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Abstract 
 
Keyword based search of data, such as documents, maps, images, audio and video data, is an everyday 
activity for many millions of people with myriad uses, e.g., scientific computing, digital libraries, the web, 
catalogs, geographical information systems, music servers, etc. In this paper, we present several 
declustering algorithms based on existing similarity measures as well as their generalizations. Experiments 
show that the new declustering methods are indeed more efficient in declustering times and close in terms 
of parallel query times than quadratic declustering methods based on existing similarity measures. Our 
declustering algorithms are sublinear in the number of comparisons and scalable with increasing data and 
disks. The new methods are also capable of handling streaming data quite efficiently. We present some 
negative results on random and profile-based sampling. Although the new sampling strategies based on 
profiles of the documents outperform the old sampling strategies, which do not use a profile, they are still 
worse than random and round-robin. Further testing is required to confirm the sampling results. 
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Efficient Data-Sensitive Techniques for Parallel Retrieval of Keyword-indexed 
Information 

 
Abstract 

Keyword based search of data, such as documents, maps, images, audio and video data, is an everyday activity for many millions of people 
with myriad uses, e.g., scientific computing, digital libraries, the web, catalogs, geographical information systems, music servers, etc. In 
this paper, we present several declustering algorithms based on existing similarity measures as well as their generalizations. Experiments 
show that the new declustering methods are indeed more efficient in declustering times and close in terms of parallel query times than 
quadratic declustering methods based on existing similarity measures. Our declustering algorithms are sublinear in the number of 
comparisons and scalable with increasing data and disks. The new methods are also capable of handling streaming data quite efficiently. 
We present some negative results on random and profile-based sampling. Although the new sampling strategies based on profiles of the 
documents outperform the old sampling strategies, which do not use a profile, they are still worse than random and round-robin. Further 
testing is required to confirm the sampling results. 
Categories and subject descriptors: H.3.2, H.3.3 [Information Storage and Retrieval] 
General Terms: Algorithms, Performance. 
Keywords: Efficient Query Evaluation, Parallel I/O, Digital Libraries 
 
1.  INTRODUCTION 
Keyword based search of data, such as documents, maps, images, audio and video data, is an everyday activity for many millions of people 
with myriad uses, e.g., scientific computing, digital libraries, the web, catalogs, geographical information systems, music servers, etc. The 
growing imbalance between the speeds of processors and I/O devices has resulted in the I/O subsystem becoming a bottleneck in many 
applications (see [16] and references cited therein) including especially the above mentioned areas. The ever-rising volumes of data (e.g., 
over three billion web pages, NASA's EOSDIS project [16], etc.) and its dynamic nature compel the development of high-performance 
parallel I/O servers for these data intensive applications to allow: (i) more complex queries, (ii) increased utilization of system resources, 
(iii) reduced latencies, and (iv) to avoid the imminent severe performance degradation. 
 
The I/O bottleneck can be alleviated by designing fast algorithms that decluster the data, i.e., distribute it across multiple disks so that data 
on the same disk are as dissimilar as possible, and parallelizing the I/O operations. There are two key optimization criteria: maximum 
parallelism for queries, which are typically boolean combinations of phrases of keywords (e.g., cryptography and not ``private key''), and 
uniform load of data across disks.  
 
Automatic allocation of keyword-indexed information on parallel disks is a critical technology for dealing with the explosive growth of 
data in scientific computing, digital libraries and the web. In this paper, we present: (i) novel similarity measures and declustering 
algorithms for keyword-indexed information, and (ii) compare the performance in parallel query time, declustering time, and the scalability 
of the new measures against declustering algorithms derived from existing measures such as Dice's coefficient and Jaccard's coefficient. 
Similarity measures are needed to distribute the data across multiple disks so that data on the same disk are as dissimilar as possible, which 
reduces the probability of one disk becoming a bottleneck.  
 
Note that the problem of search engines such as Google [12]-- that even though keep copies of every web page -- is a different and easier 
one, since they typically do not retrieve the actual data itself but hyperlinks, which are orders-of-magnitude smaller, to the data the user is 
interested in. Of course, they provide links to ``cached copies'' but they need retrieve this only when the user explicitly requests it, which is 
a sequential process in that the user first visits one site and then another and so on. Despite having a relatively easier problem to contend 
with, search engines still use ad-hoc parallelism, lazy computation trick of postponing the merging of inverted lists hoping that the user will 
be satisfied by the first page of links, and limit the number of keywords for relief. All these tricks for an easier problem serve to bolster our 
arguments about the difficulty of fast access to the data itself. 
 
