

POWER-AWARE ONLINE DYNAMIC

SCHEDULING FOR MULTIPLE FEASIBLE

INTERVALS*

Bo Liu, Fang Liu, Jian Lin and Albert MK Cheng

Department of Computer Science
University of Houston

Houston, TX, 77204, USA
http://www.cs.uh.edu

Technical Report Number UH-CS-10-06

July 23, 2010

Keywords: Power-aware Scheduling, Multiple Feasible Intervals, Online Scheduling, Dynamic
Frequency Scheduling, Real-time System.

Abstract

Multiple Feasible Intervals (MFI) is a task model which has more than one interval for each task
instance to run. In our previous work, different scheduling algorithms are proposed for both static MFI
dynamic MFI during run-time. Real-life situations demand dynamic MFI, but calculating an MFI
schedule is a NP-Hard problem and efficiency of algorithm itself is one of the main concerns. In this
paper, we introduce a more efficient online dynamic algorithm, Online Dynamic Multiple Feasible
Intervals (ODMFI) which aggressively reduces power consumptions with help from accurate performance
prediction models and integration of a simple caching policy into scheduling algorithm to cope with
changing feasible intervals during run-time. Our simulations show that ODMFI generates schedules
which have close level of energy consumption to Power-Aware MFI [3] with less overhead compared
with Dynamic MFI [6].

* This work was supported in part by the National Science Foundation under Award No. 0720856.

1

POWER-AWARE ONLINE DYNAMIC
SCHEDULING FOR MULTIPLE SCHEDULING

FOR MULTIPLE FEASIBLE INTERVALS†
Bo Liu, Fang Liu, Jian Lin and Albert MK Cheng

Abstract

Multiple Feasible Intervals (MFI) is a task model which has more than one interval for each task instance to run.
In our previous work, different scheduling algorithms are proposed for both static MFI dynamic MFI during run-
time. Real-life situations demand dynamic MFI, but calculating an MFI schedule is a NP-Hard problem and
efficiency of algorithm itself is one of the main concerns. In this paper, we introduce a more efficient online
dynamic algorithm, Online Dynamic Multiple Feasible Intervals (ODMFI) which aggressively reduces power
consumptions with help from accurate performance prediction models and integration of a simple caching policy
into scheduling algorithm to cope with changing feasible intervals during run-time. Our simulations show that
ODMFI generates schedules which have close level of energy consumption to Power-Aware MFI [3] with less
overhead compared with Dynamic MFI [6].

Index Terms

Word Power-aware Scheduling, Multiple Feasible Intervals, Online Scheduling, Dynamic Frequency Scheduling,
Real-time System.

I. INTRODUCTION
Real-time (RT) systems strive to schedule all the tasks within their respective deadlines and power-aware RT

system aims to minimize system’s power consumption. Multiple Feasible Intervals (MFI) is a new type of task
model that was pioneered in [1, 2] and we targets on power-aware scheduling for MFI.

An MFI task executes during one or more feasible time intervals before its deadline. The Power-Aware MFI
algorithm [3], a combination of offline and online scheduling algorithm, uses fetch-ahead and push-back techniques
to reduce power consumption. It calculates schedules based on known information which includes available
intervals. However, task attributes, such as the available intervals, often change during run-time with the
fluctuations of various circumstances. Dynamic Multiple Feasible Intervals (DMFI) [6] is an online scheduling
algorithm proposed to handle the above situations. It mainly solves two problems found in our previous online
scheduling: low utilization of un-passable slacks, and low efficiency of algorithm itself.

The rest of the paper is organized as follows. Section 2 explains the limits of our previous work, the Power-
Aware MFI scheduling and DMFI scheduling. Section 3 introduces the fetch-ahead and push-back algorithms
which are building blocks in our algorithm. Section 4 introduces ODMFI. In details, Section 4.1 defines ODMFI
system; Section 4.2 proposes ODMFI algorithm and explains its advantages in efficiency and in reducing un-
passable slacks, i.e. scaling CPU frequency more aggressively. Section 4.4 illustrates how it works. And Section 5
states our experiments and explains their results. Finally, Section 6 concludes our paper.

II. POWER-AWARE MFI AND DMFI

Our previous work provides two foundation elements for ODMFI. Besides saving the schedulability and energy
efficiency, Power-Aware MFI scheduling is a static feasible algorithm, while DMFI is a dynamic feasible algorithm
which has heavy overhead itself. In this paper, we propose an efficient algorithm ODMFI to handle the following
situation which DMFI addresses previously.

† This work was supported in part by the National Science Foundation under Award No. 0720856.

2
Most of time, the intervals may not be known beforehand and the intervals may be changed during run-time. In

addition, determining the intervals in the first place often depends on outside factors not known until run-time or
even until the task has already started.

Consider this example. Country A launches a cruise missile at Country B. Country B wants to jam that cruise
missile without the missile falling onto a population center; this is an MFI problem. Using the original fetch-ahead
and push-back algorithms, this task could not be accomplished unless Country A notified Country B beforehand
and the two countries plotted the trajectory of the missile beforehand. In reality, that will never happen.

The current Power-Aware MFI algorithm is not capable of coping with such a situation because it assumes the
intervals are static and known a priori. Hall et cl. proposed the above problem in [6] and attempts to solve it with a
piece-wise online version of Power-Aware MFI scheduling, Dynamic MFI (DMFI) [6]. Since DMFI is a modified
Power-Aware MFI algorithm, it inherits one problem: low utilization of un-passable slacks [3]. This is one of the
problems that we propose Online Dynamic MFI (ODMFI) to solve in this paper. Section 4 explains how ODMFI
utilizes performance model to aggressively scale CPU frequency. The other problem is algorithm overhead.
Calculating MFI schedules is a NP-Hard problem and Power-Aware MFI takes heavy calculations offline to
improve algorithm efficiency. Because DMFI does all the calculation on the fly, it has much higher cost than
Power-Aware MFI. Section 4 also explains our solution in details.

