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Abstract

This paper presents a framework for fully automatic face recognition based on a silhouetted face profile. Previous
research has demonstrated the high discriminative potential of this biometric. However, for the successful employment
of this characteristic, one is confronted with many challenges, such as the sensitivity of a profile’s geometry to face
rotation and the difficulty of accurate profile extraction from images. Compared to traditional approaches in profile-
based recognition, our approach is not limited to only standard side-view faces. We propose to explore the feature
space of profiles under various rotations with the aid of a 3D face model. In the enrollment mode, 3D data of
subjects are acquired and used to create profiles under different rotations. The features extracted from these profiles
are used to train a classifier. In the identification mode, the profiles are extracted from side view images using a
modified Active Shape Model approach and its metadata is matched with gallery metadata. We validate the accuracy
of the extractor and the robustness of classification algorithms using data from publicly available databases.
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I. INTRODUCTION

The development of face recognition algorithms has been an active area of research since the rise of the Computer
Vision field. Numerous algorithms have been proposed [1], [2], and several commercial products are available and
widely used for computer-aided identification. However, most of these methods and products are designed to work
with near-frontal face images. The face profile provides complementary shape structure that is not visible in a
frontal view, but is often available from other views. According to a study by Davidenko [3], silhouetted face
profiles play an important role in human perception for the task of identity and gender recognition. Use of the
face profile for biometrics is especially attractive for scenarios where only side view images are available. Figure 1
depicts exemplar images where the silhouetted profile contains more reliable information than texture, which makes
profile information especially valuable for recognition.

Profile-based recognition presents several challenges ( e.g., pose variation, occlusions, and facial expressions).
The face profile contains only a small, compact amount of the face shape information; therefore, it is very sensitive
to a loss in precision, which is unavoidable due to the limited accuracy of sensors and the discrete nature of digital
representations.

Until recently, research in profile-based recognition was based on comparison of standard profiles – the contours
of side view images with yaw very close to −90o. Research in 3D–3D face recognition has indicated that the profile
information contains highly discriminative information [4], [5], [6], where the term “profile” is often associated with
the facial area along the symmetry axis of the 3D face model. However, neither approach is capable of accurate
modeling of a silhouetted face profile, as observed in a 2D image because (i) the face is not perfectly symmetric,
(ii) the face is almost never at yaw equal to −90o with respect to the sensor, and (iii) if the distance between
camera and object is not sufficiently large, perspective projection needs to be considered (based on imaging sensor
parameters). In this paper, the term “profile” always indicates the silhouette of nearly side view head images for
clarity of presentation.

Recent advances in 3D surface reconstruction methods based on both hardware and software solutions [7] have
made 3D face shape information readily available. This information has been employed with 2D images in order to
overcome challenges such as lighting, pose variations, and facial expressions [8], [9]. An accurate 3D model provides
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Fig. 1: Examples of side view images where reliable color texture is not available: binary image, camouflage,
backlighting, and near infrared imaging.

Fig. 2: Enrollment and identification phases of the proposed integrated profile-based face recognition system.

shape information (not necessarily on the symmetry axis) that is highly valuable for modeling of the profile shape,
therefore by employing the tools from 3D face analysis one can improve performance of profile-based recognition.

In this work, we specifically address the challenges of profile contour extraction from an image and those
presented by recognition under pose variation. The central idea of our approach is to use 3D face models to explore
the feature space of a profile under various rotations. An accurate 3D model embeds information about possible
profile shapes in the probe 2D images, which allows flexibility and control over the training data. We suggest that
sufficient sampling in the pose space, which corresponds to nearly side-view face images, provides robustness for
a recognition task. Specifically, we propose to generate various profiles using rotations of a 3D face model. The
profiles are used to train a classifier for profile-based identification.

Two different types of profiles are therefore being employed in our system: (i) 3D profiles – those generated
synthetically through 3D face models to be used as training data, and (ii) 2D profiles – those extracted from 2D
images of side-view faces.

The schematic illustration of the profile-based face recognition system (URxD-PV) is depicted in Fig. 2 and
includes Enrollment and Identification phases. We provide algorithmic solutions for the entire 3D-aided profile-
based recognition framework including profile modeling, landmark detection, shape extraction, and classification.

During the enrollment phase, the exact geometric method for 3D profile computation is applied on a triangular
mesh, which is preregistered to a common reference model [9]. Classifier-specific features are extracted from these
profiles and constitute the gallery metadata. As part of the identification phase, we present an algorithm for 2D
profile extraction from a side-view image. It is based on an adaptation of the Active Shape Model [10], which does
not require a manually labeled set of exemplar images in the modeling stage.

We compare two different approaches for profile identification: the first one based on matching 3D and 2D
profiles represented explicitly using modified Hausdorff distance, the second method employing a hierarchy of
SVM classifiers applied on rotation-, translation-, and scale-invariant features extracted from profiles.

The contributions of our work include (i) an adaptive and accurate algorithm for profile extraction, (ii) a robust
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method for the extraction of fiducial points, and (iii) robust classifier for a range of poses. The system is fully
automatic and can be used in applications related to access control.

The rest of this paper is organized as follows: Section II reviews previous work, Section III describes methods used
for profile representation and modeling using 3D data. Section IV introduces the procedure for the profile extraction
from 2D images. Section V concentrates on identification approaches. Section VI discusses components of a fully
automatic face recognition system based on our methodology. Section VII presents a performance evaluation using
extensive and publicly available databases that contain single and multi-frame probe datasets from unconstrained
and constrained environments and multiple modalities. Section VIII provides a summary of the main contributions.

II. RELATED WORK

The use of face profile for identification had attracted research interest even before the arrival of the associated
computer technologies [14]. This interest has increased over the last decade due to exploration of 3D-aided face
recognition. The methods for recognition using the profile curve can normally be classified into one of two categories:
landmark-based methods [15], [16], [17], [18] or global methods [11], [19], [20], [21]. Landmark-based methods
rely on the attributes associated with a set of fiducial points, and recognition uses similarity metrics based on those
attributes. Global methods consider each profile as a geometrical object and introduce a similarity metric between
homogeneous objects: all regions of a profile are treated equally.

