, integrating new modules requires development and 

testing effort. Second, it requires a development environment like operating system, compiler or linker version 

which might not be readily available to researchers or reviewers who will have expend considerable effort in set-

ting them up. Finally, changing code which is not self-authored has a learning curve associated with it.  

Implementing extensibility through reflection overcomes all these issues and allows for a simple and easy inte-

gration of extension modules.  

III. Real-time Analysis Sub-Systems 

In this section, we define import sub-systems for real-time analysis. These sub-systems have been classified 

under the categories of task generation and simulation. Each of these sub-systems can be independently developed 

by separate researchers. The breakdown of real-time analysis into such sub-system offers a fine-grained control and 

offers several options for setting the configuration of the analysis. 

 

III.I. Task Generation 

The process of creating periods and execution times, generating task sets which conform to certain schedula-

bility and satisfiability conditions and writing every task set to files for persisting data is classified under task gen-

eration. The following summarizes each of these important sub-systems.  

 

 Period Generator 

Generates all the task arrival periods for use in task sets. Periods can be generated based on various criterions 

like selection within a bounded range using random or pseudo-random algorithms. Since several schedulability 

analysis models are based on the feasibility interval, which is dependant on the LCM of all periods present in the 

task set, it might be desirable to select periods with low LCM values. Methods to generate periods with low LCM 

values have been shown in ([3],[11]), and these methods can be easily implemented to work with our framework.  

 

 Prime Number Generator 

Prime numbers are required by some period generator algorithms such as the ones in ([3],[11]). Prime number 

generation is one of the classical problems in numerical theory for which no polynomial time algorithm exists. 

However, there are several algorithms available  some of which have complex implementations. By defining prime 

number generation as a separate sub-system we allow researchers to share their implementations of efficient prime 

number algorithms, which can then be used for period generation.  

 

 Execution Time Generator 

Like task periods, execution times are used for creating task sets and can be generated using random or pseudo-

random algorithms.  A  fixed set of execution times can also be used.  

 

 Release Offset Generator 

In a synchronous system, the release offset  is 0, while in an asynchronous system the release offsets will be 

different. A release offset generator can be developed for synchronous system that sets all release offsets to 0, and 

various approaches like random selection can be used to generate the release offsets for asynchronous systems. 

 

 Task Set Generator 

This sub-system generates the actual tasks based on the periods, execution times and release offsets. Tasks can 

be generated by combining task periods with execution times, randomly or based on certain algorithms like the 

„UUniFast „algorithm [8].  



The Task Set generator can also use its own internal system  for creating periods, execution times and release 

offsets. Hence, it is possible to generate task sets based on probability theory like Poisson‟s distribution. 

 

 Schedulability Tests 

Several schedulability tests for different execution models have been developed over the past several years. 

The schedulability tests can be divided into necessary, sufficient or exact types. A task set that fails the necessary 

test, is guaranteed to be unschedulable, while a task set that passes a sufficient test is guaranteed to be schedulable.  

However, even if the task passes the necessary test it can be unschedulable, or if it fails the sufficient test it can 

still be schedulable. An exact test gives a guaranteed result as to the schedulability of the task set. However, unlike 

sufficient or necessary test, exact tests are computationally intensive. Among the popular schedulability tests are 

Liu and Layland‟s [13] and Hyperbolic bound [6].  Our framework allows all three kinds of tests to be used in the 

framework. 

 

 Satisfiability Tests 

Under satisfiability condition we allow researchers to define  restrictions on task sets that do not fall under any 

of the formal schedulability tests. For example, if the combined utilization of task set should be more than a certain 

value, or there should be a minimum difference between task periods, then these conditions are classified under 

satisfiability tests. 

 

 Formatted File Writer 

Writing task set to files, fulfills an important requirement of our framework to persist task set data for archival 

and use in the peer-review process. The task sets files are written by this sub-system. Defining the process of writ-

ing files as separate sub-system, gives the capability to users to define their own file formats for use in other pro-

priety programs.  

 

III.II. Task Simulation 

Once the tasks have been generated they can be simulated. The sub-systems required for task simulations are 

described below. 

 

 Formatted File Reader 

In our framework, task sets cannot be passed from memory directly to the simulation. This has been done to en-

force persistence of task sets. While the task set data is written to files using the formatted file writer , a  sub-

component of this file writer is the formatted file reader. The file reader reads the contents of the files and converts 

it to task set data. For every formatted file writer there is a corresponding file reader which  reads task set data in 

the same format written by the file writer. 

