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Abstract 
 
Dendritic spines form postsynaptic contact sites in the central nervous system. The rapid and 
spontaneous morphology changes of spines have been widely observed by neurobiologists. 
Determining the relationship between dendritic spine morphology change and its functional 
properties such as memory learning is a fundamental yet challenging problem in neurobiology 
research. In this paper, we propose a novel algorithm to track the morphology change of multiple 
spines simultaneously in time-lapse neuronal images based on non-rigid registration and integer 
programming. We also propose a robust scheme to link disappearing-and-reappearing spines. 
Performance comparisons with other state-of-the-art cell and spine tracking algorithms, and the 
ground truth show that our approach is more accurate and robust, and it is capable of tracking a 
large number of neuronal spines in time-lapse confocal microscopy images.  
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A Global Spatial Similarity Optimization Scheme to
Track Large Numbers of Dendritic Spines in

Time-lapse Confocal Microscopy
Qing Li, Zhigang Deng*, Yong Zhang, Xiaobo Zhou, U.Valentin Nägerl, Stephen T.C. Wong*

Abstract—Dendritic spines form postsynaptic contact sites
in the central nervous system. The rapid and spontaneous
morphology changes of spines have been widely observed by
neurobiologists. Determining the relationship between dendritic
spine morphology change and its functional properties such
as memory learning is a fundamental yet challenging problem
in neurobiology research. In this paper, we propose a novel
algorithm to track the morphology change of multiple spines
simultaneously in time-lapse neuronal images based on non-
rigid registration and integer programming. We also propose
a robust scheme to link disappearing-and-reappearing spines.
Performance comparisons with other state-of-the-art cell and
spine tracking algorithms, and the ground truth show that our
approach is more accurate and robust, and it is capable of
tracking a large number of neuronal spines in time-lapse confocal
microscopy images.

Index Terms—Dendritic Spine, Time-lapse Images, Global
Similarity, Free Form Deformation, Integer Programming

I. I NTRODUCTION

I N neurobiology, dendrites are tree-like structures situated
at the beginning of neuronal cells whose main purpose is

to help increase the surface area of the cell body, covered
with synapses. Spines are small protrusions on the surface of
a dendrite which receive excitatory synaptic input from other
neurons and transmit electrical stimulation to the soma. The
rapid and spontaneous morphology changes of dendritic spines
have been widely observed [25], [35], [15]. Various spine
shapes are classified into several categories,e.g., mushroom,
thin, stubby, etc. Existing neurobiology literature [30],[27],
[17] shows that the morphological plasticity of dendritic
spines is highly correlated with their underlying cognitive
functionality (e.g., sensory experience, learning, and memory).
Therefore, how to efficiently and accurately extract and track
the morphological features of spines in time-lapse microscopy

* denotes co-corresponding authors. Manuscript received on July 17th,
2010, revised on September 13th, 2010, and accepted on October 24th, 2010.

Qing Li and Zhigang Deng are affiliated with with Computer Science
Department, University of Houston, Houston, TX.

Yong Zhang is currently affiliated with Healthcare Informatics, IBM Al-
maden Research Center, San Jose, CA 95120, USA. This work was done
while he worked at the Methodist Hospital Research Institute.

Xiaobo Zhou, and Stephen T.C. Wong are affiliated with the Center for
Biotechnology and Informatics, the Methodist Hospital Research Institute,
Houston, TX.

U.Valentin N̈agerl is affiliated with Victor Segalen Bordeaux 2 University,
France

Copyright (c) 2010 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

neuron images is crucial to study roles of spines related to
those cognitive functionalities.

Proper understanding of the mechanism and pathway of var-
ious neurological conditions requires accurate spine contours.
Currently, spine contours and spine association across time
are obtained using human-assisted software. Considering that
a single branch of dendrite may contain hundreds of spines,
manually segmenting and establishing the spine correspon-
dences in time-lapse images is tedious, and is subject to human
bias. Automatically extracting and tracking the morphology
features of spines is highly desired as it would provide
consistent results and reduce the workload of neurobiologists.

Automated segmentation and tracking of dendrite spines is
challenging, because: (1) Spines have small volumes ranging
typically from 0.01µm3 to 0.8µm3. It challenges both the
resolution of the confocal microscope and the accuracy of
the segmentation algorithm. (2) Spines have highly variable
visual shapes and can appear anywhere on the surface of a
dendrite. This makes it nearly impossible to create templates
or use any prior shape information to detect, segment, and
track spines. (3) Existing literature [25], [35], [15] shows that
changes in the shape of spines can be dramatic (e.g., in certain
cases, spines could completely disappear for certain periods).
Therefore, it is difficult to use spine shape as a consistent
feature for tracking.

