
SURVIVABLE DISTRIBUTED STORAGE WITH PROGRESSIVE DECODING∗

Yunghsiang S. Han†, Soji Omiwade, and Rong Zheng

Department of Computer Science
University of Houston

Houston, TX, 77204, USA
http://www.cs.uh.edu

Technical Report Number UH-CS-09-09

September 9, 2009

Keywords: Network storage, Byzantine failures, Reed-Solomon code, Error-detection code

Abstract

To harness the ever growing capacity and decreasing cost of storage, it is important to provide an
abstraction of survivable storage in presence of Byzantinefailures due to the prevalence of computer
virus and software bugs. In this paper, we propose astorage-optimal and computation efficient primitive
to spread information from a single data source to a set of storage nodes, which allows recovery from
both crash-stop and Byzantine failures. In presence of crash-stop and Byzantine failures, a progressive
data retrieval scheme is employed, which retrieves just enough data from live storage nodes. It adapts the
cost of successful data retrieval to the degree of errors in the system. The cost of communication in data
retrieval is derived analytically and corroborated by Monte-Carlo simulation results. Implementation and
evaluation studies demonstrate speed-up of the progressive data retrieval scheme, which is comparable to
that in a genie-aid decoding process.

∗Partial support for this work was provided by the Computer Systems Research program of the National Science Foundation (NSF) under
Award No. CNS-0834750 and CNS-0546391. Any opinions, findings,and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the NSF.
† Graduate Institute of Communication Engineering, National Taipei University

1

SURVIVABLE DISTRIBUTED STORAGE WITH
PROGRESSIVE DECODING∗

Yunghsiang S. Han†, Soji Omiwade, and Rong Zheng

Abstract

To harness the ever growing capacity and decreasing cost of storage, it is important to provide an abstraction of
survivable storage in presence of Byzantine failures due tothe prevalence of computer virus and software bugs. In
this paper, we propose astorage-optimal and computation efficient primitiveto spread information from a single data
source to a set of storage nodes, which allows recovery from both crash-stop and Byzantine failures. In presence
of crash-stop and Byzantine failures, a progressive data retrieval scheme is employed, which retrieves just enough
data from live storage nodes. It adapts the cost of successful data retrieval to the degree of errors in the system.
The cost of communication in data retrieval is derived analytically and corroborated by Monte-Carlo simulation
results. Implementation and evaluation studies demonstrate speed-up of the progressive data retrieval scheme, which
is comparable to that in a genie-aid decoding process.

Index Terms

Network storage, Byzantine failures, Reed-Solomon code, Error-detection code

I. I NTRODUCTION

Cost of storage has decreased drastically over the years. Many companies such as Google, Yahoo, Amazon
offer GB, TB online storage for free or at very low cost. Meanwhile, low-power storage media are widely used
in embedded devices or mobile computers. However, to harness the ever growing capacity and decreasing cost of
distributed storage, a number of challenges need to be addressed, (i) volatility of storage availability due to network
(dis)connectivity, varying administrative restriction or user preferences, and nodal mobility (of mobile devices);
(ii) (partial) failures of storage devices. For example, flash media are known to be engineered to trade-off error
probabilities for cost reduction; (iii) software bugs or malicious attacks, where an adversary manages to compromise
a node and causes it to misbehave.

To ensure availability despite failure or compromise of storage nodes, survivable storage systems spread data
redundantly across a set of distributed storage nodes. At the core of a survivable storage system is a coding scheme
that maps information bits to stored bits, and vice versa. Without loss of generality, we call the unit of such mapping,
symbols. A(k, n) coding is defined by the following two primitives:

- encode c = (u, k, n), which returns a coded vectorc = [c0, c1, . . . , cn−1] of length n from k information
symbolsu = [u0, u1, . . . , uk−1]. The coded symbols can be stored on separate storage nodes.

- decode u = (r, k, n), which accesses a subset of storage nodes, and returns the information symbols from
possibly corrupted symbols.

Many existing approaches to survivable storage assume crash-stop behaviors, i.e., a storage device becomes
unavailable if failed (also called “erasure”). Solutions such as various RAID configurations [1] and their extensions
are engineered for high read and write data throughput. Thus,typically low-complexity (replication or XOR-based)
coding mechanisms are employed to recover from limited degree of erasure. We argue that Byzantine failures,
where devices fail in arbitrary manner and cannot be trusted, are becoming more pertinent with the prevalence
of cheap storage devices, software bugs and malicious attacks. Efficient encode and decode primitives that can
detect data corruption and handle Byzantine failures serveas a fundamental building block to support higher level
abstractions such as multi-reader multi-writer atomic register [2] and digital fingerprints [3] in distributed systems.

∗Partial support for this work was provided by the Computer Systems Research program of the National Science Foundation (NSF) under
Award No. CNS-0834750 and CNS-0546391. Any opinions, findings,and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the NSF.
† Graduate Institute of Communication Engineering, National Taipei University

2

For fixed error correction capability, the efficiency of encodeand decode primitives can be evaluated by three
metrics, i) storage overheadmeasured as the ratio between the number of storage symbols and total information
symbols (n/k); ii) encoding and decoding computation time; and iii) communication overheadmeasured in the
number of bits transferred in the network for encode and decode. Communication overhead is of much importance in
wide-area and/or low-bandwidth storage systems. In this paper, we propose a novel solution to spreading redundant
information efficiently across distributed storage nodes using incremental Reed-Solomon (RS) decoding. By virtue
of RS codes, our scheme is storage optimal. The key novelty of the proposed approach lies in a progressive data
retrieval procedure, which retrieves just enough data fromlive storage nodes, and performs decoding incrementally.
As a result, both communication and computation cost are minimized, and are made adaptive to the degree of
actual errors in the system. We provide a theoretical characterization of the communication cost and success rate of
data retrieval using the proposed scheme in presence of arbitrary errors in the system. Our implementation studies
demonstrate up to 20 times speed-up of the progressive data retrieval scheme in computation time, relative to a
classical scheme. Moreover, the proposed scheme is comparable to that of a genie-aid decoding process, which
assumes knowledge of failure modes of storage nodes.