A. Power-aware MFI Scheduling
As mentioned above, Power-Aware MFI scheduling is a combination of static and dynamic schema. The static

schema fully utilizes the known attributes of task sets, except the actual execution time, and runs an offline
scheduling. The dynamic schema takes the calculated schedule and applies a greedy algorithm to take advantage of
available slacks (definition in Section 4.1). It was not designed to handle the dynamic situation as the above,
because the intervals may change after tasks are ready. DMFI scheduling is the first designed to handle situations
like interval changes proposed.

B. Subsection B
DMFI scheduling is modified based on Power-Aware MFI algorithm to cope with the above situation. It creates a

small piece of the Power-Aware MFI schedule at a time. The algorithm includes embedded loops in ݏ݈ܽݒݎ݁ݐ݊݅_݁ݐ݈ܽݑ݈ܿܽܿ݁ݎ() which rely on two parameters, α and β in the function as described in [3]. The α and β
rely on the attributes of the task sets which are known during run-time and thus β is determined through multiple
tries during run-time as well. Since DMFI repeats its search in a foot step of β, the worst computation time of DMFI
is ܰଶ when ܰ tasks are within β time units, where ܰ is the number of the tasks in the task set. Thus its complexity
is ܱ(ܰଶ).

III. MFI PUSH-BACK AND FETCH-AHEAD ALGORITHMS
MFI push-back algorithm is a base element of our online dynamic algorithm. Since the future tasks cannot be

predicted, the push-back algorithm copes with the ready tasks. The push-back algorithm locates slacks left by
completed tasks. A task is rescheduled in this slack only if its interval and the slack have an intersection and the
intersection is larger than its execution time. Thus, it saves power due to CPU frequency scaling as explained in
Section 4.2.

Figure 1 illustrates the schedule of the following task set by push-back algorithm. Task 2 starts at time unit 8 and
finishes at time unit 10. Since task 4 cannot be scheduled in its earlier feasible intervals, it is rescheduled to use the
interval (10, 15] where has enough time units to finish task 4 and save the power consumption. Task 5 is scheduled
on time unit 15 and finishes on time. The overall schedule saves power consumption due to longer execution time
of task 4.

Task Feasible Intervals Comp. Time
T1 (1,9] 2
T2 (2,4], (8,13] 2
T3 (1,4], (5,8], (9,13] 2
T4 (1,8], (4,9], (10, 15] 3
T5 (1,7], (15,18] 3

3

 T1 T3 T2
T4

T5

1 3 5 7 8 10 1815

Fig. 1. Result of push-back algorithm: Push-back algorithm schedules Task 4 into the slack between Task 2 and Task 5.

MFI fetch-ahead algorithm is similar with MFI push-back algorithm. Instead of looking for an available slack

after the following tasks, the fetch-ahead fits the following tasks in a slack somewhere in front of their release
times. Regarding energy consumption, push-back and fetch-ahead algorithms have the same effects which takes
advantage of the slacks to scale the task execution time as much as possible.

IV. ONLINE DYNAMIC MFI

We solve the problem described in section 2 with Online Dynamic Multiple Feasible Intervals (ODMFI)
algorithm. ODMFI schedules an MFI task set with the following changes of the task properties:

• The release times are not known until run-time;
• The intervals are not known until run-time; and
• The intervals can change during run-time.

 As stated before, the MFIs of a task are often dependent on outside conditions that are not known until the task

set is already running. ODMFI is designed as an online algorithm to schedule such MFI task sets with unknown
intervals before run-time and intervals that change during run-time. Thus, the ODMFI algorithm copes with
scenarios like the missile problem.

A. ODMFI Problem Definition
ODMFI is an attempt to simulate a real-life MFI schedule. In a real-life situation, the tasks do not begin as an

MFI task. The tasks begin as EDF [7] tasks and by considering outside factors, current circumstances, and other
tasks, multiple feasible intervals are determined for each task. The introduction of new outside factors,
circumstances, and tasks can change the feasible intervals of the current tasks, and ODMFI attempts to
accommodate that possibility.

Since the ODMFI is an online dynamic version of the MFI algorithms previously discussed in Section 2, it makes
many of the same assumptions. The ODMFI algorithm uses the following system model.

The tasks in the system are EDF-schedulable tasks. As in [12], we don’t assume that the task must be periodic.
Tasks are supposed to be independent and have arbitrary release time and deadline. A task instance in a periodic
task is thus considered as an independent task in our system. A task ௜ܶ possesses the following parameters [7]:

• Multiple intervals ܫ௜,௝ = (௜ܵ,௝, ௜,௝ is the end point ofܧ ௜,௝ andܫ ௜,௝] where ௜ܵ,௝ is the start point of intervalܧ

interval ܫ௜,௝, 0 < ݆ ≤ ௜ is the total number of ௜ܶ’s intervals, and these intervals are mutuallyܯ ௜ whereܯ
exclusive;

• Release time ݎ௜ is the time at which a task becomes ready for execution;
• Start time ݏ௜ is the time at which a task starts its execution;
• Finishing time ௜݂ is the time at which a task finishes its execution;
• Execution time ݁௜ is the difference between the finishing time ௜݂ and the start time ݏ௜, ݁௜ = ௜݂ − ;௜ݏ
• Response time ܴ௜ is the difference between the finishing time ௜݂ and the release time ݎ௜, ܴ௜ = ௜݂ − ;௜ݎ
• Worst case execution time (WCET) ܥ௜ is the maximum time task ௜ܶ needs to finish its execution under all

circumstances;
• Absolute deadline ݀௜ is the time before which task ௜ܶ should be completed to avoid damage, and in our

system ݉ܽݔ൫ܧ௜,௝൯ ≤ ݀௜; and

4
• Slack time ௜ܺ is the maximum task ௜ܶ can be delayed on its activation to complete within its deadline, ௜ܺ = ݀௜ − ௜ݎ − ݁௜.

MFI task model assumes that these tasks can only run during certain time intervals before their respective

deadlines. The tasks’ intervals ܫ௜,௝ are known after they are released and then they become MFI tasks. Naturally,
each task’s intervals are determined along the time line and the intervals must all end by its deadline.

When a new task is released, the intervals of one or more tasks, including the executing intervals, may be
changed. This is due to the fact that the time intervals of a task may be dependent on other tasks and outside factors
that are not known until run-time. In the cruise missile example, if the missile changes its target mid-flight, the
trajectory of the missile changes. Since the missile will be flying over different population centers, the time
intervals to jam the missile change as well.