In this paper, we propose a novel, automated algorithm to
track dendritic spines individually in time-lapse images.Its
core idea is to maximally utilize the spatial and structural
information between two dendritic structures as follows. Given
two dendritic structures at two consecutive time points, global
registration is first applied to correct possible translational
and rotational shift of the specimen during image acquisition.
Then, non-linear local shape deformation and the optimiza-
tion of global similarity metrics are introduced to establish
temporal correspondences between two dendritic structures.
Finally, through the analysis of spine centroid trajectories,
invalid associations are discarded. In addition, we also pro-
pose a novel scheme to address the spine disappearing-and-
reappearing issue by analyzing local spatial relationships of
spine candidate association pairs through graph matching.It
is noteworthy that our algorithm can be straightforwardly
extended to 3D, if the spatial resolution along the Z axis of
the acquired microscopy data can be improved. The pipeline
of our approach is illustrated in Fig. 1.

The major contributions of this work include: (1) a robust
scheme to track a large number of temporally-varying spines
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Fig. 1. The pipeline of our dendritic spine tracking algorithm

simultaneously through dendrite-specific, non-linear deforma-
tion and global similarity optimization, and (2) a novel scheme
to address the challenging spine disappearing-and-reappearing
issue for dendritic spine tracking, by analyzing local spatial
relationships of spine candidate association pairs.

The remainder of this paper is organized as follows: related
work is reviewed in Sec. II. Image acquisition and preprocess-
ing are described in Sec. III. Dendritic structure detection is
presented in Sec. IV, followed with dendritic structure align-
ment in Sec. V and spine association determination in Sec. VI.
Experimental results are detailed in Sec. VIII, and Sec. IX
concludes our work with discussion and future directions.

II. RELATED WORK

Robust object tracking is a long-standing research topic in
computer vision [38]. Its goal is to estimate the trajectories
of moving objects and solve their associations over time.
Based on their underlying principles, existing algorithmscan
be categorized into two groups:bottom-up approaches and
top-down approaches. In the bottom-up approaches [34], [7],
[21], [1], [22], [37], [28], objects are first detected and
represented in a feature space, and then temporal associations
are solved by maximizing a similarity function. In the top-
down approaches [2], [6], [9], boundaries or positions of
objects are initialized at the first frame. Then, boundariesand
positions of objects are evolved frame by frame through a
prior statistical model. Our dendritic spine tracking algorithm
falls into the bottom-up category. Typically, the suitability of a
particular tracking algorithm depends on many factors suchas
object appearance, number of objects, and object and camera
motions.

A few existing efforts have been attempted to accurately
track dendritic spines. For example, Kohet al. [18] proposed
a simple and intuitive approach to track dendritic spines. In
their approach, after global registration, two spines in different
frames are considered to be the same, if their overlapping area
is larger than 25% of the volume of either of them. However,
if in certain areas the spine density is high, their approach
may yield incorrect one-to-many correspondences. In the work
of [13], [26], a graph based matching model was proposed
to track dendritic spines. Each node in the graph represents
a spine branch and is connected with its neighbors. A six
dimensional Gaussian distribution is employed as the prob-
ability distribution function to determine whether two nodes
in different graphs represent the same spine. The mapping
between two graphs is obtained by maximizing a posterior
probability. However, whether the spine spatial and temporal
distribution follows the Gaussian distribution is not justified
in their paper. In addition, their approach requires users to

manually tune its critical parameters in its Gaussian model,
which affects its robustness and automation.

III. I MAGE ACQUISITION AND PRE-PROCESSING

Time-lapse two-photon laser scanning fluorescence mi-
croscopy was used to monitor the morphological plasticity
of dendritic spines of CA1 pyramidal neurons in organotypic
hippocampal brain slice preparation. The term CA1 (cornu
ammonis) refers to an anatomically defined region within the
hippocampus, where the CA1 pyramidal neurons are located,
which are the main excitatory neurons in this area. To this
end, individual neurons were briefly loaded via a patch pipette
containing a green fluorescent dye (4 mm calcein green (Invit-
rogen)). The field of view for the imaging was chosen within
the stratum oriens of the CA1 pyramidal neurons, that is, a
histologically defined area on the basal side of this neuronal
cell population. 3D image stacks (spanning 140µm in x,140
µm in y, and 25-40µm in z, 1024× 1024 pixels in xy and 0.5
µm step size in z) were acquired every 30 minutes for up to six
hours. The green fluorescent label did not bleach significantly
over the duration of the experiment. Full experimental details
can be found in the previous publication [3]. Our neuron
images were acquired in 3D (60 image sections in total)
to ensure a significant part of the dendrite were contained
in the image stack. The 3D image stacks were condensed
into 2D images by a maximum intensity projection (MIP),
facilitating image handling and data analysis. To ensure MIP
is permissible we examined all individual image sections to
make sure that different stretches of dendrite did not get mixed
up in the projection. With regards to individual spines, the
optical sectioning by two-photon microscopy represents a local
projection because the size of spines is typically less than
the spatial resolution along the Z axis of the microscope.
Therefore, in this paper, all spines are detected and tracked
in MIP (Maximum Intensity Projection) images. The dataset
can be provided upon request for research purpose.