In this paper we present declustering algorithms or the data by designing and validating new similarity measures for keyword-indexed data 
including comparisons with methods based on exisiting measures. Our work addresses several limitations that are common to existing work 
on parallel I/O servers for keyword-indexed data as well as investigates important new research directions. Our declustering algorithms are 
sublinear in the number of comparisons and scalable with increasing data and disks. Because of the large volumes of data even linear-time 
algorithms can be slow, whereas most existing data-sensitive methods are quadratic in the number of comparisons. Furthermore, our 
algorithms are designed for streaming data. Such algorithms do not assume that all data is available beforehand, but instead make decisions 
as the data arrives. We present analytical study and experimental validation of the scalability of our algorithms with increasing data and 
disks, on collections drawn from Literature Online. Applications of proposed work include also automatic text categorization, Internet 
resource discovery services, and could include clustering as well. 
 
Experimental results show that standard techniques such as round-robin or random allocation and their variants can result in more than 20% 
higher disk response time compared to similarity-based data allocation schemes using Dice's or Jaccard's coefficient, even for small 
collections and simple queries with at most three keywords [18, 2]. Excite has provided us with a large database of over one million actual 
user queries that guides one of the query model in our experiments. 
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Related Work. Multiple disks were proposed to achieve fault-tolerance from disk failures. Subsequently, they have been used for 
declustering also to increase parallelism in update and query operations. Earlier declustering methods such as round-robin, hashing, or 
range-partition based methods were developed for traditional file structures. Recently, several methods have been proposed for declustering 
spatial databases [14] for similarity or range queries. These approaches are either static (i.e. the data is known in advance) or based on 
uniformly partitioning the space itself (in this case the performance degrades with clustered data distributions). There is also some work on 
declustering for multimedia applications [19]. In contrast to the static case where all the data is available before the declustering algorithm 
is invoked and therefore optimal algorithms can be derived, in the streaming data case decisions to assign data to a disk must be made as 
the data arrives and are typically never/rarely revisited. These decisions, therefore, must necessarily be suboptimal except in rarely 
occurring simple situations. For the case of documents and boolean keyword or phrase queries, there is hardly any previous work on 
declustering the documents to the best of our knowledge. In [2], the authors adapt a spatial declustering method for keyword-indexed data 
and compare it against the simple matching model, round-robin and random allocation. 
 
There are two efforts on partitioning inverted files [1], an index used in information retrieval systems. In [8] the performance of inverted 
indices is considered for a shared-everything multiprocessor machine, and in [6] the performance of inverted indices is considered for a 
shared-nothing system consisting of multiple processors and multiple disks. In both these papers, the authors focus on retrieving the 
postings files for the documents in parallel, and do not consider the problem of retrieving the documents themselves in parallel. Thus, the 
distribution of the documents themselves is not an explicit goal except that it occurs as a side-effect in [6] in one strategy called the disk 
strategy, wherein the documents are divided between the disks in a round-robin manner (see also [15] for a discussion). For some work on 
distributed information retrieval see [13]. For some general considerations involved in heterogeneous disk systems we refer to [20]. 
 
The main problem with existing work on similarity measures (this including proximity-based schemes such as [14]) is that the similarity 
function is between two data items or between a query and a single data item. This means that in a declustering algorithm when a new data 
item is to be assigned to a disk, it must be compared with every item previously assigned to the disks and an aggregation function must be 
applied such as sum of the similarities or maximum similarity with items on each disk. This leads to a declustering algorithm that requires 
quadratic comparisons in the number of data items assigned. 
 
2 FRAMEWORK AND DEFINITIONS: 
This section introduces the definitions of the symbols used in subsequent discussions (Table 2-1) and the basic framework for declustering 
documents under multi-disks architecture. 
 