Main Contributions: In this paper, we make the following contributions:

• Design of a novel progressive data retrieval mechanism thatis storage and communication optimal, and
computationally efficient. It handles Byzantine failures instorage nodes gracefully as the probability of failures
increases.

• Development of an analytical model to evaluate the communication cost of data retrieval.

The rest of the paper is organized as follows. Related work is given in Section II. The progressive data retrieval
scheme is presented in Section III, with the details of the incremental RS decoding algorithm in Section IV. An
analysis of our coding, communication and success rate complexity is provided in Section V. Evaluation results are
presented in Section VI and then a discussion of the application of the proposed progressive data retrieval scheme
in sensor network storage and peer-to-peer tuple space follows in Section VII. Finally, we conclude the paper in
Section VIII.

II. BACKGROUND AND RELATED WORK

Fig. 1. Block diagram of RS decoding. The texts on top of the boxes correspond to existing algorithms.

In storage systems, ensuring reliability requires the introduction of redundancy. A file is divided intok pieces,
encoded inton coded pieces and stored atn nodes. One important metric of coding efficiency is the redundancy-
reliability tradeoff defined asn/k. The simplest form of redundancy is replication. As a generalization of replication,
erasure coding offers better storage efficiency. The Maximum Distance Separable (MDS) codes are optimal as it
provides largest separation among code words, and an(n, k) MDS code will be able to recover from anyv errors
if v ≤ ⌊n−k−s

2 ⌋, wheres is the number of erasures (or unretrievable symbols).

A. Reed-Solomon codes

RS codes are the most well-known class of MDS codes. RS operates on symbols ofm bits. An (n, k) RS code
is a linear code, with each symbol inGF (2m), and parametersn = 2m − 1 andn − k = 2t , wheren is the total
number of symbols in a codeword,k is the total number of information symbols, andt is the symbol-error-correcting
capability of the code.

Encoding: Let the sequence ofk information symbols inGF (2m) beu = (u0, u1, . . . , uk−1) andu(x) be the
information polynomial ofu represented as

u(x) = u0 + u1x + · · · + uk−1x
k−1 .

3

The codeword polynomial,c(x), corresponding tou(x) can be encoded as

c(x) = u(x)g(x) ,

whereg(x) is a generator polynomial of the RS code. It is well-known that g(x) can be obtained as

g(x) = (x − αb)(x − αb+1) · · · (x − αb+2t−1)

= g0 + g1x + g2x
2 + · · · + g2tx

2t , (1)

whereα is a primitive element inGF (2m), b an arbitrary integer, andgi ∈ GF (2m).
Decoding: The decoding process of RS codes is more complex. Complete description of decoding of RS codes

can be found in [4].

Let r(x) be the received polynomial andr(x) = c(x) + e(x) + γ(x) = c(x) + λ(x), wheree(x) =
n−1
∑

j=0

ejx
j

is the error polynomial,γ(x) =
n−1
∑

j=0

γjx
j the erasure polynomial, andλ(x) =

n−1
∑

j=0

λjx
j = e(x) + γ(x) the errata

polynomial. Note thatg(x) and (hence)c(x) haveαb, αb+1, . . . , αb+2t−1 as roots. This property is used to determine
the error locations and recover the information symbols.

The basic procedure of RS decoding is shown in Figure 1. The last step of the decoding procedure involves
solving a linear set of equations, and can be made efficient by the use of Vandermonde generator matrices [5].

In GF (2m), addition is equivalent to bitwise exclusive-or (XOR), andmultiplication is typically implemented
with multiplication tables or discrete logarithm tables. To reduce the complexity of multiplication, Cauchy Reed-
Solomon (CRS) codes [6] have been proposed to use a different construction of the generator matrix, and convert
multiplications to XOR operations for erasure. However, CRS codes incur the same complexity as RS codes for
error corrections.

B. XOR-based erasure codes for storage

Several XOR-based erasure codes (in a field of GF(2)) [7]–[10] have been used in storage systems. In RAID-6
systems, each disk is partitioned into strips of fixed size. Two parity strips are computed using one strip from each
data disk, forming a stripe together with the data strips. EVEN-ODD [9], Row Diagonal Parity (RDP) [7], and
Minimal Density RAID-6 codes [8] use XOR operations, and arespecific to RAID-6. A detailed comparison of the
encoding and decoding performance of several open-source erasure coding libraries for storage is provided [11].

The gain in computation efficiency of XOR-based erasure codes is achieved by trading off fault tolerance. RAID-6
systems can recover from the loss of exactly two disks but cannot handle Byzantine failures.

III. PROGRESSIVEDATA RETRIEVAL IN PRESENCE OFBYZANTINE FAILURES

We use the abstractions of a data node which is a source of information that must be stored, and a storage node
which corresponds to a storage device. Nodes are subject to both crash-stop failures, where data cannot be accessed
and Byzantine failures, where arbitrary data may be returned. The communication cost of transferring one unit of
data from the data source to a storage node is assumed to be constant independent of the location of the storage
node.

