

A Polynomial Algorithm for Uniqueness of Normal
Forms of Linear Shallow Term Rewrite Systems1

Julian Zinn2

and Rakesh Verma

Computer Science Department
University of Houston

Houston, TX, 77204, USA
http://www.cs.uh.edu

UH-CS-10-07

August 25, 2010

Keywords: tree automata, polynomial-time algorithm, term rewrite system, uniqueness

of normal forms

Abstract

Term rewrite systems are useful in many areas of computer science. Two especially important
areas are decision procedures for the word problem of some algebraic systems and rule-based
programming. One of the most studied properties of rewrite systems is confluence, and one of the
primary benefits of having a confluent rewrite system is that the system also has uniqueness of
normal forms. However, uniqueness of normal forms is an interesting property in its own right and
well studied. Also, confluence can be too strong a requirement for applications. In this paper, we
study the decidability of uniqueness of normal forms. Uniqueness of normal forms is decidable for
ground rewrite systems, but is undecidable in general. This paper shows that the uniqueness of
normal forms problem is decidable for the class of linear shallow term rewrite systems, and gives
a decision procedure that is polynomial as long as the arities of the function symbols are bounded
or the signature is fixed.

1 Thanks to NSF grants CCF 0306475 and OCI 0453498.
2 Work done while the author was at the University of Houston.

A Polynomial Algorithm for Uniqueness of Normal Forms of Linear

Shallow Term Rewrite Systems

Julian Zinn
Computer Science Dept.
University of Houston
Houston, TX 77204

jzinn@cs.uh.edu

Rakesh Verma
Computer Science Dept.
University of Houston
Houston, TX 77204

Ph: 713-743-3348/Fax: 713-743-3335
rmverma@cs.uh.edu

June 5, 2008

Abstract

Term rewrite systems are useful in many areas of computer science. Two especially important areas
are decision procedures for the word problem of some algebraic systems and rule-based programming.
One of the most studied properties of rewrite systems is confluence, and one of the primary benefits of
having a confluent rewrite system is that the system also has uniqueness of normal forms. However,
uniqueness of normal forms is an interesting property in its own right and well studied. Also, confluence
can be too strong a requirement for applications. In this paper, we study the decidability of uniqueness
of normal forms. Uniqueness of normal forms is decidable for ground rewrite systems, but is undecidable
in general. This paper shows that the uniqueness of normal forms problem is decidable for the class of
linear shallow term rewrite systems, and gives a decision procedure that is polynomial as long as the
arities of the function symbols are bounded or the signature is fixed.

1 Introduction

Term rewrite systems (TRSs), which are finite sets of rules, are useful in many areas of computer science.
Two especially important areas are decision procedures for the word problem of some algebraic systems and
rule-based programming. One of the most studied properties of rewrite systems is confluence, and one of
the primary benefits of having a confluent rewrite system is that the system also has uniqueness of normal
forms (UN=). However, uniqueness of normal forms is an interesting property in its own right and well-
studied [10]. Also, confluence can be too strong a requirement for some applications such as lazy rule-based
programming. Additionally, in the proof-by-consistency approach for inductive proofs, consistency is often
ensured by requiring the UN= property. Our algorithm may be used as a decidable sufficient condition
ensuring UN= for left-linear systems using approximation techniques.

The uniqueness of normal forms problem is as follows:

Input A TRS R.

Question For all normal forms n and m such that n↔∗
R m is n = m?

In this paper, we study the decidability of uniqueness of normal forms. Uniqueness of normal forms is
decidable for ground systems [13], but is undecidable in general [13]. Since the property is undecidable in
general, we would like to know for which classes of rewrite systems we can decide UN=. In this paper, we
consider the class of linear shallow systems, and a subset of this class, the linear flat systems. A rewrite
system is linear if variables occurs at most once in each side of any rule. A rewrite system is shallow if

1

variables occur only at depth zero or depth one in each side of any rule. And, a rewrite system is flat if the
parse trees of both the left- and right-hand sides of all the rules have height zero or one.

An example of a linear flat system that has UN= but not confluence is {f(c) → 1, c → g(c)}. More
sophisticated examples can be constructed using a sequential ‘or’ function in which the second argument
gives rise to a nonterminating computation.

This paper shows that the uniqueness of normal forms problem is decidable for the class of linear shallow
term rewrite systems, and gives a decision procedure that is polynomial as long as the arities of the function
symbols are bounded or the signature is fixed. Even the decidability of UN= for this class of systems was
not known earlier, to the best of our knowledge.

There are a few related problems that do not quite combine to give a solution to this problem. As is well
known, for a given TRS R, the problem of determining if a ground term t is a normal form with respect to
R is decidable in polynomial time. We show this for shallow linear TRS in this paper. It is also possible to
decide, given two ground terms s and t, if s ↔∗

R t, which is also shown in this paper. Additionally, testing
if s = t (syntactic identity) is trivial. However, this does not give us a decision procedure for UN=, because
we cannot check for each pair 〈s, t〉 of terms (there are infinitely many) that if s and t are normal forms and
s↔∗

R t then s = t.
Our decision procedure works by determining whether there are any witnesses to non-UN=. A witness to

non-UN= is a pair of normal forms 〈n, m〉 such that n ↔∗
R m but n 6= m. The decision procedure depends

on the following results, the first three of which we prove in the course of the paper:

1. If R is a linear shallow TRS, then we can transform R in polynomial time into a linear flat TRS R′ such
that R is UN= if and only if R′ is UN=. We show this in Section 3. Our transformation is necessarily
different from the flattening procedures of [5, 13], since those procedures preserve confluence but do
not preserve UN=.

2. If R is a linear flat TRS and R is not UN= then there is a witness 〈n, m〉 to non-UN= such that n and
m are ground, there is a flat ground term t and ground derivation n↔∗

R t↔∗
R m, and t is an instance

of a left-hand side of a rule of R. We show this in Section 4.

3. If R is a linear flat TRS and t is any ground term, then we can construct in polynomial time a
tree automaton At that recognizes the ground normal forms that are R-equivalent to t by ground
derivations. This result is known [3, 4], but we improve the construction and proof, and provide a
complexity analysis needed to show that our decision procedure is polynomial.

4. For any tree automaton A, we can decide in polynomial time if the language accepted by A contains
at most one element [4].

We construct the automaton At of item 3 from two simpler automata described in Sections 5 and 6. For
a left-linear rewrite system R, Section 5 describes a tree automaton ARed(R) that accepts exactly the normal
forms of R. For a linear shallow rewrite system R, Section 6 describes how to construct, for a ground term
t, a tree automaton B that accepts the terms that are R-equivalent to t by ground derivations. From these
two automata, we can create, for a linear flat rewrite system R, an intersection machine At that accepts
normal forms R-equivalent to t by ground derivations. Intersection machines are described in [4].

The decision procedure described in item 4 comes from two results described in [4]. The first of these
results is that for any tree automaton A, we can decide if A has the ‘emptiness property’—is the language
of A empty. The second result is that for any tree automaton A, we can decide if A has the ‘singleton set
property’—does the language of A contain exactly a single element.

Using these results, we can decide the UN= problem with the following algorithm. Given a linear shallow
TRS R as input, first flatten R to produce a linear flat TRS R′. If for each flat ground instance t of a
left-hand side of a rule of R′ the automaton At accepts at most one term, then R is UN=. Otherwise R is
not UN=.

The algorithm always terminates because there are only finitely many flat ground instances of left-hand
sides of rules of R′. The procedure is correct because if for each flat ground instance t of a left-hand side of

2

a rule of R′ the automaton At accepts at most one term, then there are no ground witnesses to non-UN=

of R′ that have a ground derivation including a flat ground instance of a left-hand side of a rule. If this is
the case, then R′ is UN=. On the other hand, if there is a flat ground instance t of a left-hand side of a rule
of R′ such that the automaton At accepts more than one term, then there is a witness to non-UN=, so R′

is not UN=.
The decision procedure for UN= just described is a polynomial-time algorithm. The number of flat

ground instances of left-hand sides of rule is polynomial in the size of R. In Sections 5 and 6, we shall see
that for each such term t, the time to construct the machine At is polynomial in the size of R if the arities
of function symbols are bounded. The intersection machine At has size |ARed(R)| × |B| [4]. Thus the size of
At is also polynomial in the size of R if the arities of function symbols are bounded or the signature is fixed.
Finally, we can decide the emptiness property and singleton set property for any tree automaton A in time
polynomial in the size of A [4].

1.1 Related Work

This paper extends results from three main articles and applies them to the uniqueness of normal forms
problem.

The key idea of Section 4 is to use a case analysis that depends on whether a term is equivalent to
height-zero term or not. This insight comes from Section 5.3 of [7], where it is used to prove a confluence
result. Section 4 uses it to show that one of the terms in any equational proof of the equality of two normal
forms is a flat instance of a left-hand side of a rule.

The tree automata from Sections 5 and 6 closely follow the automata in [3], but contain some differences
and clarifications. Section 5 on tree automata for reducibility contains a complexity analysis for linear
flat rewrite systems. Section 6 on tree automata for reachability describes automata that recognize terms
reachable from a term t rather than recognize terms from which t is reachable.

Regular flattening, discussed in Section 3, is used in [5] to develop a confluence preserving transformation
that turns a shallow TRS into a flat TRS. However, this paper shows that regular flattening cannot be used
in the same way for a UN= (or UN→) preserving transformation. After this negative result, this paper
provides two variations on flattening that allow us to construct a UN= and UN→ preserving algorithm that
transforms a linear shallow TRS into a linear flat TRS.

Many other decidability results are known about the class of linear shallow rewrite systems. The word
problem for shallow rewrite systems is decidable in polynomial time [9]. Also, confluence, reachability, and
joinability are decidable for the linear, shallow class [7]. Decidability of termination for the linear, shallow
class follows from a more general result [6].

2 Preliminaries

2.1 Terms

A signature is a set F along with an function arity : F → N. Members of F are called function symbols, and
arity(f) is called the arity of a function symbol f . Function symbols of arity zero are called constants. Let
X be a countable set disjoint from F that we shall call the set of variables. The set T (F , X) of F-terms
over X is defined to be the smallest set that contains X and has the property that f(t1, . . . , tn) ∈ T (F , X)
whenever f ∈ F , n = arity(f), and t1, . . . , tn ∈ T (F , X). A term is called ground if no variable occurs in
it. The set of ground terms over signature F is denoted T (F). A term is called linear if no variable occurs
more than once in it.

The size |t| of a term t is the number of occurrences of variables and function symbols in t. Thus |t| = 1
if t is a variable, and |t| = 1 + |t1| + · · · + |tn| if t = f(t1, . . . , tn). In particular, the size of a constant
is 1. The height of a term t is 0 if t is a constant or variable, and 1 + max{height(t1), . . . ,height(tn)} if
t = f(t1, . . . , tn). Because of this definition, variables and constants are also known as height-zero terms.
Terms that have height zero or one are called flat.