Without losing generality, we can assume the outside factors only add new feasible intervals in the future after
run-time changes. It’s equivalent to extend the end times of current feasible intervals which allow the tasks execute
in the extended time period in the current intervals. For example, we suppose ൫ ௜ܵ,௝, ௜,௝൧ is one of the executionܧ
intervals to jam a missile. When the missile change its target mid-flight at a certain time point ݐ, we can either add a
new feasible interval ൫ ௜ܵ,௝ାଵ, ௜,௝ାଵ൧ where ௜ܵ,௝ାଵܧ ≥ or extend ൫ ,ݐ ௜ܵ,௝, ௜,௝൧ to ൫ܧ ௜ܵ,௝, ௜,௝ᇱܧ ൧ where ܧ௜,௝ < ݐ < ௜,௝ᇱܧ . Since
the target change is known after ݐ, the task must execute in (ݐ, ௜,௝ାଵᇱܧ ൧ which has the same effect as adding a new
feasible interval after ݐ. In our experiments of the ODMFI algorithm in Section 5, the tasks’ intervals ൫ ௜ܵ,௝, ݐ ,௜,௝൧ܧ
and interval changes are simulated with random numbers which are sorted to simulate the fact that they are
determined along the time line after ݎ௜.

B. ODMFI Algorithm
 As other power-aware algorithms, the design of ODMFI algorithm has two goals. The first is to reduce energy

consumption and the second goal is to minimize missed deadlines. As mentioned in Section 3, it reduces energy
consumption by utilizing slacks to scale tasks. As in the previous work, we follow the power function ܲ(ܷܲܥ)ݎ݁ݓ݋ ∝ ݂ݏ is calculated as ݂ݏ represents CPU frequency, and the scale factor ܷܲܥ ଶ [9] where(ܷܲܥ) = ௖௨௥௥௘௡௧݁݉݅ݐ_݊݋݅ݐݑܿ݁ݔ݁ ⁄௡௘௪݁݉݅ݐ_݊݋݅ݐݑܿ݁ݔ݁ where ݁݁݉݅ݐ_݊݋݅ݐݑܿ݁ݔ௖௨௥௥௘௡௧ is the execution time with
default CPU frequency set by operating system and ݁݁݉݅ݐ_݊݋݅ݐݑܿ݁ݔ௡௘௪ is the new execution time after the CPU
frequency is reset to ܷܲܥ = ܷܲܥ_ݐ݈ݑ݂ܽ݁݀ ∙ is CPU frequency set by default. Based on ܷܲܥ_ݐ݈ݑ݂ܽ݁݀ where ݂ݏ
the power function, to save energy, it’s necessary to have ݂ݏ < 1 ⇒ ௡௘௪݁݉݅ݐ_݊݋݅ݐݑܿ݁ݔ݁ > ௖௨௥௥௘௡௧ to save energy. From our system model, we only know݁݉݅ݐ_݊݋݅ݐݑܿ݁ݔ݁
one execution time before the task starts to run: WCET. We initialize our ݂ݏ = ௜ܥ ⁄௜ܫ where ܥ௜ is the WCET for
task ௜ܶ and ܫ௜ is its execution interval. It’s well known that WCET is conservative and we cannot scale CPU
frequency small enough to run the task as long as its execution interval. To reduce power consumption
aggressively, the actual execution time ݁௜ is the ideal candidate to calculate scale factor. To get the closest
estimation of ݁௜, we build a prediction model for each task based on its execution time records and update the scale
factors with predicted task execution time ݁݁௜. Section 4.3 describes how we build the prediction models.

 The difficulty for ODMFI is to schedule online MFI tasks with changing information. To dynamically utilize
fetch-ahead and push-back online, we cache a certain number of tasks before generating schedules instead of
looking at every task as in offline scheduling of Power-Aware MFI. Since the feasible intervals are available after
tasks are released, we run our ODMFI before the tasks start to execute. That is, it requires that our ODMFI finds a
schedule during period ݏ௜ − ௜. We have two steps to finish here: 1) cache released tasks; and 2) run ODMFI. Itݎ
takes our slack time for these two steps to run. Thus, it’s necessary to design and implement ODMFI very
efficiently.

 The details of ODMFI are in Figure 2 and Figure 3. Symbol // starts a line of comments. It first puts all the
released tasks in a queue ܳ݁ݑ݁ݑ_ܶ(ܰ) which has a capacity of ܰ tasks. ܳ݁ݑ݁ݑ_ܶ() is a First In First Out (FIFO)
queue which maintains tasks’ release order. Each task joins the queue with multiple intervals which are listed in an
end time, ܧ௜,௝, non-decreasing order like how the feasible intervals listed in Figure 1 example.

The algorithm maintains a queue ܳܯ)ܧܫ_݁ݑ݁ݑ ∙ ܰ) which contains the ordered end times of feasible intervals of
ready tasks. ܳܧܫ_݁ݑ݁ݑ() is a queue of interval end points in which ݉݅݊൫ܫ௜,௝൯, 1 ≤ ݅ ≤ ܰ, 1 ≤ ݆ ≤ is the ,(௜ܯ)ݔܽ݉

5
first node in the queue. The capacity of ܳܯ)ܧܫ_݁ݑ݁ݑ ∙ ܰ) is ܯ ∙ ܰ where ܯ is the maximum number of feasible
intervals a task can have, ܯ = max଴ஸ௜ஸே is empty first. The sorted feasible intervals of the ready tasks are merged into the queue one by one ()ܧܫ_݁ݑ݁ݑܳ .can handle ()ܧܫ_݁ݑ݁ݑܳ ௜, and ܰ is the maximum number of tasks thatܯ
after they arrive. If the two intervals have the same end times, the start time is used to decide their orders. For
example, ଵܶ has a feasible interval ܫଵ,ଵ = (1, 9]; ଶܶ has feasible intervals ܫଶ,ଵ = (2, ଶ,ଶܫ ,[4 = (8, 13]; ଷܶ has
feasible intervals ܫଷ,ଵ = (1, ଷ,ଶܫ ,[4 = (5, ଷ,ଷܫ ,[8 = (9, ଵ,ଵܫ first has ()ܧܫ_݁ݑ݁ݑܳ .[13 = (1, 9] after ଵܶ arrives, then ܫଶ,ଵ and ܫଶ,ଶ are merged into the queue after ଶܶ arrives and results into a queue as ܫଶ,ଵ = (2, ଵ,ଵܫ ,[4 = (1, ଶ,ଶܫ ,[9 = (8, 13]; then a new queue is generated as ܫଷ,ଵ = (1, ଶ,ଵܫ ,[4 = (2, ଷ,ଶܫ ,[4 = (5, ଵ,ଵܫ ,[8 = (1, ଶ,ଶܫ ,[9 =(8, ଷ,ଷܫ ,[13 = (9, 13] after ଷܶ arrives. Tasks execute based on ordered ܳܧܫ_݁ݑ݁ݑ().