Harmon et al. [15] defined 17 fiducial points; after aligning two profiles based on selected landmarks, the
matching was achieved by measuring the Euclidean distance of the feature vectors derived from the outlines. A
96% recognition rate was reported. Wu et al. [16] used a B-spline to find six landmarks and extracted 24 features
from the resulting segments. Liposcak and Loncaric [17] used scale-space filtering to locate 12 landmarks and
extracted 21 distances based on those landmarks. The Euclidean distance between the vectors of features was used
for the identification.

Bhanu and Zhou [20] proposed curvature-based matching using a dynamic warping algorithm. They reported a
recognition rate of almost 90% on the University of Bern Database of 30 subjects. Gao and Leung [22] introduced
a method to encode profiles as attributed strings and developed an algorithm for attributed string matching. They
reported nearly 100% recognition rate on the same database. Pan et al. [19] proposed to use metrics for the
comparison of probability density functions on properly rotated and normalized profile curves. Gao et al. [21], [23]
proposed new formulations of the Hausdorff distance. Initially, it was extended to match two sets of lines, while
later, it was based on weighting points by their significance. In both cases, they applied their distance metric to
measure the similarity of face profiles.

As we mentioned earlier, all these methods are designed for standard profiles only and use 2D images as gallery.
Kakadiaris et al. [11] introduced the use of a 3D face model for the generation of profiles under different poses
for the gallery. Modified directional Hausdorff distance of the probe profile to the gallery profile was used for
identification. In addition, four different profiles under various rotation angles were used in order to introduce
robustness to pose.

An important step in the implementation of a fully automatic system suitable for unconstrained scenarios is
developing an accurate profile extractor. The majority of profile-based identification research does not sufficiently
address this issue: instead they use manual extraction [11], [19] or very basic thresholding methods based on the
assumption of indoor controlled illumination and uniform background [24], [17], [20].

Much more efficient methods have been applied for near-frontal face extraction and feature localization. Among
the most powerful are the methods based on the Active Shape Model (ASM), originally proposed by Cootes et
al. [10]. These methods are based on recovering parameters of a statistical shape model, when a local minimum
of the matching energy is found based on a search in local neighborhoods of the shape points. During the last
decade, numerous modifications for the ASM have been proposed. Gu and Kanade [25] successfully incorporated
the model into their 3D alignment algorithm, where view-based patches are used to model appearance of shape
points for the local search, and an Expectation Maximization algorithm is applied to deform and fit the model to the
image iteratively. The training stage employs about 50, 000 images. Mahoor and Abdel-Mottaleb [26] incorporated
color information and an additional alignment step for accurate frontal face landmarking. The final goal for most
of these algorithms is the alignment, therefore the shape is mostly defined by sparse set of common face landmarks

Parts of this work have appeared in [11], [12], [13].
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visible on the frontal view, enforced by only a few additional points. For the contour extraction task, points should
be dense in order to approximate the curve accurately. Another known shortcoming of the ASM approach is the
sensitivity for initialization, which is especially critical for ridge-like shapes.

III. PROFILE REPRESENTATION AND MODELING

We start this section with a description of the mathematical model used to represent the profile shape and then
describe the procedure of the profile sampling in the pose space using a 3D model.

A. Profile Representation

In our approach, we treat the profile as an open curve. The profile curve C may be described by a pair of
arc-length parameterized 1D functions YC(l) and XC(l), where l ∈ [0, 1]. A set of k landmarks is defined by their
coordinates on a parametric curve: {0 = ν1 < · · · < νk = 1}. The set contains both anatomical landmarks (e.g.,
“chin”) and pseudo-landmarks (e.g., “middle of the nose”). The complete set of landmarks is illustrated in Fig.
5(a). We approximate functions YC(l) and XC(l) by a finite set of points and obtain an equivalent n-points shape
model as follows:

v = [x1, y1, x2, y2, · · · , xn, yn]T ∈ R2n. (1)

The positions of the points are obtained through uniform arc-length sampling of the curve between a predefined
subset of the landmarks. The sampling pattern is consistent for all profiles and, therefore, coordinates of these
landmarks always preserve their indices.

B. Generating 3D profiles

Let’s assume that a 3D model has been aligned to a common reference model and does not contain any artifacts
(e.g., holes or unconnected components). In order to model the variations in the geometry of profiles caused by
head rotations, we generate profiles corresponding to a range of rotation angles. Our method is based on geometric
transformations and the perspective projection of a 3D surface with respect to camera parameters. This method
preserves information about the vertices on the profile using floating point precision (rather than pixel precision)
and has linear run-time complexity. Algorithm 1 describes the proposed method and uses following notations:
{fi} is the set of faces of the triangular polygon mesh and {ni} their corresponding normal vectors.
e(i, j) is the edge shared by faces fi, fj , which can also be defined by its vertices e ≡ (vk, vl). Each vertex is

associated with coordinates in the 2D projection plane.
o is the vector that defines the position of a 3D object with respect to the observer.

The resulting profile contains a chain of line segments. We use spline interpolation to introduce smoothness and
perform uniform resampling of the spline curve by arc-length.

C. Landmark Detection

The main principles of landmark extraction are well established for standard profiles [17], [24]. Those methods are
usually driven by the extremum locations and the curvature of the function, and they are subject to anthropometric
standards of the face. For example, for an upward facing profile, the tip-of-nose is the extremum point of Yc(l)
with l ∈ [0.4, 0.7]. However, the accuracy of such rules is very low when applied to general profiles. In this paper,
we use both landmark information from standard profiles and a 3D face surface to accomplish the localization of
landmarks. Specifically, we propose to utilize the 3D surface in order to extrapolate information about landmarks on
a standard profile to any other profile obtained with known rotation angles. The method is described in Algorithm
2.