3

A position of a term t is a sequence of natural numbers that is used to identify the locations of subterms
of t. The empty sequence λ is a position that identifies the subterm t itself. The set Pos(t) of positions of t
is defined by Pos(t) = {λ} if t is a variable, and Pos(t) = {λ} ∪ {1.p | p ∈ Pos(t1)} ∪ · · · ∪ {n.p | p ∈ Pos(tn)}
if t = f(t1, . . . , tn). We can define a partial order ≤ on Pos(t) by p ≤ q if and only if p is a prefix of q,
i.e. there is a sequence p′ such that q = pp′. We say that p is above q if p ≤ q, and we say that p is below
q if p ≥ q. We say that positions p and q are parallel if they are incomparable with respect to ≤. If t is
a term and p is a position, then t|p is the subterm of t at position p. More formally defined, t|λ = t and
f(t1, . . . , tn)|i.p = ti|p.

If s is a subterm of t that occurs at a position p that has length d, then the depth of s in t is d. A term
is called shallow if no variable occurs at depth greater than one. Thus, every flat term is shallow, but not
vice versa.

We denote by t[s]p the term that is like t except that the subterm t|p is replaced by s. More formally
defined, t[s]λ = s and f(t1, . . . , tn)[s]i.p = f(t1, . . . , ti[s]p, . . . , tn). For example, if t = f(g(a), b, g(h(c, b)))
then t|3.1.2 = b and t[c]3 = f(g(a), b, c).

A notational device called a context is useful when performing replacements. Intuitively, a context is
a term with one or more ‘holes’ into which terms may be inserted. We can provide a formal definition by
considering a context to be a term in an extended signature that includes an extra constant symbol 2. If C
is a context with one occurrence of 2, then we write C as C[]. If C contains two occurrences of 2, then we
write C as C[,], and so on. If C[, . . . ,] is a context with n occurrences of 2, then C[t1, . . . , tn] represents
the term that is like C except that the occurrences of 2 are replaced with the terms t1, . . . , tn. For example,
if C[,] = f(a,2, g(2)), then C[g(a), g(b)] = f(a, g(a), g(g(b))).

A substitution is a mapping σ : X → T (F , X) that is identified with its homomorphic extension σ̂ : T (F , X)→
T (F , X), which agrees with σ on X and is such that σ̂(f(t1, . . . , tn)) = f(σ̂(t1), . . . , σ̂(tn)). The domain of a
substitution σ is the set {x ∈ X | x 6= σ(x)}. We define a substitution σ with finite domain {x1, . . . , xn} by
using the notation σ = {x1 7→ t1, . . . , xn 7→ tn}. Applications of substitutions to terms are commonly written
in postfix notation, i.e. tσ rather than σ(t). An example of a substitution is σ = {x 7→ f(a, b), y 7→ g(b)}.
Application of σ to a term t = f(g(y), x) results in tσ = f(g(g(b)), f(a, b)). For terms s and t, if t = sσ
for some substitution σ, then t is said to be an instance of s. The composition of substitutions σ and τ is
denoted by στ and is defined by t(στ) = (tσ)τ . If σ and τ are substitutions and there is a substitution σ′

such that τ = σσ′, then σ is said to be more general than τ .
Two terms s and t are unifiable if there is a substitution σ such that sσ = tσ. In this case σ is called a

unifier of s and t, and sσ is called a most general instance of s and t. If two terms s and t are unifiable,
then they have a most general unifier σ in the sense that for any unifier τ of s and t there is a substitution
σ′ such that τ = σσ′.

2.2 Term Rewrite Systems

A rewrite rule is a pair 〈l, r〉 of terms typically written l → r. For the rule l → r, the left-hand side is l
and the right-hand side is r. A rule l → r is flat (shallow, linear, ground) if both l and r are flat (shallow,
linear, ground). A rule l → r is left-linear if l is linear, and it is right-linear if r is linear. A rule l → r is
collapsing if r is a variable. Variables that occur in both sides of a rule are called shared variables. Variables
that occur in one side of a rule but not the other are called non-shared variables.

A term rewrite system (TRS) is a pair 〈T , R〉 where R is a set of rules and T is the set of terms over a
particular signature. We only treat finite rewrite systems in this paper. We require the standard restrictions
that a left-hand side of a rule may not be a variable, but not that a variable may occur in the right-hand
side of a rule only if it occurs in the left-hand side. Usually only the rules are emphasized and the terms
are assumed to be those that can be built from the symbols occurring in the rules. For a set R of rules,
the rewrite relation →R is a binary relation on terms defined by s →R t if and only if there is a position
p ∈ Pos(s), a rule l → r ∈ R, and a substitution σ such that s|p = lσ and t = s[rσ]p. Here, p is called
the position of the rewrite application, and s|p is called a redex (reducible expression) of s. If a variable x
occurs at position p′ of l, then the subterm lσ|p′ (which is also the subterm s|p.p′) is called the substitution
part of x. Using contexts, we can say that s→R t if and only if there is a context C[], rule l → r ∈ R, and

4

substitution σ such that s = C[lσ] and t = C[rσ]. A TRS R is flat (shallow, linear, ground) if each rule is
flat (shallow, linear, ground). A TRS R is left-linear (right-linear) if each rule is left-linear (right-linear). If
R is a set of rules, then we define R− by R− = {r → l | l→ r ∈ R}.

If → is a binary relation, then its inverse is denoted ←, its reflexive closure →=, its symmetric closure
↔, its transitive closure →+, and its reflexive transitive closure →∗ or �. The n-fold composition of → is
denoted by→n. The reflexive symmetric transitive closure is denoted↔∗, which is also called the equivalence
closure. If R is a rewrite system, then terms related by ↔∗

R are called R-equivalent or convertible.
A term s is reachable by R from a term t if t →∗

R s. Terms s and t are called joinable by R, denoted
s ↓R t, if there is a term u such that s →∗

R u and t →∗
R u. In other words, ↓R = →∗

R ◦ ←∗
R. We also define

a relation ↑R by s ↑R t if and only if there is a term u such that u →∗
R s and u →∗

R t. In other words,
↑R =←∗

R ◦→∗
R. A term t is called a normal form if there is no term s for which t→R s. The set of normal

forms of R is denoted nf(R). Terms that are not normal forms are called reducible.
A TRS R is terminating if for every term t there is no infinite reduction sequence t = t0 →R t1 →R t2 →R

· · · . A rewrite system is confluent if two rewrite sequences from the same term can always be extended to
end with the same term. Formally, a TRS R is confluent if for every term u, if u →∗

R t1 and u →∗
R t2

for terms t1 and t2 then t1 →∗
R v and t2 →∗

R v for some term v. In other words, R is confluent when
←∗

R ◦→∗
R ⊆ →∗

R ◦←∗
R.

We say that a TRS R has uniqueness of normal forms, or that R is UN=, if for every term s, if s↔∗
R n

and s↔∗
R m where n and m are normal forms, then n = m. Another way of stating this is that R is UN= if

and only if for all normal forms n and m, if n↔∗
R m then n = m. We say that R is uniquely normalizing, or

that R is UN→, if for every term s, if s→∗
R n and s→∗

R m where n and m are normal forms, then n = m.
Another way of stating this is that R is UN→ if and only if for all normal forms n and m, if n ↑R m then
n = m. Note that if a term rewrite system is UN=, then it is UN→.

If → is a binary relation on terms, then a derivation s→∗ t is a finite sequence s0, . . . , sk of terms such
that s = s0, sk = t, and si → si+1 for each i. Each pair si → si+1 is called a step of the derivation, and
the position of the rewrite, the rule, and substitution used are assumed to be known for each step, although
this information may not be written down. Derivations are often written as s0 → · · · → sk. The length of a
derivation is the number of steps in it, so the derivation s0 → · · · → sk has length k. A ground derivation
of s →∗ t is a derivation s0, . . . , sk in which each si is a ground term. When the binary relation → is a
rewrite relation →R, a root rewrite step is a step si →R si+1 such that the position of the rewrite is λ. If
si →R si+1 is a root rewrite step, it may be notated by si

r→R si+1.

2.3 Tree Automata

A nondeterministic (bottom-up) tree automaton A is a tuple 〈F , Q,Qf ,∆〉 where F is a signature, Q is a set
of states, Qf ⊆ Q is set of final states, and ∆ is a set of transition rules of the form

f(q1, . . . , qn)→ q ,

where f ∈ F , the arity of f is n, and q, q1, . . . , qn ∈ Q.
Tree automata take ground terms over F as input. Starting at the leaves and proceeding upward, an

automaton associates a state with subterms of the input until finally no transition rules are applicable. An
automaton may or may not be able to associate a state with every subterm of the input. Tree automata have
no start states. The leaves of the input term are constants, and for a constant a that is a leaf of the input,
automata rely on transition rules of the form a() → q to get started. Then, if a term t = f(t1, . . . , tn) is a
subterm of the input, and there are states q1, . . . , qn such that for each i the automaton has associated state
qi with term ti, and there is a transition rule f(q1, . . . , qn) → q, then the automaton may associate state q
with subterm t. There may be other transition rules with the same left-hand side but different right-hand
side, so the automaton may associate a different state with t. If the automaton finally associates a state q
with the input term, then the input term is said to reach q. The automaton accepts the input if the input
reaches some state in Qf . The language L(A) of a tree automaton A is the set of terms that A accepts.
A tree automaton is deterministic if no two distinct transition rules have the same left-hand side. A tree

5

automaton is complete if for every term t there is a state that t reaches. For more information on tree
automata, consult [4].

Once a subterm has been associated with a state, all that matters is the state, and we may forget the
subterm. A configuration of a tree automaton A is a term in which some of the subterms have been replaced
by states. We may consider the set of configurations to be the set of terms over the signature F ∪Q, where
the states are treated as constants in the signature. We define a move relation `A on configurations by s `A t
if and only if there is a context C[] and transition rule f(q1, . . . , qn) → q such that s = C[f(q1, . . . , qn)]
and t = C[q]. ∆ can be modeled as a rewriting System over F ∪ Q, so `A is the same as →∆. Using this
terminology, an automaton A accepts a term t if and only if t `∗A q for some final state q. A computation of
a tree automaton A is a sequence s0, . . . , sn of configurations such that si `A si+1 for each i.

3 Flattening Shallow Rewrite Systems

This section describes a polynomial-time algorithm that transforms an arbitrary shallow TRS into a flat
TRS while preserving UN= and linearity. For a property P of term rewrite systems, a transformation of a
TRS R into a TRS R′ is called P -preserving when R has property P if and only if R′ has property P .

