
Influence of the Progress Engine on the Performance of Asynchronous Communication
Libraries∗

Edgar Gabriel ∗

Department of Computer Science
University of Houston

Houston, TX, 77204, USA
http://www.cs.uh.edu

Technical Report Number UH-CS-10-02

May 3, 2010

Keywords: volunteer computing, cluster computing, performance analysis, message passing libraries

Abstract

This technical report performs an in-depth performance comparison of two MPI libraries, namely
VolpexMPI and Open MPI. The analysis is motivated by some unexpected results in which VolpexMPI
shows better performance than Open MPI, despite of some architectural decision in the library that should
lead to a performance degradation on a dedicated compute cluster. Our analysis indicate that general
purpose high performance computing communication libraries are optimized for high speed network
interconnects such as InfiniBand, which due to their low latency and high bandwidth require an aggressive
approach in pushing data into the network. This approach is however not necessarily optimal for a Gigabit
Ethernet network. Specifically, the progress function of the communication library is called more often
than necessary to saturate the Gigabit Ethernet network, which consequently introduces an overhead.

∗. Partial support for this work was provided by the National Science Foundation’s Computer Systems Research program under Award
No. CNS-0834750. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do
not necessarily reflect the views of the National Science Foundation.

∗Department of Computer Science, University of Houston.

http://www.cs.uh.edu

1

Influence of the Progress Engine on the
Performance of Asynchronous Communication

Libraries∗

Edgar Gabriel ∗

Abstract

This technical report performs an in-depth performance comparison of two MPI libraries, namely VolpexMPI
and Open MPI. The analysis is motivated by some unexpected results in which VolpexMPI shows better performance
than Open MPI, despite of some architectural decision in the library that should lead to a performance degradation on
a dedicated compute cluster. Our analysis indicate that general purpose high performance computing communication
libraries are optimized for high speed network interconnects such as InfiniBand, which due to their low latency and
high bandwidth require an aggressive approach in pushing data into the network. This approach is however not
necessarily optimal for a Gigabit Ethernet network. Specifically, the progress function of the communication library
is called more often than necessary to saturate the Gigabit Ethernet network, which consequently introduces an
overhead.

Index Terms

volunteer computing, cluster computing, performance analysis, message passing libraries

I. INTRODUCTION

Idle desktop computers represent an immense pool of unused computation, communication, and data storage
capacity [1, 2]. The advent of multi-core CPUs and increasing deployment of Gigabit capacity interconnects have
made mainstream institutional networks an increasingly attractive platform for executing scientific codes as “guest”
applications. Idle desktops have been successfully used to run sequential and master-slave task parallel codes, most
notably under Condor [3] and BOINC [4]. In the recent past, some of the largest pools of commercial compute
resources, specifically Amazon [5] and Google [6], have opened up part of their computation farms for public
computing. Often these computers are very busy on a few occasions (e.g. Christmas shopping) and underutilized
the rest of the time. This new phenomenon is often referred to as “cloud computing”.

However, a very small fraction of idle PCs are used for such guest computing and the usage is largely limited
to sequential and “bag of tasks” parallel applications.Harnessing idle PCs for communicating parallel programs
presents significant challenges. The nodes have varying compute, communication, and storage capacity and their
availability can change frequently and without warning as a result of, say, a new host application, a reboot or
shutdown, or just a user mouse click. Further, the nodes are connected with a shared network where available
latency and available bandwidth can vary. Because of these properties, we refer to such nodes as volatile and
parallel computing on volatile nodes is challenging.

Recently, we have introduced VolPEx (Parallel Execution on Volatile Nodes) MPI [7], a comprehensive and
scalable solution to execute parallel scientific applications on virtual clusters composed of volatile ordinary PC
nodes. In order to cope with the characteristics such as frequent node failures and strongly varying compute and
communication characteristics, Volpex MPI deploys two (or more) replicas for each process and uses a sender based
message logging in order to deliver messages to lagging processes due to slow execution or recreated processes
from a checkpoint.