The other queue ܳܯ)ܵܫ_݁ݑ݁ݑ ∙ ܰ) is used in ݅݉ܿݐ݂݁_ݐ݂ܿ݁ݎ݁݌ℎ_ܽℎ݁ܽ݀(). It’s built in a similar process with a
non-decreasing order of start times, and the end time is used for break-even in the same way. It’s used to look for
intervals which have late end times ܧ௜,௝ but early start time ௜ܵ,௝ like interval ܫଵ,ଵ. Such intervals are inserted in the
back of ܳܧܫ_݁ݑ݁ݑ() due to their large end time values, and in the front of ܳܵܫ_݁ݑ݁ݑ() due to their small start time
values. Let’s compare task ଵܶ and task ଶܶ. Because ܧଵ,ଵ > However, due to ଵܵ,ଵ .()ܧܫ_݁ݑ݁ݑܳ ଶ,ଵ, the algorithm will pick up task ଶܶ earlier than task ଵܶ fromܧ < ܵଶ,ଵ, task ଵܶ has a chance to be picked up by ݅݉ܿݐ݂݁_ݐ݂ܿ݁ݎ݁݌ℎ_ܽℎ݁ܽ݀() to fit in a slack left by a task run earlier.

Our ODMFI algorithm preserves EDF nature of MFI task sets. The reason is that ܳܧܫ_݁ݑ݁ݑ() is sorted with non-
decreasing order of interval end times and ݉ܽݔ൫ܧ௜,௝൯ ≤ ݀௜, which means task instances execute with Earliest
Deadline (End time) First. ODMFI effectively utilizes MFI fetch-ahead and push-back algorithms mentioned in
Section 3. The push-back algorithm is rooted in the design due to the fact that ODMFI scheduling mainly follows ܳܧܫ_݁ݑ݁ݑ() which maintains EDF in the design and thus early released tasks may run late. ݅݉ܿݐ݂݁_ݐ݂ܿ݁ݎ݁݌ℎ_ܽℎ݁ܽ݀() makes Fetch-ahead possible. It’s illustrated in Figure 5 in Section 4.3: Task 4 is not
released until interval (10,15] although task 4 is ready at time unit 1.

1. Model {
2. Text Component;
3. Model Pointer model_pointer;
4. };
5. Interval {
6. Long Integer start_time;
7. Long Integer end_time;
8. Task Pointer task_pointer;
9. };
10. Task {
11. Integer index;
12. Model Pointer model_pointer;
13. Long Integer release_time;
14. Long Integer start_time;
15. Long Integer deadline;
16. Long Integer WCET;
17. Long Integer predicted_execution_time;
18. Long Integer actual_execution_time;
19. Interval ܫଵ;
20. … …
21. Interval ܫெభ ;
22. Instance job;
23. };
Figure. 2 Data structures of ODMFI algorithm

Due to the NP-hardness of the problem [10], we design a low-cost ODMFI by: 1) limiting number of steps in our

search to some constants instead of exhausting search as all the heuristic algorithms, including caching ݊ tasks in ܳ݁ݑ݁ݑ_ܶ() and only partially searching ܳܵܫ_݁ݑ݁ݑ() within a constant steps ݌; and 2) duplication in data structure
defined as in Figure 1. Each task data structure has ܯ௜ pointers linking to its task. We can reach a certain task from
its corresponding node in either ܳܧܫ_݁ݑ݁ݑ() or ܳܵܫ_݁ݑ݁ݑ() through its task pointer instead of searching ܳ݁ݑ݁ݑ_ܶ(). Function ܿݐ݂݁_ݐ݂ܿ݁ݎ݁݌݉ܫℎ_ܽℎ݁ܽ݀() stops after checking ݌ intervals in ܳܵܫ_݁ݑ݁ݑ(). Parameter ݌

6
obviously affects the performance of ODMFI which adds ܱ(݌) to each loop and the overall response time of the
ODMFI algorithm.

ODMFI Algorithm
1. Merge ܫ௜,௝ into ܳܧܫ_݁ݑ݁ݑ() and ܳܵܫ_݁ݑ݁ݑ()
2. While(ܳܧܫ_݁ݑ݁ݑ() is not empty) {
3. // check the head node in the queue ܫ௜,௝
4. If the interval has an empty task link, move head pointer to the next interval until an interval ܫ௜,௝ with non-empty task link