Additionally, we will show that the transformation preserves UN→. UN→ is similar to UN=, and we
would eventually like to extend the result of this paper to show that UN→ is decidable for linear shallow
rewrite systems.

Godoy et al. [5] introduced a flattening algorithm, called regular flattening here, that transforms a shallow
TRS into a flat TRS while preserving confluence. Each iteration of the regular flattening algorithm chooses
a non-constant ground term t and replaces all of its occurrences in the rules of R by a new constant c and
adds the rules c→ t and t→ c to R.

Unfortunately, regular flattening does not preserve UN= or UN→. After providing examples of this, we
describe two alternate kinds of rule flattening—flattening on the right and flattening on the left—that each
preserve both UN= and UN→. In flattening on the right, we choose one occurrence of a non-constant flat
ground term r0 in the right-hand side of a rule, replace it with a new constant c, and add the rule c → r0.
In flattening on the left, we choose every occurrence of a non-constant flat ground term l0 in the left-hand
side of a rule, replace it with a new constant c, add the rule l0 → c, and add the rule c→ c if l0 is reducible.
It is easier to show preservation of UN= and UN→ for flattening on the right than flattening on the left
because flattening the right-hand side of a rule does not affect the set of normal forms (other than is caused
by adding the new constant c).

We can iteratively apply flattening on the left and flattening on the right to any arbitrary TRS, and each
step will preserve UN=, linearity, and UN→. The transformation preserves linearity because no variable is
touched during any step. This process terminates, and the size of the final TRS is polynomial in the size of
the original TRS. If we start with a shallow TRS, then we will eventually end up with a flat TRS.

Each step in the flattening process requires that we introduce a new constant c to the signature. Thus
we must be mindful of the signature of R. We denote by T the set of terms over the original signature F ,
and by Tc the set of terms over the signature F ∪ {c}, where c is a new constant not in F . We write 〈T , R〉
to specify that we are talking about rules R over terms T .

In the following proofs, we will need to perform multiple simultaneous replacement of ground terms
with other ground terms. The notation we use for this is u[t ⇒ c] to represent the term that results from
simultaneously replacing all instances of the ground term t in u with c. Similarly, u[c ⇒ t] represents the
term that results from replacing all instances of the constant c with the ground term t. Note that if u ∈ Tc,
then u, u[c ⇒ t], and u[t ⇒ c] may be three distinct terms, and we may have u 6= (u[t ⇒ c])[c ⇒ t] and
u 6= (u[c⇒ t])[t⇒ c].

3.1 Regular Flattening preserves neither UN= nor UN→

For this section, let R be a rewrite system over T and t be a ground term that is a subterm of a side of some
rule of R. Also let b-flatR = Rb ∪ {c → t, t → c}, where c is a new constant not in F , and Rb is R with

6

every occurrence of t in both sides of every rule replaced by c.
To show that regular flattening does not preserve UN=, we can exhibit one of the following

1. A TRS R such that R is UN= but b-flatR is not UN=.

2. A TRS R such that R is not UN= but b-flatR is UN=.

A similar statement holds for UN→. As it turns out, there are no counterexamples of type 1 for either UN=

or UN→, because regular flattening destroys normal forms without creating any new ones. The following
examples show how regular flattening destroys normal forms.

Example 1. Let R = {l → g(f(a))} where l is any term. Then b-flatR = {l → g(c), f(a)→ c, c→ f(a)}.
The term f(a) is a normal form of R but is not a normal form of b-flat R.

Example 2. Let R = {h(f(a)) → r} for some term r. Then b-flat R = {h(c) → r, f(a) → c, c → f(a)}.
The term f(a) is a normal form of R but is not a normal form of b-flat R.

We state the following two theorems without proof, because their proofs are similar to the ⇐ directions
of proofs in Sections 3.2 and 3.3.

Theorem 3. If 〈T , R〉 is UN=, then 〈Tc,b-flat R〉 is UN=.

Theorem 4. If 〈T , R〉 is UN→, then 〈Tc,b-flat R〉 is UN→.

Thus we will try to show counterexamples of type 2. In fact, a single counterexample will suffice for both
UN= and UN→. We use the fact that any rewrite system that is UN= is also UN→. Our counterexample is
a TRS R such that R is not UN→ but b-flat R is UN=. Thus, R is not UN= but b-flat R is UN=. Also, R
is not UN→ but b-flatR is UN→. This implies that regular flattening preserves neither UN= nor UN→.

Example 5. Let R = {a → f(f(b)), a → c}. R is not UN→ because f(f(b)) 6= c. We now show that
b-flat R = {a → f(d), a → c, d → f(b), f(b) → d} is UN=. First we note that b-flatR is a rewrite system
over the set of terms Tc = {fn(t) | n ≥ 0 and t ∈ {a, b, c} ∪X}. Of these terms, the normal forms are
{b} ∪ {fn(c) | n ≥ 0} ∪ {fn(x) | n ≥ 0 and x is a variable}. To show that b-flat R is UN=, we need to show
that each equivalence class of ↔∗

b-flat R contains at most one normal form. The equivalence class of b is {b},
and for each n and variable x the equivalence class of fn(x) is {fn(x)}. It remains to show that for each
n the equivalence class of fn(c) does not contain fm(c) for some m 6= n. The only derivation that exists
from fn(c) is fn(c)←b-flat R fn(a)→b-flat R fn+1(d)↔b-flat R fn+2(b). Thus, the equivalence class of fn(c)
is {fn(c), fn(a), fn+1(d), fn+2(b)}. Therefore b-flatR is UN=.

3.2 Flattening on the Right

For this section, let R = R0 ∪ {l → r[r0]p} be a rewrite system over T , where R0 is a set of rules, l
and r are terms, and r0 is a non-constant flat ground term. The term r[r0]p is just the right-hand side
of the rule, and we can consider it to be just the term r which has r0 as a subterm at position p. We
write the right-hand side of the rule as r[r0]p because we will be replacing r0 with a new constant c. Let
r-flatR = R0 ∪{l→ r[c]p, c→ r0}, where c is a new constant not in F . The position p will be omitted from
now on. Because r0 is flat, the rule c→ r0 is a flat rule.

Proposition 6. For all u, v ∈ Tc, if u→ v in 〈Tc, r-flatR〉 then u[c⇒ r0]→∗ v[c⇒ r0] in 〈T , R〉.

Proof. There are three cases. First, if u→R0 v, then u[c⇒ r0]→R0 v[c⇒ r0]. Second, if u→l→r[c] v, then
u[c⇒ r0]→l→r[r0] v[c⇒ r0]. Finally, if u→c→r0 v, then u[c⇒ r0] = v[c⇒ r0]. �

Theorem 7 (Flattening on the right preserves UN=). 〈Tc, r-flatR〉 is UN= if and only if 〈T , R〉 is
UN=.

7

Proof. ⇒: Assume 〈Tc, r-flatR〉 is UN=. Pick normal forms n1 and n2 of 〈T , R〉 such that n1 ↔∗ n2 in
〈T , R〉 and show that n1 = n2. The left-hand sides of the rules are the same in both R and r-flat R, so n1 and
n2 must be normal forms of 〈Tc, r-flat R〉. We need to show that n1 ↔∗ n2 in 〈Tc, r-flat R〉. This follows from
the fact that for terms u, v ∈ T if u→l→r[r0] v, then there is a term w ∈ Tc such that u→l→r[c] w →c→r0 v.
Thus n1 = n2 because 〈Tc, r-flatR〉 is UN=.
⇐: Assume 〈T , R〉 is UN=. Pick normal forms n1 and n2 of 〈Tc, r-flatR〉 such that n1 ↔∗ n2 in

〈Tc, r-flat R〉 and show that n1 = n2. Because of the c → r0 rule, both n1 and n2 must be in T . Again,
the left-hand sides of the rules are the same in both R and r-flat R, so n1 and n2 must be normal forms of
〈T , R〉. We need to show that n1 ↔∗ n2 in 〈T , R〉. This follows from Proposition 6 because n1[c⇒ r0] = n1

and n2[c⇒ r0] = n2. Thus n1 = n2 because 〈T , R〉 is UN=. �

Theorem 8 (Flattening on the right preserves UN→). 〈Tc, r-flatR〉 is UN→ if and only if 〈T , R〉 is
UN→.

Proof. Similar to Theorem 7, but note that in the ⇐ direction, we have a term s in Tc such that n1 ←∗

s→∗ n2 in 〈Tc, r-flat R〉. We can then show that n1 ←∗ s[c⇒ r0]→∗ n2 in 〈T , R〉 using Proposition 6. �

For the TRS R described in Example 1, we have r-flatR = {l → g(c), c→ f(a)}. The term f(a), which
is a normal form of R is not a normal form of b-flat R, but remains a normal form of r-flatR.

3.3 Flattening on the Left

For this section, let R be a rewrite system over T and let l0 be a non-constant flat ground term that is a
subterm of a left-hand side of a rule of R. Define l-flatR by

l-flatR =

{
Rl ∪ {l0 → c} if l0 is a normal form of 〈T , R〉,
Rl ∪ {l0 → c, c→ c} otherwise,

where c is a new constant not in F , and Rl is R with every occurrence of l0 in the left-hand sides of the
rules of R replaced by c. The position p will be omitted from now on. Because l0 is flat, the rule l0 → c is a
flat rule.

Proposition 9. For all u, v ∈ Tc, if u→ v in 〈Tc, l-flatR〉 then u[c⇒ l0]→∗ v[c⇒ l0] in 〈T , R〉.

Proof. There are three cases. First, if u →Rl v, then u[c ⇒ l0] →R v[c ⇒ l0]. Second, if u →l0→c v, then
u[c⇒ l0] = v[c⇒ l0]. Finally, if u→c→c v, then u[c⇒ l0] = v[c⇒ l0]. �

Theorem 10 (Flattening on the left preserves UN=). 〈Tc, l-flatR〉 is UN= if and only if 〈T , R〉 is
UN=.

