

Partitioned Scheduling of P-FRP in
Symmetric Homogenous Multiprocessors*

Chaitanya Belwal, Albert M.K. Cheng

Computer Science Department

University of Houston
Houston, TX, 77204, USA

http://www.cs.uh.edu

UH-CS-11-01
Feburary 1, 2011

Keywords: Multi-processor scheduling, Response Time
Analysis, Real-time Systems, Functional Programming

Abstract

Functional Reactive Programming (FRP),* is a declarative approach to modeling and building reac-
tive systems. Priority-based FRP (P-FRP) has recently been introduced as a FRP formalism that guar-
antees real-time response. P-FRP guarantees that when a higher priority task is released, the system will
immediately preempt any executing lower-priority tasks. To maintain guarantees of state-less execution
offered by a purely functional model of programming, P-FRP implements a transactional nature of exe-
cution. Each higher priority task in P-FRP can abort a lower priority task forcing it to restart. Existing
work on partitioning tasks in multi-processor systems have been focused on the classical preemptive
model† of execution. However, due do its transactional nature of execution, the schedulability tests used
in the partitioning algorithms for the classical preemptive model, cannot be applied ‘as is’ to the P-FRP
execution model. While multiprocessor response time analysis of P-FRP has been done in previous
work, partitioning schemes for tasks in multi-processor systems have not been presented yet. In this pa-
per, we present an exact schedulability test for P-FRP and use it in two existing first-fit partitioning
schemes. We also introduce a new first-fit partitioning scheme based on the processing time of tasks,
which yields better results than the other two schemes in experimental analysis. We also show that the
number of processors required to schedule tasks in P-FRP will be more than or equal to the number of
processors required to schedule the same in the preemptive model.

* This work is supported in part by U.S. National Science Foundation under Award no. 0720856

† In this paper the classical preemptive model refers to a real-time system in which tasks can be preempted by higher priority
tasks, and can resume execution from the point they were preempted

Abstract

Functional Reactive Programming (FRP),*is a declarative approach to modeling and building reac-
tive systems. Priority-based FRP (P-FRP) has recently been introduced as a FRP formalism that guar-
antees real-time response. P-FRP guarantees that when a higher priority task is released, the system will
immediately preempt any executing lower-priority tasks. To maintain guarantees of state-less execution
offered by a purely functional model of programming, P-FRP implements a transactional nature of exe-
cution. Each higher priority task in P-FRP can abort a lower priority task forcing it to restart. Existing
work on partitioning tasks in multi-processor systems have been focused on the classical preemptive
model‡ of execution. However, due do its transactional nature of execution, the schedulability tests used
in the partitioning algorithms for the preemptive model, cannot be applied ‘as is’ to the P-FRP execution
model. While multiprocessor response time analysis of P-FRP has been done in previous work, partition-
ing schemes for tasks in multi-processor systems have not been presented yet. In this paper, we present
an exact schedulability test for P-FRP and use it in two existing first-fit partitioning schemes. We also
introduce a new first-fit partitioning scheme based on the processing time of tasks, which yields better
results than the other two schemes in experimental analysis. We show that the number of processors re-
quired to schedule tasks in P-FRP are more than or equal to the number of processors required to sched-
ule the same in the preemptive model.

Index Terms

Multi-processor scheduling, Response Time Analysis, Real-time System, Functional Programming

I. Introduction

Reactive programming is a paradigm where program variables dependent on external input are automatically
updated with any change in input. Functional Reactive Paradigm (FRP) [39], is a declarative programming lan-
guage for modeling and implementing reactive systems. It has been used for a wide range of applications, notably,
graphics [17], robotics [32], and vision [33]. FRP captures both the continuous and discrete aspects of a hybrid
system using the notions of behavior and event, respectively. FRP is implemented as a domain-specific language
in Haskell [20], and benefits from the wealth of abstractions provided in this language. However, Haskell pro-
vides no real-time guarantees, and therefore neither does FRP.

To address this limitation, resource-bounded variants of FRP were studied [24],[37],[38]. It was shown that a
variant called priority-based FRP (P-FRP) [24] combines both the semantic properties for FRP, guarantees re-
source boundedness, and supports assigning different priorities to different events.

* This work is supported in part by U.S. National Science Foundation under Award no. 0720856
‡ In this paper the classical preemptive model refers to a real-time system in which tasks can be preempted by higher priority tasks, and can resume execu-
tion from the point they were preempted

Partitioned Scheduling of P-FRP in
Symmetric Homogenous Multiprocessors *

Chaitanya Belwal and Albert M.K. Cheng

Department of Computer Science
University of Houston, TX, USA

In P-FRP, higher priority events can preempt lower-priority ones. However, a requirement [36] in the func-
tional programming model is that the state of the system cannot be changed, and no function can have side ef-
fects. To maintain this guarantee of ‘state-less’ execution, the functional programming paradigm requires the
execution of a function to continue uninterrupted. To comply with this requirement, as well as allow preemption
of lower priority events, P-FRP implements a multi-version commit model of execution. Using only a copy of the
state during event execution and atomically committing these changes at the end of the event handler (or task), P-
FRP ensures that handling an event is an “all or nothing” proposition. This preserves the easily understandable
semantics of the FRP and provides a programming model where response times to different events can be
tweaked by the programmer, without ever affecting the semantic soundness of the program. Thus, a clear separa-
tion between the semantics of the program and the responsiveness of the implementation of each handler is
achieved.

The benefits of using the functional programming over the imperative programming style (C++, Java, Ada
etc.), are several. The functional programming paradigm allows the programmer to intuitively describe safety
critical behaviors of the system, thus lowering the chance of introducing bugs in the design phase. Its state-less
nature of execution does not require use of synchronization primitives, like mutexes and semaphores, reducing
the complexity in programming. This makes the functional programming model ideal for parallel computing,
since data sharing conflicts [35], an important consideration in the preemptive execution model, are easily
avoided. Hence, P-FRP presents an alternate and promising approach for parallel programming in multi-processor
and multi-core systems.

With the availability of low-cost multi-core processors and single boards with multiple processors, more real-
time and embedded systems are being implemented as multi-core or multi-processor based. While multiple cores
/ processors increase the throughput of the system, in real-time implementations where tasks have to complete
within deterministic bounds, the assignment of tasks to each individual core/processors has to be carefully deter-
mined. Presence of multiple processors also gives fail-safe redundancy, a vital requirement in safety critical sys-
tems.

Multi-processor systems can generally be divided into two groups, based on the nature of processors. In a
homogenous system, all processors are of the same type and execute at the same speed. A heterogeneous multi-
processor system can have processors of different types which may be running at different speed. Furthermore,
symmetric multi-processor systems share a common memory bus, while in asymmetric multiprocessor systems
each processor has access to an independent memory bus. Scheduling algorithms for multi-processor systems can
be divided into two distinct categories. Partitioned scheduling assigns a processor to every task and all jobs of
that task will run on that specific processor. Global scheduling, on the other hand, allows tasks to migrate
among processors during run time, and hence task assignment to processors is dynamic in nature, as compared to
fixed processor assignment in partitioned scheduling. Both these algorithms can be run off-line before the system
is started if all task parameters are known a priori , or on-line while the system is running.

In this work, we study off-line partitioning of tasks in symmetric multi-processor system. Our objective is to
find the minimum number of processors required to feasibly schedule the tasks in a given P-FRP task set. A fea-
sible schedule is one in which task execution follows a strict priority order, and no task in the system misses its
deadline as long as the system is in operation.