The final step in Algorithm 2 is a refinement step and is based on the elaboration of general landmark definition.
The position of the landmarks, whether located by an automatic procedure or a human operator, has a certain
amount of ambiguity. For instance, the position of a landmark that is defined by the curvature value is equivocal in
the region with constant curvature (“ball-shaped”). Consider the curve in Fig. 4(a): it has nearly the same curvature
for the region between points C and D (both of these points correspond to the zeros of second derivative), whereas
point E corresponds to the zero of the first derivative and is sensitive to rotations. In order to reduce such ambiguity,
we define a refinement operator. This operator finds the most protruding (or intruding) point in the region.
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Algorithm 1 Generating a 3D profile

Input: {ni}, {vi}, {ei} – sets of normals, vertices and edges, o – observer vector
Output: Profile C

1: Set C = ∅. Compute a critical set of edges E :

E = {e (i, j) : sign(〈ni,o〉) 6= sign(〈nj ,o〉)}.

2: Compute all the intersections between line segments defined by E in the projection plane using the plane sweep
algorithm [27].

3: for all intersecting edges (v1, v2), (v3, v4) with intersection p do
4: Split (v1, v2), (v3, v4) into 4 edges (v1, p), (p, v2), (v3, p), (p, v4). Denote the modified set of edges by Ẽ and

set of corresponding endpoint vertices by Ṽ .
5: end for
6: for all v ∈ Ṽ do
7: Create circular list Lv of edges with endpoint in v ordered clockwise.
8: end for
9: Find u, a – vertices with lowest and highest Y coordinate in Ṽ .

10: Find edge (u, v) ∈ Lu inducing the smallest angle with vector in direction [−1, 0].
11: repeat
12: C ← C ∪ (u, v).
13: Let (v, w) to succeed (u, v) in Lv.
14: u← v, v ← w.
15: until v 6= a

Algorithm 2 Detecting landmarks on a rotated profile

Input: G – 3D surface, C0, C – standard and rotated profiles, {ν10 , · · · , νk0} – landmarks on C0, rotation and projection
parameters.

Output: {ν1, · · · , νk} – landmarks on C
1: Back-project landmarks from C0 onto a center line of G (Fig. 3(a)).
2: for all landmarks i with coordinate (xi, yi, zi) ∈ G do
3: Define a subset of points in εi-neighborhood of (xi, yi, zi):

Ni = {(x, yi, z) ∈ G|‖ (x, yi, z)
T − (xi, yi, zi)

T ‖ ≤ εi} (Fig. 3(b)).
4: Project Ni onto the profile plane using rotation and projection parameters, thus obtaining a set of 2D points

Ñi = {(x̃, ỹ)} located from one side of C.
5: Find coordinate νi on profile C with minimal distance to Ñi (Fig. 3(c)).
6: end for
7: Refine all landmark coordinates based on neighbor landmarks depicted in Fig. 4(b) and Equation (2) (Fig. 3(d)).

Let i, j be the indices of two landmarks on a profile’s curve and νi, νj denote their corresponding arc-length
coordinates. For any coordinate ν, the function H

(
νi, νj , ν

)
defines the signed distance between the vector

connecting the points of νi, νj and the point corresponding to ν. The sign of H
(
νi, νj , ν

)
denotes whether the

point lies on the left or the right side of the vector. The refined coordinate is given by:

ν∗ = argmax
{ν|ν1≤l1<ν<l2≤ν2}

(γ ·H (l1, l2, ν)). (2)

The parameter γ is defined to be 1 (or −1) according to the convexity (or concavity) of the profile curve in the
neighborhood of the landmark. Figure 4(a) illustrates the effect of this operator, which results in point F . We apply
this refinement operator to all anatomical landmarks, except the chin in relation to their neighboring landmarks.
The “chin” landmark is refined differently: by finding the most distant point ‘visible’ from the tip-of-nose (Figure
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(a) (b) (c) (d)

Fig. 3: Profile landmarks’ localization. Depiction of (a) landmarks on the standard profile, (b) landmarks projected
on a 3D model (red markers) and extensions of landmarks to 3D regions (black markers), (c) projection of landmarks
on a rotated (not standard) profile, and (d) result of the refinement procedure.

4(b)). This simple and fast operator may be efficiently applied for landmark refinement on any profile, even after
rough initialization (Fig. 4(c)).

(a) (b) (c)

Fig. 4: Landmark refinement. Depiction of (a) geometric entities related to Equation (2); (b) neighbor relations used
for the refinement of landmarks; and (c) example of refinement output (discs) compared to input before refinement
(circles).

IV. PROFILE EXTRACTION FROM 2D IMAGES

The procedure of profile detection from 2D images is applied to a region of interest in the image (result of Face
Detection). The extraction procedure is guided by specific pixel features and based on a statistical shape model,
both of which are explained in the next sections.

A. Computation of Features to Guide Shape Extraction

This step allows the incorporation of any available knowledge about the appearance of the shape in the probe
image. In an attempt to avoid the application being biased by a specific training set, we simplify our knowledge
about the face profile using two basic observations: (i) profile points are mostly located on the separation line
between face region and background region, and (ii) profile points are formed by edges.

Let Be(x, y) be the binary map of the image edges (Fig. 6(b)) and let Bs(x, y) be the binary function corre-
sponding to the left boundary of the skin segmentation result (Fig. 6(a)). The information embedded in Bs typically
has low precision and will be used for a coarse scale search, while the edges in Be(x, y) reflect fine scale details,
but may contain a considerable number of edges not related to the profile. Our variant of the edge detector is based
on the incorporation of a multiscale normalized cut algorithm [28] for the edge detecting operator, whereas the
facial segmentation relies on a mean-shift algorithm [29] and incorporates knowledge about color, shape, size, and
position of the face in the region of interest. The details about these operators may be found in [30].
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We estimate the principle orientation at every edge pixel by convolving the edge map with eight structuring
elements Mc, each representing one of the principal orientations c = 1, · · · , 8:

Υe(x, y) = argmax
c

(Be ∗Mc) (x, y).

Then, we apply a distance transform mapping to acquire the final set of pixel-related features used by the ASM
framework. Namely, we associate each pixel (x, y) with Gs(x, y) and {Gce|c = 1, · · · , 8}, where Gs represents for
the distance to the nearest pixel on the skin contour and Gce represents the distance to the nearest edge pixel with
the principle orientation c.