Proof. ⇒: Assume 〈Tc, l-flatR〉 is UN=. Pick normal forms n1 and n2 of 〈T , R〉 such that n1 ↔∗ n2 in 〈T , R〉
and show that n1 = n2. We know that n1 ↔∗ n2 in 〈Tc, l-flatR〉, because for terms u, v ∈ T , if u →R v,
then there is a term w ∈ Tc such that u →∗

l0→c w →Rl v. If n1 and n2 are normal forms of 〈Tc, l-flatR〉,
then n1 = n2. So assume at least one of n1 and n2 is not a normal form of 〈Tc, l-flatR〉. This means that
one of the terms has an occurrence of l0 and l0 is a normal form of 〈T , R〉. Then the terms n1[l0 ⇒ c] and
n2[l0 ⇒ c] are normal forms of 〈Tc, l-flatR〉, and we have n1[l0 ⇒ c] ←∗

l0→c n1 ↔∗ n2 →∗
l0→c n2[l0 ⇒ c] in

〈Tc, l-flatR〉. This means that n1[l0 ⇒ c] = n2[l0 ⇒ c], which implies that n1 = n2.
⇐: Assume 〈T , R〉 is UN=. Pick normal forms n1 and n2 of 〈Tc, l-flatR〉 such that n1 ↔∗ n2 in

〈Tc, l-flatR〉 and show that n1 = n2.
We claim that n1[c⇒ l0] is a normal form of 〈T , R〉. For, if it is not, then there is a rule l→ r ∈ R such

that n1[c ⇒ l0] has a subterm lσ for some substitution σ. But then n1 would have a subterm (l[l0 ⇒ c])τ
where τ is defined by xτ = (xσ)[l0 ⇒ c]. And, since l[l0 ⇒ c] → r ∈ Rl, this would make n1 reducible in
〈Tc, l-flatR〉, which is a contradiction. Similarly, n2[c⇒ l0] is a normal form of 〈T , R〉.

Proposition 9 implies that n1[c ⇒ l0] ↔∗ n2[c ⇒ l0] in 〈T , R〉. Because 〈T , R〉 is UN=, we know that
n1[c⇒ l0] = n2[c⇒ l0]. This implies that n1 = n2. �

8

Theorem 11 (Flattening on the left preserves UN→). 〈Tc, l-flatR〉 is UN→ if and only if 〈T , R〉 is
UN→.

Proof. Similar to Theorem 10, but note that in the ⇐ direction, we have a term s in Tc such that n1 ←∗

s →∗ n2 in 〈Tc, l-flatR〉. We can then show that n1[c ⇒ l0] ←∗ s[c ⇒ l0] →∗ n2[c ⇒ l0] in 〈T , R〉 using
Proposition 9. �

For the TRS R described in Example 2, we have l-flat R = {h(c)→ r, f(a)→ c}. The term f(a), which
is a normal form of R is not a normal form of b-flat R, nor is it a normal form of l-flatR. However, it is
uniquely replaced by the normal form c of l-flat R.

4 Witnesses to Non-UN=

We want to show that if R is a linear flat TRS and R is not UN= then there is a witness 〈n, m〉 to non-UN=

such that n and m are ground, there is a flat ground term t and ground derivation n↔∗
R t↔∗

R m, and t is
an instance of a left-hand side of a rule of R.

A witness to non-UN= is a pair 〈n, m〉 of normal forms such that n ↔∗
R m and n 6= m. The size of a

witness 〈n, m〉 is |n|+ |m|. A ground witness to non-UN= is a pair 〈n, m〉 of ground normal forms such that
there is a ground derivation of n↔∗

R m and n 6= m.
For any rewrite system R, if R is not UN=, then there will be a witness to non-UN=. And, if there are

witnesses to non-UN=, then we can examine witnesses to non-UN= that are minimal in size. Our first step
will be to show that if 〈n, m〉 is a minimal witness to non-UN=, then in any derivation of n↔∗

R m there is
a term t such that n↔∗

R t↔∗
R m, and t is an instance (not necessarily flat or ground) of a left-hand side of

a rule of R. This is accomplished by the following proposition.

Proposition 12. If R is any rewrite system and 〈n, m〉 is a minimal witness to non-UN=, then there must
be a root rewrite step in any derivation of n↔∗

R m.

Proof. If there is a derivation from n to m with no root rewrite step, then there is a k-ary function symbol
f such that n = f(n1, . . . , nk) and m = f(m1, . . . ,mk) and ni ↔∗

R mi for each i and there is some j for
which nj 6= mj . Because nj and mj are both normal forms, 〈nj ,mj〉 constitutes a witness to non-UN= that
is smaller than 〈n, m〉, contradicting the minimality of 〈n, m〉. Thus there must be a root rewrite step in any
derivation of n↔∗

R m. �

For the rest of this section, let R be a linear flat rewrite system, and let 〈n, m〉 be a minimal witness
to non-UN= of R. In any derivation of n ↔∗

R m, Proposition 12 says that there is a left-hand side l of a
rule of R and substitution σ such that n ↔∗

R lσ ↔∗
R m. Now we shall show that there is a substitution σ′

such that lσ′ is flat (but not necessarily ground) and n ↔∗
R lσ′ ↔∗

R m. Assume that lσ is a non-flat term,
so lσ = f(s1, . . . , sk) for some k-ary function symbol f and terms s1, . . . , sk, where at least one si is not a
height-zero term. Because l is flat and no left-hand side of a rule is a variable (see the Preliminaries section),
we know that l = f(l1, . . . , lk) where l1, . . . , lk are constants and variables. Also because l is flat, if si is
not a height-zero term then li must be a variable. We shall show how to replace a non height-zero si with a
height-zero term to create an instance lσ′ of l that is flat. Let si be a non-height-zero term. We exploit the
fact that si is either equivalent to some height-zero term, or it is not.

First we deal with the case when si is equivalent to a height-zero term a.

Proposition 13. If si is equivalent to a height-zero term a, then n ↔∗
R lσ′ ↔∗

R m, where σ′ is defined by
xσ′ = a if x = li and xσ′ = xσ if x 6= li.

Proof. By Proposition 12, we can assume the derivation looks like n↔∗
R lσ

r→ rσ ↔∗
R m, where l → r ∈ R.

Because si ↔∗
R a, we have both lσ ↔∗

R lσ′ and rσ′ ↔∗
R rσ. By linearity of l → r we get lσ′

r→ rσ′.
This yields the claim as shown in Figure 1. In fact, linearity is not required since we can rewrite multiple
occurrences of si in parallel to multiple occurrences of a. �

9

n oooo // // lσ
OOOO

����

r // rσ
OOOO

����

m// //oooo

lσ′
r // rσ′

Figure 1: Replacing non-height-zero subterms with equivalent height-zero subterms

We can use Proposition 13 to replace any non height-zero si that is equivalent to a height-zero term a
by a.

Now we deal with the case when si is not equivalent to any height-zero term. By following what happens
to si in a particular derivation of n↔∗

R lσ ↔∗
R m, we will see that we can replace si with a new variable y.

Then we will have a derivation of n ↔∗
R lσ′ ↔∗

R m (for the same n and m), where σ′ is defined by xσ′ = y
if x = li and xσ′ = xσ if x 6= li. The key to this result is that for any term s′i that is R-equivalent to si, s′i
does not have a proper overlap with the pattern of any side of a rule, since sides of rules are flat and s′i is
not height-zero.

Definition 14 (The Cousin Relation). Let v0 ↔R · · · ↔R vk be a derivation, and let v0 = U0[u0] for
some context U0[] and term u0. We define cousins of u0 in the derivation as follows. First, u0 is a cousin of
itself. Second, if vj = Uj [uj], and uj is a cousin of u0, and vj+1 = Uj+1[uj+1], then uj+1 is a cousin of u0 if
any of the following cases hold:

1. The rewrite occurs at or below the position of uj , in which case Uj = Uj+1.

2. The rewrite occurs parallel to the position of uj , in which case uj = uj+1 and the position of uj in Uj

is the same as the position of uj+1 in Uj+1.

3. The rewrite occurs above the position of uj , and uj is at position ppx1q, and uj+1 is at position ppx2q,
where

(a) p is the position of the rewrite,

(b) px1 is the position of an occurrence of a variable x in one side of the rewrite rule,

(c) px2 is the position of an occurrence of x in the other side of the rewrite rule,

(d) q is the position of uj in xτ , where τ is the substitution of the rewrite.

A couple of things are clear about cousins. First, cousins are R-equivalent. Second, since R is linear,
there can be at most one cousin of u0 in each term of the derivation.

Proposition 15. Let U [u]↔∗
R V [v] where v is a cousin of u. Then U [w]↔∗

R V [w] for any term w.

Proposition 16. Let u = U0[u0] be a term where u0 is not equivalent to a height-zero term, and let v be a
term such that u↔∗

R v. If v does not contain a cousin of u0, then U0[w]↔∗
R v for any term w.

Proof. In a derivation of u ↔∗
R v there are terms u′ and v′ such that u ↔∗

R u′ ↔R v′ ↔∗
R v where every

term in u ↔∗
R u′ has a cousin of u0 while no term in v′ ↔∗

R v has a cousin of u0. Let u′ = U ′[u′0] where
u′0 is the cousin of u0. We know that U0[w] ↔∗

R U ′[w]. We need to show that U ′[w] ↔R v′. In the rewrite
step U ′[u′0] ↔R v′, the rewrite can occur at, below, parallel to, or above the position of u′0. If it occurs at,
below, or parallel to the position of u′0, then v′ would have a cousin of u0. Therefore, the rewrite occurs
above u′0. Because u′0 is not a height-zero term and R is flat, u′0 must lie underneath a variable, say x, in
the substitution part of the rule application. Because u′0 does not occur in v′, the other side of the rule does
not contain x. Therefore, combined with the linearity of R, we have U ′[w]↔R v′. �

Lemma 17. If si is not equivalent to any height-zero term, then n ↔∗
R lσ′ ↔∗

R m, where σ′ is defined by
liσ

′ = y for a new variable y and xσ′ = xσ if x 6= li.

10

Proof. Pick a derivation of n↔∗
R lσ ↔∗

R m that is as short as possible. There are three cases to consider.
In the first case neither n nor m contains a cousin of si. Then by Proposition 16, n↔∗

R lσ′ ↔∗
R m.

In the second case, one of the normal forms contains a cousin of si but the other does not. Without
loss of generality, let n contain no cousin of si and let m = M [m0] where m0 is a cousin of si. Then
n ↔∗

R lσ′ ↔∗
R M [y] by Propositions 15 and 16, so 〈n, M [y]〉 is a smaller witness to non-UN= than 〈n, m〉

(note that n 6= M [y] since y is a new variable). Thus the second case cannot happen.
In the third case, si has both a cousin n0 in n and a cousin m0 in m, so that n = N [n0] and m = M [m0].

If N [] 6= M [] then N [y] 6= M [y]. Since N [y] ↔∗
R lσ′ ↔∗

R M [y] by Proposition 15, then 〈N [y],M [y]〉 is
a smaller witness to non-UN= than 〈n, m〉 (note that n0 and m0 can not be height-zero because they are
equivalent to si). If N [] = M [] then n0 6= m0 so 〈n0,m0〉 is a witness to non-UN=. It is a smaller witness
to non-UN= than 〈n, m〉, because if 〈n0,m0〉 = 〈n, m〉 then we have a derivation of n ↔∗

R si ↔∗
R m that is

shorter than the derivation of n ↔∗
R lσ ↔∗

R m, which we picked to be as short as possible. Thus, the third
case cannot happen either. �

We can use Lemma 17 to replace all non height-zero si that are not equivalent to height-zero terms by
new variables, since replacing such an si does not increase the length of the derivation of n ↔∗

R lσ′ ↔∗
R m.