is found;
5. // choose scale factor and return True if there is un-passable slacks
6. If (Scale_factor())
7. // fetch ahead a feasible task
8. Imperfect_fetch_ahead();
9. Run the task ܶ௜ ′ in head node of ܳܧܫ_݁ݑ݁ݑ();
10. Release resources of chosen interval from ܳܵܫ_݁ݑ݁ݑܳ ,()ܧܫ_݁ݑ݁ݑ() and corresponding task node in ܳ݁ݑ݁ݑ_ܶ();
11. };
12.
13. Scale_factor() {
݂ݏ .14 = 1;
15. // check ܳܧܫ_݁ݑ݁ݑ() and ܳܵܫ_݁ݑ݁ݑ() to find if any tasks in the queue can fit in the slacks
16. If ((start time ܵ௣,௤ of next interval in ܳܧܫ_݁ݑ݁ݑ() > end time ܧ௜,௝ of current interval in ܳܧܫ_݁ݑ݁ݑ())
௜,௝ܧ) || .17 < ܵ௠,௡ of head node of ܳܵܫ_݁ݑ݁ݑ() < ܵ௣,௤)) {
݂ݏ .18 = ݁݁௜ ⁄௜,௝ܫ ;
19. Set Boolean to True;
20. }
21. else{
݂ݏ .22 = ݁݁௜ ݁݉݅ݐ ݐ݊݁ݎݎݑܿ) − ௜ݎ + ݁݁௜)⁄ ;
23. Set Boolean to False;
24. }
25. Return Boolean;
26. };
27. Imperfect_fetch_ahead() {
28. Initialize Pointer with head node of ܳܵܫ_݁ݑ݁ݑ();
29. While(check less than ݌ intervals in ܳܵܫ_݁ݑ݁ݑ()) {
30. // check ܳܧܫ_݁ݑ݁ݑ() and ܳܵܫ_݁ݑ݁ݑ() to find if there is a feasible task to fetch ahead
31. If((ܧ௜,௝ of current task’s interval in ܳܧܫ_݁ݑ݁ݑ() < ܵ௠,௡ of Pointer in ܳܵܫ_݁ݑ݁ݑ() < ܵ௣,௤ of next interval in ܳܧܫ_݁ݑ݁ݑ())
32. && (݁݁௠ ≤ ൫ܵ௣,௤ − ܵ௠,௡൯)) {
33. Move interval ܫ௠,௡ after ܫ௜,௝ ;
34. Break;
35. }
36. Move to next interval;
37. }
38. }

Figure 3 Sudo code of ODMFI algorithm

The complexity of ODMFI is ܱ(݌ ∙ ܯ ∙ ܰ) where ܯ is the same as defined in the system model and ܰ is the total

number of tasks in the task set. Merge in step 2 can be implemented with ܱ(ܯ ∙ ܰ) complexity because intervals
are ordered when tasks are released. ݅݉ܿݐ݂݁_ݐ݂ܿ݁݁ݎ݌ℎ_ܽℎ݁ܽ݀() in While loop of step 3 takes ܱ(݌) as mentioned
above and other lines takes ܱ(1), so the overall complexity of While loop is ܱ(݌ ∙ ܯ ∙ ܰ). Thus, the overall
complexity of ODMFI is ܱ(ܯ ∙ ܰ) + ݌)ܱ ∙ ܯ ∙ ܰ). When ݌ ∙ ܯ ≪ ܰ, ODMFI is much more efficient compared
with ܱ(ܰଶ) of DMFI. It’s obvious that both ݌ and ܯ have impact on algorithm efficiency and the level of energy
consumption reduction. Section 5 illustrates it in details with Figures.

C. Feedback-based Execution Time Prediction
We use the priori method to determine computation time of tasks to utilize un-passable slacks better. It’s difficult

to construct an accurate model based on historical data, especially for those providing complex on-demand
computation. However, we introduce a simple modelling procedure which can reach accuracy in the range

7
83%~99.6% (over 90% most of the time) in our experience. We currently use generalized least square (gls) in S-
plus [13] to linearly combine computation time of each component in a task. For example, if a task involves two
steps, executing an algorithm of complexity ܱ(݊ ∙ and then executing an algorithm of complexity ܱ(݊ଶ) (݊݃݋݈
with ݊ being problem size, the overall computation time of the task ݀ܽ݋ܮ݊݋݅ݐܽݐݑ݌݉݋ܥ is modelled as a linear
combination of ܱ(݊ ∙ ଵܥ and ܱ(݊ଶ) by gls(). The final model is generated as (݊݃݋݈ ∙ ݊ଶ + ଶܥ ∙ (݊)݃݋݈݊ + ଷܥ
where ܥଵ, ܥଶ and ܥଷ are constants fitted by S-plus gls() function.

Equation (1)~(5) presents the synthesized formal model of the overall model to estimate task execution time
which is parameterized by problem size. ݇ଵ and ݇ଶ are constants fitted by our chosen fitting function. ݁ݖ݅ݏ݌ is the
problem size. ݀ܽ݋ܮ݊݋݅ݐܽݐݑ݌݉݋ܥ is the total number of clock-cycles the computation takes in the processor
without considering memory references. ݐ݊ݑ݋ܥݏݏ݅ܯ is the total number of misses in an arbitrary level of memory
hierarchy. ݕݐ݈ܽ݊݁ܲݏݏ݅ܯ, the penalty for a miss in an arbitrary level of the memory hierarchy is the difference
between the access time to the next memory level and the access time to the current memory level, i.e. difference
between latencies (expressed as Lat. in equation (5)) to adjacent memory hierarchy levels.
(݁ݖ݅ݏ݌)ܶܧ݀݁ݐܽ݉݅ݐݏܧ = ܣ) + ܤ + (ܥ ⁄ܷܲܥ ⋯ ⋯ ܣ (1) = (݁ݖ݅ݏ݌)݀ܽ݋ܮ݊݋݅ݐܽݐݑ݌݉݋ܥ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ܤ (2) = ݇ଵ(݁ݖ݅ݏ݌)ݐ݊ݑ݋ܥݏݏ݅ܯ × (ଵܮ)ݕݐ݈ܽ݊݁ܲݏݏ݅ܯ ⋯ ܥ (3) = ݇ଶ(݁ݖ݅ݏ݌)ݐ݊ݑ݋ܥݏݏ݅ܯ × (ଶܮ)ݕݐ݈ܽ݊݁ܲݏݏ݅ܯ ⋯ (௜ܮ)ݕݐ݈ܽ݊݁ܲݏݏ݅ܯ (4) = .ݐܽܮ (௜ାଵܮ) − .ݐܽܮ (௜ܮ) ⋯ ⋯ ⋯ (5)

In the above equations, ܷܲܥ and ݕݐ݈ܽ݊݁ܲݏݏ݅ܯ are architecture characteristics which can be found from
architecture data sheets [5] or benchmarks [14, 15]. And applications are characterized by application specific
models such as ݀ܽ݋ܮ݊݋݅ݐܽݐݑ݌݉݋ܥ and ݐ݊ݑ݋ܥݏݏ݅ܯ.