The goal of this technical report is to give details on the performance analysis of VolpexMPI and Open MPI,
since for a number of test cases we observed results that are neither intuitive nor easy to explain. The remainder

∗. Partial support for this work was provided by the National Science Foundation’s Computer Systems Research program under Award
No. CNS-0834750. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do
not necessarily reflect the views of the National Science Foundation.

∗Department of Computer Science, University of Houston.

2

of the technical report is organized as follows: section II presents briefly the design of Volpex MPI. At the core of
the paper is the performance analysis of VolpexMPI in section III along with detailed explanations on the reasons
for the performance observed. Finally, section IV summarizes the findings and presents the ongoing work on the
library.

II. DESIGN AND IMPLEMENTATION OF VOLPEXMPI

VolpexMPI is an MPI library targeting volunteer compute environment. The most relevant characteristics of
volunteer environments are a) the fundamental unreliability of compute processes that might go away for virtually
no reason (e.g. pressing a key on the keyboard by the owner), and b) the distributed nature of the compute
environment. The key features of VolpexMPI therefore are:

1) Controlled redundancy: A process can be initiated as two (or more) replicas. The execution model is designed
such that the application progresses at the speed of the fastest replica of each process, and is unaffected by the
failure or slowdown of other replicas. Replicas may also be formed by checkpoint based restart of potentially
failed or slow processes, although this aspect is not yet available.

2) Receiver based direct communication: The communication framework supports direct node to node commu-
nication with a pull model: the sending processes buffer data objects locally and receiving processes contact
one of the replicas of the sending process to get the data object.

3) Distributed sender based logging: Messages sent are implicitly logged at the sender and are available for
delivery to process instances that are lagging due to slow execution or recreation from a checkpoint.

Internally, the library is centered around five major building blocks, namely the MPI API layer, the point-to-point
communication module, a buffer management module, a replica selection module and a data transfer module.

In the following, we focus on the design and implementation of the point-to-point operations, since this yields
the most significance for the subsequent performance analysis.

A. Point-to-Point Communication

The point-to-point communication module of VolpexMPI has to be designed for MPI processes with multiple
replicas in the system. The library has two main goals for its point-to-point communication: (I) avoid increasing
the number of messages on the fly by a factor of nreplicas×nprocesses, i.e., every process sending each message to
every replica, and (II) make the progress of the application correspond to the fastest replica for each process.

In order to meet the first goal, the communication model of VolpexMPI deploys a receiver initiated message
exchange between processes where data is pulled by the receiver from the sender. In this model, the sending node
only buffers the content of a message locally, along with the message envelope. Furthermore, it posts for every
replica of the corresponding receiver rank, a non-blocking, non-expiring receive operation. When contacted by a
receiver process about a message, a sender replies with the requested item as soon as it is available.

The receiving process polls a potential sender and waits then for the data item to be available. A timeout
mechanism can be used to handle the situation where a receiver process requests a data item that is not in the local
buffer of the sender process anymore. As of today, VolpexMPI does not support wildcard receive operations as an
efficient implementation poses a significant challenge. A straight-forward implementation of MPI ANY SOURCE
receive operations is possible, but the performance would be significantly degraded compared to non-wildcard
receive operations.

Since different replicas can be in different execution states, a message matching scheme has to be employed
to identify which message is being requested by a receiver. For deterministic execution, a simple scheme that
timestamps messages by counting the number of messages exchanged between pairs of processes is applied based
on the tuple [communicator id, message tag, sender rank, receiver rank]. These timestamps are also used to monitor
the progress of individual process replicas for resource management. Furthermore, a late replica can retrieve an
older message with a matching logical timestamp, which allows restart of a process from a checkpoint.

B. Data Transfer

The data transfer module of VolpexMPI relies on a socket library utilizing non-blocking sockets. Non-blocking
sockets allow for a gradual sending/receiving of data items due to the fact that a write() or read() operation

3

will immediately return if the current status of the communication channels do not allow for progress at this point
in time. This allows to efficiently manage a large number of network connections without having to deal with
multiple threads, and avoids deadlock situations that might occur when using standard, blocking sockets. A key
component of the library is its progress function, that checks in each invocation which of the currently registered
socket descriptors are ready for the next data transfer operation. For this, the progress function utilizes internally
the select() operation, and maintains for each process the next element to be sent/received, and a pointer to
the position where the last transfer has stopped. Similarly to most standard MPI libraries, VolpexMPI invokes its
progress function at least once in every MPI function.