In fact, we can now assume that lσ does not contain any non height-zero si that are not equivalent to
height-zero terms.

Thus, we have proved Theorem 18.

Theorem 18. If R is a linear flat TRS that is not UN=, then there is a witness 〈n, m〉 to non-UN= with a
derivation of n↔∗

R t↔∗
R m, where t is a flat instance of a left-hand side of a rule of R.

4.1 Ground Witnesses

So far, we have shown that if 〈T , R〉 is a linear flat TRS that is not UN=, then there is a witness 〈n, m〉 to
non-UN= with a derivation of n↔∗

R t↔∗
R m, where t is a flat instance of a left-hand side of a rule of R. In

this section we shall show that for any linear flat TRS 〈T , R〉, we can add a finite number of constants to
the signature of T to get a rewrite system 〈T ′, R〉 that is UN= if and only if 〈T , R〉 is UN=, and if they are
not UN=, then 〈T ′, R〉 has a ground witness 〈n, m〉 to non-UN= with a ground derivation n ↔∗

R t ↔∗
R m,

where t is a flat ground instance of a left-hand side of a rule of R.

Proposition 19. Let T be the set of terms over a signature F , and let Tc be the set of terms over the
signature F ∪{c}, where c is a new constant not in F . A TRS 〈T , R〉 is UN= if and only if 〈Tc, R〉 is UN=.

Proof. The ⇐ direction is obvious. For the ⇒ direction, assume 〈T , R〉 is UN=. To show 〈Tc, R〉 is UN=,
pick normal forms n, m ∈ Tc such that n ↔∗

R m in Tc. In any derivation of n ↔∗
R m, we can replace all

occurrences of c with a new variable x to get a derivation of n̄↔∗
R m̄ in T . Since n̄ and m̄ are normal forms

of 〈T , R〉, we have n̄ = m̄. This implies n = m. �

Lemma 20. Let 〈T , R〉 be a linear flat TRS. Then we can add a finite number of constants to the signature
of T to get a rewrite system 〈T ′, R〉 that is UN= if and only if 〈T , R〉 is UN=, and if they are not UN=,
then 〈T ′, R〉 has a ground witness 〈n, m〉 to non-UN= with a ground derivation n↔∗

R t↔∗
R m, where t is a

flat ground instance of a left-hand side of a rule of R.

Proof. Let T be the set of terms over the signature F . Let α be the maximum arity of the function symbols
in F . Let T ′ be the set of terms over the signature F ∪ {c1, . . . , c3α}, where c1, . . . , c3α are distinct new
constants not in F . Proposition 19 ensures that 〈T ′, R〉 is UN= if and only if 〈T , R〉 is UN=.

Assume 〈T ′, R〉 and 〈T , R〉 are not UN=. Let 〈n, m〉 be a minimal witness to non-UN= of 〈T , R〉. By
Theorem 18, there is an instance lσ of a left-hand side l of a rule such that lσ is flat and n ↔∗

R lσ ↔∗
R m.

Pick a derivation of n ↔∗
R lσ ↔∗

R m. Let x1, . . . , xj be the variables that occur in n, lσ, and m, and let
xj+1, . . . , xk be the rest of the variables in the derivation. Note that j ≤ 3α.

Define a substitution τ by xiτ = ci if i ≤ j and xiτ is any ground term otherwise. We can apply τ to
each term in the derivation to get a ground derivation of nτ ↔∗

R lστ ↔∗
R mτ . Then 〈nτ,mτ〉 is a ground

11

witness to non-UN= of 〈T ′, R〉. Note that nτ 6= mτ since different variables in n and m are mapped to
different constants. Additionally, lστ is flat and ground. �

5 Tree Automata for Reducible Terms

Let R be a left-linear TRS over the set T of terms. We want a tree automaton ANF(R) that recognizes the
language of ground normal forms of R over T . To ensure a polynomial time algorithm for UN=, we need
ANF(R) to be polynomial in the size of R, but we don’t require determinism. It is easier to construct a tree
automaton ARed(R) that recognizes the complement language—the language of R-reducible terms. Once we
have ARed(R), we can construct ANF(R) as follows. If ARed(R) is deterministic, then we define ANF(R) to be
like ARed(R) but with a complemented set of final states. If ARed(R) is nondeterministic, then we may use
[4] to find a deterministic automaton A′

Red(R) such that L(A′
Red(R)) = L(ARed(R)). Then we could define

ANF(R) to be like A′
Red(R) but with a complemented set of final states, as before. Unfortunately, A′

Red(R)

may be exponential in the size of ARed(R).
We give two automata that accept the language of R-reducible terms. The first is a simple nondetermin-

istic automaton that is described in Appendix A. The second is a more complicated deterministic automaton
ARed(R) that is polynomial in the size of R provided the maximum arity of the function symbols is bounded
or the signature is fixed.

Comon already does something similar in [3]. This section clarifies some points and provides a complexity
analysis specific for our purposes with linear flat rewrite systems.

5.1 Deterministic Tree Automata for Reducible Terms

The next couple of examples show how to deal with instances and nondeterminism. We give only the
definition of the automata here. That they in fact accept the R-reducible terms is shown by Theorem 26.

Similarly to the nondeterministic case, the examples will have one state qt per subterm t of a left-hand
side of a rule that is not an instance of a left-hand side of a rule. To be complete and deterministic, we need
to have for each function symbol f and states q1, . . . , qn exactly one state q such that f(q1, . . . , qn)→ q is a
transition rule. If any of the qi equals qr, then q should be qr. If no qi is qr, then f(q1, . . . , qn) = f(qt1 , . . . , qtn

)
for some terms t1, . . . , tn. If f(t1, . . . , tn) is an instance of a left-hand side of a rule, then we want q to be
qr. If f(t1, . . . , tn) is an instance of a term t for which there is a state qt, then we may want q to be qt. This
leads to a complete deterministic automaton in some cases, for instance in the next example.

Example 21. Let R = {g(f(x), y) → f(a)}. We shall define a complete deterministic automaton A to
recognize R-reducible terms. Define the set Q of states by Q = {qx, qf(x), qr} and the set Qf of final states
by Qf = {qr}. Define the set ∆ of transition rules by

a→ qx g(qr, q)→ qr ∀q ∈ Q

f(qx)→ qf(x) g(q, qr)→ qr ∀q ∈ Q

f(qf(x))→ qf(x) g(qf(x), q)→ qr ∀q ∈ Q

f(qr)→ qr g(q1, q2)→ qx if q1 6= qr and q2 6= qr and q1 6= qf(x)

When there are two states qt and qt′ such that f(t1, . . . , tn) is an instance of t and t′, then there can be
conflicts. If t is an instance of t′, then we want q to be qt′ . We implicitly did this in the last example, since
f(a) is an instance of both f(x) and x, and we chose transition rule f(qx)→ qf(x). However, when it is not
the case that one of t and t′ is an instance of the other, then we have a problem. The solution is to add a
new state to Q. The next example shows how to do this.

Example 22. Let R = {g(f(a, x)) → g(a), g(f(x, a)) → f(a, x)}. If we try to construct an automaton as
in the previous example, then we will need a transition rule with left-hand side f(qa, qa). Since f(a, a) is
an instance of both f(a, x) and f(x, a), we would end up with two transition rules f(qa, qa) → qf(a,x) and

12

f(qa, qa)→ qf(x,a) since f(a, x) is not an instance of f(x, a) and vice versa. This would make the automaton
nondeterministic. To compensate, we introduce an extra state qf(a,a), where f(a, a) is the most general
instance of f(a, x) and f(y, a). Then the transition rule is f(qa, qa)→ qf(a,a) (marked (∗) below).

Define the set Q of states by Q = {qx, qa, qf(a,x), qf(x,a), qf(a,a), qr} and set Qf of final states by Qf = {qr}.
Define the set ∆ of transition rules by

a→ qa

f(qx, qx)→ qx f(qf(a,x), qx)→ qx

f(qx, qa)→ qf(x,a) f(qf(a,x), qa)→ qf(x,a)

f(qx, qf(a,x))→ qx f(qf(a,x), qf(a,x))→ qx

f(qx, qf(x,a))→ qx f(qf(a,x), qf(x,a))→ qx

f(qx, qf(a,a))→ qx f(qf(a,x), qf(a,a))→ qx

f(qa, qx)→ qf(a,x) f(qf(a,a), qx)→ qx

f(qa, qa)→ qf(a,a) (∗) f(qf(a,a), qa)→ qf(x,a)

f(qa, qf(a,x))→ qf(a,x) f(qf(a,a), qf(a,x))→ qx

f(qa, qf(x,a))→ qf(a,x) f(qf(a,a), qf(x,a))→ qx

f(qa, qf(a,a))→ qf(a,x) f(qf(a,a), qf(a,a))→ qx

f(qf(x,a), qx)→ qx g(qx)→ qx

f(qf(x,a), qa)→ qf(x,a) g(qa)→ qx

f(qf(x,a), qf(a,x))→ qx g(qf(a,x))→ qr

f(qf(x,a), qf(x,a))→ qx g(qf(x,a))→ qr

f(qf(x,a), qf(a,a))→ qx g(qf(a,a))→ qr

plus

f(q1, q2)→ qr if q1 = qr or q2 = qr

g(qr)→ qr .

Now, given a left-linear TRS R, we show how (based on [3]) to construct a deterministic bottom-up tree
automaton ARed(R) that accepts the language of terms reducible by R. Verma [12] covers the case when R
is ground, so here we assume that there is a non-ground left-hand side of a rewrite rule. Also remember
that no left-hand side of a rule of R is a variable. Therefore, some variable occurs as a strict subterm of a
left-hand side of a rewrite rule.

We define a partial operation ⇓ on terms by defining s ⇓ t to be a most general instance of s and t′ if
s and t′ are unifiable, where t′ is the term t with variables renamed so that t′ does not share any variables
with s. The term s ⇓ t is unique up to variable renaming, in the sense that if u = s ⇓ t and v = s ⇓ t then
u is a renaming of v. If s and t are linear, then s ⇓ t is linear (when it exists). If a term u is an instance
of a term t1 and u is also an instance of another term t2, then u is an instance of t1 ⇓ t2. Additionally, the
binary operation ⇓ is associative, commutative, and idempotent. That is, for any terms s, t, and u we have
the following properties: s ⇓ t = t ⇓ s, (s ⇓ t) ⇓ u = s ⇓ (t ⇓ u), and s ⇓ s = s.

Let S0(R) be the set of subterms of left-hand sides of rules of R that are not instances of left-hand sides
of R. Note that x ∈ S0(R). Also, the size of S0(R) is a polynomial in the size of R. Let S1(R) be the
smallest set containing S0(R) that is closed under the inference rule

s, t ∈ S1(R)
s ⇓ t ∈ S1(R) if s ⇓ t exists

.

