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Abstract

Dendritic spines form postsynaptic contact sites in the central nervous system. The rapid and
spontaneous morphology changes of spines have been widely observed by neurobiologists.
Determining the relationship between dendritic spine morphology change and its functional
properties such as memory learning is a fundamental yet challenging problem in neurobiology
research. In this paper, we propose a novel algorithm to track the morphology change of multiple
spines simultaneously in time-lapse neuronal images based on non-rigid registration and integer
programming. We also propose a robust scheme to link disappearing-and-reappearing spines.
Performance comparisons with other state-of-the-art cell and spine tracking algorithms, and the
ground truth show that our approach is more accurate and robust, and it is capable of tracking a
large number of neuronal spines in time-lapse confocal microscopy images.
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Track Large Numbers of Dendritic Spines in
Time-lapse Confocal Microscopy
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Abstract—Dendritic spines form postsynaptic contact sites neuron images is crucial to study roles of spines related to
in the central nervous system. The rapid and spontaneous those cognitive functionalities.
morphology changes of spines have been widely observed by Proper understanding of the mechanism and pathway of var-

neurobiologists. Determining the relationship between dendritic . logical diti - t . ¢
spine morphology change and its functional properties such I0US Nieurological CONdItions requires accuraie Spineotos

as memory learning is a fundamental yet challenging problem Currently, spine contours and spine association across tim
in neurobiology research. In this paper, we propose a novel are obtained using human-assisted software. Considdratg t

algorithm to track the morphology change of multiple spines g single branch of dendrite may contain hundreds of spines,
simultaneously in time-lapse neuronal images based on non- manually segmenting and establishing the spine correspon-

rigid registration and integer programming. We also propose Do ; . . . -
a robust scheme to link disappearing-and-reappearing spines. dences in time-lapse images is tedious, and is subject tahum

Performance comparisons with other state-of-the-art cell and bPias. Automatically extracting and tracking the morphgiog
spine tracking algorithms, and the ground truth show that our features of spines is highly desired as it would provide

approach is more accurate and robust, and it is capable of consistent results and reduce the workload of neurobisiegi
tracking a large number of neuronal spines in time-lapse confocal A ;tomated segmentation and tracking of dendrite spines is
microscopy Images. challenging, because: (1) Spines have small volumes rgngin
_Index Terms—Dendritic Spine, Time-lapse Images, Global typically from 0.0%:m?> to 0.8sm?. It challenges both the
Similarity, Free Form Deformation, Integer Programming resolution of the confocal microscope and the accuracy of
the segmentation algorithm. (2) Spines have highly vagiabl
|. INTRODUCTION visual shapes and can appear anywhere on the surface of a
) ) ] _dendrite. This makes it nearly impossible to create tereplat
N neuroblglogy, dendrites are tree-like structures sﬁﬂatqr use any prior shape information to detect, segment, and
at the beginning of neuronal cells whose main purpose j,ck spines. (3) Existing literature [25], [35], [15] shethat
to_ help increase t_he surface area of the cell body, Cover&ﬁ’anges in the shape of spines can be dramatic {n certain
with synapses. Spines are small protrusions on the surﬂacecgses, spines could completely disappear for certain gsio
a dendrite which receive excitatory synaptic input fromeoth Therefore, it is difficult to use spine shape as a consistent
neurons and transmit electrical stimulation to the soma& Thaatyre for tracking.
rapid and spontaneous morphology changes of dendritiespin In this paper, we propose a novel, automated algorithm to
have been widely observed [25], [35], [15]. Various Spingack dendritic spines individually in time-lapse imagés.
shapes are classified into several categoegs, mushroom, core jdea is to maximally utilize the spatial and structural
thin, stubby, etc. Existing neurobiology literature [3@7], information between two dendritic structures as followise@
[17] shows that the morphological plasticity of dendritiqyq dendritic structures at two consecutive time pointspgl
spines is highly correlated with their underlying cogretivegistration is first applied to correct possible tranekai
functionality €.g., sensory experience, learning, and memory)nq rotational shift of the specimen during image acquoisiti
Therefore, how to efficiently and accurately extract andkraThen, non-linear local shape deformation and the optimiza-
the morphological features of spines in time-lapse MI@PFC tjon of global similarity metrics are introduced to establi
. _ _ _ temporal correspondences between two dendritic strigture
2013 er”eﬁfzgdcg’;fgges""“d'”g B N e 70 Finally, through the analysis of spine centroid trajecisyi
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. | MAGE ACQUISITION AND PRE-PROCESSING