These models can be built on readings from Hardware Performance Monitor Counters (HPMC) [17]. We use
HPMC readings of different problem sizes to generate both ݀ܽ݋ܮ݊݋݅ݐܽݐݑ݌݉݋ܥ and ݐ݊ݑ݋ܥݏݏ݅ܯ models from gls()
in the similar way with the above. Since problem size is one of the factors which determine the size of loaded data
into memory hierarchy, we use ݁ݖ݅ݏ݌ as a parameter to feed gls() curve fitting. For example, if a matrix of ݁ݖ݅ݏ݌ ଵܥ is accessed in the algorithm, we generate a model from gls() as ݁ݖ݅ݏ݌∙ ∙ ݊ଶ + ଶܥ ∙ ݊ + ,ଷ. For memory hierarchyܥ
Intel XScale microarchitecture provides the following hardware event units which are used in our model:
Instruction Cache Efficiency, Data Cache Efficiency, Instruction TLB Efficiency, Data TLB Efficiency,
Stall/Writeback statistics and Data/Bus Request Buffer Full [16, 17].

D. ODMFI Examples
To illustrate schedulability of ODMFI and energy reduction, we consider two task sets as described in ODMFI

scheduling. Scheduling the same task set used in Section 3 illustrates push-back effect as in Figure 4 and the other
one described in the following table illustrates fetch-ahead effect as in Figure 5.

Task Feasible Intervals Comp. Time
T1 (1,9] 2
T2 (6,10], (8,13] 2
T3 (1,12], (13,20] 2
T4 (8,11], (13, 15] 3

Regarding the task set in Section 3, ܳܧܫ_݁ݑ݁ݑ() after merging is ܫଷ,ଵ = (1, ଶ,ଵܫ ,[4 = (2, ହ,ଵܫ ,[4 = (1, ସ,ଵܫ ,[7 = (1, ଷ,ଶܫ ,[8 = (5, ଵ,ଵܫ ,[8 = (1, ଶ,ଶܫ ,[9 = (8, ଷ,ଷܫ ,[13 = (9, ସ,ଷܫ ,[13 = (10, 15] and ܫହ,ଶ = (15, 18]. In Figure

4, ଷܶ is released first due to its earliest end time and earliest release time. ହܶ is scheduled right after ଷܶ because ܫଶ,ଵ
is unusable and ଷܶ is already released. Since ଷܶ finishes 1 time unit earlier than its corresponding deadline 4, ହܶ
gets the slack from ଵܶ and its execution time is scaled to 4 time units. ଵܶ, ଶܶ and ସܶ all arrived earlier than ହܶ but
are pushed back into later intervals as the following. ସܶ is scaled from 3 time units into 4 time units. The total
energy used without scaling is 15, while the total energy used after scaling is 2 + 0.75ଶ ∙ 4 + 2 + 2 + 0.75ଶ ∙ 4 =10.5 which saves 30% energy.

8
Regarding the task set in this section, ܳܧܫ_݁ݑ݁ݑ() after merging is ܫଵ,ଵ = (1, ଶ,ଵܫ ,[9 = (6, ସ,ଵܫ ,[10 = (8, ଷ,ଵܫ ,[11 = (1, ଶ,ଶܫ ,[12 = (8, ସ,ଶܫ ,[13 = (11,15] and ܫଷ,ଶ = (13, 20]. In Figure 5, ଵܶ is released first due to its earliest

end time and earliest release time. ଷܶ is scheduled right after ଵܶ because ܫଶ,ଵ is unusable and ଷܶ is already released.
Since ଷܶ finishes 1 time unit earlier than its corresponding deadline 4, ଷܶ gets the slack from ଵܶ and its execution
time is scaled to 4 time units. ଵܶ, ଶܶ and ସܶ all arrived earlier than ଷܶ but ଷܶ is fetched ahead into earlier interval as
in Figure 5. ଷܶ is scaled from 2 time units into 3 time units which sets the scale factor to 0.75. The total energy
used without scaling is 9, while the total energy used after scaling is 2 + 0.75ଶ ∙ 3 + 2 + 2 = 7.6875 which saves
14.58% energy.

 T3
T5

T2
T4

1 3 7 9 11 15

1
0.75

T1

Figure 4. Push-back effect of ODMFI algorithm and energy consumption reduce.

 T1
T3 T4

1 3 6 8 10

1
0.75

T2

12

T3

Figure 5. Fetch-ahead effect of ODMFI algorithm and energy consumption reduce.

V. EXPERIMENTS

 In this section, we describe the experiments and the platform, PHYTEC rapid development kit, where they were
performed.

A. Experiment platforms
 PHYTEC rapid development kit includes two parts, the carrier Board and the phyCORE-PXA255 System on

Module.
 The phyCORE PXA255 [5] module is the core part of the Rapid Development Kits. In order to focus on the

interested portions, we have disabled the ports and controllers, such as the CAN controller and USB etc., as well as
disconnecting the LCD touch screen. To measure the power consumption, we utilize NI DAQ USB-6008 which
provides basic data acquisition functionality for applications such as simple data logging, portable measurements
etc. with the provided software package.

 The carrier board with the PXA255 computing module plugged is connected to an external stabilized voltage
power supply (12V). In order to measure the energy consumed by the computing module, we measure the energy
used by the development kit which includes the carrier board and the computing module. To determine the energy
consumed by the kit, we connect a small resistor (0.67Ω) in the power supply circuit in series. Since the voltage
drop across the resistor is very small and can be safely ignored. The voltage drop across this resistor is measured by
a data acquisition, DAQ USB-6800 from National Instruments. The software came with DAQ USB-6800 reads and
records the voltage drop 50 times per second. The instantaneous current flowing into the system can be calculated
by dividing the voltage drop by the resistance value. Since the voltage of the external supply is stable, the
instantaneous power consumption of the development kit can be calculated as ௞ܲ௜௧ = ܫ ௘ܸ௫௧௘௥௡௔௟. In the equation, ܫ
is the recorded current used by the kit, and ௘ܸ௫௧௘௥௡௔௟ is the external supply’s voltage, 12V in our framework. The
definite integral of ௞ܲ௜௧ over time interval [1ݐ, ௞௜௧ܧ is the energy consumption of the kit during the period [2ݐ ׬= P୩୧୲dt୲ଶ୲ଵ .