B. Statistical Shape Model

In this section, first we review the standard linear deformable model also known as a Point Distribution Model
(PDM) and then we introduce our generalization for it, used for profile extraction. Using a data set of m exemplar
3D profiles {v1, · · · ,vm}, the profile v is represented using Principal Component Analysis (PCA) as follows:

v = v̄ +

2n∑
i=1

biφi. (3)

v̄ is the mean shape and φi are the eigenvectors of the covariance matrix Σ:

Σ =
1

m− 1

m∑
i=1

(vi − v̄) (vi − v̄)T . (4)

To compensate for the shape variance related to rotation, translation and scale parameters, the profiles are aligned
in advance with a normalized reference shape using generalized Procrustes analysis [31]. The eigenvectors are sorted
according to descending order of corresponding eigenvalues λ1 ≥ · · · ≥ λ2n. In practice, in (3) one needs to retain
only h modes (h < 2n) in the representation b = b(v) = [b1, · · · , bh]T to explain a given proportion of the variance
in the training set:

v ≈ v (b) = v̄ +

h∑
i=1

biφi. (5)

Due to the orthogonal properties of the decomposition, the vector of parameters b may be found by simple
projection:

b = ΦT (v − v̄) , (6)

which guarantees the least squares solution

min (v − v̄ − Φb)T (v − v̄ − Φb) , (7)

where Φ is a matrix with eigenvectors as columns.
Equations (6) and (3) are used to replace the n-point shape by its representation in PCA basis (analysis) and

vice-versa (synthesis). It is common practice to apply (6) followed by (5) to obtain an approximation of the
n-point shape represented by h variation modes; such procedure is useful for shape reconstruction from noisy
observations. In certain cases, we want to associate varying validity weights wi for each point of the shape v. If
W = diag

(
w2
1, ..., w

2
2n

)
, then the weighted least square variant of (7) is:

min (v − v̄ − Φb)T W (v − v̄ − Φb) , (8)

and its solution is known to be:

b =
(
ΦTWΦ

)−1
ΦTW (v − v̄) . (9)

One apparent disadvantage of the parametric representation in (5) when compared with the n-point-shape model is
the absence of local information. The information about a small region of the profile is reflected in all bi coefficients.
In order to isolate the mutual influence of distinct regions of the profile, we define a subdivision S = {s1, · · · , sd}
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(a) (b)

Fig. 5: Depiction of (a) profile landmarks and their names and (b) partition of the profile in sectors with overlapping
regions.

of the profile shape in d sectors. Each sector sj is defined by two indices, denoting the starting and the ending
index of the points in the n-point shape. In the most general case, sectors may have overlapping regions (Fig.
5(b)). The n-point shape representation is obtained from the sector-based deformable model by applying Eq. (5)
independently to each region:

v ≈ v (b (S)) =

d∑
j=1

v̄j +

hj∑
i=1

bijφij

 ◦ η, (10)

where, the subscript j relates the variable to the jth sector. The dimensionality of vectors v, v̄ and φ is the same as
in (5), with zero entries outside the sector borders. The column vector η ∈ R2n contains regularization weights for
points that belong to overlapping regions. Equation (5) is a special case of (10) with only one sector. The flexibility
of a sector-based representation also allows excluding fragments.

To summarize, the gallery metadata includes parameters of a standard linear deformable model: v̂,Φ, {λi} and
its sector-based variant: {v̂j}, {Φj}, {λij}, S. These components together represent two levels of hierarchical
information.

C. Shape Extraction

The profile extraction is based on the Active Shape Model paradigm developed by Cootes et al. [10]. It uses the
following iterative approach to improve the fit of a given instance of the n-point shape to an image:

1) Find the best match for each point (xi, yi) in its neighborhood (we name this step ‘Local Search’);
2) Update parameters to best fit the shape to these points (we name this step ‘Coefficient Estimation’); and
3) Repeat until convergence.
The local search neighborhood is usually defined along the normal to the profile curve through the point under

inspection, as illustrated in Fig. 6(c). The range of search is gradually reduced through iterations to ensure faster
convergence.

In order to address occlusions, we define a set of weighting parameters wi ∈ [0, 1], i = 1, · · · , n as the local
quality of profile point i. Ideally this value approaches 0 if the point is occluded or, alternatively, it approaches 1
if the point is reliable.

In the classical ASM framework, one needs to have a manually labeled set of training images. This dataset is
used for the construction of the PDM. The same dataset is employed to design the features to guide the local
search, typically by computing a pixel’s likelihood belonging to a shape.

In our case, no such labeled training set is available. Therefore, the main difference of our ASM framework
from the classical approach is the fact that we only use available 3D shape information to guide the search of 2D
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(a) (b) (c)

Fig. 6: Depiction of (a) left contour of the face region (Bs); (b) detected edges (Be); and (c) the profile shape and
search regions overlayed on the of distance map Gs .

profiles in the images: the PDM is based on principle component analysis of the 3D profile (see Section IV-B) and
the local search is guided by features defined in Section IV-A.

Algorithm 3 Profile Extractor
Input: 2D image, profile PDM, profile sector-PDM
Output: Profile v

1: Compute Gs and {Gce|k = 1, · · · , 8}.
2: Compute the set of tip-of-nose candidates (see Fig. 7).
3: for all tip-of-nose candidates do
4: Set iteration t = 0, initial weights wi = 1,∀i ∈ 1, · · · , n, shape b(t) = 0 (mean shape). Translate profile to

initial position using the nose-tip.
5: Perform ASM Iterations in coarse search mode.
6: end for
7: Select the best quality profile and discard the remaining profiles.
8: Perform ASM Iterations in fine scale search mode.

ASM Iterations
Input: Gs, {Gce|c = 1, · · · , 8}, b(0), search mode, profile sector-PDM
Output: v,b(t), {wi}

1: repeat
2: Local search: For each point i find best match (x̂i, ŷi) using (11).
3: Coefficient Estimation: Compute parameters b of the shape model using {(x̂i, ŷi), wi(t)} and PDM using (9).