For example, there may be a term t ∈ S1(R) that we can write as t = (t1 ⇓ t2) ⇓ ((t3 ⇓ t2) ⇓ t4) where t1,
t2, t3, t4 ∈ S0(R). Due to the associativity, commutativity, and idempotency of ⇓, we can transform this

13

into t = (((t1 ⇓ t2) ⇓ t3) ⇓ t4). In fact, any term t ∈ S1(R) can be written as t = t1 ⇓ t2 ⇓ · · · ⇓ tn where
ti = tj only if i = j for a set {t1, t2, . . . , tn} ⊆ S0(R). Thus there is at most one term in S1(R) for each
subset of S0(R), which gives us the inequality |S1(R)| ≤ 2|S0(R)|. So in the worst case for a left-linear R, the
size of S1(R) could be exponential in the size of S0(R). However, if R is additionally shallow, as it is in our
case, then S0 contains only ground terms plus the variable x, since the only subterms of left-hand sides of
rules of R that contain variables are the left-hand sides of rules themselves and the variable x. In this case
S1(R) = S0(R).

Proposition 23. For every term u there is a unique term t ∈ S1(R) such that u is an instance of t and for
any s ∈ S1(R), if u is an instance of s then t is an instance of s.

Proof. Let T = {t ∈ S0(R) | u is an instance of t}. T is finite and non-empty (since x ∈ T), so we can write
T as T = {t1, t2, . . . , tn}. Let t = t1 ⇓ t2 ⇓ · · · ⇓ tn. Then u is an instance of t because u is an instance of
each ti. Also for every s ∈ S1(R) such that u is an instance of s we have s ⇓ t = t, so t is an instance of s.
Finally, to show uniqueness, we note that if there are two terms t and t′ that satisfy the statement of the
proposition, then they are instances of each other, so they are equivalent up to variable renaming. �

For a term u, we denote by u⇑ the term t described by the proposition.
Let S(R) be S1(R) minus the terms that are instances of left-hand sides of rewrite rules. (We must remove

instances of left-hand sides of rewrite rules again because the closure procedure might have generated new
ones.) Note that x ∈ S(R) and S(R) contains only linear terms. Also note that if a term u is not an instance
of a left-hand side of a rewrite rule, then u⇑ is not either, so u⇑ ∈ S(R).

We define the set Q of states of ARed(R) by Q = {qr} ∪ {qt | t ∈ S(R)} and the set Qf of final states by
Qf = {qr}. A term that reaches state qr will be one that is reducible. Since x ∈ S(R), there will be a state
qx ∈ Q. A term that reaches state qx will be one that is not reducible, and is not part of a reducible term
except below a variable of some left-hand side of a rule of R. The transition rules of ARed(R) are divided
into three groups:

(A1) f(qt1 , . . . , qtn
)→ qf(t1,...,tn)⇑

if f(t1, . . . , tn) is not an instance of a left-hand side of a rule of R. (Note that t1, . . . , tn, f(t1, . . . , tn)⇑ ∈
S(R) and qti 6= qr for all i.)

(A2) f(qt1 , . . . , qtn
)→ qr

if f(t1, . . . , tn) is an instance of a left-hand side of a rule of R. (Note that t1, . . . , tn ∈ S(R)
and qti 6= qr for all i.)

(A3) f(q1, . . . , qn)→ qr

if there is some i with qi = qr.

The rules used in Examples 21 and 22 can be generated by (A1), (A2), and (A3).

Lemma 24. ARed(R) is deterministic and complete.

Proof. To show determinism, first note that the transition rules generated by (Ai) and (Aj) are disjoint
when i 6= j. Also, neither (A1) nor (A2) nor (A3) generates more than one transition rule with the same
left-hand side. Thus no two different transition rules share a left-hand side, so ARed(R) is deterministic.

We show by induction on the structure of terms that ARed(R) is complete. Let u = f(u1, . . . , un) where
for each i, ui reaches a state qi, so that u `∗ f(q1, . . . , qn). We need to show that there is a state q such that
u `∗ q. If any of the qi is qr then f(q1, . . . , qn) ` qr by (A3), so that u `∗ qr. So assume that no qi is qr.
Then for each i there is a term ti ∈ S(R) such that qi = qti

. We need to show that there is a state q such that
f(qt1 , . . . , qtn

) ` q. If f(t1, . . . , tn) is an instance of a left-hand side of a rule of R, then f(qt1 , . . . , qtn
) ` qr so

u `∗ qr. If f(t1, . . . , tn) is not an instance of a left-hand side of a rule of R, then f(qt1 , . . . , qtn
) ` qf(t1,...,tn)⇑

so u `∗ qf(t1,...,tn)⇑. Thus for every term u, there is a state q such that u `∗ q. �

14

If there are φ number of function symbols in the signature, and the greatest arity of a function symbol is
α, then the number of rules in ARed(R) is less than or equal to φ|Q|α. For linear flat rewrite systems, |Q| is
a polynomial in the size of R, since S(R) ⊆ S0(R). Also, we assume that α is bounded, so α is independent
of the size of R. Therefore, for linear flat systems, the size of ARed(R) is polynomial in the size of R.

Now we show that ARed(R) accepts the terms that are reducible by R.

Lemma 25. If a term u reaches a state qt of ARed(R), then u is an instance of t and for any s ∈ S(R), if
u is an instance of s then t is an instance of s.

Proof. We show this by structural induction. Let u = f(u1, . . . , un) where for each i, if ui reaches state qti

then ui is an instance of ti and for any s ∈ S(R), if ui is an instance of s then ti is an instance of s. Assume
u reaches state qt.

First, we show that u is an instance of t. By determinism and completeness of ARed(R), we know that
u `∗ f(qt1 , . . . , qtn

) ` qt for some unique sequence of terms t1, . . . , tn ∈ S(R) where f(t1, . . . , tn) is not an
instance of some left-hand side of a rewrite rule and t = f(t1, . . . , tn)⇑. By the induction hypothesis, ui is
an instance of ti for each i. Let t = f(t′1, . . . , t

′
n). Since f(t1, . . . , tn) is an instance of t, ti is an instance of

t′i for each i. Thus, for each i, ui is an instance of t′i. Then, because t is linear (remember that all terms in
S(R) are linear), u is an instance of t.

Now we pick a term s ∈ S(R) such that u is an instance of s and show that t is an instance of s. If s = x
then t is an instance of s. Otherwise, s = f(s1, . . . , sn) for some s1, . . . , sn ∈ S(R). For each i, ui is an
instance of si, so by the induction hypothesis ti is an instance of si. Then, because s is linear, f(t1, . . . , tn)
is an instance of s. Finally, t is an instance of s by Proposition 23. �

Theorem 26. ARed(R) accepts the language of terms reducible by R.

Proof. We show by induction on the structure of terms that a term u reaches state qr if and only if u is
reducible by R. Let u = f(u1, . . . , un) where for each i, ui reaches state qr if and only if ui is reducible.
⇒: Assume that u reaches state qr and show that u is reducible. If u `∗ f(q1, . . . , qn) ` qr where qi = qr

for some i, then ui is reducible so u is reducible. Otherwise u `∗ f(qt1 , . . . , qtn
) ` qr for some terms t1, . . . ,

tn ∈ S(R), where f(t1, . . . , tn) is an instance of some left-hand side f(l1, . . . , ln) of a rule of R. For all i,
ui is an instance of ti by Lemma 25, and ti is an instance of li, so ui is an instance of li. Then, because
f(l1, . . . , ln) is linear, u is an instance of f(l1, . . . , ln). Thus u is reducible.
⇐: Assume u is reducible and show that u reaches qr. If ui is reducible for some i, then ui reaches qr

so u reaches qr by (A3). So assume for each i that ui is not reducible. Then u must be an instance of a
left-hand side f(l1, . . . , ln) of a rule of R and u `∗ f(qt1 , . . . , qtn

) for some terms t1, . . . , tn ∈ S(R). We will
show that f(t1, . . . , tn) is an instance of f(l1, . . . , ln) so that there is a transition rule f(qt1 , . . . , qtn) → qr

by (A2). For each i we know that ui is an instance of li. Also it must be the case that li ∈ S(R). For, if
li 6∈ S(R), then li would be an instance of a left-hand side of a rule of R, which would make ui reducible.
Now Lemma 25 implies that ti is an instance of li, since ui reaches state qti

. Then, because f(l1, . . . , ln) is
linear, f(t1, . . . , tn) is an instance of f(l1, . . . , ln). Thus the transition rule f(qt1 , . . . , qtn

) → qr exists, so u
reaches qr. �

Corollary 27. For a left-linear flat TRS R and a ground term t, we can decide in polynomial time if t is a
normal form of R.

Proof. By [4], membership of t in ARed(R) can be decided in linear time. �

6 Tree Automata for Reachable Terms

Given a ground term t, we want a tree automaton that can recognize ground terms R-equivalent to t by
ground derivations, where R is our linear flat rewrite system. Equivalently, we we want a tree automaton
that can recognize terms reachable via R∪R− from t. Note that R∪R− is also a linear flat rewrite system.

15

While we have assumed that R has no variable left-hand sides of rules, we must take into account that
R ∪R− may have variables as left-hand sides of rules.

We can use Lemma 25 from [3] to get this result. Comon shows there that linear shallow term rewrite
systems preserve regularity. A term rewrite system R′ preserves regularity if for any recognizable subset L of
T (F , X), the set {s ∈ T (F , X) | s→∗

R′ u for some u ∈ L} is recognizable. For our purposes, L = {t}, which
is recognizable. Also, for any term s, s →∗

R∪R− t if and only if t →∗
R∪R− s. Thus the set {s ∈ T (F , X) |

t→∗
R′ s} is recognizable, i.e. there is a tree automaton that recognizes the terms reachable via R∪R− from t.

Therefore, there is a tree automaton that recognizes the ground terms that are R-equivalent to t by ground
derivations.

To keep this paper self-contained, we include a direct construction of a version of the Comon result.
Our construction is more limited than [3] because the source is one term t rather than any recognizable
set of terms. However, this construction actually does allow rewrite systems with rules having variables as
left-hand sides, which are mentioned in but omitted from Comon’s proof.

Note that tree automata operate on ground terms of a fixed signature.
Let R be a linear shallow rewrite system. R need not be flat and may have variables as left-hand sides

of rules. Let S be the set containing the subterms of t and the ground subterms of the left- and right-hand
sides of the rules of R. (Note that S contains only ground terms since t is ground.) We first define a
nondeterministic automaton B0 for which the set Q of states is defined by Q = {qs | s ∈ S} ∪ {qx}, and the
set Qf of final states is defined by Qf = {qt}, and the set ∆0 of transition rules is defined by

∆0 = {f(qs1 , . . . , qsn)→ qf(s1,...,sn) | s1, . . . , sn, f(s1, . . . , sn) ∈ S}
∪ {f(q1, . . . , qn)→ qx | q1, . . . , qn ∈ Q} .