To build execution prediction model based on equation (1)~(5), multiple performance monitoring runs can be
done, capturing different events from different modes, because only two events can be monitored at any given time.

9
For example, the first run could monitor the number of writeback operations (PMN1 of mode, Stall/Writeback) and
the second run could monitor the total number of data cache accesses (PMN0 of mode, Data Cache Efficiency).
From the results, a percentage of writeback operations to the total number of data accesses can be derived. To make
sure these monitoring runs are finished in the same run-time environment and they catch the application
characteristics accurately, we ensure that: 1) all performance monitor runs are done exclusively on the environment;
2) each performance monitor run is executed with cold data cache and instruction cache which is enabled by
executing other applications in advance. From memory hierarchy performance point of view, 2) is a conservative
prediction. We have both periodic and aperiodic tasks, although we schedule them independently. In situation of 2),
if instances of a periodic task are scheduled one after one, the above measurement readings are larger than the
actual execution times in this schedule. However, it’s still more aggressive than using WCET in CPU frequency
scaling, which benefits reducing un-passable slacks as indicted in Section 4.2.

B. Simulations and results
We use four out of six CPU frequencies in our experiments: 99MHz, 199MHz, 298MHz and 398MHz due to

their efficient power consumptions when combined with memory chip frequencies [5, 8]. By default, we use
398MHz which provides shortest execution time for each task on our experiment platform. We normalize CPU
frequencies by 398MHz, then we get the following normalized CPU frequency factors 1 = ݖܪܯ398 ⁄ݖܪܯ398 , 0.75 = ݖܪܯ298 ⁄ݖܪܯ398 , 0.5 = 0.25 ,ݖܪܯ398/ݖܪܯ199 = During run time, we choose .ݖܪܯ398/ݖܪܯ99
the closest CPU frequency factor based on the calculated scale factor, e.g. 0.75 is chosen if ܥ௜ ⁄௜,௝ܫ = 2 3⁄ = 0.67.

The task set parameters are generated as random numbers, including release times, execution times, intervals and
WCETs. Each task set schedule is run 10 times and the average is taken in the final comparison. We mainly
compare five algorithms for energy consumption: 1) EDF which has no slack utilization at all; 2) ODMFI_WCET
which is ODMFI with conservative scaling of CPU frequency using WCET instead of predicted task execution time
in the algorithm; 3) ODMFI_EE which is feedback-based ODMFI with more aggressive scaling of CPU frequency
using predicted task execution time ݁݁௜ in the algorithm; 4) DMFI which generates small pieces of Power-Aware
schedule utilizing more slacks generated with a heavier algorithm; and 5) Power-Aware which fully takes
advantage of offline knowledge of the task sets and utilizes the calculated results during online schedule. From the
usage of slacks point of view, Power-Aware schedules have the most efficient energy consumption and EDF
consumes the most energy due to no slack advantage. It’s worth to notice that ODMFI with predicted task
execution time scaling still consumes more power than DMFI which actually has a more complete view of the task
relationship. Both Figure 6 and Figure 7 show this trend of their energy consumption order corresponding to their
slack utilization. The difference between Figure 6 and Figure 7 is that these algorithms behave closer to each other
when number of tasks increases, while their energy consumptions spread wider when number of intervals increases.
The reason of these trends is because that these algorithms can find less slacks thus less scaling with more tasks,
while they can find more slacks thus more scaling room when the number of intervals increases.

We also compare the performance of MFI algorithms, including Power-aware, DMFI and ODMFI in Figure 8.
The results are as expected: the performance of the algorithms drops when more ready knowledge is used in the
algorithm and thus higher complexity. However, we are coping with changing task attributes, so when the number
of intervals increases, ܯ is closer to ܰ and the cost of ODMFI is closer to DMFI. The difference between
ODMFI_WCET and ODMFI_EE is the calculation time of task execution prediction models.

In the above experiments, all have ݌ = 10 for feedback-based ODMFI, and ߙ = ߚ = 5 for DMFI. However, as
mentioned above, these tuning parameters have impacts on the level of energy consumption and performance of
algorithms themselves. In Figure 9 and Figure 10, we show the trend of impacts of ݌ value: as ݌ increases,
algorithm cost increases but the energy consumption drops. As noticed in Figure 9, scale factors of CPU frequency
are less aggressive in ODMFI_WCET, and thus slacks are larger, which provides more possibilities for fetch-ahead.
We notice that energy consumption from ݌ = 50 to ݌ = 100 is flat, which is because fetch-ahead affects energy
consumption on the similar level from ݌ = 50 to ݌ = 100. It’s the same as in the range of ݌ = 110 to ݌ = 200.
However, fetch-ahead effect overall has less impact than that of aggressive scale factors, so ODMFI_WCET has
larger energy consumption than feedback-based ODMFI in the whole range. In these experiments, number of tasks
is fixed at 200 and number of intervals is fixed at 10.

A critical component of feedback-based ODMFI is the prediction models. An accurate prediction models can
benefit both reducing energy consumption and keeping missing deadline ratio as low as possible. We compare its

10
impact on energy consumption with ODMFI with WCET in Figure 6, 7 and 8. In Figure 11, we show the accuracy
of our prediction models for two image processing tasks. The curves are fitted based on readings of problem size 48
to size 100 from Hardware Performance Monitor Counters. Our prediction models show over 95% accuracy mainly
because they are computation intensive applications and their behaviour follows their algorithm complexity closely.
That is, ܱ(݁ݖ݅ݏ݌ଶ) + very well. As ݐ݊ݑ݋ܥݏݏ݅ܯ and ݀ܽ݋ܮ݊݋݅ݐܽݐݑ݌݉݋ܥ predicts behaviour of both (݁ݖ݅ݏ݌)ܱ
mentioned in Section 4.3, our prediction models have accuracy in range of 83%~99.6% with experience of our
experiments, which benefits aggressively scaling the CPU frequency and thus aggressively reducing power
consumption.

VI. CONCLUSION

The ODMFI algorithm proved to effectively reduce power consumption compared to our previous work. The
ODMFI algorithm is the most computation cost efficient among the three due to the less utilization of offline
knowledge and thus it has the most energy consumption. When we integrate our prediction models into ODMFI
algorithm, we further reduce tasks power consumption.