Priorities to tasks can be assigned in a static and dynamic way, and the current implementation of P-FRP only
allows static priority assignment. Unlike dynamic priority assignment, in fixed priority scheduling, priorities to
tasks in the system are assignment off-line and remain fixed as long as the system is running. Common dynamic
priority assignment policies are the earliest-deadline-first (EDF) [26] and least-laxity-first (LLF) [28]. The most
common fixed priority assignment scheme is the rate-monotonic (RM) priority assignment, which Liu and Lay-
land [26] have shown to be an optimal priority assignment in the preemptive execution model. The optimality of
the RM-priority assignment is derived the fact that, if a task set is schedulable by any other priority assignment
then it is also schedulable by RM priority assignment. However, Leung and Whitehead [25] showed that the op-
timality for RM priority assignment is valid only for a synchronous (release offset of all tasks is the same) release
of tasks.

Several important algorithms have been proposed for the partitioned allocation of tasks in symmetric homo-
geneous multiprocessor systems. Dhall and Liu [16] have given the Rate-Monotonic-First-Fit-Scheduling
(RMFFS) and Rate-Monotonic-Next-Fit-Scheduling (RMNFS) algorithms which combine bin-packing and rate-

monotonic scheduling to assign tasks to processors. Davari and Dhall [13],[14] have given the First-Fit-
Decreasing-Utilization-Factor (FFDUF) and the NEXT-FIT-M algorithms. Oh and Son [30] have given the Rate-
Monotonic-First-Fit-Decreasing-Utilization (RMFFDU) which uses a different rate-monotonic schedulability test
and is an improvement over the RMFFS and RMNF algorithms.

One common aspect of these algorithms is that they use a sorting order for the first-fit scheme. The sorting is
performed on the basis of arrival rates or utilization ratios [26]. Another common aspect of these algorithms is
that the schedulability test for tasks assigned to a processor, is performed based on criterion defined for the RM
scheduling policy. While this criterion is correct in the preemptive execution model, due to a different execution
model, the RM-priority assignment is not the optimal priority assignment for P-FRP (see example in Section 3).
Hence, none of the first-fit algorithms that have been presented so far are guaranteed to provide correct results in
P-FRP. In this paper, we modify existing first-fit based algorithms to use an exact schedulability test designed for
P-FRP. We also present a new first-fit criterion based on the processing time of tasks, which is well suited for
the P-FRP execution model.

Symmetric multiprocessing for P-FRP was first discussed in [12]. The work in [12] only deals with response
time analysis under a pre-assigned partitioning of tasks. However, response time analysis can be suitably per-
formed only when a good partitioning of tasks among multiple processors is known. This work analyzes such par-
titioning schemes and suggests the most suitable partitioning for P-FRP. Knowledge of such partitioning schemes
is vital to any multi-processor implementations of P-FRP. Our work also benefits real-time research beyond the
functional programming model of P-FRP. After modifications, methods presented in this work can be applied for
multi-processor partitioning in systems with similar abort-restart execution models as transactional memory [21],
lock-free execution [2] and real-time databases [7].

I.I Contributions

We first present basic uniprocessor schedulability conditions (Section III) and then propose an exact sched-

ulability test for P-FRP (Section IV). For any first-fit scheme such an exact test is vital for determining the sched-
ulability of some task assignment to processors. We present modified forms of the first-fit decreasing rate
(Section V) and first-fit-decreasing utilization factor (Section VI) algorithms. Since, every preempted task is
aborted, additional costs are induced on the response time of lower priority tasks. The abort cost is related to the
processing time of a task, hence a first-fit partitioning scheme based on the processing time of tasks is also devel-
oped (Section VII). Lastly, we present a method to compute the optimal partition for any given task set (Section
VIII). These algorithms can be applied for static partitioning to any real-time multiprocessor implementations of
P-FRP.

The relative benefits of each of these algorithms have determined using rigorous experimental analysis (Sec-
tion IX). We have computed the processor requirements under each partitioning scheme for unique task sets
having 6,8 and 10 tasks and shown comparisons between various parameters. Processor requirements between the
P-FRP and preemptive execution models have also been compared. Apart from proving the correctness of our
algorithms, these results provide data to engineers on the relative merits of each partitioning scheme. We con-
clude this paper by reviewing related work (Section X) and a reflection on these results (Section XI).

II. Basic Concepts and Execution Model of P-FRP

In this section, we introduce the basic concepts and the notation used to denote these concepts in the rest of

the paper. In addition, we review the P-FRP execution model and assumptions made in this study.

II.I Basic Concepts

Essential concepts for P-FRP are tasks and their associated priority, their associated time period and the con-
cept of arrival rate and their processing time; the concept of a time interval and task jobs therein. The notation
and formal definitions for these concepts as well as a few others used in the paper are as follows:

• Let task set Γn = {τ1, τ2,…, τn} be a set of n periodic tasks
• In a multi-processor system let Γn[m] represent the set of n tasks that are statically assigned to execute in

processor m
• The priority of τk ∈ Γn is the integer prk. If, prj > prk then τj has a higher priority than τk
• Tk is the time period between two successive jobs of τk
• Ck is the worst-case execution time (WCET) for τk
• tcopy(k) is the time taken to make a copy of the state before τk starts execution (see Section 2.2.1)
• trestore(k) is the time taken to restore the state after τk has completed execution (see Section 2.2.1)
• Pk is the processing time for τk. Processing of a task includes execution as well as copy and restore opera-

tions. Hence, Pk = tcopy(k) + Ck + trestore(k)
• [t1, t2) represents a time interval such that: ∀t∈ [t1, t2) t1 ≤ t < t2 ∧ t1 ≠ t2 , t1 and t2 are absolute times
• Rk,m represents the release time of the mth job of τk
• Φk represents the release offset, which is the release time of the first job of τk. Or, Φk = Rk,1. Hence, Rk,m =

Φk + (m–1)·Tk
• A level-k idle period is defined as a point in time, t in which no task having a priority of prk or higher is

awaiting execution and ready to execute strictly before t
• A finite contiguous interval of non-zero length [t1,t2) is a k-gap, if every t∈[t1,t2) is a level-(k+1) idle period
• The threshold of the k-gap [t1, t2) is time t1
• Dk is the relative deadline of τk. After its release a job of τk should complete execution within Dk time units,

otherwise the task will have a deadline miss. For this study, Dk = Tk.
• The total utilization factor (U) of a task set is the sum of ratios of processing time to arrival periods of every

task. It is represented by U in this paper. Hence, U = ∑
=

n

i i

i

T

P

1

• A feasibility interval is the time interval [tH, tH + H) such that if all tasks are schedulable in [tH, tH + H) then
the tasks will also be schedulable in the time interval [0, Z): Z→∞. H is the length of the feasibility interval
and tH is its start time

• PAk represents the processor statically assigned to process task τk, by some partitioning algorithm
• An optimal partition is one, which requires the least number of processors. No other partitioning scheme

can exist which can feasibly schedule a P-FRP task set in lesser number of processors than that required in an
optimal partition

• Interference on a task τk is the process where the execution of τk is interrupted by the release of a higher pri-
ority task.

II.II Execution Model and Assumptions

In this study, we assume a symmetric homogenous multi-processor system with a single time clock. The P-

FRP tasks running in these processors do not have precedence constraints. The current implementation of P-FRP
uses fixed priority scheduling, hence all tasks are assigned a static priority before execution.

 In the P-FRP execution model, when job of a higher priority task is released it can immediately preempt an
executing lower priority task, and changes made by the lower priority task are rolled back. The lower priority task
will be restarted when the higher priority task has completed execution. When some task is released, it enters an
execution queue Q which is arranged by priority order such that all arriving higher priority tasks are moved to the
head of the queue. The length of the queue is bounded and no two jobs of the same task can be present in the
queue at the same time. This requires a task to complete execution before the release of its next job. To maintain

this requirement, we assume a hard real-time system with task processing deadline equal to the minimal neces-
sary wait. Hence, Dk = Tk.