 

 Execution Model 

This sub-system defines the execution semantics of  real-time tasks. The most common model is the preemp-

tive model where upon release, higher priority tasks can preempt any executing lower priority tasks and the 

preempted tasks can resume execution from the point they were preempted. In the non-preemptive execution mod-

el, lower priority tasks cannot be preempted, while in the P-FRP [13] execution model, the lower priority tasks are 

preempted. Lock-free execution [1] and Transactional memory [10] are other well-known execution models. The 

execution model in our framework computes the execution of a task at each discrete time interval till a maximum 

specified time. 

 

 Execution Trace Writer 

The output generated by the task simulator is a list that shows the task executing at each discrete time. This is 

called the execution trace. Our framework allows researchers to generate customized output file for the execution 

trace. The main motivation for doing this is to use the execution trace for building task graphs in external drawing 

programs. For example, if we write trace files in the format required by  RTSIM, we can use RTSIM‟s jtracer 

module to build execution graphs for task sets that were simulated in our framework.  

 



IV. Framework Design 

In this section, we present the framework design that allows for integration of extensible modules for each real-

time sub-system presented in the previous section. We first describe the Interface classes for each sub-system and 

show how using reflection, the interface classes are used to implement each sub-system as a plug-in. We also 

present the logical flow of our framework. 

IV.I. Sub-System Interfaces 

Our framework defines Interface classes for each real-time sub-system. In this section, we discuss the template 

of each Interface class. Descriptions on the templates are supplemented with UML class diagrams of Interface in 

figs. 1 and 2. The UML diagrams have been generated using Microsoft Visual Studio. 

 

 Root Interface 

Certain properties are required in each sub-system plug-in. To allow this, we define a root interface from which 

other sub-system interfaces are derived. The root interface has three properties description, developer and mes-

sage. The description   property contains a short description of the module and developer consists of the author of 

that module. The message is used to pass error or other message to the main user interface of the framework. IRoo-

tInterface is the identifier of this interface in the class diagram. 

 

 Period Generator 

Identified by IPeriodGenerator, it consists of  two functions. While „GetPeriods‟ generates all the periods 

„GetMaximumUniquePeriod‟ sets returns the maximum number of unique period sets possible for the specified 

configuration. 

 

 Prime Number Generator 

Identified by IPrimeNumberGenerator,  it has a single function that returns the prime numbers generated by 

the method implementation. 

 

 Execution Time Generator 

Identified by IExecutionTimeGenerator, it has a single function that returns the execution times generated by 

the method implementation. 

 

 
Figure 1. UML Diagram of Task Generation classes 



 Release Offset Generator 

Identified by IReleaseOffsetGenerator, it has a single function that returns the release offset generated by the 

method implementation. 

 

 Task Set Generator 

Identified by ITaskSetGenerator, it has a single function to which the generated period, execution times and re-

lease offset are passed. The task set generator creates task sets based on these parameters and passes every generat-

ed task set to the framework. The framework then runs the task set through the specified schedulability and 

satisfiability conditions and either accepts or rejects the task set. If the task set is rejected the task set generator 

will generate another task set. 

 

 Schedulability Tests 

Identified by ISchedulabilityTest, it has a single function that takes a task set and returns a Boolean true/false 

value depending whether the task set passes the test. 

 

 Satisfiability Tests 

Identified by ISatisfiabilityTest, it as a single function that takes a task set and returns a Boolean true/false value 

depending on the task set passing the test. 

 

 Formatted File Writer 

Identified by IFileFormatter, it has two main functions. „WriteFiles‟ takes a set of task sets and writes their data 

into files. Task sets can be written into any format depending on the implementation, and each task set is required 

to be written in separate files. „ParseTaskSet‟ is the formatted file reader sub-system and takes a input string con-

taining a task set file which was written by the „WriteFiles‟ function and converts it to a task set data object. Note 

that both the formatted file writer and formatted file reader are implemented in the same class since their functions 

are complementary. 

 

 Execution Model 

Identified by IExecutionModel, it has a single function that takes a task set and simulates it based on the im-

plementation. The time till which the simulation should be run is also passed to the „SimulateExecution‟ function. 