A. Data storage

The data storage scheme consists of two steps. First, for data integrity, a message authentication code (MAC)
is added to each data block generated by a data node before it is encoded. Many one-way hash functions such as
MD5, SHA-1, SHA-2 can be used. For simplicity, we adopt CRC codefor error detection withr redundant bits [4],
[12]. It has been proven that the portion of errors that cannot be detected by a CRC code is dependent only on its
number of redundant bits. That is, a CRC code withr redundant bitscannotdetect(1

2r)100% portion of errors. If
T0 is the size of the original data, then the size of the resulting data isT = T0 + r. The overhead can be amortized
by combining multiple data blocks together.

4

In the second step, we partition a data block into information symbols of lengthm bits and apply RS codes. The
data-generating node divides its data into⌈T/m⌉ pieces (symbols) such that each symbol represents an element in
GF (2m). Next the⌈T/m⌉ symbols are divided into

⌈

⌈T/m⌉
k

⌉

information groups each ofk symbols. Letk symbols

of the ith group be the components in information vectorui = (ui0, ui1, . . . , ui(k−1)), where1 ≤ i ≤
⌈

⌈T/m⌉
k

⌉

.
The node encodesui into ci = (ci0, ci1, . . . , ci(n−1)) with n symbols as

ci = uiG,

where

G =

2

6

6

6

6

6

4

1 1 1 · · · 1
α α2 α3 · · · αn

α2 (α2)2 (α3)2 · · · (αn)2

...
αk−1 (α2)k−1 (α3)k−1 · · · (αn)k−1

3

7

7

7

7

7

5

. (2)

Recall thatα is a primitive element (generator) ofGF (2m) which can be determined in advance. The data-generating
node then packs allci,j , 0 ≤ i ≤

⌈

⌈T/m⌉
k

⌉

, and sends them with their indexj to (j + 1)th storage node via the
network.

B. Data retrieval

To reconstruct the source data, a collector needs to access sufficient number of storage nodes to ensure data
integrity. Amongn storage nodes, let the number of erasures, which includes the number of crash-stop nodes and
the number of nodes that have not been accessed, bes. Identity of crash-stop nodes can be determined by the use
of keep-alive messages. Additionally, there arev nodes with Byzantine failures. Neitherv nor the identity of these
nodes are known to the data collector.

It has been proven thatG given in (2) is a generator matrix of a RS code [4] and thus an error-erasure decoding
algorithm can recover all data if there is no error in at leastk encoded symbols. Without loss of generality, we
assume that the data collector retrieves encoded symbols from j0th, j1th,· · · , andjk−1th storage nodes. If no error
is present, thek symbols inith group of any data-generating node can be recovered by solving the following system
of linear equations:

[ui0, ui1, . . . , ui(k−1)]Ĝ = [cij0 , cij1 , . . . , cijk−1
] , (3)

where

Ĝ =

2

6

6

6

6

6

4

1 1 · · · 1
αj0 αj1 · · · αjk−1

(αj0)2 (αj1)2 · · · (αjk−1)2

...
(αj0)k−1 (αj1)k−1 · · · (αjk−1)k−1

3

7

7

7

7

7

5

.

Ĝ can be constructed by the primitive element and the index associated withcijd
, 0 ≤ d ≤ k − 1.

When the number of erroneous (or compromised) nodes is unknown but is bounded, the proposed progressive
procedure for data retrieval minimizes communication costwithout anya priori knowledge regarding failure models
of nodes.

From Section II, we know that RS codes can recover from anyv errors if v ≤ ⌊n−k−s
2 ⌋. Therefore, if the number

of compromised nodes (v) is small, more erasures (s) can be tolerated, and less nodes need to be accessed (by
treating them as unavailable). The data retrieval procedureproceeds in stages. At stagel, l errors are assumed. If
RS decoding fails or the decoded information symbols fail the CRC check, there must exist more erroneous nodes
than RS error-erasure decoding can handle at this stage. In order to correctonemore error,two more symbols need
to be collected, since the number of erasures allowed is reduced by two. Therefore, the total number of symbols
retrieved at stagel is k + 2l.

This procedure is clearly optimal in communication costs as additional symbols are retrieved only when necessary.
However, if applied naively, its computation cost can be quite high since RS decoding shall be performed at each

The last information group may have symbols less thank. In this case, zero symbols will be appended during the encoding procedure.

5

stage. For example, whenn = 1023, k = 401, with 1% error probability (defined as probability that a storage
node is faulty), our analytical results (Section V) show thaton average 409.2 storage nodes need to be accessed.
That is, the decoding needs to be done 10 times on average. On the other hand, consider an alternative (but naive)
scheme that retrieves coded symbols from each ofn storage nodes and decodes only once. The naive scheme
may incur less computation cost but suffers from high communication cost. One may be tempted to think that such
trade-offs between computation and communication are unavoidable. Instead, in Section IV, we devise an algorithm
that can utilize intermediate computation results from previous stages and performs RS decoding incrementally.
Combined with the incremental decoding of stored symbols, the proposed progressive data retrieval scheme (detailed
in Algorithm 1) is both computation and communication efficient. For simplicity, Algorithm 1 is presented only
for one group of encoded symbols. It is applied to all groups of encoded symbols to retrieve all data for the
data-generating node.

Algorithm 1: Progressive Data Retrieval
begin

i← k;
The data collector randomly choosesk storage nodes and retrieves encoded data,ci = [cj0 , cj1 , . . . , cjk−1];
ri = ci

repeat
u = riĜ

−1;
if CRCTest(u) = SUCCESS then1

Delete CRC checksum fromu to obtainu0;
return u0;

else
repeat

i← i + 2
Two more encoded data from remaining nodesi1, i2, are retrieved
ci ← ci−2 ∪ {ci1 , ci2}

until {(ri = IncrRSDecode(ci)) = SUCCESS ‖ i ≥ n− 1} ;2

until i ≥ n− 1 ;
return FAIL;

end

In Algorithm 1, for eachi (or accordingly stagel = (i − k)/2 where the number of errorsv > l), the
decoding process declares errors in one of two cases. In Line 2, the proposed incremental RS decoding algorithm
(IncrRSDecode()) may fail to produce decoded symbols. Otherwise, in Line 1, the decoded symbols fail the
CRC check. Our implementation (Section VI) shows that the former happens frequently. Thus, in most cases, CRC
checking is carried out only once throughout the entire decoding process.