Time-lapse two-photon laser scanning fluorescence mi-
croscopy was used to monitor the morphological plasticity
of dendritic spines of CA1 pyramidal neurons in organotypic

simultaneously through dendrite-specific, non-lineande- NiPPocampal brain slice preparation. The term CAL (cornu
tion and global similarity optimization, and (2) a novel eafre ammonls) refers to an anatomically d_eflned region within the
to address the challenging spine disappearing-and-rasipge NPPocampus, where the CA1 pyramidal neurons are |ocated,
issue for dendritic spine tracking, by analyzing local igat Which are the main excitatory neurons in this area. To this
relationships of spine candidate association pairs. end, |pd|V|duaI neurons were briefly loaded via a patch pépet
The remainder of this paper is organized as follows: relaté@ntaining a green fluorescent dye (4 mm calcein green {Invit

work is reviewed in Sec. II. Image acquisition and prepreced©9€n))- The field of view for the imaging was chosen within
ing are described in Sec. Ill. Dendritic structure detectie e Stratum oriens of the CAL pyramidal neurons, that is, a

presented in Sec. IV, followed with dendritic structuregali histologically defined area on the basal side of this nedrona

ment in Sec. V and spine association determination in Sec. ¢!l Population. 3D image stacks (spanning 348 in x,140

Experimental results are detailed in Sec. VI, and Sec. %7 inY, and 25-4Qum in z, 1024x 1024 pixels in xy and 0.5
concludes our work with discussion and future directions. /" Ste€p size in z) were acquired every 30 minutes for up to six
hours. The green fluorescent label did not bleach significant

over the duration of the experiment. Full experimental itfeta
can be found in the previous publication [3]. Our neuron

Robust object tracking is a long-standing research topic iithages were acquired in 3D (60 image sections in total)
computer vision [38]. Its goal is to estimate the traje@sri to ensure a significant part of the dendrite were contained
of moving objects and solve their associations over timm the image stack. The 3D image stacks were condensed
Based on their underlying principles, existing algorithcas into 2D images by a maximum intensity projection (MIP),
be categorized into two groupsottom-up approaches and facilitating image handling and data analysis. To ensur® Ml
top-down approaches. In the bottom-up approaches [34], [4% permissible we examined all individual image sections to
[21], [1], [22], [37], [28], objects are first detected andmnake sure that different stretches of dendrite did not grechi
represented in a feature space, and then temporal assosiatup in the projection. With regards to individual spines, the
are solved by maximizing a similarity function. In the top-optical sectioning by two-photon microscopy representsall
down approaches [2], [6], [9], boundaries or positions girojection because the size of spines is typically less than
objects are initialized at the first frame. Then, boundasied the spatial resolution along the Z axis of the microscope.
positions of objects are evolved frame by frame through Therefore, in this paper, all spines are detected and tdacke
prior statistical model. Our dendritic spine tracking algon in MIP (Maximum Intensity Projection) images. The dataset
falls into the bottom-up category. Typically, the suitétlpibf a can be provided upon request for research purpose.
particular tracking algorithm depends on many factors agh
object appearance, number of objects, and object and camera
motions.

A few existing efforts have been attempted to accurately Several algorithms have been proposed for dendritic spine
track dendritic spines. For example, Kehal. [18] proposed detection [39], [23], [8], [40]. In this work, dendrite bambnes
a simple and intuitive approach to track dendritic spine@s. Bnd spine boundaries, along with branch points in different
their approach, after global registration, two spines ffedént time points are detected using a curvilinear structureatiete
frames are considered to be the same, if their overlappieg abased algorithm [39]. In this algorithm, line segments with
is larger than 25% of the volume of either of them. Howevesimilar local directions are first obtained through the gsial
if in certain areas the spine density is high, their approadf the largest eigen-value and its corresponding eigetsvec
may Yield incorrect one-to-many correspondences. In thikwmf the Hessian matrix. If two estimated line segments are
of [13], [26], a graph based matching model was proposednnected in an eight-connected neighborhood or the distan
to track dendritic spines. Each node in the graph represehttween them is smaller than a pre-specified linking thiesho
a spine branch and is connected with its neighbors. A dixe two line segments will be linked. Spine backbones and
dimensional Gaussian distribution is employed as the proteendrite backbone are distinguished by their lengths. &ran
ability distribution function to determine whether two resd points are detected as the pixels that have three or more
in different graphs represent the same spine. The mappmgghbors. Fig. 2 shows the detected dendritic structuresi
between two graphs is obtained by maximizing a posteriekample image. The boundaries of spines are highlighted in
probability. However, whether the spine spatial and terapotblue and the backbones of the dendrite are drawn in pink. We
distribution follows the Gaussian distribution is not jlisd assume that color printing is used for retaining the infdioma
in their paper. In addition, their approach requires users in color figures in this paper.