 Table 2-1 Notations and Definitions 
Symbol Definition 
N Total number of documents in the collection  
D Total number of disks for N documents  
Dd The dth disk, where d ∈ {1,2,3,...,D} 
tj The jth document in the collection where j ∈ {1,2,3,...,N} 
Nd The total number of documents on the dth disk 
sim (ta, tj) The similarity of the ath document and the jth document 
simtaDd The sum of the similarity of  Document ta with each document on Disk Dd 

a ∈ {1,2,3,...,N}; d ∈{1,2,3,...,D} 
ta Document to be assigned to a disk 
tiDd The ith document already assigned to Disk Dd 

where i ∈ {1,2,3,..., Nd } d ∈ {1,2,3,...,D} 
 
The assignment of a document to a disk is based on the calculation of its similarity, respectively, with each of the documents already on the 
disks. Following are the steps to assign a document to a disk based on the models of Section 3. (The first two steps are modified into a 
single step for the models of Section 4): 

a) Calculate the similarity of Document ta and Document tiDd: sim (ta, tiDd) by similarity models. Details in Section 3. 

b) Calculate the sum of the similarity on each disk for ta: ∑=
=

N
ttsimsim

d

dda i
iDaDt

0
),(   

c) Find disk Dmin which has the minimum similarity, simtaDmin: 
},....,,{min

21min
sim Dtsim Dtsim Dtsim Dt daaaa

=  

d) Assign Document ta to Disk Dmin 
 
3 EXISTING SIMILARITY MODELS  
This section describes the existing similarity models tested for the study. In keyword-indexed information retrieval system, each document 
can be viewed as a set of tokens.  Tokens can be letters, words or strings of any length. A text document can be broken up into a set of 
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tokens.  The set of the tokens, the occurrences of each token and the position of it are the key elements to distinguish one document from 
another.  Most of the similarity models use these key elements to calculate similarity of two documents. 
In the following definitions, Q is defined as the set of tokens for the first document tq and P as the set of tokens of the second document tp.  
The intersection of Q and P is denoted as |Q ∩ P|. The union of Q and P is denoted as |Q U P|. |Q| and |P| represent the number of tokens in 
set Q and set P, respectively.  
 
3.1 Simple Matching (coordination level match) [1]: 
The Simple Matching Model is to calculate the intersection of token sets of two documents.       
 
3.2 Dice’s Coefficient [1]: 
The Dice’s Coefficient is the intersection of the two sets normalized by the total number of tokens of the two documents. 
 
 
3.3 Jaccard’s Coefficient Model [1]: 
The Jaccard’s Coefficient Model is to calculate the intersection of the sets of two documents normalized by the union of the two sets. 
 
 

3.4 Cosine Coefficient [1]: 
 
3.5 Overlap Coefficient[11]: 
 
3.6 Broder Scheme [4] [5]: 
The Broder Scheme is an intersection-based model with chunking strategy.  It views a document as a series of tokens.  Each token contains 
more than one keyword and tokens can be overlapped. The size of the token is determined by the number of keywords it contains. The 
definition of the model is as follows: 
 
 
where w is the size of the token. For example, if we define a token as containing two keywords, the token size w is 2.  The tokens may 
overlap by one keyword or they may not overlap. If w is 1, this scheme is the same as Section 3.3, Jaccard’s Coefficient Model. 
3.7 SCAM (Relative Frequency Model) [10] [11]: 
Relative Frequency Model is a comparison scheme based on the word occurrences of a document. It combines relative frequencies of 
words as indicators of similar words with cosine similarity measurement as stated by Shivakumar and Garcia-Molina [10]. The Relative 
Frequency Model is defined as follows: 
First, define the closeness set c(Q,P) to contain words wi. The closeness set is an indicator which indicates the set of words that occur with 
similar frequency in the two documents.  A word wi is in c(Q,P) if it satisfies the following 
condition: 
 
Where ε = (2+,∞), is a tolerance factor and it is a user-tunable parameter. Fi(Q) is the number of occurrences of word wi in tq. Fi(P) is the 
number of occurrences of word wi in tp. According to Shivakumar and Garcia-Molina [10] this model works well when ε = 2.5. Second, 
define the subset measurement of document tq and document tp to be:  

where α is a weighing factor of each word wi.  In Shivakumar and Garcia-Molina [10] it was uniformly defined as 1. Then, the similarity of 
the two documents is determined as follows: sim (tq, tp)=max{subset(tq, tp), subset(tp, tq)}. From the subset measurement, we can see that 
this model only takes in the words which fall into a closeness set.  
3.8 SCAM model with Chunk Strategy [3][10][11]: 
A document can be broken up into more primitive units called chunks.  There are different ways to choose chunks.  For a text document, a 
chunk can be a word, a sentence or a string of any length. Chunks can be overlapping or non-overlapping.  Several chunking strategies have 
been discussed in [11].  
 