IV. I NCREMENTAL RS DECODING

In this section, we present the incremental RS decoding algorithm. Compared to the classic RS decoding, it
utilizes intermediate computation results and decodes incrementally as more symbols become available.

A. The basic algorithm
Given the received coded symbols[r0, r1, . . . , rn] with erasures set to be zero, the generalized syndrome poly-

nomial S(x) can be calculated as [13],

S(x) =

n−1
X

j=0

rjα
jb T (x)− T (αj)

x− αj
=

n−1
X

j=0

λjα
jb T (x)− T (αj)

x− αj
, (4)

whereT (x) is an arbitrary polynomial with degree(n − k). Assume thatv errors occur in unknown locations
j1, j2, . . . , jv ands erasures in known locationsm1, m2, . . . , ms of the received polynomial. Then

e(x) = ej1x
j1 + ej2x

j2 + · · · + ejv
xjv

and
γ(x) = γm1

xm1 + γm2
xm2 + · · · + γms

xms ,

6

whereejℓ
is the value of theℓ-th error, ℓ = 1, · · · , v, andγmℓ

is the value of theℓ-th erasure,ℓ = 1, · · · , s. The
decoding process is to find alljℓ, ejℓ

, mℓ, andγmℓ
. Let E = {j1, · · · , jv}, M = {m1, · · · , ms}, andD = E∪M.

Clearly, E ∩ M = ∅. It has been shown that a key equation for decoding is

Λ(x)S(x) = Ψ(x)T (x) + Ω(x) , (5)

where

Λ(x) =
∏

j∈D

(x − αj) =
∏

j∈E

(

x − αj
)

∏

j∈M

(

x − αj
)

= ΛE(x)ΛM(x) (6)

Ψ(x) =
∑

j∈D

λjα
jb

∏

i∈D

i6=j

(

x − αi
)

(7)

Ω(x) = −
∑

j∈D

λjα
jbT (αj)

∏

i∈D

i6=j

(

x − αi
)

. (8)

If 2v + s ≤ n − k + 1, then (5) has a unique solution{Λ(x), Ψ(x), Ω(x)}. Instead of solving (5) by either the
Euclidean or Berlekamp-Massey algorithm we introduce a reduced key equation [13] that can be solved by the
Welch-Berlekamp (W-B) algorithm [4]. It will be demonstrated that by using W-B algorithm and the reduced key
equation, the complexity of decoding can be reduced drastically. Let T = {j|T (αj) = 0}. Let a set of coordinates
U ⊂ {0, 1, . . . , n−1} be defined byU = M∩T. A polynomialΛU(x) is then defined byΛU(x) =

∏

j∈U

(

x − αj
)

,
which is known for the receiver sinceT (x) and M are both known. SinceΛU(x) divides bothΛ(x) and T (x),
according to (5), it also dividesΩ(x). Hence, we have the following reduced key equation:

Λ̃(x)S(x) = Ψ(x)T̃ (x) + Ω̃(x) , (9)

where

Λ(x) = Λ̃(x)ΛU(x)

T (x) = T̃ (x)ΛU(x)

Ω(x) = Ω̃(x)ΛU(x) .

Note thatΛ̃(x) is still a multiple of the error location polynomialΛE(x). The reduced key equation can have a
unique solution if

deg(Ω̃(x)) < deg(Λ̃(x)) <
n − k + 1 + s

2
− |U| , (10)

wheredeg(·) is the degree of a polynomial and|U| is the number of elements in setU.
For all j ∈ T\U, by (9), we have

Λ̃(αj)S(αj) = Ω̃(αj) (11)

since T̃ (αj) = 0. Note thatαj is a sampling point andS(αj) the sampled value for (11). The unique solution
{Λ̃(x), Ω̃(x)} can then be found by the W-B algorithm with time complexityO((n − k − |U|)2) [4]. Once all
coefficients of the errata polynomial are found, the error locationsjℓ can be determined by successive substitution
through Chien search [14]. When the solution of (9) is obtained, the errata values can be calculated. Since there is
no need to recover the errata values in our application we omit the calculations. In summary, there are three steps
in the decoding of RS codes that must be implemented. First, the sampled values ofS(αj) for j ∈ T\U must be
calculated. Second, the W-B algorithm is performed based on the pairs

(

αj , S(αj)
)

in order to obtain a valid̃Λ(x).
If a valid Λ̃(x) is obtained, then error locations are found by Chien search;otherwise, decoding failure is reported.

Since the received values in the erased positions are zero,γmℓ = −cmℓ for ℓ = 1, · · · , s.
\ is the set difference.

7

B. Incremental computation ofS(x), Λ̃(x), Ω̃(x)

Let us choose
T (x) = (x − αm0) (x − αm1) · · · (x − αmn−k−1) ,

wheremℓ are those corresponding positions of missing data symbols after the data collector has retrieved encoded
symbols fromk storage nodes. In the decoding process, these are erased positions before the first iteration of
error-erasure decoding. LetU0 = {m0, . . . , mn−k−1}. It has been proven that the generator polynomial of the RS
code encoded by (2) hasαn−k, αn−k−1, . . . , α as roots. The error-erasure decoding algorithm is mainly based on
W-B algorithm which is an iterative rational interpolationmethod.