It returns a Boolean value of true/false to denote schedulability of the task set. Besides this, it has several proper-

ties that define the state of the simulation. The ExecutionTrace property contains  execution trace data showing the 

tasks which execute at discrete time. The LastDiscreteTimeValue is used to denote the  last discrete time when the 

task was found unschedulable or schedulable. OtherInfo is an array that can contain information specific to the si-

mulation that an implementation can use.  

Note that it is not required that all the properties to have values. This allows flexibility in the simulation. For 

example, if the simulation is not based  on discrete times the ExecutionTrace and LastDiscreteTimeValue can be 

left blank.  

 

 

 Figure 2. UML Diagram of Task Simulation classes 



 Execution Trace Writer 

Identified by IDiscreteExecutionTraceWriter, it has two main functions. „WriteFile‟ takes as input the execu-

tion trace data and writes it to a file based on some file format chosen by the implementation. The „ParseTaskEx-

ecutionTrace‟ reads an execution trace file in the same format as used by „WriteFile‟ and converts it to execution 

trace data. Currently, our framework does not utilize the execution trace data. However, the execution trace data 

can be used to build task graphs through other programs. In  future work, we will build a module to plot the execu-

tion trace for which the  „ParseTaskExecutionTrace‟ function will be used.  

 

IV.II. Sub-System Plug-Ins 

In the previous section, we have presented the Interface classes that form the foundation of the framework. 

These Interface classes do not implement any method, but define a standard or protocol to which very new module 

has to comply with. New modules which derive from these Interface classes can be compiled into a binary file and 

placed in the same directory as the executable. Using reflection our system can find these modules and use the 

functionality implemented in them 

For example, consider a developer who wants to write a new schedulability test for use in our framework. The 

developer will write a class and inherit it from the ISchedulabilityTest interface. Because of this inheritance, the  

„IsSatisfied‟ function will have to be implemented. Since ISchedulabilityTest inherits from IRootInterface the de-

veloper will also have to define the description, developer and message properties. If the method or any of the 

properties are not declared, the module will not be compiled. After writing the implementation for the „IsSatisfied‟ 

function the developer will compile the binary module and attach it to our framework. Based on the implementa-

tion for the framework, a module can be attached by a simple process like placing the binary module in the same 

file system as the framework. 

When the framework is activated, it has no information on  the number or type of binary modules that are 

available for use. Using reflection, the framework queries all the binary modules attached to it and creates objects 

for the classes in the modules based on the Interface they derive from.    These objects are then used for the task 

generation and simulation purposes. This way the „IsSatisfied‟ method in the implementation of the ISchedulabli-

tyTest interface will be called. 

By using reflection and writing classes that derive from the sub-system Interfaces, modules written by different 

developers can be used in the framework without any development effort. Hence, each class written by users that 

derives from our framework‟s interface has all properties required from a plug-in, and these classes will be referred 

to sub-system plug-ins in the rest of this paper.  

 

IV.III. Logical Flow 

We have shown how our framework identifies sub-system plug-ins and integrates them. In this section, we 

show the sequence of steps in which various sub-systems are called to generate task sets as well as simulate them.  

Fig. 3 shows the flow chart for these base steps. First the task sets are generated and for this the periods, ex-

ecution times and release offsets sub-system plug-ins are used.  These values are then passed to the task generator 

which combines the parameters to generate task sets. Every generated task set is verified through  available schedu-

lability and satisfiability test plug-ins. If the task set satisfies the tests it is added to the master list, else a new task 

set is generated. When the required number of task sets has been added to the master set, the task generation 

process stops and the task set files are written to the file system using the implementation of IFileFormatter.  

Due to high computation times, running the simulation after task generation is an optional feature of the 

framework. If the task sets have to be simulated the required implementation of IExecutionModel is used.  Since, 

execution traces can be large and take disk space writing execution trace generated by the simulation is also an op-

tional feature. If enabled, execution trace files are written after the simulation is done. 

 

IV.IV. Support Classes 

Besides the Interface classes, the framework also provided several classes for use by sub-system plug-ins. 

These classes deal with task, task sets, periods, configuration of task generation as well as common mathematical 

functions required in real-time analysis like lowest common multiple (LCM) and combinatorial arithmetic. We 



briefly describe some of these important classes. Detailed layouts of these class are provided as UML diagrams in 

fig. 4. 

 

 CTask 

This class contains task parameters such a execution times, periods, release offsets and a unique identifier. The 

utilization property returns the ratio of execution time to arrival period.  