The SCAM Model [10] and the COPS Model [3] are two copy detection mechanisms for a digital library.  The SCAM model is based on 
words, i.e. a chunk contains one word.  It believes that word access patterns have more locality then sentence access patterns.  In COPS, 
documents are broken up into sentence, i.e. a chunk contains one sentence.  While SCAM has been shown to work well over COPS [3], it 
loses position information which resulted in more false positives than COPS.  In the present study the SCAM Model’s algorithm is 
combined with a chunking strategy that takes two consecutive words as a chunk and the chunks are overlapped by one word. 
3.9 Round Robin Model: 
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This model assigns the documents to the disks in a Round Robin way regardless of the similarity between the documents. The following 
formula determines the disk to be chosen for a document assignment: Dd = j % D, where Dd is the disk selected, j is a counter incremented 
by 1 for each document assignment. D is the total number of disks. 
3.10 Random Selection Model: The Random Selection model assigns the documents to a disk Dd randomly with each disk being 
equally selected. 
3.11 tf-idf Model [1]: This is standard (please see [1]). 
 
4 NEW SIMILARITY MEASURES 
We have generalized the first five models above by denoting Q to be the set of all tokens for the documents t1, t2, …, tq on the disk being 
considered and P as the set of tokens of the document tp under consideration. The new models are denoted by version 2.0 below and the old 
models by version 1.0. For simple matching model this generalization gives the same similarity value. Note that a document is not 
compared individually with all the other documents, which means that the overall time complexity for declustering the entire collection is 
O(K(d)D), where K(d) denotes the sum of the number of keywords over all the documents and D is the number of disks. This complexity is 
obtained by constructing one structure for each disk indexed by keywords in the collection containing the frequency of each keyword 
among the documents on the disk for both set and Multiset options. The number of comparisons to decluster the collection complexity is a 
sublinear function in the size of the entire collection. 
 
5 EVALUATION PROCESS: 
Section 5.1 below describes the basic evaluation process and Section 5.2 presents the simulation program architecture based on the 
requirements of the evaluation process. 
 
Our simulation program is designed to evaluate all eleven similarity models through query operation. The evaluation process is as follows: 

• Assign all documents in a collection to a set of disks based on a similarity quantification measurement. To assign 
document k to a disk, we adopt a document assignment method from [2]. In this method, a sum of similarity of each 
document on each of the disks with document k is computed. The disk with the minimum sum is the one document k 
will be placed on. If there are more than one disk giving the same minimum, document k will be assigned to the disk 
which has the least number of blocks (in our experience least number of documents is inferior). 

• Perform several sets of queries to retrieve the documents from the disks. 
• Since documents reside on a disk in blocks, a document can be viewed as a set of blocks. The document retrieval time 

is measured by three parameters: a) access time, b) transfer rate and c) number of blocks to be retrieved from the disk.  
• Documents located on different disks can be retrieved in parallel. The performance of each similarity model is 

evaluated by the maximum document retrieval time of the query results.  
 
6 EXPERIMENTS: 
The experiment set up includes document collections, query models, set options, similarity models and related evaluation parameters. 
 
6.1 Document Collections: 
Three collections of text documents are selected for similarity model evaluation. Table 6-1 shows their characteristics. 

 
Table 6-1: Characteristics of Document Collections 

Collections Number of 
Documents 

Minimum 
Size  

Maximum Size Total 
Size 

Average 
Size 

Standard 
Deviation 

C1 50 6KB 64KB 1.3MB 26 KB 16.3 
C2 150 2KB 341KB 9.5MB 65 KB 24.4 
C3 300 2KB 51KB 9.5MB 33 KB 4.5 

 
Collection 1 has the least documents. Collection 3 contains the most documents but has the same total size as Collection 2. The sizes of the 
documents in Collection 2 vary in a bigger range than those in Collection 3 and Collection 1. 
6.2 Query Models: 
Since there is no agreement on the distribution of keywords in user queries, we adopt the Uniform query model to test our similarity model. 
The Uniform query model assumes the uniform term distribution. Each term in the user query is equally and randomly selected for the 
global vocabulary list. Before generating the query, we construct a vocabulary distribution list for the entire document collection. The list is 
sorted in descending order by the occurrence of each word in a text file. Different query sets are formed by the randomly selected keywords 
from a fraction of the distribution list.  Table 6-2 lists the parameters for the generation of query sets and Table 6-3 lists the set of queries 
for similarity evaluation. 
Table 6-2: Parameters for Query Generation 