Fig. 1. The pipeline of our dendritic spine tracking algiomit

Il. RELATED WORK

IV. DENDRITIC STRUCTUREDETECTION
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dendritic branches in this image. The green dots illustifagebranch points.

V. DENDRITIC STRUCTUREALIGNMENT

After dendritic structures are detected, the spine boueslar
and dendrite backbones are represented as 2D shapes. In th
section, determining spine associations between two cense
utive fram_es IS explalned in details. First, in Section V'AEig. 3. Example results of the global registration. (a) Thiginal source
global registration is adopted to correct the image datfl shinage and target image are displayed in green and red coleseatvely.

during the image acquisition stage. How to design a nof®) The extracted source dendritic structure (red) and tteagted target
) dendritic structure (green). (c) After global registratidthe source structure

.rigid def'orma}tion tO' optimally align 'tWO dend_ritic StI’UC.HS. (red) rotates and translates to match with the target stei¢green).
is described in Section V-B. In Section VI, spine associetio

are determined through global spatial similarity maxirticza

after the dendritic structure alignment. associations between different time points are solvedutitro
the global maximization of a spatial similarity metric.
A. Global Registration In our algorithm, the source and target shapes are first-trans

. formed to an implicit shape representation. The transftiona
Although the best effort was attempted to reposition ﬂ]g described as follows. Lef be a shape, i.e. a curve in 2D,

specimen at the same place each time during the image a¢y 4, .  _, p+ pe a Lipschitz function that represents a
quisition stage, misalignment is inevitable due to humaaorer istance transform of shap§, © is the image domain, the
and system bias. Therefore, a global registration is nee(f% ion enclosed bys is Rs, ,and the background regi;)n is

to correct the image data shift between different time @oin T L : .
: . . . Rg. The implicit shape representation is defined as follows:
In this work, the ICRP (lterative Closest Reciprocal Pomfg\ s P perep

algorithm [29] is employed for this purpose. ICRP is a vatrian

of ICP (lterative Closest Point) algorithm [5] that assumes 0,(z,y) €8
each point on the source shape has a valid correspondence orPs(z,y) = { +d((z,y),S) >0, (z,y) € Rs 1)
the target shape. This assumption is not applicable when two —d((z,y),S) <0, (x,y) € |2\ Rs|

shapes are partially overlapping. To overcome this weaknes

ICRP [29] usesc-reciprocal correspondence to reject Wrongance between an image pixel located (aty) and shape

pairs. During ICRP, a rigid transformation matrix is estteth ; ) o
T . S. Fig. 4 (a) shows the visualization of the source shape
by minimizing the squared error of closest points betweem tw L . :
. : . In. the implicit shape representation. The advantage of this
geometric shapes. The ICRP algorithm is composed of two .~ L )
) . . implicit representation is that gradient descent metheashbe
steps: generating temporary correspondences and es@gmati . i . . o R
- ) o conveniently applied to it, and it can facilitate the impiusi
the rigid-body transformation. The solution is found whea t !
. .oﬁsmoothness constraints on the shape boundary.
change in mean square error falls below a threshold, whic ; ST . . . .
2. . L . X . Local registration is equivalent to recovering a pixel-avis
specifies the required precision of the registration. Figh@vs local def ion field th
example results of the global registration ocal deformation field that creates correspondences le:etwe'
' the target shape and the source shape. Such a local defmnmati
o ] field can be efficiently represented using space warping mod-
B. Non-Rigid Local Deformation els [16], [31], [19], [12], [20]. We choose the FFD (Free Form
Usually, the morphological changes of spines are rapiDeformation) model [16], [31] in this work, because it is aap
non-rigid, and independent of one another. Therefore,ajlolble of implicitly enforcing smoothness constraints, prese
registration alone is insufficient to align two dendriticust shape topology, and guaranteeing one-to-one mapping. The
tures. This stands true especially at locations where spiessence of FFD is to deform the source shape by manipulating
density is high. Inspired by the free form local registratioa regular control lattice overlaid on its space to minimize t
algorithm [16], [31], in this work, the dendritic structueg difference between the source shape and the target shape.
time pointt,; (i.e, the source shape) is locally deformed tdhe deformation of every pixel on the source shape can
match the dendritic structure at time point (i.e., the target be computed through interpolating B-spline or Bezier basis
shape) by minimizing a specially-designed, dendriticcttrite-  functions, described below.
incorporated energy function. Point-to-point corresgomaés  Let ©,,, = {(©;, ,,©7, );m =1,..,M;n=1,..,N}