 

 CTaskSet 

Is the container for CTask objects. The properties of Hyper-period and Utilization return the LCM of periods of 

all tasks and their combined utilization factors respectively. It has functions to return tasks in priority order as well 

as to change the priority order to rate-monotonic. Functions to change priority order based on a different criterion 

can also be added by extending this class. Objects of this class are created by the ITaskGenerator implementation, 

and it is also an input parameter to IExecutionModel. 

 

 CPeriodSet 

Is the container for sets of all periods generated by the IPeriodGenerator implementation. Provides functions 

to add or remove periods as well get LCM of periods. 

 

 CConfiguration 

This class contains all the user-defined attributes required for task generation and simulation. These include 

bounded ranges for task period, execution times and release offsets, the number of task sets that have to generated 

and the number of tasks in each set. There is only one instance of the CConfiguration object which is passed as a 

function parameter to several sub-system plug-ins, and the plug-ins have freedom to use any of the user defined 

properties.  

V. Implementation 

The framework design presented in this paper, can be implemented in any of the popular object-oriented pro-

gramming languages which support the reflection capability. However, due to wide use the choice essentially 

comes down to C++, Java or a language in Microsoft‟s .NET framework. A detailed discussion on relevant merits 

of each of these platforms is outside the scope of this paper. While there are reflection libraries available for C++, 
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we feel that the reflection capabilities of C++ are not in par with those of Java or .NET. Java has an inbuilt library 

„java.language.reflect‟ that provides the classes and functions to use reflection. After careful analysis, based on the 

choice of several programming languages, a powerful and well-document capability for reflection, and powerful 

user interface features we selected to implement our framework in the language C# running on Microsoft‟s .NET 

framework. Like Java, .NET programs are compiled into an intermediate language and executed by a just-in-time 

compiler called common language runtime (CLR). While there is a small performance cost as compared to ma-

chine-language compiled code, this cost in negligible for an application used for offline task generation and simu-

lation. An extension to .NET [15] is also available for the Linux operating system.  

Our implementation of the framework is called TGSIMEx (Task Generation and Simulation – Extensible) and 

is available as a Microsoft Windows portable executable file [21]. The user interface of this implementation is 

shown in Fig. 5. The user has to select a directory to write the task files and enter various configuration parameters 

such as bounded ranges for execution times, arrival periods and release offsets.  

TGSIMEx has a „PlugIns‟ directory where all sub-system plug-in files are placed. When the application is 

launched it iterates through all the files placed in the  „PlugIns‟ directory and looks for classes that inherit from one 

the sub-system interfaces. The framework then creates objects for each of these classes, accesses the description 

and source property required by IRootInterface and displays it in the user interface. Since only one generator for 

periods, execution times, release offsets and task sets is required, we allow the user an option to select one of these 

among those that are available. Users are allowed to select more than one schedulability and satisfiability test.  

 To test the framework, we created two .NET binary modules available as dynamic link libraries (DLL‟s), that 

provides at least one implementation of each sub-system interface. The „UHPeriodLib.dll‟ contains three imple-

mentations of period generators, while „UHGeneralLib.dll’ provides implementation for all the other sub-system 

interfaces. We have implemented the  schedulability tests provided in ([6],[14]), and provide two implementations 

of formatted file writer. For execution models, we have implemented the standard preemptive execution model as 

well as  the abort-restart execution model of P-FRP. Both these models are used in the research done by us at the 

Real-Time Systems Lab, University of Houston. In fig. 5, note the use of description and source properties to de-

note each plug-in that is available for use in the framework. All the schedulability tests are listed under the group 

„Schedulability Tests‟, and a checkbox is provided for the user to make a selection.  

If no schedulability or satisfiability tests are required during task generation, no selection is required. The vari-

ous generators for periods, execution times etc. can be selected from the „Options‟ menu. In Fig. 5 we also show 

the selection window for task periods. All the three period generators implemented in „UHPeriodLib.dll‟ are listed. 

Users are required to make at least one selection for each of the generators as well as the file formatter, otherwise 

the task generation will not start. Both task generation and simulation takes place in independent threads allowing 

both these processes to be stopped if the user desires. Exception handling routines are used to capture any error 

that might occur in the user developed sub-system classes. The simulation module can also be launched indepen-
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dently without any task generation. For this the location to a directory containing all task set files has to be se-

lected. 

We now describe how TGSIMEx can be used to achieve the twin goals of extensibility and as an aid in the 

peer review process. 