IV. D ENDRITIC STRUCTUREDETECTION

Several algorithms have been proposed for dendritic spine
detection [39], [23], [8], [40]. In this work, dendrite backbones
and spine boundaries, along with branch points in different
time points are detected using a curvilinear structure detection
based algorithm [39]. In this algorithm, line segments with
similar local directions are first obtained through the analysis
of the largest eigen-value and its corresponding eigen-vector
of the Hessian matrix. If two estimated line segments are
connected in an eight-connected neighborhood or the distance
between them is smaller than a pre-specified linking threshold,
the two line segments will be linked. Spine backbones and
dendrite backbone are distinguished by their lengths. Branch
points are detected as the pixels that have three or more
neighbors. Fig. 2 shows the detected dendritic structures in an
example image. The boundaries of spines are highlighted in
blue and the backbones of the dendrite are drawn in pink. We
assume that color printing is used for retaining the information
in color figures in this paper.
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Fig. 2. The dendritic structure detection results of an example image. Spines
boundaries are labeled in yellow lines, the pink lines illustrate the dendritic
backbones, and the dendritic boundaries are labeled in red line. There are 3
dendritic branches in this image. The green dots illustrate the branch points.

V. DENDRITIC STRUCTUREALIGNMENT

After dendritic structures are detected, the spine boundaries
and dendrite backbones are represented as 2D shapes. In this
section, determining spine associations between two consec-
utive frames is explained in details. First, in Section V-A,
global registration is adopted to correct the image data shift
during the image acquisition stage. How to design a non-
rigid deformation to optimally align two dendritic structures
is described in Section V-B. In Section VI, spine associations
are determined through global spatial similarity maximization
after the dendritic structure alignment.

A. Global Registration

Although the best effort was attempted to reposition the
specimen at the same place each time during the image ac-
quisition stage, misalignment is inevitable due to human error
and system bias. Therefore, a global registration is needed
to correct the image data shift between different time points.
In this work, the ICRP (Iterative Closest Reciprocal Point)
algorithm [29] is employed for this purpose. ICRP is a variant
of ICP (Iterative Closest Point) algorithm [5] that assumes
each point on the source shape has a valid correspondence on
the target shape. This assumption is not applicable when two
shapes are partially overlapping. To overcome this weakness,
ICRP [29] usesǫ-reciprocal correspondence to reject wrong
pairs. During ICRP, a rigid transformation matrix is estimated
by minimizing the squared error of closest points between two
geometric shapes. The ICRP algorithm is composed of two
steps: generating temporary correspondences and estimating
the rigid-body transformation. The solution is found when the
change in mean square error falls below a threshold, which
specifies the required precision of the registration. Fig. 3shows
example results of the global registration.

B. Non-Rigid Local Deformation

Usually, the morphological changes of spines are rapid,
non-rigid, and independent of one another. Therefore, global
registration alone is insufficient to align two dendritic struc-
tures. This stands true especially at locations where spine
density is high. Inspired by the free form local registration
algorithm [16], [31], in this work, the dendritic structureat
time pointtk+1 (i.e., the source shape) is locally deformed to
match the dendritic structure at time pointtk (i.e., the target
shape) by minimizing a specially-designed, dendritic structure-
incorporated energy function. Point-to-point correspondences
can be established after the local deformation. Finally, spine

Fig. 3. Example results of the global registration. (a) The original source
image and target image are displayed in green and red colors, respectively.
(b) The extracted source dendritic structure (red) and the extracted target
dendritic structure (green). (c) After global registration, the source structure
(red) rotates and translates to match with the target structure (green).

associations between different time points are solved through
the global maximization of a spatial similarity metric.

In our algorithm, the source and target shapes are first trans-
formed to an implicit shape representation. The transformation
is described as follows. LetS be a shape, i.e. a curve in 2D,
and Φ : Ω → R+ be a Lipschitz function that represents a
distance transform of shapeS, Ω is the image domain, the
region enclosed byS is RS , and the background region is
Ω\RS . The implicit shape representation is defined as follows:

ΦS(x, y) =











0, (x, y) ∈ S

+d((x, y), S) > 0, (x, y) ∈ RS

−d((x, y), S) < 0, (x, y) ∈ |Ω \RS |

(1)

Here, d((x, y), S) calculates the minimum Euclidean dis-
tance between an image pixel located at(x, y) and shape
S. Fig. 4 (a) shows the visualization of the source shape
in the implicit shape representation. The advantage of this
implicit representation is that gradient descent methods can be
conveniently applied to it, and it can facilitate the imposition
of smoothness constraints on the shape boundary.

Local registration is equivalent to recovering a pixel-wise
local deformation field that creates correspondences between
the target shape and the source shape. Such a local deformation
field can be efficiently represented using space warping mod-
els [16], [31], [19], [12], [20]. We choose the FFD (Free Form
Deformation) model [16], [31] in this work, because it is capa-
ble of implicitly enforcing smoothness constraints, preserving
shape topology, and guaranteeing one-to-one mapping. The
essence of FFD is to deform the source shape by manipulating
a regular control lattice overlaid on its space to minimize the
difference between the source shape and the target shape.
The deformation of every pixel on the source shape can
be computed through interpolating B-spline or Bezier basis
functions, described below.