can be established after the local deformation. Finallinesp be a lattice of points overlaid to a region in the embedding

Here, d((z,y),S) calculates the minimum Euclidean dis-
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space enclosing the source shape regica {(z,y)|]1 < x < Finally, by combining all the above three terms (Eq. 3-5)
X,1 <y <Y} M andN denotes the number of points usedogether, we obtain a summed energy functioRafor the
horizontally and vertically. The deformed position of ariygd  non-rigid registration of two dendritic structures:

¢ = (z,y) in the embedding space is calculated as a cubic B-

spline interpolation on the lattice, as follows: E(®) = Essp(©) + aEsmooth (@) + wERep (6)
3 3 Here « is a constant parameter to control the smoothness
=3 Bi(u) CHTN (2) of the deformed shape, and is a positive parameter to
k=0 1=0 control the repulsive constraint between different brasch
Here ©;,4 11, (k,1) € [0,3] x [0,3] (conceptually like Specifically,a andw are experimentally set to 2.0 and 5.5

“weights”) are coordinates of the 16 points on the lattich our experiments, respectively. These parameters may var
in the neighborhood of the pixel = (z,y) in Q, where for different datasets to achieve better results. Geneitithe
i=Z (M-1)]+1,j=[% (N-1)]+ L Bg(u) and morphology of spines changes rapidly in an image dataset, th
B,(v) represent thé'" andi*" cubic B-spline basis functions, smoothness of spine shape is not our first concern. Therefore
respectively, where = £- M —| £ .M|,v=%4.-N—|%£.-N|. «a can be set to a small value. If the spine density in the

The local reglstratlon is equwalent to finding the latti@e branch region is high, to prevent spines that belong to riffe
that minimizes the Sum of Squared Differences (SSD) betwelfanches being aligned together,should be set to a higher
the implicit (distance transform of) representation of tiiget Vvalue.

and source shapes. Therefore, a corresponding energyofunct Then, a gradient descent method is used to optimize the

can be defined as follows: criterion defined by Eq. 6. Its partial derivative is compulte
as follows:
Pssn(@) = [ [ [@r(©) - es(D@.9)P s @
In order to preserve the regularity of the deformed shape, a  §g, - _2// e (¢ (D(©;¢))]

smoothness term is added (Eq. 4).

(V‘I’s( (©.6) D@, 5)) axt

0D(©® D(®
)= [ [ ([P0 4|00 Yo e f [P0 L (D e.))
4 oD(®,¢) 0 a )
We also define a repulsive constraint to avoid misalignments Ty a9, <5 D(e, 5)) dg + “ 96, Ewep  (7)

between dendritic branches on the source shape and those on

the target shape. In the detection step, dendrites areedivid Here 09 ERrep is calculated a$ire, (@) — Erep(Or-1)-

into branches and ass|gned to distinct labels. For exan’fp|eN0te]€ denotes the iteration number and this partial derivative
there are N branches in an image, they will be labeled iscalculated in the lattice points’ difference space, ndirne
1,2,3,...,N. Spines will have the same label as the dendrifdace. After the deformation, we establish pixel correspon
branch they belong to. Therefore, each pixel on the dendrifiences between the source shape and the target shape. liror eac
structure (both the dendrite backbone and spines) is am;igﬁixel on the deformed source shape, we calculate its nearest
a label based on its association with the dendritic branch&9int on the target shape as the correspondence point. hite t
During the deformation, we want to keep the number dhe dense one-to-one mapping feature in FFD denotes thee pixe
misaligned pixels on the source shape as small as possiRrespondence between the source shape and the deformed
that is, we want pixels labeled an the source shape to besource shape; the established correspondence between the
aligned as pixels labeled @on the target shape. source shape and the target shape may not be one-to-one

The repulsive constraint can be formalized as follows: ~correspondence. However, for each pixel on the source shape
only one correspondence can be found on the target shape.