Once a task τi enters Q, two situations are possible. If a task of lower priority than τi is executing, it will be
immediately preempted and τi will start execution. If a task of higher priority than τi is executing, then τi will wait
in the Q and start execution only after the higher priority task has completed. An exception to the immediate pre-
emption is made during copy and restore operations which is explained in the following paragraph.

II.II.I Copy and Restore Operations

In P-FRP, when a task starts execution it creates a ‘scratch’ state, which is a copy of the current state of the

system. Changes made during the processing of this task are maintained inside such a state. When the task has
completed, the ‘scratch’ state is restored into the final state in an atomic operation. Therefore, during the restora-
tion and copy operations, the task being processed cannot be preempted by higher priority tasks. If the task is
preempted between copy and restore operations, the scratch state is simply discarded. The time to discard the
state of an aborted task is minimal has been ignored in this study. The context-switch between tasks only involves
a state copy operation for the task that will be commencing execution. The time taken for copy (tcopy) and restore
(trestore) operations of τk is part of the processing time of the task, Pk. For this study, the values of tcopy(k) and
trestore(k) for all tasks are kept same and equal to a single time unit of execution. Hence,

∀τk ∈Γn, tcopy(k) = trestore(k)=1.

Such small values of tcopy(k) and trestore(k) are reasonable as copy and restore operations are only a fraction of the
worst-case execution time of the task. However, for better accuracy of results, in ongoing work we will be devel-
oping methods where the values of trestore(k) and tcopy(k) could be variable.

II.II.II Critical Instant in P-FRP

In response time analysis for fixed-priority scheduling, a critical-instant of release is assumed. Critical instant

is the time, at which task releases lead to the worst-case response time (WCRT) [26] of the task being analyzed.
In their seminal work, Liu and Layland [26] showed that in fixed-priority scheduling for the preemptive model,
the critical-instant for a lower priority task τi occurs when it is released at the same time as all higher priority
tasks. Or, tasks τi and higher priority tasks are released synchronously. In P-FRP, a synchronous release of tasks
does not lead to the WCRT, for all cases. This is proven by an example given in [8], where the WCRT is caused
by an asynchronous (tasks have different release offsets) release of higher priority tasks.

To determine the WCRT for a given P-FRP task, all possible combinations of release offsets of higher prior-
ity tasks have to be generated. Then the actual response time under each of the possible release offset combina-

Figure 1(a): τ1 has a deadline miss at time 80 when the pr3 > pr2 > pr1. τ1 ,τ2 and τ3 are represented by T1, T2 and T3 respectively

Figure 1(b): All tasks are schedulable in the feasibility interval [0,240) if the priority order is changed to pr1 > pr3 > pr2

tions have to be computed using the gap-enumeration algorithm presented in [8]. Finally, the highest value of the
response time computed for each release offset will be the WCRT for the task.

In this paper, we have only considered offset-free systems, therefore all tasks are assumed to be released syn-
chronously. Future work will involve analyzing worst-case release scenarios in offset-free systems.

III. P-FRP Scheduling Characteristics in a Uniprocessor

Partitioning among multiple processors is based on the scheduling requirements in a uniprocessor. In this sec-

tion, apart from stating a theorem for the feasibility interval, we show that the rate-monotonic priority assignment
is not optimal in P-FRP, and prove that all necessary scheduling conditions for the preemptive execution model
are also necessary conditions in P-FRP. We also state a schedulability property of P-FRP tasks sets, based on
which we derive a P-FRP exact schedulability.

Theorem 3.1 [9]: If tasks in Γn are released synchronously , then the feasibility interval for Γn is [0,L),where L is
the Least Common Multiple (LCM) of all task periods in Γn.

Lemma 3.2: In P-FRP the rate-monotonic scheduling policy is not an optimal priority assignment with synchro-
nous release of tasks.

Proof. If we can give a P-FRP task set which is not schedulable using the RM priority assignment, but is sched-
ulable by a priority assignment which is not RM, it is sufficient to prove this lemma. Consider the following task
set:

Task pr P T
τ1 1 30 80
τ2 2 10 60
τ3 3 10 40

The priority assignment is RM-based with τ3 having the highest arrival rate hence, the highest priority. In this
scheduling policy, if all tasks are released synchronously, the first job of τ1 is unable to complete processing be-
fore its second job at time 80 (Figure 1(a)). If the priority order is changed, as shown below:

Task pr P T
τ2 1 10 60
τ3 2 10 40
τ1 3 30 80

Then, jobs of all tasks will be able to complete processing in the feasibility interval [0,240) of Γn (Figure 1(b)).

Lemma 3.3: If a P-FRP task set Γn is schedulable under some priority assignment, then Γn is guaranteed to be
schedulable for the same priority assignment in the preemptive execution model.

Proof. The response time of the highest priority task in P-FRP and the classical model is the same. Higher prior-
ity tasks can cause interference in the processing of lower priority tasks. In P-FRP, this interference leads to
abort, which puts a higher cost on the processing of lower priority tasks as compared to the preemptive model.
Two situations are possible:

No interference from higher priority tasks: The difference in response time between P-FRP and preemptive
model is due to the abort of lower priority tasks which is caused by interference from higher priority tasks.
Hence, if there is no interference, there will be no aborts and response time for all tasks in both execution models

will be same. Therefore, in this case if the task set is schedulable in P-FRP, it will also be schedulable in the pre-
emptive model.

Interference from higher priority tasks: Consider, Γ2 = {τi, τj} and pri > prj:

Let τj be released at absolute time ta and execute for h time: tcopy(j) ≤ h ≤ tcopy(j) +Cj, after which it is aborted by
the release of a job of τi. τj will re-execute after τi has completed processing at absolute time ta+h +Pi. τj will take
another Pj time to complete processing and will finish at absolute time ta+h +Pi +Pj. Hence, its response time is:
h+Pi+Pj. For processing in the classical model, the response time of τj will be h+Pi+Pj–h = Pi+Pj. Hence, after
interference from higher priority tasks, the response time of lower priority tasks in P-FRP will always be more
than the preemptive model. Therefore, in this case, if the task is schedulable in P-FRP, it will also be schedulable
in the preemptive model.

Lemma 3.4: Schedulability conditions which are necessary for preemptive model are also necessary conditions
for schedulability in P-FRP.

Proof. As shown in lemma 3.3, a task set schedulable in P-FRP is guaranteed to be schedulable in the preemptive
execution model. Every schedulable task set in the preemptive model will satisfy the necessary conditions of this
model. Since schedulability in the preemptive model is a requirement for the schedulability in P-FRP, every nec-
essary condition in the preemptive model is also a necessary condition for P-FRP.

Note, however that sufficient schedulability conditions for the preemptive model are not guaranteed to be
sufficient conditions for P-FRP. If a sufficient schedulability condition is satisfied, it guarantees the schedulabil-
ity of a task set. Since, a task set which is schedulable in the preemptive model, can be unschedulable in P-FRP,
sufficient schedulability conditions for the preemptive model cannot be used to determine schedulability in P-
FRP.

Theorem 3.5: For task set Γn, a necessary condition for scheduling tasks in P-FRP is that the combined utiliza-
tion factor (U) of all tasks in Γn should be less than or equal to unity. Or,

If U =∑
=

n

i i

i

T

P

1

, then U ≤ 1.

Proof. This is a necessary condition for fixed priority scheduling in the preemptive model, as shown in [26].
Since, P-FRP will satisfy all necessary conditions true for the preemptive model as postulated in lemma 3.4, this
condition will be satisfied for any schedulable for P-FRP task set. This condition is necessary but not sufficient in
the sense that every schedulable P-FRP task set will satisfy this condition, but the satisfiability of this condition
alone, does not guarantee the schedulability of a task set.