4: Profile quality estimation: Estimate profile quality Q(b) using (13).
5: Shrinkage: If Q(b) > 3 then adjust profile parameters toward the mean profile b(t+1) = S(b) using (14).
6: Reconstruct n-point shape using (10).
7: Re-weighting: Compute new weights {wi(t+1)} using (15).
8: t← t+ 1.
9: until Convergence of b(t)

Figure 8 depicts the shape propagation of the extractor. The process for the profile extraction is described in
Algorithm 3, and it relies on the following considerations.
Coarse and Fine Search Modes: The main ASM iteration is first executed for the coarse scale search and then for
the fine scale search with slightly different settings. The main differences between modes are:

1) Employ Gs for coarse search and Gke for fine search.
2) Use simplified profile shape (with half the number of points) for coarse search.
3) Apply profile sector-PDM-based shape reconstruction every second step in the fine search mode (but not in

the coarse search mode).
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(a) (b) (c)

Fig. 7: Detecting candidates for the tip-of-nose landmark. Depiction of (a) result of segmentation and left contour
(pink), (b) X(i) function of the left contour (red) and its smoothed version (blue) with corresponding local minima
(green circles), and (c) candidates for tip-of-nose landmarks back-projected on original image.

Our experiments showed that alternating between sector-based and non-sector based models is extremely beneficial
for preserving fine detail reconstruction without violating proportions of the whole face.
Multiple Initializations: The ASM algorithm is known to be sensitive to initialization; to address this issue, we
initialize the coarse search in several positions according to the candidate locations of the nose-tip. The candidates
for the nose-tip landmark are defined as local extrema of the smoothed face skin contour (see Fig. 7).

(a) (b) (c) (d)

Fig. 8: Propagation of profile search. Depiction of (a) initial profile; (b) after two iterations; (b) after 5 iterations;
and (c) final result.

Local Search: Let Ri ⊂ R2 represent the local search domain for the model point i. The best matching coordinate
(x̂i, ŷi) for the point i with current coordinate (xi, yi) is

(x̂i, ŷi) = argmin
(x,y)∈Ri

Gs (x, y) . (11)

For the fine search, the principle orientation k(i) of the point i on the shape is estimated and Gk(i)e is employed
in (11) instead of Gs.

Profile Quality Estimation: The projection of local search results onto the parametric space does not always generate
a plausible profile. We wish to estimate how far the parametric representation b is from a distribution learned from
training examples, which is assumed to be distributed as a diagonal Gaussian:

β ∼ N (0,Λ),Λ = diag(λ1, λ2, ..., λt). (12)

According to the properties of PCA, variances λi are identical to eigenvalues (see Section IV-B). The quality of any
profile with parametric representation b is based on the Mahalanobis distance which is related to the log-probability
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then b is drawn from the same distribution [32]. Thus, it is given by:

logP (β = b) ∝ Q (b) = bΛ−1bT . (13)

Shrinkage: In order to correct non-plausible profiles, parameters b are shrunk toward the mean shape along each
principal direction. We use a similar strategy as proposed by Kanade and Gu [25] to correct by a larger amount in
the directions that correspond to lower eigenvalues. However, unlike the method in [25], this operator is triggered
only if the quality of the profile exceeds a predefined threshold of τ . The shrinkage result S(bi) of parameter bi is
given by

S (bi) = bi · γi + (1− γi)
τ
√
λi
bi

; γi =
1

i2
; i = 1 · · ·h. (14)

Re-weighting: The distance between the ith point position resulting from local search (x̂i, ŷi) and the resulting
position after shrinkage (S (x̂i) , S (ŷi)), results in a fitting error ei = ‖ (x̂i, ŷi)

T − (S (x̂i) , S (ŷi))
T ‖. Usually,

outliers correspond to larger fitting errors and, therefore, weights wi are adjusted accordingly:

wi
(t+1) =

1

3
wi

(t) +
2

3

(
1− e2i∑n

k=1 e
2
k

)
ρ, (15)

where the parameter ρ is chosen so that all weights will sum to n.

V. IDENTIFICATION

In order to identify the extracted profile as one of the subjects in the gallery, we consider one of two general
approaches: Matching or Classification. Both these approaches and the methods for multiple-frame identification
are discussed in following sections.

A. Hausdorff Distance-based Matching

In the first approach, the matching scores between the probe profile and every profile in the gallery are computed.
The decision is made according to the nearest neighbor rule. Identification through matching does not require any
training stage, and is robust to outliers in the gallery and noisy probe data, but may be time consuming for large
galleries, and has limited accuracy. The chosen matching score should possess some attributes of the distance metric.
We propose to employ a modified Hausdorff distance for such distance metrics.

For two finite point sets M = {m1, · · · ,mn} and T = {t1, · · · , tn} with associated weights {wM1 , · · · , wMn }
and {wT1 , · · · , wTn }, the distance is defined as:

1

n
max

(
hM

∑
mi∈M

min
tj∈T
‖mi − tj‖

√
wTi w

M
j , hT

∑
ti∈T

min
mj∈M

‖ti −mj‖
√
wMj wTi

)
,

where M and T are probe and gallery n-point shapes and hM and hT are normalization factors of the distance
between UN and NB landmarks (see Fig. 5(a)) to eliminate scale influence. The set of weights for a probe profile
reflects the accuracy of a shape extractor (all equal 1 for manually extracted profiles). The set of weights for a
gallery profile reflects a prior knowledge about discriminative properties of various regions.

B. SVM-based Classification

The classification approach takes advantage of machine learning techniques to define class boundaries in the
feature space. Such a classifier may require an extensive training stage, but is expected to provide better recognition
if both gallery and probe sets are drawn from the same distributions.

We define five types of features based on the properties of the profile p between two landmarks i and j: (i)
Euclidean distance between landmarks, (ii) arc-length between landmarks, (iii) mean curvature of the region between
landmarks, (iv) L2-norm of curvature along the contour between landmarks (proportional to bending energy), and (v)
L2-norm of angular chain coding for the region between landmarks under the assumption of uniform discretization.
All of these features are already translation- and rotation-invariant. Normalizing the distances with respect to the
size of the profile provides scale-invariance as well. Currently, we use forward selection and 2-fold cross validation
for the attribute selection based on the training examples and the Support Vector Machine (SVM) classifier.

This assumption however, is not true in our case.
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Fig. 9: The components of an integrated 3D-aided profile recognition system.

C. Multiple-frame Identification

A single face profile is a weak biometric, primarily because of pose uncertainty and inaccuracies in the acquisition
and extraction stages. If the sequence of frames is available, we can compensate for these uncertainties by fusing
the results of recognition from multiple frames.