- s Fig. 4 shows such a local non-rigid deformation example.
ERep = Z Z ’Cz‘ nce; | ®) Fig. 4 (a) visualizes the deformation filed. Fig. 4(b) digsla
=1 =157 one-to-one pixel correspondences between the source shape
Branch labels are assigned to pixels in shapes. Heamd the target shape after the deformation. Fig. 4(c) is the
{C].S|j = 1,2,..., N} denotes dendritic branch labels on theoomed version of the rectangular region in Fig. 4(b). Fig. 5
source shape and”! |i = 1,2, ..., N,i # j} denotes dendritic shows a non-rigid local deformation comparison with/witho
branch labels on the target shape. The “branch labels” arging the repulsion constraint. From Fig. 5, we can see tieat t
integer numbers from 1 to N (N is the number of the totakpulsion force prevents pixels belong to the differenhbhees
branches), and they are assigned to pixels in shapes. Nwierging together.
that the source shape and the target shape have the sanBased on the local non-rigid deformation outcomes, we
number (N) of dendritic branches, because the dendrites &and that three different pixel association patternsteris(1)
stable during the image acquisitioBire, returns how many All the pixels of a spinep, on the target shape are associated
pixels on the source shape are misaligned with differemidira with all the pixels of another sping, on the source shape. It
structures. suggests that, andp, most likely represent the same spine.
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VI. SPINE ASSOCIATIONDETERMINATION
In this section, 0-1 integer programming is further utitize

R e to solve one-to-one spine associations through a maxiiizat
S of a global spatial similarity metric between two dendritic
structures. LetP* = {pFli = 1,2,..n} and P! =

{p]+1|j = 1,2,..m} denote spines at two time pointg
and ¢4, wherepZ denotes thei** spine at thek'” time
Fig. 4. Local non-rigid deformation: the source shape (hltie target shape pomt., andn_ and m are ,the total num_bers of spines at the
(red), and the deformed shape (green). (a) Visualizatioh@sburce shape in tWO time points, respectively. For a spipg, we assume that
the implicit shape representation. (b) Visualization ofdieéormation filed. (c) m; spinesMi = {(pf,p?‘*‘l)u =1,2, _,_,mi} at time point
The one-to-one pixel correspondences between the soudcsaance shapes 4 are jdentified as the association candidates in the above
after the deformation. (d) A close view of the rectangulaiargn (c). C. A .

local non-rigid deformation alignment step. Thereforeg th
total number of possible associations of all the spineg, &
N =", m;. The number of possible different associations
U T [ areM =J, M;. A spatlal similarity metric that defines the
' y " similarity between spine? at t* and its candldatep’“rl
t**1 is calculated as follows:
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Fig. 5.  Non-rigid local deformation comparison with/withousing the ; ;
repulsion constraint. The source shape is in red, the tafggbe is in blue, Here, the function) calkc+ullates the dIStance between the
the deformed shape is in green. (a) The green dots show themdefeshape Centroids of Span% andp and the functiom; computes

without using the repulsion constraint. (b) The green dbtsisthe deformed the area of a spine. This metric suggests that for two spines,

shape after using the repuision constraint. the closer the two spine centroids are, the larger ovent@ppi

area the two spines share and more likely they represent the

same spine. The optimal matching strategy is to determime th
optimal solutionz* = {0/1}" that maximizes a similarity
(2) All the pixels of the sping, on the target shape are assoppjective function (Eq. 9) while maintaining a constraint
ciated with some plxels of the dendrite backbone on the mur(Eq 10) each Sp|ne in e|th@k or pk+1 can be associated
shape, which means, disappears in the next time point. (3\ith at most one spine in the other time point.
All the pixels of the sping, on the target shape are associated The objective function can be formalized as follows.
with more than one spines on the source shape. It implies

that in these regions, the spine density is high, and one-to- z" = argmax(f(z))

one pixel correspondences alone cannot completely determi ze{0,1}¥

accurate spine associations, but provide most likely chtds N - 9)
for further association refinement. Therefore, local nigidr Z 1)-Sim ( plz’pjz )]

deformation cannot guarantee the complete determinafion o =1

one-to-one spine associations. Examples of the three spinélerez is a N x 1 vector which denotes decisions of the
association patterns are shown in Fig. 6. possible associationg(l) = 1 indicates that thé!" possible
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association is chosen, whitgl) = 0 indicates thé*" possible the distance between; and individual spine centroids; at
association is discardedi;, j;) are the spine labels in; different time points { denotes the spine label afidndicates
andt, in the " possible association. Thus, the one-to-onehich time point the spine centroid is at). Every spine aadtr

association constraints can be formalized as: ci; is examined by the Gaussian mod€] defined above. If
P(cij|us, @) is less than a pre-specified threshold (0.75 is used
Az<b (10) in this work), we consider that the assigned association for