Parameters Value Description 
Stop Words 0 number of stop words eliminated 
Keywords Distribution 40 fraction of keyword list in percentage of total size of vocabulary 

for query keyword generation 
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Document Threshold 80 number of document in which the word appears in percentage of 
total number of documents 

 
Table 6-3: Sets of Queries Tested 

Query set Description Number of queries 
1 Single keyword queries 1000 
2 2 keywords, “AND” only  1000 
3 3 keywords, “AND” only 1000 
4 6 keywords,  “AND” only 1000 
5 2 keywords, “OR” only 1000 
6 3 keywords, “OR” only 1000 
7 6 keywords,  “OR” only 1000 
8 Excite query set* 4463 
Total number of queries  11463 

*Amanda Spink and Judy Bateman [7] analyzed transaction logs of a set of 51,473 queries posed by 18,113 users of the Excite search 
engine service. They presented a set of statistical data resulting from their analysis. A set of queries called “Excite query set” is generated 
based on their data. The query set contains keywords from one through ten and there are both “AND” queries and “OR” queries in the set.  
6.3 Set model vs. Multiset model: 
When quantifying the intersection or union of two sets of keywords for two documents, there are two options used to define the keyword 
set: Set or Multiset. The following tables (Tables 6-4 and 6-5) give examples of the two options for a keyword set and its boolean 
calculation result: 
Table 6-4  Example of Set option and Multiset option: 

Document Keywords in the 
document 

Set option of 
keywords 

Multiset option of 
keywords 

tq d,e,a,d,b,a,a {a, b, d, e} {a, a, a, b, d, d, e} 
tp c, a, d, b, a {a, b, c, d} {a, a, b, c, d} 

 
Table 6-5 Examples of intersection and union calculation for both options: 

Options Intersection Union 
Set {a, b, d} {a, b, c, d, e} 

Multiset {a, a, b, d} {a, a, a, b, c, d, d, e} 

The Set option only takes distinguished tokens of two documents to form a set of keywords while Multiset option takes consideration of the 
frequency of the token inside each document. In this study, we use both Set option and Multiset options when evaluating Models 1 through 
6 in Section 3 and Models 1 through in Section 4. 
6.4 Chunking Strategy: 
A full text document can be broken up into a series of smaller tokens called chunks. A chunk can further be broken into several units. A 
unit can be a word, a sentence or a string of any length.  In this paper we use word as a unit for the chunk and one chunk contains one unit, 
i.e. one chunk contains one word. When chunk size is one, there is no overlap.Broder Scheme is the same as the Jaccard’s Coefficient 
Model in terms of its Boolean-based similarity method. We will not list the results of Broder Scheme since we do not test Broder’s 
sampling strategy in this study. The chunking strategy is tested only on Model 8, “Relative Frequency Model with Chunking Strategy”.  
6.5 Similarity Models: Table 6-6 lists the similarity models evaluated in this study: 
 
Table 6-6: Similarity Models to be Evaluated 

Model ID Description Set Mode Chunk 
Size 

Overlap 

1s$/1m$ Simple Matching  Set/Multiset 1 0 
2s$/2m$ Dice’s Coefficient Set/Multiset 1 0 
3s$/3m$ Jaccard’s Coefficient Set/Multiset 1 0 
4s$/4m$ Cosine Coefficient Set/Multiset 1 0 
5s$/5m$ Overlap Coefficient Set/Multiset 1 0 
6sv1/6mv1 Broder Scheme Set/Multiset 1 0 
7 SCAM (Relative Frequency Model)*    
8 SCAM model with Chunk *  2 1 
9 Round Robin method    
10 Random selection method    
11 tf-idf method    

 
* For Relative Frequency Model, we chose ε = 2.5 and uniformly weighing parameter wi = 1 [10]. $ can be version 1.0 or version 2.0.  
6.6       Disk Selection: The document declustering test is performed on 5, 10, 15, 20 and 25 set of disks. 
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6.7 Testing Parameters: 
The following table lists parameters and base values for document retrieval time evaluation: 
Table 6-7: Parameters & Base Values for Retrieval Time Evaluation [6] 