Lemma 3.6: For a task τj to be schedulable, one j-gap of length greater than or equal to Pj should exist between
any two successive jobs of τj.

Proof. In the P-FRP execution model, a task τj can complete processing only in a j-gap. Assuming a task τj is
released at t, a j-gap should be available before time t + Tj , when the next job of τj is released. If no j-gap is
available in the interval [t, t + Tj), then τj will have a deadline miss and will not be schedulable.

Corollary 3.6.1: For schedulability of task set Γn, there should be a j-gap larger than or equal to the processing
time of τj, available between successive jobs of τj for ∀τj∈Γn.

Proof. For the task set to schedulable, lemma 3.6 should be satisfied for every task that is a member of Γn.

Corollary 3.6.2: Let a time duration H and time t exist such that the task processing pattern of Γn repeats itself in
time intervals [t,t+H), [t+H,t+2·H), [t,t+3·H)... Then an exact condition for the schedulability of Γn, is that for

every τj∈Γn , there should be a gap larger than the processing time available between all jobs of τj in the time
interval [t, t+H).

Proof. For the task set to schedulable, the condition given in lemma 3.6 should be satisfied for every task in Γn,
as given by corollary 3.6.2. If all the tasks are schedulable in [t, t+H), they will be schedulable in all the other
time intervals following [t, t+H). This is an exact schedulability condition for a P-FRP task set. Such a test is suf-
ficient in the sense that if this test is satisfied, the task set is guaranteed to be schedulable. This condition is also
necessary in the sense that it will be satisfied by every schedulable P-FRP task set.

IV. An Exact Schedulability Test Algorithm for P-FRP

In the previous section, we have shown that the rate-monotonic priority assignment is not guaranteed to be

the optimal priority assignment for P-FRP. Hence, the condition used to check the schedulability of tasks as-
signed processors in previous works [16], [13],[14],[30], cannot be used to check schedulability in P-FRP. Till
now, a closed form sufficient schedulability test condition for P-FRP is unknown. Hence, using an algorithm
based approach to evaluate the exact schedulability condition, presented in corollary 3.6.2, is the only way to as-
certain schedulability of a P-FRP task set.

We present an algorithm that can determine the schedulability of tasks assigned to a processor, based on the
length of k-gaps left after the execution of higher priority tasks. This algorithm is based on the gap-enumeration
method [8], which has been previously developed for P-FRP.

Some new definitions used in the definition of this algorithm are:

• A gap set σk([t1,t2)) contains all the unique k-gaps present in the time interval [t1,t2). The gaps present in
σk([t1,t2)) are also disjoint:

for any two gaps [tx1,ty1), [tx2,ty2) ∈ σk([t1,t2)), if t∈[tx1,ty1) then t∉ [tx2,ty2)

• |σk([t1,t2))| represents the number of k-gaps present in the gap set σk([t1,t2))

• The gap-transformation function λ(σk([t1,t2)), Γn) takes as input the gap set σk, and task set Γn. The function

returns the gap set of the next lower priority task:
σk-1([t1,t2)) = λ(σk([t1,t2)))

• The gap-search function µ(σk([t1,t2)), Pk) takes as input the gap set σk([t1,t2)) and Pk, and returns the earliest
k-gap larger than or equal to Pk present in σk :

[tx1,ty1) = µ(σk([t1,t2)), Pk), such that

 ty1 – tx1 ≥ Pk ∧∄ [tx,ty) ∈ σk([t1,t2))∧ ty – tx > Pk ∧ tx < tx1

If the gap search function returns a gap with threshold less than 0 then a k-gap larger than Pk does not exist in
σk([t1,t2)). The basic gap-enumeration algorithm to determine the response-time of τj (RTj) as presented in [8] is:

Gap Enumeration Algorithm

1. input: Γn, τj

2. output: RTj

3. σn([0, Tj)) ← {[0,Tj)}

4.

5. loop task i ← n to j+1

6. σi-1([0, Tj))←λ (σi([0, Tj)),Γn)

7. if(|σi-1([0, Tj))| = 0) return -1

8. end loop

9. [t1,t2)← µ(σj([0, Tj)), Pj)

10. if(t1 < 0) return -1

11. RTj = t1 + Pj

12. return RTj

This algorithm can be modified to determine the schedulability of a task set, using corollary 3.6.2. In corol-

lary 3.6.2, the time duration [t,t+H) is the feasibility interval of Γn, which for a synchronous release is [0, L), (L
is the LCM of all period in Γn).

First, we find all the 1-gaps that will be available for processing multiple jobs of the lowest priority task τ1 in
the feasibility interval of the task set. Hence, replacing Tj by L, in the original gap analysis algorithm will give us
this information. Then, the gap search method µ([0, L), Pj) will analyze the gaps and insure that there is a gap of
at least length P1 between each job of τ1. If the gap search method returns false, it implies a gap of minimum P1
length does not exist between some job of τ1 in the time interval [0, L), making the task set unschedulable. After
making these modifications to the gap enumeration algorithm, the exact schedulability test algorithm is derived:

Algorithm 5.1: Exact Schedulability Test Algorithm

1. input: Γn, [0, L)

2. output: True/False depending on schedulability

3. if(n==1) return true

4. σn([0, L)) ← {[0, L)}

5. loop task i ← n to 2

6. σi-1([0, L))←λ (σi([0, L)),Γn)

7. if(|σi-1([0, L))| = 0) return false

8. end loop

9. status ← µ(σ1([0, L)), P1)

10. return status

The algorithm for the modified gap-search function is:

Algorithm 5.2: Gap-Search Function

1. input: σ1([0, L)), P1

2. output: True/False depending on schedulability

3. jobs1 ← 0

4. startTime ← Φk

5. loop for each gap [t1,t2) in σ1([0, Tj))

6. if(t2 – t1 ≥ P1)

7. if(t1 + P1 ≤ startTime + T1)

8. jobs1 ← jobs1 + 1

9. startTime← startTime + T1

10. else if (t1 + P1 > startTime + T1)

11. return false

Figure 2(a): Compute 3-gaps in which τ3 can execute after accounting for execution of τ1 in the feasibility interval [0,240)

Figure 2(b): Compute 2-gaps in which τ3 can execute after accounting for execution of τ1 in the feasibility interval [0,240)

12. end loop

13. if jobs1 = jobs([0, L),1) return true

14. else return false

Definition: The function Ω(Γn, [0, Tj)), is defined as an exact schedulability test and represents algorithm 5.1.
Only if, Ω(Γn, [0, Tj)) = true, will Γn be schedulable in P-FRP.

IV.I Example

We illustrate this method using the example used in Lemma 3.2. We have already shown the task set to be
schedulable in the following priority order:

Task pr P T

τ2 1 10 60
τ3 2 10 40
τ1 3 30 80

We first find the 3-gaps in which jobs of task with the 2nd highest priority (τ3) can execute in the feasibility inter-
val of [0,240). These 3-gaps are determined after accounting for the execution of all jobs of the highest priority
task (τ1). There will be 3 jobs of τ1 in the interval [0,240), creating 3-gaps in the intervals [30,80), [110,160) and
[190,240) (Figure 2(a)). After task τ3 is run, 2-gaps in intervals [50,80), [130,160) and [210,240) are created (Fig-
ure 2(b)). We then search these 2-gaps to make sure a 2-gap of length more than or equal to P2 is present between
the 4 jobs of τ2 that are released in the interval [0,240). As seen in Figure 1(a), such 2-gaps exist for all 4 jobs of
τ2, hence the task set is schedulable in its feasibility interval.