In theℓth iteration,ℓ errors are assumed in the data and the number of erasures isn−k−2ℓ. Let (j
(ℓ)
1 +1)th and

(j
(ℓ)
2 + 1)th nodes be the two storage nodes just accessed in theℓth iteration. LetUℓ = Uℓ−1\{j

(ℓ)
1 , j

(ℓ)
2 }. Based

on Uℓ the W-B algorithm will findΛ̃(ℓ)(x) and Ω̃(ℓ)(x) which satisfy

Λ̃(ℓ)(αj)S(ℓ)(αj) = Ω̃(ℓ)(αj) for all j ∈ U0\Uℓ ,

whereS(ℓ)(x) is the generalized syndrome withri = 0 for all ri ∈ Uℓ. It has been shown thatdeg(Λ̃(ℓ)(x)) >

deg(Ω̃(ℓ)(x)) for any ℓ by a property of W-B algorithm. Thus, ifdeg(Λ̃(ℓ)(x)) < n−k+1+|Uℓ|
2 − |Uℓ| = ℓ + 1/2,

then the unique solution will exist due to (10). By the definition of generalized syndrome polynomial in (4), for
i ∈ U0\Uℓ, we have

S(ℓ)(αi) =

n−1
X

j=0

rjα
j T (αi)− T (αj)

αi − αj

=

n−1
X

j=0
j /∈U0

rjα
j T (αj)

αj − αi
+ riα

iT ′(αi)

=

n−1
X

j=0
j /∈U0

Fj

αj − αi
+ riα

iT ′(αi) , (12)

whereT ′(x) is the derivative ofT (x) andFj = rjα
jT (αj). Note thatT ′(αi) =

∏

j∈U0
mj 6=i

(

αi − αmj
)

. It is easy to see

thatS(ℓ)(αi) is not related to anyrj , wherej ∈ U0 andj 6= i. Hence,S(ℓ−1)(αi) = S(ℓ)(αi) for all i ∈ U0\Uℓ−1.
This fact implies that all sampled values in previous iterations can be directly used in current iteration of the W-B
algorithm.

Define rank[N(x), W (x)] = max[2 deg(W (x)), 1 + 2 deg(N(x))]. The incremental RS decoding algorithm is
described in Algorithm 2. Upon success, the incremental RS decoding algorithm returnsk non-error symbols. The
procedure will report failure either as the result of mismatched degree of the error locator polynomial, or insufficient
number of roots found by Chien search (Line 2). In both cases, no further erasure decoding is required. This reduces
the decoding computation time.

V. COMPLEXITY ANALYSIS

A. Encoding complexity

The communication cost incurred by the encoded data generated by a data-generating node isnm
⌈

⌈T/m⌉
k

⌉

. It

is easy to see that the total bits stored in each storage node is m
⌈

⌈T/m⌉
k

⌉

≈ ⌈T/k⌉.
Assuming a software implementation on field operations without look-up tables is used, the computation com-

plexity of encoding can be estimated as follows. Given that computation of one multiplication inGF (2m) is of m2

bit exclusive-ORs. At the data-generating node,kn
⌈

⌈T/m⌉
k

⌉

multiplications are performed, which is equivalent to

kn
⌈

⌈T/m⌉
k

⌉

m2 bit exclusive-ORs.

8

Algorithm 2: Incremental RS DecodingIncrRSDecode

init : CalculateFj given in (12) for allj /∈ U0.
ℓ← 0; Λ̃(0)(x)← 1;
Ω̃(0)(x)← 0; Φ(0)(x)← 0, Θ(0)(x)← 1.

input : stagel, two new symbols at the(j(ℓ)
1 + 1)th, and(j

(ℓ)
2 + 1)th nodes

output: FAIL or non-error symbolsr
begin

foreach i = 1, 2 do

x
(ℓ)
i ← αj

(ℓ)
i andy

(ℓ)
i ← S(ℓ)(x

(ℓ)
i)1

end
for i = 1 to 2 do

b
(ℓ−1)
i ← Ω̃(ℓ−1)(x

(ℓ)
i)− y

(ℓ)
i Λ̃(ℓ−1)(x

(ℓ)
i);

if b
(ℓ−1)
i = 0 then
Λ̃T (x)← Λ̃(ℓ−1)(x); Ω̃T (x)← Ω̃(ℓ−1)(x); ΘT (x)← (x− x

(ℓ)
i)Θ(ℓ−1)(x); ΦT (x)← (x− x

(ℓ)
i)Φ(ℓ−1)(x)

else
a
(ℓ−1)
i ← Θ(ℓ−1)(x

(ℓ)
i)− y

(ℓ)
i Φ(ℓ−1)(x

(ℓ)
i); ΘT (x)← (x− x

(ℓ)
i)Ω̃(ℓ−1)(x); ΦT (x)← (x− x

(ℓ)
i)Λ̃(ℓ−1)(x);

Ω̃T (x)← b
(ℓ−1)
i Θ(ℓ−1)(x)− a

(ℓ−1)
i Ω̃(ℓ−1)(x); Λ̃T (x)← b

(ℓ−1)
i Φ(ℓ−1)(x)− a

(ℓ−1)
i Λ̃(ℓ−1)(x).

end
if rank[Ω̃T (x), Λ̃T (x)] > rank[ΘT (x), ΦT (x)] then

swap[Ω̃T (x), Λ̃T (x)]↔ [ΘT (x), ΦT (x)].
end
if i = 1 then

Ω̃(ℓ−1)(x)← Ω̃T (x); Λ̃(ℓ−1)(x)← Ω̃T (x); Θ(ℓ−1)(x)← ΘT (x), Φ(ℓ−1)(x)← ΦT (x);
else

Ω̃(ℓ)(x)← Ω̃T (x); Λ̃(ℓ)(x)← Ω̃T (x); Θ(ℓ)(x)← ΘT (x); Φ(ℓ)(x)← ΦT (x).
end

end
if deg(Λ̃(ℓ)(x)) 6= ℓ then

return FAIL;
end
NumErrorLoc = ChienSearch(Λ̃(ℓ)(x)).
if NumErrorLoc > n− k ‖ NumErrorLoc 6= deg(Λ̃(ℓ)(x)) then2

return FAIL;
end
return k non-error symbolsr;

end

B. Computation complexity of decoding

In the subsequent complexity analysis, the worst case is assumed, namely, no failure on decoding is reported in
Algorithm 2 (Line 2), and the algorithm runs to completion.