Further relevant characteristics of the socket library are the ability to handle failed processes, on-demand
connection setup in order to minimize the number of network connections, an event delivery system integrated
into the regular progress engine and the notion of timeouts for both communication operations and connection
establishment. The latter feature is used to identify replicas which are lagging significant. A communication
operation which exceeds the pre-defined timeout of the library might not necessarily be dead but may correspond to
a significantly slower replica than others, and hence it might be appropriate to abort the communication operation.
Thus, using the target selection functionality, process will re-direct their communication requests to other existing
replicas of the according MPI process.

III. EXPERIMENTS AND RESULTS

This section describes the experiments with the VolpexMPI library and the results obtained on a dedicated cluster.
Although VolpexMPI is designed for PC grids and volunteer environments, the experiments shown on the dedicated
cluster are performed in order to determine the fundamental performance characteristics of VolpexMPI as compared
to the results in a stable and reproducible environment.

The dedicated cluster utilizes 29 compute nodes with 88 cores total, 24 nodes having a 2.2 GHz dual core
AMD Opteron processor, and 5 nodes having two 2.2GHz quad-core AMD Opteron processors. Each node has 1
GB main memory per core and network connected by 4xInfiniBand as well as a 48 port Linksys GE switch. For
evaluation we utilize the Gigabit Ethernet network interconnect of the cluster to compare VolpexMPI run times to
Open MPI [8] v1.4.1. and examine the impact of replication and failure on performance.

First, we document the impact of the VolpexMPI design on the latency and the bandwidth of communication
operations. For this, we ran a simple ping-pong benchmark using both Open MPI and VolpexMPI on the dedicated
cluster. The results indicate, that the receiver based communication scheme used by VolpexMPI can achieve close to
80% of the bandwidth achieved by Open MPI. The latency for a 4 byte message increases from roughly 0.5ms with
Open MPI to 1.8ms with VolpexMPI. This is not surprising as receiver based communication requires a ping-pong
exchange before the actual message exchange.

Next, the NAS Parallel Benchmarks (NPBs) are executed for various process counts and data class set sizes. For
each experiment, the run times were captured as established and reported in the NPB with the normal MPI Wtime
function calls for start and stop times.

Figure 1 shows results for runs of 8 processes (upper left), 16 processes (upper right), 32 processes (lower left)
and 64 processes (lower right) for the Class B data sets for six of the NPBs. We have excluded LU and MG from
our experiments due to their use of MPI ANY SOURCE which is currently not supported in VolpexMPI. These
reference executions did not employ redundancy (x1). The run times for Open MPI are shown for comparison in
the bar graph. All times are noted as normalized execution times with a reference time of 100 for Open MPI, and
are the average of three runs.

The results indicate, that in the majority of the test cases VolpexMPI performs as well or even better than
Open MPI using the TCP interfaces. While this is acceptable for the EP benchmark since it does not contain any
(significant) communication, it is surprising for the communication intensive benchmarks such as FT, due to the
documented overhead of VolpexMPI compared to Open MPI. In the following, we would like to confirm a) the
correctness of the results delivered by the VolpexMPI executions and b) explain the performance.

In order to confirm the correctness of the results, we went through a multi-step procedure. First, all NAS Parallel
Benchmarks have a verification step built in. All benchmarks executed using VolpexMPI succeeded the NPB built-in
verification. Second, using a small library which calculates a CRC-32bit checksum of a message we confirmed, that
the number of messages, sequence of messages and the content of every single message is absolutely identical for

4

Fig. 1. Comparison of Open MPI to VolpexMPI for Class B NAS Parallel Benchmarks using 8 processes (upper left), 16 processes (upper
right), 32 processes (lower left) and 64 processes (lower right) on a dedicated cluster.

the VolpexMPI and the Open MPI executions on every single process. Finally, in order to exclude the possibility, that
we hit a performance problem within the Open MPI library, selected test cases have also been executed MPICH2
version 1.0.7. The performance results obtained this MPI library were generally in the same range as the Open
MPI performance numbers with minor deviations in both directions.