IV.II Time Complexity

The complexity of the exact schedulability test (algorithm 5.1) is based on the combined time complexity for
gap analysis and gap search method. The complexity of the gap analysis method as given in [8], is bounded by:

O((n-j) ·|σi([0, Tj))|·jobs(i, [0, Tj)) ·log(!2�2�|σi([0, Tj))|)).

Where, i: Ti = min(Tn-j, Tn-j+1 … Tn).

Since, in algorithm 5.1, Tj = L, and j =1, the complexity for gap analysis is:
O((n-1) ·|σi([0, L))|·jobsi(i, [0, L)) ·log(!2·2·|σi([0, L))|))

Here, τi is the task with the highest arrival rate among higher priority tasks, and jobsi represent the number of

jobs of τi in [0,L). In the worst-case, the gap search function will iterate for all gaps present in σ1([0, L)), hence,
its complexity is bounded by O(|σ1([0, L))|). The total complexity is the sum of the worst-case time for gap-
analysis and gap-search. Since the complexity for gap-analysis is the dominating term, the time complexity of the
sufficient schedulability test represented by O(Ω(Γn, L)), is:

O((n-1) ·|σi([0, L))|·jobsi ·log(!2·2·|σi([0, L))|)).

The sufficient schedulability test is now used in the partitioning algorithms described from the next section.

V. P-FRP First-Fit-Decreasing Rate

 Static partitioning of tasks between multiple processors represents the classical bin-packing problem. In bin-

packing, items of different sizes have to be packed in a finite number of bins. For our partitioning problem, items
represent the tasks while the bins are the processors. Since the bin-packing algorithm is proven to be computa-

tionally NP-hard, several heuristics are available to derive an approximate solution. Due to its simplicity, the
First-Fit (FF) method is a popular greedy approximation heuristic for the bin-packing problem, and has a tight
bound of 1.7 [23]. In the FF algorithms for partitioning tasks in multi-processors, a task is assigned to the first
processor in which is can be feasibly scheduled. Each of the processors which already have tasks assigned to
them, are searched in sequential order and checked if the previous tasks can be feasibly scheduled along with the
new task. In previous works, it has been proven that the order in which tasks are sorted before being assigned to
processors, affect the efficiency of the algorithm. We have presented three different FF based algorithms in this
paper based on different sorting criterion.

The first criterion is decreasing rate, and a FF-based algorithm for RM-scheduling using this criterion was
presented in [16]. In the algorithm given in this section, we use the FF heuristic with the decreasing rate criterion,
along with the P-FRP exact schedulability test. The algorithm returns the minimum number of processors re-
quired to partition the tasks in such a way that all tasks are schedulable. Since the exact schedulability test is
computationally intensive, we check the combined utilization factor of tasks in processor j as a necessary sched-
ulability condition (line 7). If the combined utilization factor is greater than 1, then the task set Γn[j] is guaran-
teed to be unschedulable and the exact schedulability test (line 8) does not need to be executed. Other necessary
schedulability tests for the preemptive model can also be used (as per lemma 3.4), to minimize the possibility of
executing the P-FRP exact schedulability test for unschedulable tasks.

Once all tasks have been assigned, the number of processors required to schedule all tasks is returned (line
11). L(Γn[j]) represents the LCM of all tasks periods present in task set Γn[j].

P-FRP FF-Decreasing-Rate Algorithm (PFFDR)

1. input: Γn

2. output: m

3. Sort tasks in Γn in order of decreasing rate such that τ1 becomes the task with the highest rate and τn the lowest

4. m ← 1: i ← 1

5. j ← 1

6. Add τi to Γn[j]

7. If ∑
Γ∈∀][ji n

iT

iP
 > 1: j ← j+1: goto step 6

8. If Ω(Γn[j], [0, L(Γn[j]))) is true: PAi ← j

9. else: j ← j+1: goto step 6

10. if(j>m): m ← j

11. if (i==n): return m

12. else: i ← i +1: goto step 5

V.I Time Complexity

We present an analysis of the time-complexity of the PPFDR algorithm. The complexity of sorting all the

items will take O(n log n) time. If every task takes one processor to run, then the algorithm will check if a task
can be assigned to one of the processors which already have tasks assigned to them. To assign the 1st task, the
algorithm will run for 1 step, for the 2nd task, 2 steps and so on. Hence, the total number of steps the algorithm
will run in the worst-case is:

1+2+…+ n =)1(
2

+n
n

.

This term is bounded by O(n2). Since O(n2) is the dominant term, the complexity of the FF heuristic is
bounded by O(n2). Since there is only one task, the gap-enumeration will return true without going through any
computation steps.

However, in P-FRP’s case the worst-case for the PFFDR algorithm will be when all tasks are assigned to the
same processor, due to higher costs of the P-FRP schedulability test. If all tasks are assigned to the same proces-
sor then the FF heuristic will compute in O(n) time, but the time to run Ω(Γn, L(Γn[1])) during each search of
processor for a task is bounded by:

O(Ω(Γn, [0, L)) (since, L(Γn[1] = L)).

Since, the P-FRP schedulability test will be run n times, the worst-case complexity for the PFFDR algorithm is:
O(n·O(Ω(Γn, [0, L)).

VI. P-FRP First-Fit-Decreasing Utilization Factor

The P-FRP first fit decreasing utilization factor algorithm (PFFDUF), sorts tasks based on their utilization

factors. A similar sorting criterion has been used in [14], [30]. This algorithm is same as PFFDR, with line 3
modified to:

Change in PFFDR for PFFDUF

3. Sort tasks in Γn in order of decreasing utilization factor such that τ1 becomes the task with the highest utiliza-
tion factor and τn the lowest.

The time complexity of this algorithm is the same as that of PFFDR.

VII. P-FRP First-Fit-Decreasing Processing Time

Due to abort, additional delay classified as ‘abort cost’ is induced on the response time of a preempted lower

priority task. This abort cost is dependent on the processing time of the aborted task. The following lemmas de-
fine some properties of abort cost.

Lemma 7.1: The upper bound of abort cost induced on a lower priority task equals the processing time of the
lower priority task plus the time to copy the state of the task. The lower bound is the time to copy the state of the
task.

Proof. Consider, Γ2 = {τi, τj} and pri > prj. Let τj be released at time t and is processed for h time, after which a
job of τi is released. τj will restart processing after τi has completed, and its response time will be ta+ h +Pi +Pj.
The only variable in the response time of τj is h. If, h > tcopy(j) + Cj then τj has completed processing, and is com-
mitting its results. As per the P-FRP execution model, τj cannot be preempted at this stage, and τi will start only
when τj has completed it processing. If h < tcopy(j), then τj is copying its state and cannot be preempted. However,
as soon as the copy is over, τj will be preempted and τi will commence processing. Hence, τj will have to be
processed for tcopy(j) time, before it can be preempted, and can be processed for maximum tcopy(j)+Cj time, after
which preemption is not possible. Therefore, to induce an abort cost on τj, h will lie in the range [tcopy(j),
tcopy(j)+Cj]. The limits of this range are the lower and upper bounds of the abort cost of τj.

Lemma 7.2: If time to copy and restore is the same then the task with lower processing time will have a lower
maximum abort cost.

Proof. Consider, Γ2 = {τi, τj} and Pi > Pj. Since tcopy(i) = tcopy(j) and trestore(i) = trestore(j), ⇒ Ci > Cj. The maximum
abort cost that can be induced on τi is tcopy(i)+Cj while on τj is tcopy(j)+Cj. Clearly,

tcopy(j) + Cj < tcopy(i)+Cj.