An alternative approach for multi-frame profile-based recognition is based on a super-resolution approach, used to
combine multiple extracted profiles into one with higher resolution, as described by Zhou and Bhanu [20]. However,
they impose an assumption of negligible pose changes across the sequence. Our assumption, on the contrary, is
that, using video frames acquired at a low frame rate, we will be able to accumulate evidence from more poses.

We consider 5 standard approaches for score fusion: (i) mean rank – rank of every subject is averaged across
time, (ii) voting – count rank-1 occurrences for every subject across time, (iii) mean score – the matching score of
every subject is averaged across time, (iv) best score – only the best score per subject is preserved, and (v) mean
of best – only 10% of best scores are used to compute the average across time.

VI. INTEGRATION OF THE METHODS IN THE AUTOMATIC SYSTEM URXD-PV

Implementation of the automatic profile-based profile recognition system requires incorporation of previously
described algorithms in the framework illustrated in Fig. 9. In this section we provide details only about the steps
that are not yet covered in the previous sections.

A. Enrollment phase

During the enrollment phase (E) the raw data of each subject are converted to metadata and stored in the database
as follows:
E1. Acquire a facial shape with a 3D scanner and convert it to a polygonal mesh representation.
E2. Align and fit the 3D data to a common reference model.
E3. Generate multiple synthetic profiles by sampling a predefined range of rotation angles and locate a set of

anatomical landmarks on them (Sections III-B and III-C).
E4. Derive a set of features based on the profile geometry and landmark locations from profiles and store them

as metadata to be used in the identification phase.
Step E1: An essential requirement of our system is the high accuracy in regions along the central line of face
symmetry. In fact, the accuracy of the surface in some regions (e.g., near the ears) has no importance because they
never appear on silhouetted profiles. Previous research [33] suggests that the recognition algorithm might benefit
from 3D raw data with RMS error below 1 mm. Today’s 3D sensor technology makes such data available and the
accuracy increases as technology improves [8].

We apply a number of preprocessing steps are described in [9] for the purpose of mitigating sensor-specific
problems and making all succeeding steps sensor-independent. These steps include hole filling, smoothing, and
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(a) (b)

Fig. 10: The process of fitting a generic face model to the raw 3D scan. (a) Raw data and (b) fitted AFM.

resampling.

Step E2: This process aims to fit a generic face model to the raw 3D scan of the subject. This step is necessary
to obtain 3D face models suitable to form the gallery database. We use an Annotated Face Model (AFM) [9] that
defines the control points of a subdivision surface and is annotated into different areas (e.g., mouth, nose, eyes).
Specifically, the model is first globally aligned to the subject and then local elastic deformations are applied to fit
the model to the data.

The alignment is a multistage process involving (i) establishing initial correspondence by using a spin-images
approach [34], (ii) applying a variant of the Iterative Closest Point (ICP) algorithm, and (iii) refining registration
results by applying Simulated Annealing to minimize the Z-buffers difference. The AFM is fitted to the mesh
data using the elastically adapted deformable model framework of Metaxas and Kakadiaris [35]. The result of this
method applied on raw 3D data is illustrated in Fig. 10 (more details may be found in [9]).

Step E4: The metadata, which is being stored in the gallery database, will be used in two different stages of the
identification phase: (i) Data used for matching reflects subject-specific information and depends on the specific
classifier or distance measure used for the identification, which is discussed in Section V. (ii) Data used for profile
extraction reflects properties common for all the profiles in the current gallery – a statistical shape model. In our
case, this data includes a hierarchical variant of a linear deformable model, which is reviewed in Section IV-B.

B. Identification phase

During the identification phase (I), the profile is extracted from a 2D image, and its metadata is matched with
gallery metadata as follows:

I1. Acquire an image and compute a tight region of interest (ROI) that contains the face (Face Detection).
I2. Compute a set of features for each pixel in the ROI, which will be used to guide the shape extraction procedure

(Section IV-A).
I3. Extract the profile shape using the modified Active Shape Model (ASM) approach (Section IV-C).
I4. Extract features (varies depending on classifier) from the profile shape (Section V).
I5. Match/Classify the features (Section V).

Step I1: At this stage may be employed any existing state-of-art detector specially trained on side-view exemplars,
such as the well-known Viola-Jones detector [36] or the profile-specific multi-biometric approach proposed by
Gentile et al. [37]. In our experiments, the region of interest is extracted by software developed by Pittsburgh
Pattern Recognition Inc. [38].
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TABLE I: Cohorts used as gallery.

Cohort No. of datasets Mesh quality Collection
G1 19 good UHDB
G2 50 moderate UHDB
G3 50 low UHDB
G4 30 good UHDB
G5 50 very low XM2VTS

TABLE II: Cohorts of images used as probe.

Cohort Datasets per
subject

Face size
(pixels)

Quality
(contrast)

Controlled
environment

Pose

P2a,P3a 1 300 moderate no standard
P2b,P3b 1 300 moderate no non-standard
P5 2 250 good yes standard

VII. PERFORMANCE EVALUATION

A. Experiment Data

Collections: In our experiments we employ data from two publicly available collections. The face collection
from the University of Houston [39] contains 3D data that was acquired with a 2-pod 3dMDTM system [40]. The
quality of data varies through different sessions. Additionally, this collection includes side-view 2D images and
video sequences acquired in visual and infrared spectrum. During the acquisition of these images individuals were
requested to rotate and tilt their heads arbitrary in the predefined range or to assume standard side-view pose. The
acquisition environment includes both controlled (indoor, stable background) and uncontrolled (driver) scenarios.

The XM2VTS face collection [41] from the University of Surrey, includes 3D data and side view images acquired
from two different sides of the subject. The 3D data was acquired with a stereo-based 3D camera developed by
the Turing Institute. The side view images are all acquired in controlled environment, however some of them have
corrupted profiles due to pose or hair occlusions. To the best of our knowledge, these are the only two publicly
available collections, including both 3D models and side-view images.