Let Θm,n = {(Θx
m,n,Θ

y
m,n);m = 1, ...,M ;n = 1, ..., N}

be a lattice of points overlaid to a region in the embedding
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space enclosing the source shape regionφ = {(x, y)|1 ≤ x ≤
X, 1 ≤ y ≤ Y }. M andN denotes the number of points used
horizontally and vertically. The deformed position of any pixel
ξ = (x, y) in the embedding space is calculated as a cubic B-
spline interpolation on the lattice, as follows:

D(Θ, ξ) =

3
∑

k=0

3
∑

l=0

Bk(u)Bl(v)Θi+k,j+l (2)

Here Θi+k,j+l, (k, l) ∈ [0, 3] × [0, 3] (conceptually like
“weights”) are coordinates of the 16 points on the lattice
in the neighborhood of the pixelξ = (x, y) in Ω, where
i = ⌊ x

X
· (M − 1)⌋ + 1, j = ⌊ y

Y
· (N − 1)⌋ + 1. Bk(u) and

Bl(v) represent thekth andlth cubic B-spline basis functions,
respectively, whereu = x

X
·M−⌊ x

X
·M⌋, v = y

Y
·N−⌊ y

Y
·N⌋.

The local registration is equivalent to finding the latticeΘ

that minimizes the Sum of Squared Differences (SSD) between
the implicit (distance transform of) representation of thetarget
and source shapes. Therefore, a corresponding energy function
can be defined as follows:

ESSD(Θ) =

∫ ∫

Ω

[ΦT (ξ)− ΦS(D(Θ, ξ))]
2
dξ (3)

In order to preserve the regularity of the deformed shape, a
smoothness term is added (Eq. 4).

ESmooth(Θ) =

∫ ∫

Ω

(

∣

∣

∣

∣

∣

∣

∣

∣

∂D(Θ, ξ)

∂x

∣

∣

∣

∣

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

∣

∣

∣

∂D(Θ, ξ)

∂y

∣

∣

∣

∣

∣

∣

∣

∣

2
)

dξ

(4)
We also define a repulsive constraint to avoid misalignments

between dendritic branches on the source shape and those on
the target shape. In the detection step, dendrites are divided
into branches and assigned to distinct labels. For example,if
there are N branches in an image, they will be labeled as
1, 2, 3, ..., N . Spines will have the same label as the dendrite
branch they belong to. Therefore, each pixel on the dendritic
structure (both the dendrite backbone and spines) is assigned
a label based on its association with the dendritic branches.
During the deformation, we want to keep the number of
misaligned pixels on the source shape as small as possible,
that is, we want pixels labeled asi on the source shape to be
aligned as pixels labeled asi on the target shape.

The repulsive constraint can be formalized as follows:

ERep =
N
∑

i=1

N
∑

j=1,j 6=i

∣

∣CT
i ∩ CS

j

∣

∣ (5)

Branch labels are assigned to pixels in shapes. Here,
{CS

j |j = 1, 2, ..., N} denotes dendritic branch labels on the
source shape and{CT

i |i = 1, 2, ..., N, i 6= j} denotes dendritic
branch labels on the target shape. The “branch labels” are
integer numbers from 1 to N (N is the number of the total
branches), and they are assigned to pixels in shapes. Note
that the source shape and the target shape have the same
number (N) of dendritic branches, because the dendrites are
stable during the image acquisition.ERep returns how many
pixels on the source shape are misaligned with different branch
structures.

Finally, by combining all the above three terms (Eq. 3-5)
together, we obtain a summed energy functionalE for the
non-rigid registration of two dendritic structures:

E(Θ) = ESSD(Θ) + αESmooth(Θ) + ωERep (6)

Hereα is a constant parameter to control the smoothness
of the deformed shape, andω is a positive parameter to
control the repulsive constraint between different branches.
Specifically,α and ω are experimentally set to 2.0 and 5.5
in our experiments, respectively. These parameters may vary
for different datasets to achieve better results. Generally, if the
morphology of spines changes rapidly in an image dataset, the
smoothness of spine shape is not our first concern. Therefore,
α can be set to a small value. If the spine density in the
branch region is high, to prevent spines that belong to different
branches being aligned together,ω should be set to a higher
value.