There are still some feasible MFI schedule configurations that will cause a task to miss its deadline when using
ODMFI and feedback-based ODMFI algorithm. However, ODMFI algorithms improve Power-Aware in the area of
calculating an MFI schedule at run-time and improve DMFI in the area of algorithm efficiency. Since the ODMFI
algorithms can be implemented with low power and computational costs, then embedded systems such as cell
phones and cruise missiles will benefit.

It’s also worth to mention the immediate future work to further study the relationship of memory access
pattern and power consumption. In ODMFI schedule, although we take memory hierarchy into account,
we mainly integrate it into our execution time prediction models, which is based on the power function ܲ(ܷܲܥ)ݎ݁ݓ݋ ∝ ଶ. As mentioned by Snowdon et. cl. in [11], the energy consumption patterns of(ܷܲܥ)
memory chips are heavily dependent on the application’s data access behaviour which is different from
the power function whose concern is speed or CPU frequency scaling. Due to the complexity of data
access patterns of data intensive applications, much study needs to do to understand if ODMFI works well
when considering both CPU and memory access patterns.

0

0.2

0.4

0.6

0.8

1

1.2

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

N
or

m
al

ize
d

En
er

gy

Number of Tasks

Power-Aware DMFI ODMFI_WCET ODMFI_EE EDF

Figure 6. Algorithms comparison based on number of tasks.

11

0

0.2

0.4

0.6

0.8

1

1.2

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

N
or

m
al

iz
ed

 En
er

gy

Number of Intervals

Power-Aware DMFI ODMFI_WCET ODMFI_EE EDF

Figure 7. Algorithms comparison based on number of intervals.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Al
go

rit
hm

 E
xe

cu
tio

n
Ti

m
e(

s)

Number of Intervals

Power-Aware DMFI ODMFI_WCET ODMFI_EE

Figure 8. Algorithms comparison based on performance.

12

0

0.2

0.4

0.6

0.8

1

1.2

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

N
or

m
al

iz
ed

 En
er

gy

p

ODMFI_WCET ODMFI_EE EDF

Figure 9. ࢖ value impacts on energy consumption.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

Al
go

rit
hm

 E
xe

cu
tio

n
Ti

m
e(

s)

p

ODMFI_WCET ODMFI_EE

Figure 10. ࢖ value impacts on algorithm execution time.

13

0

2E+12

4E+12

6E+12

8E+12

1E+13

1.2E+13

1.4E+13

1.6E+13

48 60 64 72 80 96 10
0

12
0

12
8

14
4

16
0

19
2

20
0

24
0

25
6

28
8

30
0

CP
U

_C
YC

LE
S

Problem Size (psize)

APP1 CPU_CYCLES fitted APP1 CPU_CYCLES

APP2 CPU_CYCLES fitted APP2 CPU_CYCLES

Figure 11. Prediction models from gls() curve fitting.

REFERENCES
[1] J.-J. Chen, J. Wu and C.-S. Shih, “Approximation algorithms for scheduling real-time jobs with multiple feasible intervals,” Journal of

Real-Time Systems, pages 155-172, vol. 34, no. 3, Nov. 2006.
[2] C.-S. Shih, J. W.-S. Liu and I. K. Cheong, “Scheduling jobs with multiple feasible intervals,” RTCSA, 2004.
[3] Jian (Denny) Lin and Albert M. K. Cheng, “Power-aware scheduling for Multiple Feasible Interval Jobs,” Proc. 15th IEEE-CS

International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA), Beijing, China, Aug. 2009.
[4] Jian (Denny) Lin and Albert M. K. Cheng, “Maximizing Guaranteed QoS in (m,k)-firm Real-time Systems,” Proc. 12th IEEE-CS

International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA), Sydney, Australia, pp. 402-410,
Aug. 2006.

[5] Intel PXA255 Processor Data Sheet, www.phytec.com
/pdf/datasheets/PXA255_DS.pdf .

[6] Jonathan Hall, Jian (Denny) Lin, and Albert M. K. Cheng, “Dynamic Multiple Feasible Intervals,” Proc. IEEE-CS Real-Time and
Embedded Technology and Applications Symposium (RTAS) WIP Session, Stockholm, Sweden, April 13-16, 2010.

[7] Giorgio C. Buttazzo, Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and Applications, 2nd Edition, Springer
2005, 24-25, 92-94.

[8] Wei Song, RealEnergy: a New Framework to Evaluate Power-Aware Real-Time Scheduling Algorithms, Master thesis, University of
Houston 2009.

[9] T. D. Burd and R. W. Brodersen, “Energy efficient CMOS microprocessor design”, In Processing of the 2th Annual Hawaii
International Conference on System Sciences. Volumn 1: Architecture (Los Alamitos, CA, USA, Jan. 1995), T. N. Mudge and B. D.
Shriver, Eds., IEEE Computer Society Press, pp. 288-297.

[10] C.-S. Shih, J.W.-S. Liu and I.K. Cheong, “Scheduling jobs with multiple feasible intervals”, In RTCSA, 2004.
[11] David Snowdon, Sergio Ruocco and Gernot Heiser, “Power Management and Dynamic Voltage Scaling: Myths and Facts”, In

Proceedings of the 2005 Workshop on Power Aware Real-time Computing, New Jersey, USA, September, 2005.
[12] C.H. Lee, and K.G.Shin, “On-line dynamic voltage scaling for hard real-time systems using the EDF algorithm”, In Proceedings of the

25th IEEE International Real-Time Systems Symposium (RTSS’04), 2004, pp.319-327.
[13] TIBCO Software Inc., “TIBCO Spotfire S+ 8.1 Guide to Statistics, Volume I”, November 2008.
[14] Cachebench, http://icl.cs.utk.edu/projects/llcbench/cache bench.html.
[15] MiBench, http://www.eecs.umich.edu/mibench/.

14
[16] Gilberto Contreras, “Power prediction for Intel XScale processors using performance monitoring unit events”, In Proceedings of the

International symposium on Low power electronics and design (ISLPED05), 2005, pp. 221-226.
[17] Intel XScale® Microarchitecture for the Intel® PXA255 Processor User’s Manual, order number 278796.