In the following, we detail the reasons for the performance differences between VolpexMPI and a standard MPI
library such as Open MPI. To summarize the findings of the section, libraries such as Open MPI are optimized for
high speed network interconnects such as InfiniBand, which due to their low latency and high bandwidth require an
aggressive approach in pushing data into the network by calling their progress function whenever possible, e.g. in
each MPI function. This approach is however not optimal for a Gigabit Ethernet network. Specifically, the progress
function is called more often than necessary to progress data on this network, which consequently introduces an
overhead especially for send-sockets due to the required matching of sockets to processes and the according look-up
operation whether data is ready for being sent over the sockets.

The receiver based communication scheme of VolpexMPI introduces a slight overhead per message, that results
in a delay in between subsequent calls to the (lower level) progress engine. Since the progress engine is only called
from MPI functions, the time between calling the VolpexMPI (low level) progress function is determined by two
components: the time spent outside of MPI functions, i.e. time spent in computation, and the delay introduced by
the VolpexMPI receiver based communication scheme. There are three scenarios to be distinguished.

First, if the time spent in computation is significantly larger than the time spent communication, the overhead
of the VolpexMPI communication schemes will not have a major influence on the overall execution time. This is
mostly the case for the 8 and 16 processes testcases shown above. Some of the VolpexMPI numbers are lower than
the OpenMPI numbers even for these testcases, which we attribute to two facts: processes in VolpexMPI are more
’decoupled’ compared to a regular MPI library, since a send operation only copies data into a local buffer and never
blocks. This is especially evident e.g. for SP, since it allows for a more efficient overlapping of communication and
computation. Further, as detailed in subsection III-A, the algorithms used for collective operations in VolpexMPI
perform better over this Gigabit Ethernet network than the default algorithms used in Open MPI.

Second, if the time spent in computation is not dominant on a per process basis, the additional delay introduced

5

by VolpexMPI will result in a performance penalty due to the fact that the progress engine is not called often
enough to saturate the network. This is e.g. the case for the 32 process CG and FT test cases.

Third, if the time spent in computation is small, as is the case e.g. for the 64 process test cases shown above,
the additional delay helps to reduce the number of times the progress engine is called compared to Open MPI,
while its still being called often enough to saturate the network. Subsection ?? emphasizes this point by providing
precise numbers and measurements.

A. A Case Study with Detailed Analysis

In this section, we elaborate in more details on the performance gain of VolpexMPI compared to Open MPI. For
the sake of simplicity, we choose for the subsequent analysis a single testcase, namely 64 processes testcase of IS,
since it showes the most glaring difference in the execution time. Table I details the overall execution time spent
in different MPI routines by the benchmark for both Open MPI and VolpexMPI, based on data achieved using a
profiling library. The main result of this analysis is, that this benchmark is entirely dominated by communication
operations, and two functions in particular: MPI Allreduce and MPI Alltoallv. These functions also show
the most significant difference in the execution time of between VolpexMPI and Open MPI. Note, that the sum of
the execution time shown in the table is larger than the overall execution time indicated by the NPB benchmarks,
which is due to the fact that we show the maximum execution time for each function across all processes, and
the tracing library also includes data from communication operations that occur outside of the timing loop in the
NAS benchmark. The profiling library further revealed, that the typical message length of the Allreduce operation
was 8 bytes or 1 double precision number, and for the Alltoallv operation it was in between 27k and 37k for each
pair of processes. To simplify the analysis of the Alltoallv operation, we assume for the subsequent paragraphs an
average message length of 32k between each pair of processes.

Open MPI VolpexMPI
overall time 28.46 sec 7.12
MPI Reduce 1.6 sec 0.29 sec

MPI Allreduce 19.7 sec 4.11 sec
MPI Alltoall 0.25 sec 1.8 sec
MPI Alltoallv 21.5 sec 3.2 sec
MPI Irecv 0.000005 sec 0.0001 sec
MPI Send 0.0001 sec 0.0001 sec
MPI Wait 2.43 sec 0.328 sec

TABLE I
BREAKDOWN OF THE EXECUTION OF THE 64 PROCESSES IS TEST CASE FOR OPEN MPI AND VOLPEXMPI.