Then, a gradient descent method is used to optimize the
criterion defined by Eq. 6. Its partial derivative is computed
as follows:

∂

∂θi
E(Θ) = −2

∫ ∫

Ω

[ΦT (ξ)− ΦS(D(Θ; ξ))]

(

∇ΦS(D(Θ, ξ)) ·
∂

∂θi
D(Θ, ξ)

)

dx+

2α

∫ ∫

Ω

∂D(Θ, ξ)

∂x
·

∂

∂θi

(

∂

∂x
D(Θ, ξ)

)

+

∂D(Θ, ξ)

∂y
·

∂

∂θi

(

∂

∂y
D(Θ, ξ)

)

dξ + ω
∂

∂θi
Erep (7)

Here ∂
∂θi

ERep is calculated asERep(Θk) − ERep(Θk−1).
Notek denotes the iteration number and this partial derivative
is calculated in the lattice points’ difference space, not in time
space. After the deformation, we establish pixel correspon-
dences between the source shape and the target shape. For each
pixel on the deformed source shape, we calculate its nearest
point on the target shape as the correspondence point. Note that
the dense one-to-one mapping feature in FFD denotes the pixel
correspondence between the source shape and the deformed
source shape; the established correspondence between the
source shape and the target shape may not be one-to-one
correspondence. However, for each pixel on the source shape,
only one correspondence can be found on the target shape.
Fig. 4 shows such a local non-rigid deformation example.
Fig. 4 (a) visualizes the deformation filed. Fig. 4(b) displays
one-to-one pixel correspondences between the source shape
and the target shape after the deformation. Fig. 4(c) is the
zoomed version of the rectangular region in Fig. 4(b). Fig. 5
shows a non-rigid local deformation comparison with/without
using the repulsion constraint. From Fig. 5, we can see that the
repulsion force prevents pixels belong to the different branches
merging together.

Based on the local non-rigid deformation outcomes, we
found that three different pixel association patterns existed. (1)
All the pixels of a spinepa on the target shape are associated
with all the pixels of another spinepb on the source shape. It
suggests thatpa andpb most likely represent the same spine.

4
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Fig. 4. Local non-rigid deformation: the source shape (blue), the target shape
(red), and the deformed shape (green). (a) Visualization of the source shape in
the implicit shape representation. (b) Visualization of thedeformation filed. (c)
The one-to-one pixel correspondences between the source and source shapes
after the deformation. (d) A close view of the rectangular region in (c).

Fig. 5. Non-rigid local deformation comparison with/withoutusing the
repulsion constraint. The source shape is in red, the targetshape is in blue,
the deformed shape is in green. (a) The green dots show the deformed shape
without using the repulsion constraint. (b) The green dots show the deformed
shape after using the repulsion constraint.

(2) All the pixels of the spinepa on the target shape are asso-
ciated with some pixels of the dendrite backbone on the source
shape, which meanspa disappears in the next time point. (3)
All the pixels of the spinepa on the target shape are associated
with more than one spines on the source shape. It implies
that in these regions, the spine density is high, and one-to-
one pixel correspondences alone cannot completely determine
accurate spine associations, but provide most likely candidates
for further association refinement. Therefore, local non-rigid
deformation cannot guarantee the complete determination of
one-to-one spine associations. Examples of the three spine
association patterns are shown in Fig. 6.

Fig. 6. Examples of three different spine association patterns

VI. SPINE ASSOCIATIONDETERMINATION

In this section, 0-1 integer programming is further utilized
to solve one-to-one spine associations through a maximization
of a global spatial similarity metric between two dendritic
structures. LetP k = {pki |i = 1, 2, ...n} and P k+1 =
{pk+1

j |j = 1, 2, ...m} denote spines at two time pointstk
and tk+1, where pki denotes theith spine at thekth time
point, andn and m are the total numbers of spines at the
two time points, respectively. For a spinepki , we assume that
mi spinesMi = {(pki , p

k+1
j )|j = 1, 2, ...,mi} at time point

tk+1 are identified as the association candidates in the above
local non-rigid deformation alignment step. Therefore, the
total number of possible associations of all the spines attk is
N =

∑n
i=1 mi. The number of possible different associations

areM =
⋃n

i=1 Mi. A spatial similarity metric that defines the
similarity between spinepki at tk and its candidatespk+1

j at
tk+1 is calculated as follows:

Sim1(p
k
i , p

k+1
j ) =

[

1−
δ(pki , p

k+1
j )

∑mi

u=1 δ(p
k
i , p

k+1
u )

]

+
η
(

pki ∩ pk+1
j

)

η
(

pki ∪ pk+1
j

)

(8)

Here, the functionδ calculates the distance between the
centroids of spinepki andpk+1

j , and the functionη computes
the area of a spine. This metric suggests that for two spines,
the closer the two spine centroids are, the larger overlapping
area the two spines share and more likely they represent the
same spine. The optimal matching strategy is to determine the
optimal solutionz∗ = {0/1}N that maximizes a similarity
objective function (Eq. 9) while maintaining a constraint
(Eq. 10): each spine in eitherpki or pk+1

j can be associated
with at most one spine in the other time point.