In CRC checking, one polynomial division is performed. Sincethe dividend is of degreeT − 1 and the divider
is of degreer, the computation complexity of CRC checking is ofO(Tr).

Let v be the number of errors when the decoding procedure is completed. In theℓth iteration,ℓ errors are assumed
in the data and the number of erasures isn − k − 2ℓ. We first need to calculate two syndrome values. This can
be obtained by theFj calculated initially. For instance, in the first iteration, according to (12), the computation
complexity is ofO(k(n − k)) since there arek Fj ’s to be calculated and each is a product ofn − k terms. In the
next iteration, two more symbols are added to (4). Hence, theupdated syndrome values can be obtained by an extra
O(k) + O(n − k) computations. To find the error-locator polynomial, the W-B algorithm is performed two steps
in each iteration with complexityO(ℓ). Since we only consider software implementation, the Chien search can be
replaced by substituting a power ofα into the error-locator polynomial. It needs to test for at most k+ℓ positions to
locatek non-error positions such that it takesO((k + ℓ)ℓ) computations. Finally, inversion of Vandermonde matrix
Ĝ requiresO(k log2(k)) time [15]. In summary, the computation in theℓth iteration forℓ > 1 is

Lv(ℓ) = O(k log2 k) + O(n − k) + O(kℓ + ℓ2) .

9

N̄(n, k) =

n−k
X

v=0

n

v

!

pv(1− p)n−v

min(v,⌊ n−k
2

⌋,n−v−k)
X

i=0

(k + 2i)

`

n−v

i+k−1

´`

v

i

´

`

n

2i+k−1

´ ×
k

i + k
×

n− v − (i + k − 1)

n− (2i + k − 1)

+

n−k
X

v=0

n

n

v

!

pv(1− p)n−v

0

B

@
1−

min(v,⌊ n−k
2

⌋,n−v−k)
X

i=0

`

n−v

i+k−1

´`

v

i

´

`

n

2i+k−1

´ ×
k

i + k
×

n− v − (i + k − 1)

n− (2i + k − 1)

1

C

A

+
n
X

v=n−k+1

n

n

v

!

pv(1− p)n−v . (14)

Prsuc(n, k) =

n−k
X

v=0

n

v

!

pv(1− p)n−v

min(v,⌊ n−k
2

⌋,n−v−k)
X

i=0

`

n−v

i+k−1

´`

e

i

´

`

n

2i+k−1

´ ×
k

i + k
×

n− v − (i + k − 1)

n− (2i + k − 1)
. (15)

Counting forv iterations and the complexity of calculatingFj we have

Lv = O(vk log2 k) + O(k(n − k)) + O(v2k)

+O(v(n − k)) + O(v3) . (13)

Note the computation complexity is measured by finite field multiplications, which is equivalent tom2 bit exclusive-
ORs. Since the correctable number of errorsv is at most(n−k)/2, the decoding complexity is at mostO(k(n−k)2).
For smallv, The second termO(k(n − k)) dominates, which corresponds to syndrome computation.

C. Average communication cost of decoding

In this section, we provide a probabilistic analysis of the cost of communication by determining the number of
stages the algorithm needs to take, and the probability of successful execution. Givenn storage nodes and(n, k)
RS codes, it is easy to see that the fewest number of storage nodes to be accessed in the proposed scheme isk and
the most isn. We assume that the CRC checking can always detect an error ifit occurs. Without loss of generality,
we assume that all failures are Byzantine failures.s crash-stop failures can be easily modeled by replacingn with
n − s. An important metric of the decoding efficiency is the averagenumber of accessed storage nodes when the
probability of compromising each storage node isp. Failure to recover data correctly may occur in two cases. First,
v > n − k, i.e., there are insufficient number of healthy storage nodes. Second,⌊n−k

2 ⌋ < v < n − k, in which the
sequence of accessing determines the outcome (success of failure) of the decoding process. For example, if the first
v nodes accessed are all compromised nodes, correct decodingis impossible. In both cases, the decoding algorithm
stops aftern accesses and declares a failure. The communication cost isn.

The main result is summarized in the following theorem.
Theorem 1:With the progressive data retrieval scheme, the average number of access is given in Eq. (14).

Eq. (15) gives the probability of successful decoding.
The proof is omitted due to space limitations. Interested readers are referred to [16].

20 40 60 80 100 120 140
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Number of iterations

P
ro

ba
bi

lit
y

Simulation
Numerical results

Fig. 2. Distribution of the number of node accesses from simulations and analysis.n = 127, k = 31 andp = 0.2.

10

Numerical results:We verify the correctness of the analytical model using Monte-Carlo simulations imple-
mented in Matlab. Figure 2 shows the distribution of the number of storage nodes accessed when the algorithm
terminates. The bar chart gives the histogram from the Monte-Carlo simulations with 5000 runs, and the curve
represents the result from the analytical model. We choosen = 127, k = 31 andp = 0.2 so that 5000 runs give
sufficient statistics in the simulations. From Figure 2, it can be observed that the analytical results agree well with
the simulation.