The first question arising with respect to the performance of the Allreduce and Alltoallv operations is how the
implementations of these operations differ between Open MPI and VolpexMPI. VolpexMPI uses linear algorithms
without any major optimizations. On the other hand, the default Open MPI collective module (tuned) has a collection
of state-of-the-art algorithms for both operations. However, it turns out, that these algorithms are designed and
optimized for low-latency networks such as InfiniBand, and deliver suboptimal performance on a commodity network
such as Gigabit Ethernet. By switching to the basic module for collective operations, which uses mostly linear
algorithms similar to VolpexMPI, the time spent in Allreduce operations has been reduced from 19 seconds to
around 9 seconds, and the time for Alltoallv operations decreased from 21 seconds to 10.5 seconds. Thus, the
performance of IS using the basic collective module has been reduced to roughly 15 seconds, which is still more
than a factor two above the VolpexMPI execution time for the very same test.

In order to detail where the performance difference comes from, we focus now entirely on the Alltoallv operation,
assuming that each pair of processes exchange 32kb of data. We implemented the Alltoallv operation in a simply
test code as a simple sequence of non-blocking send and receive operations followed by a waitall function as
outlined below:

MPI_Comm_size (comm, &size);
for (i=0; i<size; i++) {

6

MPI_Isend (sbuf[i], scnt[i], MPI_BYTE, i, 0, comm, &reqs[2*i]);
MPI_Irecv (rbuf[i], rcnt[i], MPI_BYTE, i, 0, comm, &reqs[2*i+1]);

}
MPI_Waitall (2*size, reqs, stats);

Our benchmark provides two different version of this code: the first version relies on the VolpexMPI semantics
that uses sender-side buffering and a receiver-based message retrieval scheme. The second version uses a direct
communication scheme similarly to Open MPI, by using the low-level data transfer operations of the socket library
used underneath the hood by VolpexMPI. The execution time of the second code version for one Alltoallv operation
for 64 processes on the Gigabit Ethernet network is around 1.5 seconds, similarly to the execution time of the very
same code sequence over Open MPI. Version 1 of the code using the VolpexMPI scheme takes however only 0.9
seconds. In both cases, the entire time is spent in the progress engine of the low-level socket library. Therefore,
we instrumented the progress function of the socket library to retrieve some more details on the behavior. Table II
shows the most important number of this analysis when executing 10 Alltoallv operations for both versions.

VolpexMPI direct VolpexMPI receiver
communication based commmunication

called 690,545 11,981
recv sockets kicked off 25,172 6,112
send sockets kicked off 44,194,880 766,784

time handling recv sockets 340896.00 usec 212753.00 usec
time handling send sockets 8439059.00 usec 428231.00 usec

TABLE II
DETAILED ANALYSIS OF THE PROGRESS ENGINE USAGE FOR THE DIRECT COMMUNICATION SCHEME AND THE RECEIVER BASED

COMMUNICATION SCHEME.

The first notable result is, that for the direct communication scheme the progress engine is called more than 57
times more often than in the receiver based communication scheme. Since the progress engine has to handle both
send and receive sockets separately when using non-blocking sockets, we also detail how often each of these two
types of sockets have reported to be ready for the next transaction by the select call in the progress engine,
and how much time is spent in dealing with both send and receive sockets. The results indicate, that the receiver
side sockets are behaving very similarly for both communication schemes. Although four times as many receive
sockets have kicked off for the direct communication scheme as for the receiver based communication scheme, the
difference in the time spent for handling receive sockets is less than a factor of two compared to the receiver based
communication scheme. Especially when putting it into relation to the fact, that the progress is called 57 times as
often for the according scenario, this factor of 1.6 is nearly negligible.