The objective function can be formalized as follows.

z
∗ = argmax

z∈{0,1}N

(f(z))

f(z) =

N
∑

l=1

[

z(l).Sim1(p
k
il
, pk+1

jl
)
]

(9)

Herez is aN × 1 vector which denotes decisions of theN
possible associations.z(l) = 1 indicates that thelth possible

5
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association is chosen, whilez(l) = 0 indicates thelth possible
association is discarded.(il, jl) are the spine labels intk
andtk+1 in the lth possible association. Thus, the one-to-one
association constraints can be formalized as:

Az ≤ b (10)

HereA is a (m+n)×N matrix.m+n suggests that there
are totalm + n spines in bothtk and tk+1 time points. Its
rows indicate spines in bothtk and tk+1 time points, while
its columns correspond to the decisions of theN possible
associations. Hereb is a(m+n)×1 vector with all 1. It means
that each spine either intk or in tk+1 can be associated with
at most one spine in the other time point. For theN possible
associationsMl = {(pkil , p

k+1
jl

)|l = 1, 2, ..., N},

A(k, l) =











1; ifk = il

1; ifk = n+ jl

0; otherwise

, 0 < l ≤ N (11)

This above optimization problem can be solved through
0-1 integer programming. In this work, we use branch-and-
bound (LPBB) based linear programming algorithm [33] to
solve this optimization problem. The optimization processof
LPBB is to build a searching tree by repeatedly discretiz-
ing (0 or 1) the variables (branching) and pruning the tree
branches based on the optimal value of the node (bounding)
computed by linear programming. Note that although applying
integer programming to biological object tracking has been
previously investigated in [21], we can clearly see that our
algorithm outperforms the algorithm in [21] through a direct
performance comparison with [21]. This is mainly due to:
(1) the deformable registration process in our algorithm is
capable of optimally aligning two dentritic shapes, and (2)the
similarity metric introduced in our work extracts and includes
more features from dendritic structures than [21].

Also, it is noteworthy to point out that features like (a)
the distance between spine centroids and (b) the areas of the
spines in two time points have been explored in O. Al-Kofahi
et al’s early work [1]; however, besides the two features, in
our algorithm dendritic branch information implicitly guides
the non-rigid local deformation (see Section V-B). And, during
the procedure of linking reappearing spines (see the follow-up
Section VII), neighborhood information of individual spines
is utilized to determine the spine association pairs.

VII. L INKING REAPPEARINGSPINES

Once spine associations between every two consecutive
time points are obtained, trajectories of spine centroids are
analyzed. The goal of this analysis is to eliminate false spine
associations based on the spatial locations of spine centroids.
For each labeled spinepi that is observed from time pointtn to
tm, its centroid at each time point is first calculated. The mean
centroid ofpi, defined as the mean of spine centroid across
several time points, is denoted asµi = (x̄i, ȳi). A 2D Gaussian
Ni(µi, σ̄) is fitted to model the spread of the spine centroids
of each labeled spine. The center of each Gaussian lies at the
mean centroidµi, andσ̄ is set to be the standard deviation of

the distance betweenµi and individual spine centroidscij at
different time points (i denotes the spine label andj indicates
which time point the spine centroid is at). Every spine centroid
cij is examined by the Gaussian modelNi defined above. If
P (cij |µi, σ̄) is less than a pre-specified threshold (0.75 is used
in this work), we consider that the assigned association for
spinepi at time pointtj is false. Therefore, all spines labeled
as i at and after time pointtj will be assigned a new label.
Associations of these spines will be reconsidered during the
reappearing spine linking stage.

The morphology of spines changes rapidly over time. In
certain circumstances, some spines even completely disappear
for a certain period. Then, new spines are observed in approxi-
mately the same positions on the dendrite. Three main reasons
may cause this disappearing-and-reappearing problem: (1)
Spines physically disappear at a certain period and then reap-
pear in the same place. Existing neuroscience literature [25],
[35], [15] has well documented this phenomenon. (2) In this
work, spines are detected in the MIP (Maximum Intensity
Projection) images. During the projection, some spines may
be occluded by other dendritic structures. Therefore, spines
may just visually disappear. (3) Spines with a low intensity
are misdetected at certain time points.

Our strategy of linking reappearing spines are described as
follows. First, a candidate linking list for spines that exist
only within a time interval is created. Each entry in the list
includes three elements: the label of the spine, the first frame
where the spine appears, and the last frame where the spine
exists. From this list, candidate association pairs that meet
the following requirements are identified: (1) The distance
between the means of the two spine centroids should be
within a certain range; and (2) temporal overlap does not exist
between the two spines. For example, a spine observed from
time point t1 to t4 cannot be associated with another spine
existing fromt3 to t5, since they coexist att3 and t4.