At this point, B0 accepts only t. Every term reaches qx, so B0 is complete.
We construct B by keeping the states and final states of B0, and letting the set ∆ of transition rules be

the smallest set of transition rules that contains ∆0 and is closed under the inference rules

(B1)
f(l1, . . . , ln)→ g(r1, . . . , rm) ∈ R f(q1, . . . , qn)→ q ∈ ∆

g(q′1, . . . , q
′
m)→ q ∈ ∆

if the following requirements are met:

1. For each i, if li is ground then li `∗ qi.

2. q′j is defined by

q′j =


qrj

if rj is ground
qi if rj is a variable and rj = li

qx if rj is a variable that does not appear in f(l1, . . . , ln)

(Note that if rj is a variable and there is an i such that rj = li, then that i is unique because f(l1, . . . , ln)
is linear.)

(B2)
f(l1, . . . , ln)→ x ∈ R f(q1, . . . , qn)→ q ∈ ∆

g(q′1, . . . , q
′
m)→ q ∈ ∆

if the following requirements are met:

1. For each i, if li is ground then li `∗ qi.

2. If x = li then there is already a transition rule g(q′1, . . . , q
′
m)→ qi ∈ ∆.

(If x does not appear in f(l1, . . . , ln) then the function symbol g and states q′1, . . . , q
′
m are completely

free.)

16

(B3)
x→ g(r1, . . . , rm) ∈ R q ∈ Q

g(q′1, . . . , q
′
m)→ q ∈ ∆

if q′j is defined by

q′j =


qrj if rj is ground
q if rj is a variable and rj = x

qx if rj is a variable and rj 6= x .

We add only rules and not states, so there are only a finite number of rules that can be added to ∆0.
Thus, we can view the construction of B as a terminating process of adding one transition rule after another
for a finite number of iterations. If there are φ number of function symbols in the signature, and the largest
arity of a function symbol is α, then the number of rules in B is less than or equal to φ|Q|α+1. |Q| is a
polynomial in size of R. Also, we assume that α is bounded, so α is independent of the size of R. Therefore,
the size of B is a polynomial in size of R.

We will show that the language accepted by automaton B is the set of terms that are reachable from t
by R. This is a simple consequence of the following lemmas which state that for any term u and any term
s ∈ S, s→∗

R u if and only if u `∗B qs.

Lemma 28. For any term u and any term s ∈ S, if s→∗
R u then u `∗B qs.

Proof. We induct on the length k of s →∗
R u. For k = 0 we need to show that for all u, u `∗B qu. This

requires only a simple structural induction on u. Now we assume for a particular k that for any term u and
any term s ∈ S, if s →k

R u then u `∗B qs, and we want to show that for any term u and any term s ∈ S, if
s→k+1

R u then u `∗B qs. So, we pick a term u and a term s ∈ S such that s→k+1
R u. We have s→k

R v →R u
for some term v. Thus v `∗B qs by the induction hypothesis. There are three cases.

Case 1 : There is a rewrite rule of the form f(l1, . . . , ln) → g(r1, . . . , rm) in R and v = C[f(l1, . . . , ln)σ]
and u = C[g(r1, . . . , rm)σ] for some context C[] and substitution σ. Then, since v `∗B qs, there must be
states q1, . . . , qn and a state q such that

v = C[f(l1, . . . , ln)σ] `∗B C[f(q1, . . . , qn)] `B C[q] `∗B qs .

This implies that liσ `∗B qi for each i, and that there must be a transition rule f(q1, . . . , qn)→ q of B. For
each li that is ground, li `∗B qi since liσ = li. We also know that

u = C[g(r1, . . . , rn)σ] `∗B C[g(q′1, . . . , q
′
n)]

when the states q′1, . . . , q′m are defined by

q′j =


qrj if rj is ground
qi if rj is a variable and rj = li (Remember liσ `∗B qi)
qx if rj is a variable that does not appear in f(l1, . . . , ln) .

By (B1), we must have added the transition rule g(q′1, . . . , q
′
m) → q to B. Thus we have the result u =

C[g(r1, . . . , rn)σ] `∗B C[g(q′1, . . . , q
′
n)] `B C[q] `∗B qs. Thus u `∗B qs.

Case 2 : There is a rewrite rule of the form f(l1, . . . , ln)→ x in R and v = C[f(l1, . . . , ln)σ] and u = C[xσ]
for some context C[] and substitution σ. Note that xσ will be a term of the form g(w1, . . . , wm). Then,
since v `∗B qs, there must be states q1, . . . , qn and state q such that

v = C[f(l1, . . . , ln)σ] `∗B C[f(q1, . . . , qn)] `B C[q] `∗B qs .

This implies that liσ `∗B qi for each i, and that there must be a transition rule f(q1, . . . , qn)→ q of B. For each
li that is ground, li `∗B qi since liσ = li. Now we have to treat two subcases. First, if x = li for some (unique)
i, then xσ `∗B qi, so xσ `∗B g(q′1, . . . , q

′
m) `B qi for some states q′1, . . . , q′m. By (B2), we must have added the

17

transition rule g(q′1, . . . , q
′
m)→ q to B. Thus we have the result u = C[xσ] `∗B C[g(q′1, . . . , q

′
n)] `B C[q] `∗B qs.

Second, if x does not appear in f(l1, . . . , ln), then xσ = g(w1, . . . , wm) `∗B g(q′1, . . . , q
′
m) for some states q′1,

. . . , q′m. By (B2), we must have added the transition rule g(q′1, . . . , q
′
m)→ q to B. Thus we have the result

u = C[xσ] `∗B C[g(q′1, . . . , q
′
n)] `B C[q] `∗B qs. Thus u `∗B qs.

Case 3 : There is a rewrite rule of the form x→ g(r1, . . . , rm) in R and v = C[xσ] and u = C[g(r1, . . . , rm)σ]
for some context C[] and substitution σ. Then, since v `∗B qs, there must be a state q such that

v = C[xσ] `∗B C[q] `∗B qs .

We know that

u = C[g(r1, . . . , rn)σ] `∗B C[g(q′1, . . . , q
′
n)]

when the states q′1, . . . , q′m are defined by

q′j =


qrj

if rj is ground
q if rj is a variable and rj = x (Remember xσ `∗B q)
qx if rj is a variable that does not appear in g(r1, . . . , rm) .

By (B3), we must have added the transition rule g(q′1, . . . , q
′
m) → q to B. Thus we have the result u =

C[g(r1, . . . , rn)σ] `∗B C[g(q′1, . . . , q
′
n)] `B C[q] `∗B qs. Thus u `∗B qs. �

Now we prove the converse:

Lemma 29. For any term u and any term s ∈ S, if u `∗B qs then s→∗
R u.

Proof. We induct on the number of inference rule applications in u `∗B qs. Let BN be the automaton
generated after N inference rule applications. For the base case we need to show that if u `∗B0

qs then
s →∗

R u. An easy structural induction on u shows that, in fact, we can prove that s = u. Now we assume
for a particular N that for any term u and any term s ∈ S, if u `∗BN

qs then s →∗
R u, and we want to

show that for any term u and any term s ∈ S, if u `∗BN+1
qs then s →∗

R u. Let ρ be the transition rule
g(q′1, . . . , q

′
m) → q that we added to BN to get BN+1. We induct on the number M of ρ-applications in

u `∗BN+1
qs. For M = 0, if we pick a term u and a term s ∈ S such that u `∗BN+1

qs with M applications
of transition rule ρ, then u `∗BN

qs, so s →∗
R u by the induction hypothesis on N . Now we assume for a

particular M that for any term u and any term s ∈ S, if u `∗BN+1
qs with M applications of transition rule

ρ, then s →∗
R u. We want to show that for any term u and any term s ∈ S, if u `∗BN+1

qs with M + 1
applications of transition rule ρ then s→∗

R u. So, we pick a term u and a term s ∈ S such that u `∗BN+1
qs

with M + 1 applications of transition rule ρ. Then we have u `∗BN
v1 `ρ v2 `∗BN+1

qs for some v1 and v2

where there are M applications of ρ in v2 `∗BN+1
qs. Because of the application of transition rule ρ, we must

have v1 = C[g(q′1, . . . , q
′
m)] and v2 = C[q] for some context C[]. Consequently, u = C ′[g(u1, . . . , um)] for

some u1, . . . , um where C ′[] `∗BN
C[] and uj `∗BN

q′j for every j. To recap, the situation is

u = C ′[g(u1, . . . , um)] `∗BN
C[g(q′1, . . . , q

′
m)] `ρ C[q] `∗BN+1

qs .

Now there are three cases to consider.
Case 1 : Transition rule ρ was added by (B1). Then there is a rewrite rule f(l1, . . . , ln)→ g(r1, . . . , rm) ∈

R, and there are states q1, . . . , qn such that if li is ground then li `∗BN
qi for each i, and f(q1, . . . , qn) → q

is a transition rule of BN , and we know about each q′j that

q′j =


qrj if rj is ground
qi if rj is a variable and rj = li

qx if rj is a variable that does not appear in f(l1, . . . , ln) .

18

We define a new term v by v = C ′[f(l1, . . . , ln)σ], where the substitution σ is defined by

yσ =

{
uj if y = rj

wi if y = li and li does not appear in g(r1, . . . , rm) ,

where wi is any term that reaches state qi. (We can always find such a wi. If qi = qs′ where s′ ∈ S, then we
can let wi = s′. If qi = qx, then any term will do.) For this v, we have the result

v = C ′[f(l1, . . . , ln)σ] `∗BN
C[f(q1, . . . , qn)] `BN

C[q] `∗BN+1
qs

where the entire derivation contains M applications of ρ. The justification for this is as follows. First, if li
is ground then li `∗BN

qi and liσ = li, so liσ `∗BN
qi. Second, if li is a variable and li = rj then liσ = uj and

q′j = qi. Also remember that uj `∗BN
q′j , which gives us that liσ `∗BN

qi. Third, if li is a variable that does
not occur in g(r1, . . . , rm), then liσ = wi. Since wi reaches state qi, we again have liσ `∗BN

qi. Finally, the
presence of the transition rule f(q1, . . . , qn)→ q gives us the result.

Since v `∗BN+1
qs with M applications of ρ, by the induction hypothesis on M we know that s→∗

R v. It
remains to show that v →∗

R u. We know that

v = C ′[f(l1, . . . , ln)σ]→R C ′[g(r1, . . . , rm)σ] ,

so we just need to show that

C ′[g(r1, . . . , rm)σ]→∗
R C ′[g(u1, . . . , um)] = u .