The situation is however different for send sockets. When using non-blocking sockets, the select function indicates
that data can be sent over that connection every time the resource is not busy. The progress engine of VolpexMPI
(as well as of Open MPI and other MPI libraries) has to check in that case what process that particular TCP
socket is associated to, and whether there is any data item currently enlisted as ’ready to send’ to that process.
Due to the fact, that the progress engine is called 57 times more often for this scenario when using the direct
communication scheme, we have in fact 57 times more send sockets indicating that they are ready for sending data,
which means we have 57 times more operations to look up to which process this socket belongs to and whether
there is data to be sent. Not surprisingly, we spend more than 20 times more time in handling send-sockets for the
direct communication scheme, compared to the receiver based communication scheme used by VolpexMPI.

To summarize the findings, the performance benefit of VolpexMPI compared to Open MPI for many of the
testcases shown above comes from the fact, that the receiver based communication scheme introduces a (small)
overhead in processing messages, that reduce the aggressivenes with which the progress engine of the lower-level
socket library is being called. As long as the frequency of calling the progress engine is high enough to ensure
saturation of the network, this less aggressive strategy helps to reduce the overall costs of communication due to
the fact, that non-blocking sockets are virtually always ready for sending data, and the associated lookup operations
are not entirely for free if executed often enough.

7

IV. SUMMARY AND CONCLUDING REMARKS

To summarize the findings of the analysis, libraries such as Open MPI are optimized for high speed network
interconnects such as InfiniBand, which due to their low latency and high bandwidth require an aggressive approach
in pushing data into the network by calling their progress function whenever possible. This approach is however
not necessarily optimal for a Gigabit Ethernet network. Specifically, the progress function is called more often than
necessary to saturate the Gigabit Ethernet network, which consequently introduces an overhead.

However, since the overall delay between two subsequent calls to the progress engine is also dependent on
the amount of time spent in computation between two subsequent calls to an MPI function, results with other
applications might in fact deviate from the benchmark results shown here. Our overall findings in this technical
paper are therefore, that the overhead introduced by the VolpexMPI communication scheme is all-in-all low for
applications having favorable communication characteristics, and we would not expect the results to be easily
transferable or representative for other applications and platforms.

REFERENCES

[1] D. Anderson and G. Fedak, “The computation and storage potential of volunteer computing,” in Sixth IEEE International Symposium
on Cluster Computing and the Grid, May 2006.

[2] D. Kondo, M. Taufer, C. Brooks, H. Casanova, and A. Chien, “Characterizing and evaluating desktop grids: An
empirical study,” in International Parallel and Distributed Processing Symposium (IPDPS’04), April 2004. [Online]. Available:
citeseer.ist.psu.edu/kondo04characterizing.html

[3] D. Thain, T. Tannenbaum, and M. Livny, “Distributed computing in practice: the condor experience.” Concurrency - Practice and
Experience, vol. 17, no. 2-4, pp. 323–356, 2005.

[4] D. Anderson, “Boinc: A system for public-resource computing and storage,” in Fifth IEEE/ACM International Workshop on Grid
Computing, November 2004.

[5] Amazon webservices, “Amazon Elastic Compute Cloud (Amazon EC2),” http://www.amazon.com/gp/browse.html?node=201590011,
2008.

[6] Google Press Center, “Google and IBM Announce University Initiative to Address Internet-Scale Computing Challenges,”
http://www.google.com/intl/en/press/pressrel/20071008 ibm univ.html, October 2007.

[7] T. LeBlanc, R. Anand, E. Gabriel, and J. Subhlok, “VolpexMPI: an MPI Library for Execution of Parallel Applications on Volatile
Nodes,” in Proc. The 16th EuroPVM/MPI 2009 Conference, Espoo, Finland, 2009, pp. 124–134, lecture Notes in Computer Science,
volume 5759.

[8] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M. Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine,
R. H. Castain, D. J. Daniel, R. L. Graham, and T. S. Woodall, “Open MPI: Goals, concept, and design of a next generation MPI
implementation,” in Proceedings, 11th European PVM/MPI Users’ Group Meeting, Budapest, Hungary, September 2004, pp. 97–104.

citeseer.ist.psu.edu/kondo04characterizing.html

	Introduction
	Design and Implementation of VolpexMPI
	Point-to-Point Communication
	Data Transfer

	Experiments and results
	A Case Study with Detailed Analysis

	Summary and Concluding remarks
	References