) ) spinep; at time pointt; is false. Therefore, all spines labeled
Here A is a(m +n) x N matrix.m +n suggests that there 55 ; 4t and after time point; will be assigned a new label.

are totalm + n spines in botht, andt;.4; time points. IS aggqciations of these spines will be reconsidered durirg th
rows indicate spines in bott, and ¢, time points, while reappearing spine linking stage.
its col_umns corres_pond to the decisions_ of tNepossible  The morphology of spines changes rapidly over time. In
associations. Hel’q is a.(ern.) x 1 vector with all 1. .It Means certain circumstances, some spines even completely disapp
that each spine either i, or in 41, can be associated With ¢, 5 certain period. Then, new spines are observed in approx
at most one spine in the other time point. For fliepossible 511y the same positions on the dendrite. Three main reason
associationsVf; = {(pf ,p* ™|l = 1,2,..., N} . : : .

! Dy s Pj R A may cause this disappearing-and-reappearing problem: (1)

Spines physically disappear at a certain period and thgn rea

1; ka = il . .. . .
) ) pear in the same place. Existing neuroscience literatusg [2
Ak, D) =4 Lifk=n+5,0<I<N (11) [35], [15] has well documented this phenomenon. (2) In this
0; otherwise work, spines are detected in the MIP (Maximum Intensity

0-1 integer programming. In this work, we use branch-an e occluded by other dendritic structures. Therefore, espin

bound (LPBB) based linear programming algorithm [33] fhay just visually disappear. (3) Spines with a low intensity

solve this optimization problem. The optimization proce$s are misdetected at certain time points. :

LPBB is to build a searching tree by repeatedly discretiz- Our strgtegy of Imkmg reappearing spines are descrlbeq as
ing (0 or 1) the variables (branching) and pruning the tr 8"0WS_' '_:'rSt' a ca_nd|date_llnk|ng list for spines Fhat SIX'
branches based on the optimal value of the node (boundir_? ly within a time interval is created. Each entry in the list

compued b Inear programming, Note tat alough spgy 0S8 [1e€ cements e abe of 1 spne e s
i i iological obj king h . - o o I .
integer programming to biological object tracking has bee Ix|sts_ From this list, candidate association pairs thagtme

previously investigated in [21], we can clearly see that m& X . . " .
: : : e following requirements are identified: (1) The distance
algorithm outperforms the algorithm in [21] through a dtrecbetween thg mgans of the two spine cefﬂ?oids should be

erformance comparison with [21]. This is mainly due to: . . . .
P par with [21] S | iy au ithin a certain range; and (2) temporal overlap does ndtexi

(1) the deformable registration process in our algorithm t the t . F | . b df
capable of optimally aligning two dentritic shapes, andt(®) etween the two Spines. For example, a spine observed from
time pointt; to t4 cannot be associated with another spine

similarity metric introduced in our work extracts and inbs . . :
existing fromts to ¢5, since they coexist at; andt,.

more features from dendritic structures than [21]. Sub v 1o link . . furth
Also, it is noteworthy to point out that features like (a) ubsequently, o fink reappearing spines, we: Iurther ex-
ine the spatial similarity between two spines in possible

the distance between spine centroids and (b) the areas of M€ Jciations. and then optimal Spine associations am ca
spines in two time points have been explored in O. AI-KofaI‘a ations, Pl b atl aRg

et al's early work [1]; however, besides the two features, | idaFe .ass.ociations. are determiqed through glgbal siiﬂyillar

our algorithm dendritic branch information implicitly gies maX|m|zat|0n.(Sec.t|0.n V). In this .work, the disappearing-
the non-rigid local deformation (see Section V-B). And,idgr and-re_appearlng linking -problem is .SOIVEd through- graph
the procedure of linking reappearing spines (see the fallpw matching. Generally, the graph matching problem [4] can be