From lemmas 7.1 and 7.2, we can deduce that the processing time of tasks assigned to a processor is an im-

portant factor in determining the response time of lower priority tasks, and thereby, the schedulability of the
tasks assigned to that processor. If we sort the tasks based on their processing times, there is a higher probability
of tasks being assigned in such a way, that those with larger processing times (hence, higher abort costs), will be

placed in a processor which has lesser number of tasks. This reduce the chance of preemption of tasks with
higher processing times.

We present an algorithm where the FF heuristic is applied to tasks sorted in order of their processing time.
This algorithm is same as PFFDR, with line 3 modified to:

Change in PFFDR for PFFDPT

3. Sort tasks in Γn in order of decreasing processing time such that τ1 becomes the task with the highest process-
ing time and τn the lowest

The time complexity of this algorithm is the same as for the PFFDR algorithm.

VIII. P-FRP Optimal Partitioning

An optimal partitioning scheme in one which gives requires the minimum number of processors to schedule a

P-FRP task set. For a P-FRP task set it is guaranteed that, there is no other partitioning scheme that can result in
a lesser number of processors than that given by the optimal partition. We use the optimal partition for perform-
ance comparison with the other three partitioning schemes presented in this paper.

To derive an optimum partition for P-FRP tasks we evaluate every possible combination of task assignment,
to see which one will result in the least number of processors. For a given number of processors m, possible com-
binations of task partitions can be derived by constructing a B-tree, with every node having m children. Each
node in the B-tree represents a processor and the level of the node represents the task that is assigned to run on
that processor. To find out the minimum number of processors required to schedule task set Γn, we start from set-
ting m=1, and increment m till some partitioning scheme is available in which Γn is schedulable.

Deriving an optimal partitioning for a task set using this method requires evaluation of exponential combina-
tions of task partitions, and therefore, this method is not suitable for practical scenarios.

IX. Experimental Results

We have evaluated the efficiency of the partitioning schemes presented in this paper, using synthetic task

sets. We generated 3 groups of 500 tasks sets, with task sets in each group having 6, 8 and 10 tasks. Every task
set in a group is unique in the sense that, at least one task is different between two task sets. The processing times
of the tasks were selected from the range [5,20], while their arrival rates were selected from [10,40]. All tasks
were released synchronously, and no single task has a utilization factor greater than 0.3. By bounding the utiliza-
tion factors of tasks, we make sure that more than one task can be scheduled in a single processor.

For each of the 3 groups we computed the number of processors required to schedule the task sets under
PFFDF, PFFDUF and PFFDPT partitioning schemes. The number of processors required under an optimal parti-
tioning scheme is also derived. We also compute the number of processors required by the PFFDR, PFFDUF,
PFFDPT and optimal partitioning schemes under the preemptive execution model.

Figures 3(a), 4(a) and 5(a) show the number of processors required under the PFFDR, PFFDUF and PFFDPT
partitioning schemes respectively, for 6 tasks. Figures 3(b), 4(b) and 5(b) show the difference between number of
processors required by PFFDR, PFFDUF and PFFDPT algorithms, respectively as compared to the optimal parti-
tioning. With the P-FRP execution model, the number of task sets whose processor requirements are more than
that given by the optimal partitioning for PFFDR, PFFDUF and PFFDPT is 61, 51 and 29 respectively. Figures
3(c), 4(c) and 5(c) show the difference in number of processors required by FFDR, FFDUF and FFDPT partition-
ing under the preemptive execution model. Figures 3(d), 4(d) and 5(d) show the difference in processor require-
ments under optimal partitioning with FFDR, FFDUF and FFDPT in the preemptive execution model. With 6
tasks under the preemptive execution model, all the partitioning schemes required the same number of processors
as optimal partitioning.

Figures 6(a)-6(d),7(a)-7(d),8(a)-8(d) contain the same set of data for 8 task-sets. With the P-FRP execution

model, the number of task sets whose processor requirements are more than that given by an optimal partitioning
for PFFDR, PFFDUF and PFFDPT is 99, 84 and 58 respectively. Under the preemptive execution model, the
number of task sets whose processor requirements are more than that given by an optimal partitioning for FFDR,
FFDUF and FFDPT is 30, 86 and 36 respectively. Figures 9(a)-9(d),10(a)-10(d),11(a)-11(d) contain the same set
of data for 10 task-sets. With the P-FRP execution model, the number of task sets whose processor requirements
are more than that given by an optimal partitioning for PFFDR, PFFDUF and PFFDPT is 177, 168 and 107 re-
spectively. Under the preemptive execution model, the number of task sets whose processor requirements are
more than that given by an optimal partitioning for FFDR, FFDUF and FFDPT is 7, 5 and 6 respectively. Clearly,
for P-FRP, the FFDPT algorithm performs closest to the optimal partition for maximum number of task sets, rela-
tive to the FFDR and FFDUF partitioning algorithms. In the preemptive execution model, the FFDR and FFDUF
have better performance than FFDPT. From figures 3(c)-11(c), we can deduce that the number of processors re-

0

1

2

3

4

5

6

7

0 100 200 300 400 500
Task Set

cb

Figure 3 (a): 6 Tasks - # Processors FFDR

0

1

2

3

0 100 200 300 400 500

Task Set
Figure 3 (b): P-FRP - ∆ (FFDR, Optimal)

0

1

2

3

4

5

0 100 200 300 400 500
Task Set

Figure 3 (c): ∆ (P-FRP, Preemptive)

0

1

2

3

0 100 200 300 400 500

Task Set
Figure 3 (d): Preemptive - ∆ (FFDR, Optimal)

0

1

2

3

4

5

6

7

0 100 200 300 400 500

Task Set
Figure 4 (a): 6 Tasks - # Processors FFDUF

0

1

2

3

0 100 200 300 400 500

Task Set
Figure 4 (b): P-FRP: ∆ (FFDUF, Optimal)

0

1

2

3

4

5

0 100 200 300 400 500
Task Set

Figure 4 (c): ∆ (P-FRP, Preemptive)

0

1

2

3

0 100 200 300 400 500

Task Set
Figure 4 (d): Preemptive - ∆ (FFDUF, Optimal)

0

1

2

3

4

5

6

7

0 100 200 300 400 500
Task Set

Figure 5 (a): 6 Tasks - # Processors FFDPT

0

1

2

3

0 100 200 300 400 500

Task Set
Figure 5 (b): P-FRP: ∆ (FFDPT, Optimal)

0

1

2

3

4

5

0 100 200 300 400 500
Task Set

Figure 5 (c): ∆ (P-FRP, Preemptive)

0

1

2

3

0 100 200 300 400 500

Task Set
Figure 5 (d): Preemptive:∆ (FFDPT, Optimal)

0

2

4

6

8

10

0 100 200 300 400 500
Task Set

Figure 6 (a): 8 Tasks - # Processors FFDR

0

1

2

3

0 100 200 300 400 500

Task Set
Figure 6 (b): P-FRP: ∆ (FFDR, Optimal)

0

1

2

3

4

5

6

7

0 100 200 300 400 500
Task Set

Figure 6 (c): ∆ (P-FRP, Preemptive)

0

1

2

3

0 100 200 300 400 500

Task Set
Figure 6 (d): Preemptive: ∆ (FFDR, Optimal)

0

2

4

6

8

10

0 100 200 300 400 500

Task Set
Figure 7 (a): 8 Tasks - # Processors FFDUF

0

1

2

3

0 100 200 300 400 500

Task Set
Figure 7 (b): P-FRP: ∆ (FFDUF, Optimal)

0

1

2

3

4

5

6

7

0 100 200 300 400 500
Task Set

Figure 7 (c): ∆ (P-FRP, Preemptive)

0

1

2

3

0 100 200 300 400 500

Task Set
Figure 7 (d): Preemptive: ∆ (FFDR, Optimal)

0

2

4

6

8

10

0 100 200 300 400 500
Task Set

Figure 8 (a): 8 Tasks - # Processors FFDPT

0

1

2

3

0 100 200 300 400 500

Task Set
Figure 8 (b): P-FRP: ∆ (FFDPT, Optimal)

0

1

2

3

4

5

6

7

0 100 200 300 400 500
Task Set

Figure 8 (c): ∆ (P-FRP, Preemptive)

0

1

2

3

0 100 200 300 400 500

Task Set
Figure 8 (d): Preemptive: ∆ (FFDR, Optimal)

quired by P-FRP is always greater than or equal to the number of processors required by the same task set in the
preemptive model. This result agrees with lemma 3.3, since every schedulable P-FRP task set has to be first
schedulable in the preemptive model. At best, the number of processors required in P-FRP and the preemptive
would be the same.