IV.I. Extensibility 

The sub-system interfaces are available in a .NET binary module called „TGSIMExLib.dll‟, available from 

[21]. Consider a case where a user has developed a RTRC which is a new exact schedulability test for rate-

monotonic scheduling. The user will include the file „TGSIMExLib.dll‟ in their project and implement a class that 

derives from the ISchedulabilityTest interface. Once all the functionality in the class has been developed,  the re-

searcher will compile it into a .NET DLL and place it in the ‟PlugIns‟ directory. When TGSIMEx is launched it 

will find the implementation of ISchedulabilityTest through reflection and display it under the „Schedulability 

Test‟ list.  The user selects this test and enters the task generation parameters. For execution model, the user selects 

the „Preemptive Execution Model‟ and for file formatter the rate-monotonic formatter is selected, plug-ins for 

which have been already been developed by us. 

Once the task generation process starts, only those task sets will be generated  which satisfy the exact schedu-

lability tests developed by the user. Once the simulation is complete the researcher can check to see that none of 

the task sets are unschedulable in the simulation. If all tasks sets are schedulable in the simulation, it provides the 

necessary proof for the developed exact test . To test the negation of the test, the user can create another implemen-

tation of ISchedulabilityTest which only clears those task sets which fail the exact test. Using simulation it can be 

verified that all the task sets generated are actually unschedulable. The .NET DLL file that has the implementation 

 
Figure 5. Main user interface of TGSIMEx 



of the schedulability test can then be shared with other researchers who only have to place the file in the „PlugIns‟ 

directory to use its functionality. Similarly, different types of RTRC can be developed and tested in TGSIMEx.  

Note that users can also incorporate their own graphical user interface (GUI) features if the GUI provided by 

TGSIMEx is not sufficient. This can be done by embedding them inside the classes and displaying the GUI com-

ponent from inside the public which are called by the framework.  Hence, TGSIMEx can be extended both in terms 

of functionality and user-interface and the extended modules can be easily used without writing any code.  

 

IV.II. Peer-Review Process 

Consider the RTRC example considered in the previous section. Let‟s assume a paper on this RTRC has been 

submitted for peer-review in some conference, and the paper contains the results of experimental validation of the 

RTRC done through TGSIMEx. Since, TGSIMEx requires all task sets to be persisted in files, the developers will 

give reviewers access to all of the task set files, along with the files containing the plug-in. The files can be made 

available either through the author‟s website or a separate submission system in the conference web site. The re-

viewers will download the task sets files to some directory and save the ISchedulabilityTest plug-in to the „PlugIns‟ 

directory. This process can be done in a few minutes. 

 When TGSIMEx is started, the reviewers will run the task sets through the simulator to check their schedula-

bility. The reviewers will then use the new schedulability test to generate additional task sets to check the correct-

ness of the ISchedulabilityTest plug-in. This way correctness of both the task sets and the plug-in can be verified, 

and in case of any discrepancy, the authors can be notified. Experimental validation of the RTRC by the reviewers  

gives them more confidence on the  contributions made by the paper and helps them make an informed decision. 

While there is a small learning curve associated with any first time use, the cost of it is minimal if TGSIMEx 

or another implementation of our framework becomes a common tool for task generation and analysis. 

VI. Conclusions and Future Work 

We have presented a framework for use in experiments and validation of real-time research. The design phi-

losophy of this framework  is easy extensibility which allows real-time researchers to share their implemented me-

thods with each other without any separate integration effort. This is achieved by using modern software 

engineering principles of object and reflection-oriented programming. Another intended goal of our framework is 

to aid in the peer-review process. This is done by an built-in mechanism to store task sets as well as allow RTRC‟s 

to be distributed as  sub-system plug-ins. 

An implementation of this framework has been done in Microsoft‟s .NET framework. This framework called 

TGSIMEx is available for use by real-time researchers. We have also developed several plug-ins for each sub-

system. The development of TGSIMEx clearly demonstrates that the framework design is practically feasible. 

We believe this framework design can be a starting point for a more standard model that can be used by real-

time researchers for task generation / analysis as well as improving the peer-review process. Such a model leads to 

better quality research both in terms of saving time and allowing greater scrutiny of presented work. Future work 

on framework design will involve interface specification for drawing task charts, as well as specifications that can 

be used for complex real-time analysis.   Extensions to TGSIMEx will be done to make it more user-friendly and 

provide a  good quality user documentation.  
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