Subsequently, to link reappearing spines, we further ex-
amine the spatial similarity between two spines in possible
associations, and then optimal spine associations among can-
didate associations are determined through global similarity
maximization (Section VI). In this work, the disappearing-
and-reappearing linking problem is solved through graph
matching. Generally, the graph matching problem [4] can be
defined as follows: Given two graphsGi = (Vi, Ei) and
Gj = (Vj , Ej), with |Vi| = |Vj |, the problem is to find a
one-to-one mappingf : Vi → Vj such that(em, en) ∈ Ei

iff (f(em), f(en)) ∈ Ej . When such a mappingf exists,
Gi is said to be isomorphic toGj . This type of problem
is called exact graph matching. However, in most practical
cases, the numbers of vertices are different in the two graphs
(calledinexact graph matching). Various algorithms have been
proposed to solve the above graph matching problems such
as finding the best matching through an optimization process
such as Bayesian framework [11] and EM algorithm [10], [14].
Decision trees [36] and Neural Networks [24], [32] have also
been employed to solve graph matching.

Thus, to calculate the spatial similarity for spinespi andpj
in a possible association, two local graphsGi andGj are built.
Since a disappearing-and-reappearing spine may not appearin

6



IEEE Transaction on Medical Imaging, Oct 2010 (accepted forpublication)

all time points, a local graph of a spine is defined in the time
points that the spine appears. Taking graphGi (the local graph
of pi) as an example, the nodes inGi include spinepi and
its neighboring spines within a certain distance in the same
branch. The local graph has one node per spine. To maintain
the coherence of the two graphs, spines that exist in all time
points can be considered as neighbors of other spines. Edgesof
the graph connectpi to its neighbors. Each of the edge weights
{wie|e = 1, 2, ...,m} is defined as the distance between the
mean centroids of the two spines, wherem is the number of
neighbors ofpi within a certain distance. The spatial similarity
between graphGi andGj is defined as:

Sim2(Gi, Gj) = −

∣

∣

∣

∣

∣

∑m
e=1 wie −

∑n
f=1 wjf

∑m
e=1 wie +

∑n
f=1 wjf

∣

∣

∣

∣

∣

(12)

Herem andn are the numbers of edges in the two graphs,
respectively. This spatial similarity metric is defined based
on the key observation that the relative spatial relationship
between spines and their neighbors are stable. 0-1 integer
programming [33] is employed again to solve spine asso-
ciations through global spatial similarity maximization.The
formulation of 0-1 integer programming is the same as the
one used in Section VI, except here a new similarity metric
Sim2 is used.

Note that the linking approach proposed by K. Li et al.
[22] shares certain similarities with our algorithm. However,
the major difference between our algorithm and theirs is
that, when the similarity metric is computed, our algorithm
optimally utilizes the structure information of the neighbors
in spatio-temporal space by constructing local graph for each
disappearing and reappearing spines, and then generate the
similarity metric between two graphs. However, in the work
of [22], K. Li et al. only use the information of individual
spines for similarity metric calculation, which is not optimal
and less robust.

VIII. E XPERIMENTAL RESULTS AND VALIDATION

To evaluate the performance of our algorithm, 6 ROIs
(Regions of Interest) from three time-lapse datasets were
selected. Dataset #1 contains eight time points, Dataset #2
contains seven time points, and Dataset #3 contains eight
time points. Spines and dendrite backbones were first detected
through a curvilinear structure detector with negligible manual
interventions. Then, individual spines are tracked simultane-
ously through eight time points. Fig. 7 shows the tracking
results of ROI1 in Dataset #1. Each rectangle represents a
spine, and the same spines in different time points are drawn
in the same color. The reappearing spine in red circle at time
point t3 is linked with the spine at time pointt1. Fig. 8 shows
the tracking results of ROI4 in Dataset #2.

The results by our algorithm were validated with the ground
truth in which the spines were manually labeled and tracked
by a biology specialist. We also compared the performance of
our tracking algorithm with a state-of-the-art cell tracking al-
gorithm [21] and two dendritic spine tracking algorithms [18],
[13]. The comparison results are shown in Figs. 9 and 10. In
Fig. 10, ”elimination” means how many spines disappeared in

Fig. 7. Tracking results of ROI1 in Dataset #1. Each rectangle represents a
spine, the same spines in different time points are drawn in thesame color.
The reappearing spine in red circle at t3 is linked with the spine at t1.

the next time point, and ”formation” means how many spines
are considered as new spines in the next time point.

From Fig. 9 and Table 10, we observed that our spine
tracking algorithm achieved a higher accuracy than other
tracking algorithms, and Liet al.’s method [21] and Fanet al.’s
method [13] outperformed Kohet al.’s method [18]. It is not
surprising, considering that Kohet al.’s method is just based
on a heuristic rule: If the overlapping area of two spines is
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Fig. 8. Tracking results of ROI4 in Dataset #2. Each rectangle represents
a spine, and the same spines in different time points are drawn in the same
color.