In the optimal partition for the preemptive model, all n tasks required less number of processors than n, to be
feasibly scheduled. In optimal partitioning for P-FRP, task sets requiring same number of processors as tasks in
6-task and 8-task sets is 28 and 3, respectively. All 10-task sets required less than 10 processors. Hence, in P-FRP
processor requirement could be as high as the number of tasks, even though we have bounded the utilization fac-
tors of individual tasks by 0.3.

X. Related Work

Previous work on P-FRP by Kaiabachev et al [24] and Ras and Cheng [34] have provided basic schedulabil-

ity conditions in a uniprocessor system. Response time analysis under symmetric multiprocessing for P-FRP has
been studied by Cheng and Ras [12].

Partitioning of tasks in multiprocessor systems for the preemptive model was first studied by Dhall and Liu
[16], and then improved upon by Davari and Dhall [13],[14] and Oh and Son [30]. Methods for online scheduling
of tasks on multi-processor scheduling have been presented by Dertouzos and Mok [15]. Oh and Baker [29] and
Lopez et al [27] provide utilization bounds that can be used to determine the schedulability of a task set for a
given number of processors. Baruah and Goossens [4] also present a sufficient multiprocessor schedulability test
under RM-scheduling. However, this sufficient schedulability test cannot be used in P-FRP because as per lemma
4.4, only necessary conditions of the preemptive model are applicable for P-FRP. Andersson et al [1] provide al-
gorithms for global scheduling under fixed priority assignment.

Baruah et al [5] have studied scheduling on multiple resources using proportionally fair (Pfair) [6] strategy.
In Pfair scheduling, execution of a task is divided into small blocks, and blocks of different tasks are executed
consecutively. This is found to give a feasible schedule for multi-processor systems with low computational
overhead [5]. However Pfair scheduling cannot be applied to the P-FRP execution model since the execution of a
function is an ‘all or nothing’ proposition, and cannot be divided into computational blocks. Anderson et al [3]
have presented a way to implement hard-real time transactions on multi-processors. This work does not address
partitioning of tasks but changes the mechanism of implementing transactions.

0

2

4

6

8

10

0 100 200 300 400 500
Task Set

Figure 9 (a): 10 Tasks - # Processors FFDR

0

1

2

3

0 100 200 300 400 500

Task Set
Figure 9 (b): P-FRP - ∆ (FFDR, Optimal)

0

1

2

3

4

5

6

7

0 100 200 300 400 500
Task Set

Figure 9 (c): ∆ (P-FRP, Preemptive)

0

1

2

3

0 100 200 300 400 500

Task Set
Figure 9 (d): Preemptive: ∆ (FFDR, Optimal)

0

2

4

6

8

10

0 100 200 300 400 500

Task Set
Figure 10 (a): 10 Tasks - # Processors FFDUF

0

1

2

3

0 100 200 300 400 500

Task Set
Figure 10 (b): P-FRP - ∆ (FFDUF, Optimal)

0

1

2

3

4

5

6

7

0 100 200 300 400 500
Task Set

Figure 10 (c): ∆ (P-FRP, Preemptive)

0

1

2

3

0 100 200 300 400 500

Task Set
Figure 10 (d): Preemptive: ∆ (FFDUF, Optimal)

0

2

4

6

8

10

0 100 200 300 400 500
Task Set

Figure 11 (a): 10 Tasks - # Processors FFDPT

0

1

2

3

0 100 200 300 400 500

Task Set
Figure 11 (b): P-FRP - ∆ (FFDPT, Optimal)

0

1

2

3

4

5

6

7

0 100 200 300 400 500
Task Set

Figure 11 (c): ∆ (P-FRP, Preemptive)

0

1

2

3

0 100 200 300 400 500

Task Set
Figure 11 (d): Preemptive: ∆ (FFDPT, Optimal)

Response-time analysis under multi-processing scheduling for similar execution models have been done by
several authors. Holman and Anderson [21] use the Pfair technique for scheduling lock-free [3] transactions on
multiple processor. Lock-free [2] is a way to access shared resources among tasks, such that none of them have to
halt and wait for the resource to become available. It is a mechanism to avoid priority inversion [35] between
tasks sharing resources. Comparisons between transaction memory based systems and lock-free processing and
benefits of the former have been shown in Herlihy and Moss [21]. Fahmy et al [19] have presented response time
analysis for transactional memory [21] under dynamic scheduling policies. Static partitioning of tasks in these
execution models, as determined in our paper, have not been presented yet.

XI. Conclusion and Future Work

We have presented a new exact schedulability test algorithm for P-FRP and have used in three first-fit based

partitioning algorithms. A computational method to derive an optimal partitioning scheme has also been pre-
sented. Experimental results using synthetic task sets of different sizes show that by applying the exact schedula-
bility test presented in this paper, the existing first-fit partitioning schemes can be used for scheduling P-FRP
tasks in multi-processor systems. Results also show that for P-FRP, the new first-fit partitioning scheme arranged
by processing time introduced by us, performs closest to the optimal partition. The number of processors required
to schedule P-FRP tasks are also higher, than the number of processors required to schedule the same tasks in a
preemptive execution model.

Unlike previous work in [16],[13],[14],[30], where theoretical proofs to validate the performance of the first-
fit algorithms are derived, we have used experimental tasks sets for the same. A theoretical validation for P-FRP
is difficult to derive due to its dynamic nature of execution, where the actual processor time taken by a task to
complete processing can me more than its defined processing time, which is known a priori. As part of ongoing
work, we are continuing our attempts to derive theoretical proofs regarding the performance of the first-fit algo-
rithms presented in this paper.

The first-fit partitioning algorithm presented in this paper runs in polynomial time. However, the exact
schedulability test for P-FRP takes significant computation time, relative to schedulability tests for the preemp-
tive model. Unfortunately, till the time of submission of this paper, no faster method has been developed to com-
pute schedulability of a P-FRP task set in an inexpensive way. Development of such a method will be useful in
speeding up the computation time of the first-fit algorithms and is scope for future work.

Static partitioning of tasks has a low overhead, since the partitioning algorithm has to be run only once. The
use of global partitioning algorithms and ascertaining their effectiveness in the P-FRP execution model, will be
an important contribution. Study under global partitioning is also important since Leung and Whitehead [25]
have shown that the partitioned and global approaches for fixed priority scheduling in the preemptive model are
incomparable, and there can be task sets which are schedulable by only one of these approaches. Hence, in the
preemptive model, there is no single scheduling approach that is guaranteed to feasibly schedule task sets in
multi-processor systems using fixed priority scheduling. Future research can determine if this statement also
holds true for P-FRP. Deriving the partitioning when tasks are not offset-free, is also an important contribution
towards application of P-FRP in multi-processor environments.