If rj is a variable, then rjσ = uj , so rjσ →∗
R uj . If rj is ground, then rjσ = rj and q′j = qrj . Remember

that uj `∗BN
q′j , so uj `∗BN

qrj . By the induction hypothesis on N , we have rj →∗
R uj , and thus rjσ →∗

R uj .
Therefore s→∗

R u.
Case 2 : Transition rule ρ was added by (B2). Then there is a rewrite rule f(l1, . . . , ln) → x ∈ R, and

there are states q1, . . . , qn such that if li is ground then li `∗BN
qi for each i, and f(q1, . . . , qn) → q is a

transition rule of BN , and if x = li then there is also a transition rule g(q′1, . . . , q
′
m)→ qi in BN .

We define a new term v by v = C ′[f(l1, . . . , ln)σ], where the substitution σ is defined by

yσ =

{
g(u1, . . . , um) if y = x

wi if y = li and li 6= x ,

where wi is any term that reaches state qi. (We can always find such a wi. If qi = qs′ where s′ ∈ S, then we
can let wi = s′. If qi = qx, then any term will do.) For this v, we have the result

v = C ′[f(l1, . . . , ln)σ] `∗BN
C[f(q1, . . . , qn)] `BN

C[q] `∗BN+1
qs

where the entire derivation contains M applications of ρ. The justification for this is as follows. First,
if li is ground then li `∗BN

qi and liσ = li, so liσ `∗BN
qi. Second, if li is a variable and li 6= x, then

liσ = wi. Since wi reaches state qi, we again have liσ `∗BN
qi. Third, if li is a variable and li = x, then

liσ = g(u1, . . . , um) `∗BN
g(q′1, . . . , q

′
m) `BN

qi since by (B2) there must be a transition rule g(q′1, . . . , q
′
m)→ qi

of BN .
Since v `∗BN+1

qs with M applications of ρ, by the induction hypothesis on M we know that s→∗
R v. It

remains to show that v →∗
R u, which holds because

v = C ′[f(l1, . . . , ln)σ]→R C ′[xσ] = C ′[g(u1, . . . , um)] = u .

Case 3 : Transition rule ρ was added by (B3). Then there is a rewrite rule x→ g(r1, . . . , rm) ∈ R, a state
q ∈ Q, and we know about each q′j that

q′j =


qrj if rj is ground
q if rj is a variable and rj = x

qx if rj is a variable and rj 6= x .

19

We define a new term v by v = C ′[xσ], where the substitution σ is defined by

yσ =

{
uj if y = rj

w if y = x and x does not appear in g(r1, . . . , rm) ,

where w is any term that reaches state q. (We can always find such a w. If q = qs′ where s′ ∈ S, then we
can let w = s′. If q = qx, then any term will do.) For this v, we have the result

v = C ′[xσ] `∗BN
C[q] `∗BN+1

qs

where the entire derivation contains M applications of ρ. The justification for this is as follows. First, if
x = rj then xσ = rjσ = uj and q′j = q. Also remember that uj `∗BN

q′j , which gives us that xσ `∗BN
q.

Second, if x does not occur in g(r1, . . . , rm), then xσ = w. Since w reaches state q, we again have xσ `∗BN
q.

Since v `∗BN+1
qs with M applications of ρ, by the induction hypothesis on M we know that s→∗

R v. It
remains to show that v →∗

R u. We know that

v = C ′[xσ]→R C ′[g(r1, . . . , rm)σ] ,

so we just need to show that

C ′[g(r1, . . . , rm)σ]→∗
R C ′[g(u1, . . . , um)] = u .

If rj is a variable, then rjσ = uj , so rjσ →∗
R uj . If rj is ground, then rjσ = rj and q′j = qrj

. Remember
that uj `∗BN

q′j , so uj `∗BN
qrj

. By the induction hypothesis on N , we have rj →∗
R uj , and thus rjσ →∗

R uj .
Therefore s→∗

R u. �

Theorem 30. Automaton B accepts the terms reachable from t.

Proof. We need to show that for any term u, u `∗B qt if and only if t→∗
R u. This is a direct consequence of

the previous two lemmas. �

Corollary 31. For a linear, shallow TRS R and two ground terms s and t, we can decide in polynomial
time if there is a ground derivation of s↔∗

R t.

Proof. For term t we create the automaton B. By [4], membership of s in B can be decided in time
proportional to the size of B plus the size of s. �

7 Conclusion and Further Work

This paper has provided a polynomial time algorithm that solves the UN= problem for linear shallow term
rewrite systems.

The exact boundary between decidability and undecidability for this property is an interesting direction
for future research. Recently, it was proved in [11] that the UN= problem is undecidable for linear rewrite
systems in which the height of both sides of every rule is restricted to at most two. Moreover, it has been
shown in [12] that the UN= problem is undecidable for right-ground systems. Since right-ground systems
can be flattened as describe here so that the right-hand sides are flat terms, the problem is undecidable
also for right-flat systems. Thus, the undecidability frontier is not far when the height of sides and linearity
restrictions are of interest.

References

[1] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University Press, Cam-
bridge, 1998.

20

[2] Inge Bethke, Jan Willem Klop, and Roel de Vrijer. Descendants and origins in term rewriting. Infor-
mation and Computation, 159(1–2):59–124, May 2000.

[3] Hubert Comon. Sequentiality, monadic second-order logic and tree automata. Information and Com-
putation, 157(1–2):25–51, 2000.

[4] Hubert Comon, Max Dauchet, Remi Gilleron, Florent Jacquemard, Denis Lugiez, Sophie Tison, and
Marc Tommasi. Tree automata techniques and applications. Available online at http://www.grappa.
univ-lille3.fr/tata/, September 2005.

[5] Guillem Godoy, Robert Nieuwenhuis, and Ashish Tiwari. Classes of term rewrite systems with polyno-
mial confluence problems. ACM Transactions on Computational Logic, 5(2):321–331, April 2004.

[6] Guillem Godoy and Ashish Tiwari. Termination of rewrite systems with shallow right-linear, collapsing,
and right-ground rules. In Robert Nieuwenhuis, editor, Proceedings of the International Conference
on Automated Deduction 2005, volume 3632 of Lecture Notes in Computer Science, pages 164–176.
Springer, 2005.

[7] Guillem Godoy, Ashish Tiwari, and Rakesh Verma. Deciding confluence of certain term rewriting
systems in polynomial time. Annals of Pure and Applied Logic, 130(1–3):33–59, 2004.

[8] Donald Knuth and Peter Bendix. Simple word problems in universal algebras. In John Leech, editor,
Computational Problems in Abstract Algebra, pages 263–297. Pergamon Press, Oxford, 1970.

[9] Robert Nieuwenhuis. Decidability and complexity analysis by basic paramodulation. Information and
Computation, 147:1–21, 1998.

[10] Terese. Term Rewriting Systems. Cambridge University Press, Cambridge, 2003.

[11] Rakesh Verma. New undecidability results for problems of term rewriting systems. Proc. of RULE
Workshop, 2008, to appear.

[12] Rakesh Verma. Complexity of normal form properties and reductions for term rewriting problems.
Fundamenta Informaticae, 2008. Accepted for publication; to appear.

[13] Rakesh Verma, Michael Rusinowitch, and Denis Lugiez. Algorithms and reductions for rewriting prob-
lems. Fundamenta Informaticae, 46(3):257–276, 2001. Also in Proceedings of the International Confer-
ence on Rewriting Techniques and Applications 1998.

A Nondeterministic Tree Automata for Reducible Terms

We shall define a nondeterministic tree automaton that accepts R-reducible terms. Let L be the set of
left-hand sides of rules and let S(L) be the set of non-variable subterms of terms in L. We define the set
Q of states by Q = {qr, qx} ∪ {qt | t ∈ S(L) − L}, and set Qf of final states by Qf = {qr}. The transition
rules of our automaton will be such that reducible terms will reach qr, all terms will reach qx, and instances
of a term t ∈ S(L) − L will reach qt. For each t = f(t1, . . . , tn) in S(L) − L we have a transition rule
f(qt1 , . . . , qtn

)→ qt, where qti
is understood to be qx if ti is a variable. For each left-hand side f(l1, . . . , ln)

of a rewrite rule, we have a transition rule f(ql1 , . . . , qln) → qr, where qli is understood to be qx if li is a
variable. Finally, we have the transition rules f(q1, . . . , qn) → qr if there is an i such that qi = qr, and
f(qx, . . . , qx)→ qx. A simple structural induction shows that every term reaches qx.

Proposition 32. For a term t ∈ S(L)− L and a term u, u reaches qt if and only if u is an instance of t.

21

Proof. ⇒: By structural induction. Let u = f(u1, . . . , un) where for each i and any term t ∈ S(L)−L, if ui

reaches qt then ui is an instance of t. Now we pick a term t ∈ S(L)−L such that u reaches state qt and show
that u is an instance of t. The only way that u can reach qt is if t = f(t1, . . . , tn) and u `∗ f(qt1 , . . . , qtn

).
Then we know that ui is an instance of ti for each i. Because of the linearity of t, we get that u is an instance
of t.
⇐: By structural induction. Let u = f(u1, . . . , un) where for each i and any term t ∈ S(L)−L, if ui is an

instance of t then ui reaches qt. Now we pick a term t ∈ S(L)− L such that u is an instance of t and show
that u reaches state qt. Each ui is an instance of ti, so each ui reaches state qti

. Thus u `∗ f(qt1 , . . . , qtn
).

There is a transition rule f(qt1 , . . . , qtn
)→ qt, so u reaches state qt. �

Lemma 33 ([3]). The set of terms reducible by a left-linear TRS R is recognizable by a non-deterministic
bottom-up tree automaton.

Proof. We show that a term u reaches state qr if and only if u is reducible by R. Let u = f(u1, . . . , un)
where for each i, ui reaches state qr if and only if ui is reducible by R.
⇒: Assume that u reaches state qr and show that u is reducible. If u `∗ f(qx, . . . , qx, qr, qx, . . . , qx) ` qr,

then there is an i such that ui reaches qr. Then by the induction hypothesis, ui is reducible, and thus u
is reducible. Otherwise u `∗ f(ql1 , . . . , qln) ` qr for some left-hand side f(l1, . . . , ln) of a rule of R. By the
claim above, ui is an instance of li for each i. Because f(l1, . . . , ln) is linear, u is an instance of f(l1, . . . , ln).
Thus u is reducible.
⇐: Assume u is reducible and show that u reaches qr. If ui is reducible for some i, then ui reaches

qr, and thus u reaches qr. So assume for each i that ui is not reducible. Then u must be an instance of a
left-hand side f(l1, . . . , ln) of a rule of R. By Proposition 32, u `∗ f(ql1 , . . . , qln), and thus u `∗ qr. �

22

	techreport_template_doc
	Abstract

	aaecc041508.pdf