Parameters Value Description 
Block size 2000 number of bytes per disk block 
Access Time 6 disk access time in ms 
Transfer Rate 1300 bytes per ms 

 
6.8        Sampling: 
Before assigning a document to a disk, its similarity with every document already on the disks has to be computed. In practice it is a very 
costly process, both on time and resources. If a sampling strategy can be applied to the similarity computation, the cost can be reduced. We 
study two different sampling strategies. In the first strategy, we randomly select a number of documents from each disk to compute the 
similarity with the new document. The number we chose is based on two parameters: the total number of documents N in the collection and 
the total number of disks D. In the second strategy, we construct a profile of all the documents on each disk based on the number of 
keywords in each document. We partition the interval (0, maximum number of keywords over documents in collection) into ranges of size 
500 keywords each. On each disk, we take a sample of documents from each range in proportion to the number of documents in that range. 
For both strategies, two formulas are used to determine the number of sample documents to be used for computing the similarity with the 

new document: Number of sampled documents on a disk = log2(N/D) or Number of sampled documents on a disk DN /= . 
 
7 RESULTS 
The query sets in Section 6.2 are used to test the similarity models in Section 6.5. Figure 7-1 shows that the generalizations of the first five 
models of Section 3 have significantly smaller declustering times than the older versions. 

Declustering Time vs. No. of Disks 
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Figure 7-1 Declustering times for the first five models comparing version 1.0 and version 2.0 
 
Next we present the query times in ms for the two data-insensitive methods and 5 values of D. The last column is the sum. 
 
Table 7-1: Retrieval time (in ms) for 5, 10, 15, 20 and 25 disks and data insensitive methods. 
Round Robin 12347.47 9523.073 6606.869 7468.242 5406.327 41351.98 
Random Disk 11884.85 9084.693 7590.065 6140.635 5873.84 40574.08 
 
7.1 Models with Set Option vs. Models with Multiset Option: 
Figures 7.1-1 through 7.1-3 compare models with Set option and Multiset option for Document Collection 2 on the first seven query sets 
(more on the Excite query set later). The figures shows that the Set option outperforms Multiset option in most cases, except that Multiset 
is better for version 1.0 Jaccard’s and Cosine Coefficient Models. For lack of space, results are only shown for the best 3 models.  
Interestingly, we found that for collections C1 and C2 the unnormalized SCAM model also performs very well but we omit the results here, 
again for lack of space. Both versions of all three data sensitive models shown significantly outperform the data insensitive models. 
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Retrieval Time vs. No. of Disks - Simple Matching Model
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Figure 7.1-1 Multiset vs Set option for Simple Matching Model, 1st 7 query types and collection C2 

Retrieval Time vs. No. of Disks - Dice Coefficient Model
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Figure 7.1-2 Multiset vs Set option  for Dice’s Coefficient Model,1st 7 query types and collection C2  
 
7.2 Chunking Strategies: 
Different chunking strategies are used to test the SCAM Relative Frequency Model (Model 7). Model 7 is the SCAM model with chunk 
size being one. Model 8 is the SCAM Model with chunk size being two and overlap being one. Results (omitted) show that SCAM model 
with chunk size being one is superior over the same model with chunk size being two for “OR” query sets. The latter is worse than Round 
Robin and Random Selection methods for “OR” query sets, but it is better than Model 7 on “AND” query set. 
 
When a user query is submitted, the query is broken down into a series of unique keywords. The query result for each unique keyword is 
generated one by one. Then, the results of all keywords are combined based on the Boolean logic of the keywords of the query. The 
combined result is the one to present to the user. In this query process, the chunk size being two does not show any advantage over the 
chunk size being one because the query model does not need the position information that chunk size being two offers. We predict that the 
chunking strategy will show more promising results if the phrase query is used instead of the individual keyword query. More experiments 
are needed on the chunking strategy for the phrase query 
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Retrieval Time vs. No. of Disks - Jaccards Coefficient Model
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Figure 7.1-3 Multiset vs Set option for Jaccard’s Coefficient Model, 1st 7 query types and collection C2 
 