XII. Hardware Implementation

In ongoing work we will be testing the partitioning algorithms for P-FRP in a P8X32 Propeller [31] based
multi-core platform. A similar platform has been used for analysis in [12]. The P8X32 Propeller has 8 cores
(termed cogs) sharing common resources through a central hub, and the developer has full control over the usage
of each cog. A shared system clock keeps all processors in the same time reference. Hence, the P8X32 Propeller
has all features required by a SMP platform, is designed for use in embedded systems and is commercially used
in robots and process control devices. A USB interface allows programming the chip through a PC, and using
assembly instructions, an abort-restart model of execution can be implemented, to validate the effectiveness of
static partitioning algorithms presented in this paper.

References

[1] B. Andersson, S. Baruah, J. Jonsson. “Static-Priority Scheduling on Multiprocessors” . RTSS’01, pp. 193-202, 2001

[2] J. H. Anderson, S. Ramamurthy, K. Jeffay. “Real-time computing with Lock-free Shared Objects”. ACM Transactions on

Comp.Sys. 5(6), pp.388-395, 1997

[3] J. Anderson, R. Jain, S. Ramamurthy. " Implementing Hard Real-Time Transactions on Multiprocessors ". Real-Time

Database and Information Systems: Research Advances, Azer Bestavros and Victor Fay-Wolfe (eds.), Kluwer Academic
Publishers, Norwell, MA, pp. 247-260, 1997

[4] S. K. Baruah , J.Goossens. “Rate-Monotonic Scheduling on Uniform Multiprocessors”. IEEE Trans. Computing 52, 7,

pp. 966-970, 2003

[5] S. K. Baruah, J. Gehrke, C. G. Plaxton. “Fast scheduling of periodic tasks on multiple resources”. 9th international Sym-

posium on Parallel Processing, pp. 280-288, 1995

[6] S.K.Baruah, N.K. Cohen, C.G. Plaxton, D.A.Varvel. “Proportionate progress: a notion of fairness in resource allocation”.

ACM Symposium on Theory of Computing, pp. 345-354, 1993

[7] J. Byun, A. Burns, A. Wellings. “A Worst-Case Behavior Analysis for Hard Real-time transactions”. Workshop on Real-

time Databases, 1996

[8] C. Belwal , A.M.K. Cheng. “On Determining Actual Response Time in P-FRP”, Practical Aspects of Declarative Lan-

guages(PADL)’11 , 2011

[9] C. Belwal , A.M.K. Cheng. “On the Feasibility Interval for P-FRP”. Manuscript under review,

http://www2.cs.uh.edu/~cbelwal/ FeasibilityInterval_PFRP .pdf, 2010

[10] C. Belwal , A.M.K. Cheng. “On Priority Assignment in P-FRP”. RTAS’10 Work-in-Progress Session , 2010

[11] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Anderson, S. Baruah. "A Categorization of Real-Time Multiproces-

sor Scheduling Problems and Algorithms ". Handbook of Scheduling: Algorithms, Models, and Performance Analysis,
Joseph Y. Leung (ed.), Chapman and Hall/CRC, Boca Raton, Florida, pages 30-1 - 30-19, 2004

[12] Albert M. K. Cheng , Jim Ras. ``Response Time Analysis of the Abort-and-Restart Model under Symmetric Multiproc-

essing”. ICESS-2010, 2010

[13] S.Davari , S.K. Dhall. “An On-Line Algorithm for Real-Time Tasks Allocation". RTSS ‘86, 1986

[14] S.Davari , S.K. Dhall. “On a Real-time Task Allocation Problem”. 19th annual Hawaii International Conf. on System

Sciences, 1985

[15] M.L. Dertouzos , A.K. Mok. “Multiprocessor Online Scheduling of Hard-Real-Time Tasks”. IEEE Trans. Soft. Eng. 15,

12, pp.1497-1506, 1989

[16] S.K. Dhall , C.L. Liu. “On a real-time scheduling problem”. Operation Research, 26(1):127-140, 1978

[17] C. Elliott , P. Hudak. “Functional reactive animation”. ICFP’97,pp. 263-273, 1997

[18] Erlang, http://www.erlang.org

[19] S. F. Fahmy, B. Ravidran, E. Jensen. “On bounding response times under software transactional memory in distributed

multiprocessor real-time systems”. DATE’09, 2009

[20] Haskell, http://www.haskell.org

[21] M. Herlihy ,J.E.B. Moss. “Transactional memory: architectural support for lock-free data structures”. ACM SIGARCH
Computer Architecture New (Col. 21, Issue 2),pp. 289-300, 1993

[22] P. Holman , J. H. Anderson. “Supporting lock-free synchronization in Pfair-scheduled real-time systems”. Journal of

Parallel Distrib. Comput. 66 (1), pp. 47-67, 2006

[23] D.S. Johnson, A. Demers, J.D. Ullman, M.R. Garey ,R.L. Graham. “Worst case performance bounds for simple One-

dimensional packing Algorithms”. SIAM Journal of Computing, Vol. 3, pp. 299-325, 1974

[24] R. Kaiabachev, W. Taha , A. Zhu. “E-FRP with Priorities”. EMSOFT’07 , pp. 221-230 , 2007

[25] J.Y.T. Leung, J. Whitehead. “On the complexity of fixed-priority scheduling of periodic, real-time tasks”, Performance

Evaluation (Netherlands) 2(4), pp. 237-250, 1982

[26] C. L. Liu, L. W. Layland. “Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environment”, Journal

of the ACM (Volume 20 Issue 1), pp. 46 - 61 , 1973

[27] J.M. Lopez, J.L. Diaz, D.F. Garcia. “Minimum and Maximum Utilization Bounds for Multiprocessor Rate Monotonic

Scheduling”. IEEE Trans. Parallel Distrib. Syst. 15, 7, pp. 642-653, 2004

[28] A.K. Mok. “Fundamental Design Problems of Distributed Systems For the Hard-real-time Environment”. Technical Re-

port. UMI Order Number: TR-297, Massachusetts Institute of Technology, 1983

[29] D. Oh, T.P. Baker. “Utilization Bounds for N-Processor Rate Monotone Scheduling with Static Processor Assignment”.

Real-Time Syst. 15(2), pp.183-192, 1998

[30] Y. Oh, S. Son. “Fixed-Priority Scheduling of Periodic Tasks on Multiprocessor Systems”. Technical Report. UMI Order

Number: CS-95-16., University of Virginia. 1995

[31] Parallax P8X32 Properller Chip: http://www.parallax.com

[32] J. Peterson, G. D. Hager, P. Hudak. “A Language for Declarative Robotic Programming”. ICRA’99 , 1999

[33] J. Peterson, P.Hudak, A.Reid, G. D. Hager. “FVision: A Declarative Language for Visual Tracking”, Symposium on

Practical Aspects of Declarative Languages, 2001

[34] J. Ras, A.M.K. Cheng. “Response Time Analysis for the Abort-and-Restart Task Handlers of the Priority-Based Func-

tional Reactive Programming (P-FRP) Paradigm”, RTCSA’09, 2009

[35] L. Sha, R. Rajkumar, J. P. Lehoczky. “Priority Inheritance Protocols: An approach to Real Time Synchronization”,

Transactions on Computers Volume 39, Issue 9, pp.1175 – 1185, 1990

[36] M. Swaine, “It's Time to Get Good at Functional Programming”. Dr. Dobbs Journal, http://www.drdobbs.com, Dec ‘08,

2008

[37] Z. Wan, W. Taha, P. Hudak. “Real - time FRP”. ICFP’01, pp. 146-156, ACM Press ,2001

[38] Z. Wan, W. Taha, P. Hudak. “Task driven FRP”. PADL’02, Lecture Notes on Computer Science, Springer, 2002

[39] Z. Wan, P. Hudak. “Functional reactive programming from first principles”, ACM SIGPLAN Conference on Program-

ming Language Design and Implementation,pp.242-252,2000