Fig. 9. Tracking performance comparison with a cell tracking method [21]
and two spine tracking algorithms [18], [13] for 6 ROIs in 3 Datasets. Here,
the “False Match Rate” is the ratio of the number of falsely matched spines
to the total number of spines, and the “Miss Match Rate” is the ratio of the
number of miss matched spines to the total number of spines.

larger than 20% of either one of the spine areas, the two spines
are assumed to represent the same one. This rule is simple
and prone to fail in the region where the spine density is high.
In Li et al.’s method [21], although the spatial information
between the spine and its neighbors is incorporated into its
Delaunay triangulation metric, the Delaunay triangulation is
not in accordance with the dendritic structure. If two dendritic
branches are too close, spines are prone to be falsely aligned.
In Fan et al.’s method [13], dendritic structural information

Fig. 10. Tracking performance comparison with a cell trackingmethod [21]
and two spine tracking algorithms [18], [13]. ROI1 and ROI2 are in Dataset
#1. ROI3 and ROI4 are in Dataset #2. ROI5 and ROI6 are in Dataset #3.

is incorporated into graphs, and dynamic programming is em-
ployed to maximize a posterior probability for graph mapping.
However, dynamic programming is a forward optimization
technique, assuming that the existing partial solution to the
current decision is optimal and it would not resort to previous
decisions to update current state. Although it is a global
optimization technique, matching errors may be accumulated
during the optimization process. Fig. 11 shows an example of
the performance comparison between our approach and Liet
al.’s approach. In Fig. 11, we zoom in a part of ROI2 at time
pointst5 andt7. Red arrows in the results of the cell tracking
method indicate tracking errors. In Fig. 10, we plot how many
spines are detected, formed, and eliminated in a time period
if different methods are used.

To the best of our knowledge, our approach is the first algo-
rithm that can handle the spine disappearing-and-reappearing
problem. One such example is shown in Fig. 7. The com-
parison with the ground truth are shown in Table I. From
Table I, we can see that our algorithm performed well in
linking reappearing spines. As discussed in Section VII, in
some situations, a few spines did not physically disappear;
they may just be misdetected in certain time period in the
spine detection step. Therefore, our algorithm can also be
generalized to compensate detection errors in the bottom up
tracking framework.

We implemented our algorithm and methods of compari-
son in [21], [13], [18] using C++ and Matlab. The average
computing time for tracking spines in 7 time points is 3
minutes using our method, about 1.5 minutes using Li et al.’s
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Fig. 11. Performance comparison of our method with a cell tracking
method [21]. The numbers are the labels of spines. The red arrows indicate
the tracking errors. This is a part region of ROI2 in Dataset #1.

method [21], 1.2 minutes using Fan et al.’s method [13], and
46 seconds using Koh et al.’s method [18], on a computer
with a 2.20GHz Intel Core 2 Duo CPU and 3G Memory. In
general, our algorithm is measurably slower than the other
three algorithms [21], [13], [18], although our algorithm
achieves a higher accuracy (Figs 7-11). Compared with the
three algorithms of comparison, computing efficiency is one
major limitation of our current approach, which we plan to
address in the future. In our algorithm, the FFD (Section V-B)
takes the majority of the computing time.

ROIs
Ground Truth Our Method

Total Spine Reappeared Reappeared False Positive
ROI1 124 2 2 0
ROI2 54 2 1 0
ROI3 132 5 3 1
ROI4 82 2 3 1
ROI5 80 3 2 0
ROI6 112 4 5 2

TABLE I
THE GROUND TRUTH VALIDATION FOR LINKING REAPPEARING SPINES.

ROI1 AND ROI2 ARE IN DATASET #1. ROI3AND ROI4 ARE IN DATASET

#2. ROI5AND ROI6 ARE IN DATASET #3.

IX. D ISCUSSION ANDCONCLUSIONS

In this paper, a novel approach for dendritic spines tracking
in time-lapse microscopy neuron images is proposed. By incor-
porating the spine and dendrite branch association information
into a local non-rigid deformation energy function, dendritic
structures in different time points can be properly aligned.
Then, spine associations are obtained through a global simi-
larity maximization. After that, trajectories of spine centroids
are analyzed and invalid associations are discarded. A novel
strategy to link reappearing spines is also proposed.

To validate our algorithm, we compared our tracking results
with the manually labeled ground truth and three state-of-the-
art tracking algorithms [21], [18], [13]. Comparison results
showed that our algorithm is more accurate and robust than

these algorithms, and can effectively track a large number of
spines simultaneously.

However, besides the aforementioned computing efficiency
issue, our current algorithm has a number of other limitations.
First, in our work, some dendritic information is unavoidably
lost during the MIP projection. Second, in the non-rigid defor-
mation step, the whole dendritic structure is considered asone
shape. This representation may affect the locality of the non-
rigid deformation. Third, our tracking algorithm is a bottom-up
approach in which objects are first detected and then temporal
associations are solved by maximizing a similarity function.
Since in our current algorithm, spine detection and spine track-
ing are two separate procedures, the spine detection algorithm
cannot benefit from the tracking outcomes. In the future, we
plan to combine the two procedures together to further improve
the detection and tracking accuracy. In addition, to provide
more morphology information to the biologists, we plan to
directly detect and track dendritic spines in 3D space.
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