Next, we fixn = 1023, and vary the number of data-generating nodesk from 101 to 401 and the error probability
p from 0 – 0.3. Figure 3 shows the increasing communication costas the probability of failure increases. The number
of crash-stop failure is set to be zero, and all Byzantine failures result in incorrect data. Clearly, when the error
probability p is small, the communication cost is close tok and monotonically increases asp increases.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
100

200

300

400

500

600

700

800

900

1000

Error probability p

A
ve

ra
ge

 c
om

m
un

ic
at

io
n

co
st

k=101
k=201
k=301
k=401

Fig. 3. Number of accesses vs. probability of failures.n = 1023 nodes,k = 101 – 401.

VI. EVALUATION

We have implemented the proposed and baseline algorithms inC. Evaluations are done on a desktop PC with a
2.66GHz Intel Xeon CPU, 4096 KB cache and available RAM of 2GB. Three algorithms are considered.

• BMA implements the Berlekamp-Massey (BMA) algorithm [4] for RSdecoding. Similar to Algorithm 1, BMA
progressivelyretrieves data from each storage node and performs decodinguntil the decoded symbols passes
the CRC checks or failure is declared. However, decoding cannot be performed incrementally.

• BMA-genieknows a priori how many symbols are needed to successfully decode. BMA-genie decodes only
once after retrieving sufficient number of symbols. Note thatBMA-genie is impossible to implement in practice,
and is included for comparison purpose only.

• IncrRSDecodeimplements the proposed progressive data retrieval schemewith the incremental decoding
algorithm.

In place of BMA, either the Euclidean or Welch-Berlekamp algorithm could have been used. They have the
same asymptotic time complexity. Figures 4–5 show the time ittakes to correctly decode a data block. A randomly
generated message is first partitioned intok information symbols and then encoded inton = 1023 coded symbols
of length10230 bits. Thus, the field size is210 = 1024. A stored symbol is corrupted with an error probabilityp
independently. Each point in the figures is an average of 50 runs.

Total computation time:Figure 4(a) and (b) illustrate the computation time (in log scale) spent in decoding
whenk = 101 andk = 401, respectively. The storage overheadn/k is 10.13 and 2.55 with the maximum number
of errors correctable being 461 and 311. From Figure 4, we observe that the BMA and IncrRSDecode computation
time increases asp increases. But the rate of increment in IncrRSDecode is much slower. Whenk is small or
the redundancy is higher (Figure 4(a)), IncrRSDecode is faster than the genie-aided BMA. This is because in the
genie-aided BMA, the computations of erasure polynomials (with O((n− k)2)) dominate the decoding time in the
case of small number of errors. In contrast, in IncrRSDecode,no erasure polynomials are computed.

Breakdown of the decoding computation:We break down the decoding computation time to understand the
dominant operations in the algorithms as well as how the timespent in each stage of the algorithms changes as
the error probability increases. The break down includes thetime to find the error-locator polynomial (elp-time),

11

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
10

−3

10
−2

10
−1

10
0

10
1

Error probability p

to
ta

l−
tim

e
(s

)

BMA
BMA−genie
IncrRSDecode

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
10

−2

10
−1

10
0

10
1

Error probability p

to
ta

l−
tim

e
(s

)

BMA
BMA−genie
IncrRSDecode

(a) k = 101 (b) k = 401

Fig. 4. Average computation time for decoding one group of encoded symbols

find the error locations (chien-time) and solve for the information polynomial (inv-mat-time). In Figure 1, the 1st
and 2nd block shows the elp-time, and the 3rd and 4th blocks give chien-time and inv-mat-time, respectively.

When the error probability is low (Figure 5(a)), computationof error location polynomials appears to dominate
for small k, while the matrix inversion time becomes significant whenk is large. In our implementation, the cost
of matrix inversion is quadratic in the number of symbols decoded. Chien search though asymptotically is the
most time consuming procedure, it can be performed quite fast. When the error probability is high, computation
of error location polynomials appear to dominate except in IncrRSDecode. Comparing Figure 5(a), (b) and (c), we
observe that the computation time in matrix inversion is almost negligible (on the order of tens of milliseconds)
in BMA and IncrRSDecode, and is comparable to that in BMA-genie (recall that BMA-genie knows the number
of errors in advance and thus performs matrix inversion onlyonce). This is because even though there are more
errors with largerp (and thus more iterations), the decoding algorithm is likely to fail in or before Chien search
(e.g., Algorithm 2 (Line 2)). Thus, in most cases, BMA and IncrRSDecode perform matrix inversion once.

(a) p = 1% (b) p = 10% (c) p = 20%

Fig. 5. Average computational time breakdown for decoding one codeword

A couple of observations can be made from the evaluation results. First, IncrRSDecode is very efficient since it
utilizes intermediate results from the previous iteration. Up to 20 times speed up can be attained, relative to classic
RS decoding. Second, the computation complexity in Section V only provides the worst-case order analysis. In
practice, the computation time in the average case can differ significantly in part due to hidden constant factors.

VII. A PPLICATIONS

In this section, we discuss the applications of the proposedprogressive data retrieval scheme.

12

TABLE I

THE PERFORMANCE COMPARISON BETWEEN DECENTRALIZED ERASURE CODES [17] AND OUR PROPOSED SCHEMES.