Cohorts: The gallery and probe datasets were partitioned into separate cohorts according to their attributes.
Resulting cohorts are enumerated from 1 to 5. Cohorts 1 to 4 are part of a face collection from the University
of Houston and cohort 5 is part of the XM2VTS collection. The contents of probe cohorts P1, P4a and P4b are
video sequences of 100 frames each, then P4a and P4b contain images from the same scene in visual and infrared
spectrum respectively. The contents of the remaining probe cohorts are single side-view images of both standard
and arbitrary non-standard poses. The partition of gallery and probe data into cohorts according to the quality and
contents is summarized in Tables I, II and III. Typical 3D gallery models and 2D probe images are depicted in
Figs. 11 and 18.

B. Parameters

In our experiments, the profile is represented by a 116-point shape (n = 116); we also construct a 58-point
shape for the coarse search stage. The employed sector-based model is constructed using the scheme in Fig. 5(b).
The parametric representation with linear deformable total number retains a minimal number of principal variation
modes in order to explain 98% of the variance.

For the gallery profiles sampling, we consider angles in the range [−110◦,−70◦] for yaw and [−25◦, 25◦] for
roll. The angle offset from the standard side-view is limited in such a way that no landmark disappears from the
profile due to full self occlusion. We do not create profiles for different pitch angles because they correspond to
the in-plane rotation only and do not influence the geometry of the profile. The resolution of sampling is 5◦. In
total, we obtain 99 profiles per subject.

For our experiments, we use the libSVM [42] implementation of SVM classifier with linear kernel, which
implemented the multi-class classification with one versus one strategy.
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TABLE III: Cohorts of videos used as probe. Includes one video per subject, 100 frames per video.

Cohort face size
(pixels)

quality
(contrast)

controlled
environment

Pose

P1 140 – 270 varying no random
P4a 500 good yes random
P4b 140 good yes (infrared) same as in

P4a

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 11: Samples of raw 3D models from cohorts: (a) G1 (quality of G4 are comparable), (b) G2, (c) G6, and (e-h)
side views of the models in the top raw.

For the unconstrained scenario, probe (P1-P3) profiles are extracted by both a human operator and the pro-
posed algorithm, and both sets of profiles are employed for further experiments. We employ Cumulative Match
Characteristic (CMC) curves for demonstration of recognition accuracy.

C. Experiments

For our experiments we employ different configurations of URxD-PV system that summarized in the Table IV.
Experiment 1: Performance of classification algorithms for uncontrolled environment: In this experiment, we

validate recognition performance of the system on the drivers single-frame cohort. It employs the gallery cohort
G2 and probe cohort P2. We present overall performance of the considered identification algorithms on the probe
images with both standard and non-standard poses in Fig. 12(a). CMC curves for each type of pose are depicted
in Figs. 12(a,b).

The performance of Hausdorff distance-based matching (rank-1 recognition rate is 86% for P2 probe cohort) is
clearly superior to the classification with SVM (rank-1 recognition rate is 60% for P2 probe cohort). This can be
attributed to problematic properties of our training and testing sets: (i) training sets are not independent from each
other as soon as they related to the same 3D mesh and specific poses, and (ii) training and testing sets (3D profiles
and 2D profiles) are not originating from the same distributions. The first problem causes overfitting and may be
solved by acquiring multiple independent 3D scans per person; whereas, solution of the second requires learning
robust features that explore similar behavior for 3D and 2D profiles.
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TABLE IV: URxD-PV system configurations.

Configuration Classifier Fusion Experiments
URxD-PV1 HD – 1,3,4,5
URxD-PV2 SVM – 1
URxD-PV3 HD mean rank 2
URxD-PV4 HD voting 2
URxD-PV5 HD mean 2
URxD-PV6 HD max 2
URxD-PV7 HD mean of best 2,4
URxD-PV8 SVM mean rank 2
URxD-PV9 SVM voting 2
URxD-PV10 SVM mean 2
URxD-PV11 SVM max 2
URxD-PV12 SVM mean of best 2

We observe that recognition is higher for the nearly standard profiles (rank-1 recognition rate is 98% for HD and
76% for SVM classifier), than for non-standard profiles (rank-1 recognition rate is 67% for HD and 54% for SVM
classifier). This fact may be attributed to the fact that standard profiles contain more discriminative information.

Experiment 2: Analyzing performance on multi-frame input: The purpose of this experiment is assessing the
influence of various fusion schemes (see Section V-C) for multi-frame identification. The first and the second
columns in Fig. 13 describe the performance of the algorithms on data from a visual spectrum and on infrared
sequences in the controlled environment. The third column depicts recognition results on unconstrained scenario
videos. The profiles of the first two sequences are extracted with the aid of a simple thresholding approach and,
for the third sequence, manually extracted profiles are employed.

Comparison of various fusion schemes shows that the “mean of best” and the “best” are the preferable schemes
for the majority of probe sequences. For instance, when we consider HD algorithm, rank-1 recognition rate for
“mean of best” is 97% for the sequences of P4a, 89% for the sequences of P4b and 100% for P1. Corresponding
recognition rates for the SVM classifier are 93%, 82% and 84%. As in the previous experiment, the recognition
based on Hausdorff distance (top row of Fig. 13) is better than SVM-based recognition (bottom row of Fig. 13),
however the superiority of “mean of best” fusion scheme is preserved. The remaining fusion rules are too sensitive
for the outliers’ scores.

The drop in performance for the infrared sequence (middle column of Fig. 13) is attributed to the fact that it
corresponds to smaller face size (in pixels). Note that the number of subjects in the gallery used for recognition of
sequences in P1 (right column of the Fig. 13) is smaller than for two other sequences, but the quality and resolution
and contrast of some sequences is very low, which particularly influences the performance of the SVM classifier.

Experiment 3: Influence of the quality of the 3D gallery data: In this experiment, we analyze the influence of
a 3D quality mesh on the recognition results. For this purpose, we present results of moderate quality based on
cohort G2 of moderate quality and compare them to results based on the G3 and G5 gallery cohorts with lower
qualities. Only configuration URxD-PV1 (HD matching) is used for this experiment. As one would expect, the
quality of the 3D mesh is critical for recognition performance, which is shown in the results presented in Fig.
14. Rank-1 recognition rate is 86% for the cohort of moderate quality and it is only 68% for the cohort G3 of
low quality, characterized by missing data and noisy regions. The most drastic drop of the performance (only 46%
rank-1 recognition) is observed for the cohort G5, which has low quality even for full 3D face recognition.