7.3 Sampling Strategies: This section gives the results using sampling strategy for 5 generalized models (results are similar for the 

older models). First we give declustering timings for both sampling strategies and sample sizes. 
Table 7-3 Declustering Timings (mins) for Log Sampling and for Sqrt Sampling 
Number of Disks Old Strategy New Strategy Old Strategy New strategy 

5 99.3474 38.1751 102.2735 41.47309 
10 105.48054 50.19788 107.3559 53.63273 
15 119.26482 59.81114 119.868 61.34722 
20 114.07207 63.49129 115.553 62.2195 
25 122.94642 67.00039 122.983 72.2027 

 
Table 7.3-1 (7.3-2) shows the overall results for similarity models using log sampling and old (new) strategy. Table 7.3-3 (7.3-4) shows the 
overall results for similarity models using square root sampling and old (new) strategy.  
 
Table 7.3-1 Sum of retrieval times (ms) of all query types and Old Log Sampling 
Model 5 10 15 20 25 Sum Rank 
1sv2 24621.48 20378.3 16714.4 17535.49   15339.3 94589 1 
2sv2 27092.73 21109.18 18114.08 18276.08 17997.72 102590 4 
3sv2 24378.05 19688.79 18238.23 18232.15 16023.12 96560.3 2 
4sv2 25236.07 19861.52 18192.34 18939.37 18074.02 100303 3 
5sv2 51606.27 41496.74 56649.92 40315.92 31401.51 221470 5 
 
Table 7.3-2 Sum of retrieval times (ms) of all query types and New Log Sampling 
Model 5 10 15 20 25 Sum Rank 
1sv2 25806.75 16333.71 12068.33 11027.26 10140.04 75376.09 1 
2sv2 30934.7 17214.14 16866.77 13878.25 12572.47 91466.32 3 
3sv2 30934.7 17214.14 16866.77 13878.25 12572.47 91466.32 4 
4sv2 25215.42 16897.63 12954.61 11655.94 10986.36 77709.96 2 
5sv2 43320.3 43707.29 42137.34 43129.96 29517.52 201812.4 5 
 
Table 7.3-3 Sum of retrieval times (ms) of all query types and Old Sqrt Sampling 
Model 5 10 15 20 25 Sum Rank 
1sv2 24638.76 19469.03 15528.27 19343.88 15660.21 94640.14 1 
2sv2 24005.66 22227.58 17675.14 18017.1 18549.06 100474.5 2 
3sv2 28334.64 18945.68 19658.19 18058.48 19113.13 104110.1 3 
4sv2 26444.09 21761.27 21812.56 17244.6 17455.93 104718.5 4 
5sv2 60090.33 44959.91 48034.31 36913.93 34813.97 224812.5 5 
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Table 7.3-4 Sum of retrieval times (ms) of all query types and New Sqrt Sampling 
Model 5 10 15 20 25 Sum Rank 
1sv2 24415.35 16644.35 12431.06 11027.26 10326.81 74844.82 1 
2sv2 30839.24 19121.61 12343.11 13878.25 14874.18 91056.39 3 
3sv2 30839.24 19121.61 16361.24 13878.25 14874.18 95074.52 4 
4sv2 25125.07 15608.44 12839.8 11655.94 11374.86 76604.1 2 
5sv2 54456.79 46017.95 50378.05 43129.96 42168.35 236151.1 5 
 
The similarity models with sampling strategies surprisingly show worse results than Round Robin and Random Selection methods (Table 
7-1) in all the cases. One of the reasons is that when the number of documents on each disk is low, Round Robin is a good strategy. Further 
experiments are needed with larger and more diversified document collections to confirm these negative results. Because of a lack of space, 
we have omitted the results for the Excite query set in Sections 7.1 through 7.3. These results agree with the results for the other query 
types.  
 
8 CONCLUSIONS 
In this paper, we have presented several declustering algorithms based on existing similarity measures as well as their generalizations. 
Experiments show that the new declustering methods are indeed more efficient than the quadratic declustering methods. The new models 
are also capable of handling streaming data quite efficiently. The set option is usually the winner over the multiset option. The new 
sampling strategies based on profiles of the documents also outperform the old sampling strategies, which do not use a profile. The results 
for sampling are negative, i.e., data-sensitive models with sampling perform worse than data insensitive methods. This intriguing result 
needs further testing.  
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