Section VII), neighborhood information of individual sp geflned(vas;o)llovv\\lli::‘r:] ﬁ}v‘en t|v‘v/o| gtﬁ:rp@r:)biangvig ?ci))fiagda
i i iati - i = Vi &) il = Vil
is utilized to determine the spine association pairs. one-to-one mapping : V; — V, such that(em, en) € E;

iff (f(em),f(en)) € E;. When such a mapping exists,

G; is said to be isomorphic t@7;. This type of problem
Once spine associations between every two consecutisecalled exact graph matching. However, in most practical
time points are obtained, trajectories of spine centroids aases, the numbers of vertices are different in the two graph

analyzed. The goal of this analysis is to eliminate fals@espi(calledinexact graph matching). Various algorithms have been
associations based on the spatial locations of spine édstroproposed to solve the above graph matching problems such
For each labeled sping that is observed from time poin to  as finding the best matching through an optimization process
tm, its centroid at each time point is first calculated. The meauch as Bayesian framework [11] and EM algorithm [10], [14].
centroid ofp;, defined as the mean of spine centroid acrog3ecision trees [36] and Neural Networks [24], [32] have also
several time points, is denoted @s= (z;,y;). A 2D Gaussian been employed to solve graph matching.

N;(wi,0) is fitted to model the spread of the spine centroids Thus, to calculate the spatial similarity for spingsandp;

of each labeled spine. The center of each Gaussian lies atitha possible association, two local graghisandG; are built.
mean centroids;, anda is set to be the standard deviation ofSince a disappearing-and-reappearing spine may not appear

This above optimization problem can be solved throu%rojection) Images. During the projection, some spines may

VII. LINKING REAPPEARINGSPINES
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all time points, a local graph of a spine is defined in the tingg
points that the spine appears. Taking gréhhthe local graph

of p;) as an example, the nodes @ include spinep; and §
its neighboring spines within a certain distance in the sar|
branch. The local graph has one node per spine. To maint
the coherence of the two graphs, spines that exist in all tirg
points can be considered as neighbors of other spines. Blgeji
the graph conneg; to its neighbors. Each of the edge weight,
{wiele = 1,2,...,m} is defined as the distance between th
mean centroids of the two spines, wheneis the number of

neighbors ofp; within a certain distance. The spatial similarity'
between grapltz; andG; is defined as: ’

Desq Wie — Z}l:l Wi s

Simy(Gi, G;) = — S oo Wie Y gy Wy

12)

respectively. This spatial similarity metric is defined éds
on the key observation that the relative spatial relatignsh
between spines and their neighbors are stable. 0-1 inte
programming [33] is employed again to solve spine ass
ciations through global spatial similarity maximizatiohhe
formulation of 0-1 integer programming is the same as the
one used in Section VI, except here a new similarity metr
Simy is used.

Note that the linking approach proposed by K. Li et a
[22] shares certain similarities with our algorithm. Howev
the major difference between our algorithm and theirs -
that, when the similarity metric is computed, our algorithr
optimally utilizes the structure information of the neiginb
in spatio-temporal space by constructing local graph fahea
disappearing and reappearing spines, and then generate
similarity metric between two graphs. However, in the wor
of [22], K. Li et al. only use the information of individual g
spines for similarity metric calculation, which is not aoptl
and less robust.

VIIl. EXPERIMENTAL RESULTS AND VALIDATION

To evaluate the performance of our algorithm, 6 ROI
(Regions of Interest) from three time-lapse datasets we"
selected. Dataset #1 contains eight time points, Dataset
contains seven time points, and Dataset #3 contains ei
time points. Spines and dendrite backbones were first édetec
through a curvilinear structure detector with negligiblarmal
interventions. Then, individual spines are tracked siemdt
ously through eight time points. Fig. 7 shows the trackingg. 7. Tracking results of ROI1 in Dataset #1. Each recemgpresents a
resuls of ROIL in Dataset #1. Each rectangle represent§24®, e same spines n dfernt ime popts et reme coor
spine, and the same spines in different time points are drawn
in the same color. The reappearing spine in red circle at time
point ¢ is linked with the spine at time point. Fig. 8 shows
the tracking results of ROI4 in Dataset #2. the next time point, and "formation” means how many spines