Experiment 4: Quality of extractor and its influence on identification: The accurate extraction of the profile from
unconstrained scenes is a complicated task, especially for images with low contrast. Even considering manually
extracted profiles, the shape may vary from operator to operator or even for the same operator in two different
sessions. To account for this variation, we performed an experiment where two independent operators acquired
two sets of profiles that were compared to profiles extracted by the proposed automatic algorithm. The modified
Hausdorff distance is used as a distance metric. The cumulative distribution functions of these distances across the
three considered sets of extracted profiles are presented in Fig. 15. For instance, examining these distributions, we
may observe that 90% of automatically extracted profiles have less than 0.015 distance from manually extracted
profiles and at the same time less than 98% of manually extracted profiles have such a distance from each other.
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(a)

(b)

(c)

Fig. 12: Recognition results on drivers side-view images using two identification approaches: (a) Performance on
both datasets P2a and P2b together, (b) performance on nearly standard side-view images (P2a only), and (c)
performance on non-standard side-view images (P2b) only.

Note that the distances are normalized such that the unit distance is corresponding to the distance from [UN] to
[NB] landmarks.

The distances between manually extracted profiles is lower than the distance between automatically and manually
selected profiles, especially for regions below the chin and above the eyebrows. This is natural because human
perception of the profile does not change much from operator to operator and it is less influenced by cast shadows
and edges of the background than our algorithm.
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In order to demonstrate the influence of the automatic profile extractor on recognition, we use the same system
configuration (URxD-PV1) once on profiles extracted from probe images automatically in the unconstrained sce-
narios and then on profiles extracted manually by a human operator. Figs. 16 (a,b) depict comparisons for single-
and multi-frame inputs, the fusion scheme ‘mean-of-best’ is considered for the multi-frame cohort (URxD-PV7).

As one may expect, we observe a decline in performance for both datasets. For instance, rank-1 recognition
rate is 86% for single frame cohort (P2) using manually extracted profiles and 78% using automatically extracted
profiles. For the multi-frame cohort (P1) we observe a drop in performance from 100% to 84%. The majority of
misclassifications are related to sequences of low resolution and poor contrast. The negative influence on SVM
classifier is much higher, as it is much more sensitive to inaccuracies introduced by an automatic extractor. The
Hausdorff distance metric is known for its robustness to noise and, thus, the drop in performance is significantly
smaller.

Experiment 5: Influence of sampling range and density: In order to demonstrate the sensitivity of the algorithm
to the predefined range of gallery sampling angles, we compare recognition results based on the original gallery
to the results based on wider or narrower ranges, where each range is reduced by 5◦ from each side . Results of
such comparison are depicted in Fig. 17 (a,b) separately for standard and non-standard poses. We also present the
CMC curve based on matching of the standard pose only. In a similar manner, Fig. 17 (c,d) depicts the influences
of angular sampling density on recognition by comparison of the current sampling density of 5◦ to the alternative
sparser sampling densities of 10◦ and 20◦. These experiments were applied on P3a and P3b cohorts with manually
extracted profiles and HD identification algorithm (URxD-PV1).

The results show a clear tendency for the widely sampled pose domain to be more robust on non-standard poses.
For instance, rank-1 recognition is 78% for wide region (current settings), 76% for slightly narrower region and
only 56% for the sampling region with 10◦ reduced from each side. On the other hand narrow sampled pose domain
regions will slightly outperform if we consider only nearly standard poses. For instance, sampling in the narrow
region results in 98% rank-1 recognition as compared to 96% recognition for other settings (wide and moderate).
However, even in this case, sampling only one point corresponding to standard pose (ultra-narrow) is worse than
other options and results in 92% rank-1 recognition for nearly standard poses and only 56% for non-standard poses.
Unlike the area of sampling region, the frequency of sampling has less influence on the performance. Even very
sparse sampling of 20◦ results in a performance very similar to denser frequencies.

VIII. CONCLUSIONS

We presented a fully automatic system for profile-based 3D aided side-view face recognition. It is intended to
be used in the absence of frontal view face images. The system uses a 3D scan of the face to model the geometry
of the face profile contour under various poses. In this paper, we provided solutions for all stages of the integrated
system for accurate landmarking, statistical shape modeling, 3D profile generation, and extraction of the profile
shapes from side-view images.

We introduced a modified ASM-based algorithm for profile curve extraction from images that employs simple
image features and does not require a set of 2D images in the training stage.

The above experiments explore the basic factors that may influence the performance of automatic 3D-aided
profile-based recognition such as quality of 3D data, accuracy of the extracted profile, fusion schemes for multiframe
recognition, and configuration of the sampling domain. All experiments were performed using publicly available
databases.
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(a) (b)

(c) (d)

(e) (f)

Fig. 13: Recognition results on three probe cohorts (rows): (a,b) P4a, (c,d) P4b, and (e,f) P1. The identification is
performed using two algorithms (columns): (a,c,e) HD, and (b,d,f) SVM.
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Fig. 14: Comparison of the identification performance based on 3D models with different qualities, with the same
identification algorithm (HD) applied.

(a) (b)

Fig. 15: Comparison of profiles extracted by two different human operators (M1,M2) and our algorithm (A). (a)Full
profile [TO,BO], and (b) trimmed central section [UN,NB].

(a) (b)

Fig. 16: Influence of profile extractor quality on recognition results in unconstrained scenarios: (a) single frame
cohort (P2), and (b) multi-frame cohort (P1).
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(a) (b)

(c) (d)

Fig. 17: Recognition results using various sampling domains: (a,c) probe cohort P2a, and (b,d) probe cohort P2b.
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(a) (b)

(c) (d)

(e) (f)

(g) (h) (i)

Fig. 18: Samples of images from probe cohorts: (a) sample frame from sequence in P1 (high resolution), (b) another
sample frame from sequence in P1 (low resolution), (c) sample from P2a, (d) P2b, (e) P3a, (f) P3b, (g) sample
frame from sequence in P4a, (h) P4b, and (i) P5.
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