The results by our algorithm were validated with the grour@¥€ considered as new spines in the next time point.
truth in which the spines were manually labeled and trackedFrom Fig. 9 and Table 10, we observed that our spine
by a biology specialist. We also compared the performancetaodicking algorithm achieved a higher accuracy than other
our tracking algorithm with a state-of-the-art cell trawial- tracking algorithms, and Lét al.'s method [21] and Fagt al.’s
gorithm [21] and two dendritic spine tracking algorithm8]1 method [13] outperformed Kokt al.'s method [18]. It is not
[13]. The comparison results are shown in Figs. 9 and 10. sarprising, considering that Koét al.’s method is just based
Fig. 10, "elimination” means how many spines disappeared @am a heuristic rule: If the overlapping area of two spines is
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Fig. 10. Tracking performance comparison with a cell trackimegthod [21]
and two spine tracking algorithms [18], [13]. ROI1 and ROI2 ar Dataset
#1. ROI3 and ROI4 are in Dataset #2. ROI5 and ROI6 are in Da#&e

Fig. 8. Tracking results of ROI4 in Dataset #2. Each recingbresents iS incorporated into graphs, and dynamic programming is em-
a spine, and the same spines in different time points are dravimei same ployed to maximize a posterior probability for graph mappin

color. However, dynamic programming is a forward optimization
Tracking Performance Comparison () T P o) technique, assuming that the existing partial solutionht® t
L 0L/ eral [21] el 4] current decision is optimal and it would not resort to pregio
L N ‘;‘;‘; T T degisi_on; to upda}te current state. Although it is a global
2 T Fﬂ“:ﬂl-[‘” e | a optimization technique, matching errors may be accumdlate
= Q [ = o0 H ; E N during the optimization process. Fig. 11 shows an example of
5% E Our Method| 2005 : the performance comparison between our approach aretl Li
Boos| | Kohealbe) L oos | Keheuallo] L al.’s approach. In Fig. 11, we zoom in a part of ROI2 at time
ol Egz B pointsts andt;. Red arrows in the results of the cell tracking
0] method indicate tracking errors. In Fig. 10, we plot how many
lgortiune - ~ spines are detected, formed, and eliminated in a time period

if different methods are used.
Fig. 9. Tracking performance comparison with a cell trackinghoe [21] To the best of our knowledge, our approach is the first algo-
and two spine tracking algorithms [18], [13] for 6 ROIs in 3 Bsts. Here, rithm that can handle the spine disappearing-and-reajmgear
the “False Match Rate” is the ratio of tbe_number of fals?l_y thett spines problem. One such example is shown in Fig. 7. The com-
to the total number of spines, and the “Miss Match Rate” is tt@rof the . ) .
number of miss matched spines to the total number of spines. parison with the ground truth are shown in Table I. From

Table I, we can see that our algorithm performed well in

linking reappearing spines. As discussed in Section VII, in
larger than 20% of either one of the spine areas, the two spis@me situations, a few spines did not physically disappear;
are assumed to represent the same one. This rule is sinfpRy may just be misdetected in certain time period in the
and prone to fail in the region where the spine density is highpine detection step. Therefore, our algorithm can also be
In Li et al.'s method [21], although the spatial informatiorgeneralized to compensate detection errors in the bottom up
between the spine and its neighbors is incorporated into ftgcking framework.
Delaunay triangulation metric, the Delaunay triangulatie We implemented our algorithm and methods of compari-
not in accordance with the dendritic structure. If two déiclr son in [21], [13], [18] using C++ and Matlab. The average
branches are too close, spines are prone to be falsely dligr@mputing time for tracking spines in 7 time points is 3
In Fan et al.'s method [13], dendritic structural informationminutes using our method, about 1.5 minutes using Li et al.'s
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these algorithms, and can effectively track a large number o
spines simultaneously.

However, besides the aforementioned computing efficiency
issue, our current algorithm has a number of other limitetio
First, in our work, some dendritic information is unavoitiab
lost during the MIP projection. Second, in the non-rigidatef
mation step, the whole dendritic structure is considereanas
shape. This representation may affect the locality of the-no
rigid deformation. Third, our tracking algorithm is a batteup
approach in which objects are first detected and then terhpora
associations are solved by maximizing a similarity funatio
Since in our current algorithm, spine detection and spiaektr
ing are two separate procedures, the spine detection tdgori
cannot benefit from the tracking outcomes. In the future, we
plan to combine the two procedures together to further ingro
Performance comparison of our method with a cell trapki the detection and tracking accuracy. In addition, to previd

Fig. 11.
method [21]. The numbers are the labels of spines. The red suimicate  more morphology information to the biologists, we plan to

the tracking errors. This is a part region of ROI2 in Dataskt # directly detect and track dendritic spines in 3D space.
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