Decentralized erasure codesOur schemes
Storage complexity n n
Communication complexity in storage 5nln(k) n
Communication complexity in retrieving one unit of data k 1
Communication complexity in retrieving all data k k
Computation complexity for encoding 5 ln(k)T 2

0 n kTmn
Computation complexity for decoding (worst case) T 2

0 O(k3) f(v, n, k)
Can detect error? no yes
Can correct error? no yes
Type of guarantee? probabilistic deterministic

aT0 is the packet size generated by each data node andGF (2m) is the finite field the proposed scheme operates. Usually,T0 can be100 or even1000
times larger thanm.

bThere arev errors occurred in the decoding procedure. Ifv = 0, then f(v, n, k) = m2O(k log2 k); otherwise,f(v, n, k) = m2(O(vk log2 k) +
O(k(n − k)) + O(v2k) + O(v(n − k)) + O(v3)).

A. Storage in sensor networks with multiple data sources

Recently, decentralized erasure codes have been applied inwireless sensor networks. Givenk data nodes, andn
storage nodes, the objective is to retrieveall data when a data collector accessesany k out of n storage nodes. In
[17], randomized linear codes are used, where each data noderoutes its packet tod(k) = 5n

k ln(k) storage nodes.
Each storage node selects random and independent coefficientfi in a finite fieldFq, and stores a linear combination
of the received data (moduloq). In [10], a distributed implementation of fountain codes is proposed. Instead of
pulling the data from candidate source nodes, a deterministic and probabilistic scheme are devised to push data
from the source nodes to storage nodes. Both schemes share the common approach of coding at the storage nodes.
As a result, sparsity of the coding matrix is necessary to reduce communication cost. This is the main argument
made by the authors of [17] for not using RS codes. If RS codes are used and coding is done at the storage nodes,
every data node needs to send its data to almost alln storage nodes, resulting in a communication complexity of
Θ(nk). However, such a high complexity can be avoided if i) the source data is divisible into smaller coding units,
and ii) encoding is performed at the data-generating nodes.

The proposed progressive data retrieval scheme can be directly applied when there are multiple data sources.
Information from each data generating nodes is stored independently (rather than mixed at the storage nodes).
Therefore, in addition to its ability to correct errors and tolerate Byzantine failures, the progressive data retrieval
scheme also has the added benefit that partial retrieval of a subset of data sources is allowed. In contrast, due
to the mixing at the storage node, decentralized erasure codes mandate “all-or-none”, namely, either all storage
nodes need to be accessed or none of the individual data sources can be retrieved. Table I provides a quantitative
comparison between the cost of decentralized erasure codesand our proposed scheme. From Table I, we see that
the proposed scheme outperforms decentralized erasure codes in almost all metrics.

B. Peer-to-peer tuple space

A tuple space is an implementation of the associative memoryparadigm for parallel/distributed computing [18].
It provides a repository of tuples that can be accessed concurrently, and may be thought as a form of distributed
shared memory. Implementations of tuple spaces have also been developed for Smalltalk, Java (JavaSpaces), Python,
Ruby, TCL, Lua, Lisp, Prolog and the .NET framework. Typically, the tuple space is stored at a reliable central
server. Processors produce pieces of data and use the data via get and put operations, respectively, based on
unique identifiers of the data. In presence of a large number ofprocessors (nodes), the tuple space server becomes
a single point of failure and performance bottleneck. One way to alleviate this problem is to use peer-to-peer
storage systems to host the tuple space. However, volatility and failure of storage nodes need to be considered. The
distributed progressive retrieval scheme provides fault tolerance to erasures (unavailability of nodes) and Byzantine
failures (corrupted data), and thus can be used to constructa reliable tuple space from an unreliable peer-to-peer
storage system.

13

VIII. C ONCLUSIONS

In this paper, we developed a solution using RS codes to spread information distributedly and redundantly for
the handling of Byzantine failures. The data retrieval procedure is carried out in a progressive manner such that
the communication cost is minimized while intermediate computation results can be utilized to greatly reduce
computation cost. The efficient encode and decode primitives serve as a fundamental building block for survivable
distribution storage systems. As future work, we will explore the applications of the proposed algorithms in practical
systems.

REFERENCES

[1] “RAID, Redundant Array of Independent Disks,” http://en.wikipedia.org/wiki/Redundantarray of independentdisks.
[2] G. R. Goodson, J. J. Wylie, G. R. Ganger, and M. K. Reiter, “Efficient byzantine-tolerant erasure-coded storage,” inDSN ’04: Proceedings

of the 2004 International Conference on Dependable Systems and Networks. Washington, DC, USA: IEEE Computer Society, 2004,
p. 135.

[3] H. Krawczyk, “Distributed fingerprints and secure information dispersal,” in PODC ’93: Proceedings of the twelfth annual ACM
symposium on Principles of distributed computing. New York, NY, USA: ACM, 1993, pp. 207–218.

[4] T. Moon, Error Correction Coding: Mathematical Methods and Algorithms. Hoboken, NJ: John Wiley & Sons, Inc., 2005.
[5] H. William, S. Teukolsky, W. Vetterling, and B. Flannery,Numerical Recipes in C: The art of scientific computing. Cambridge

university press New York, NY, USA, 1988.
[6] J. Blomer, M. Kalfane, R. Karp, M. Karpinski, M. Luby, and D. Zuckerman, “An xor-based erasure-resilient coding scheme,” ICSI

Technical Report TR-95-048, 1995.
[7] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong,and S. Sankar, “Row-diagonal parity for double disk failure

correction,” inProceedings of the 3rd USENIX Symposium on File and Storage Technologies (FAST), 2004, pp. 1–14.
[8] M. Blaum, R. Roth, I. Div, A. Center, and C. San Jose, “On lowestdensity MDS codes,”IEEE Trans. Inform. Theory, vol. 45, no. 1,

pp. 46–59, 1999.
[9] M. Blaum, J. Brady, J. Bruck, J. Menon, and A. Vardy,The EVENODD code and its generalization. IEEE and Wiley Press, New

York, 2001, pp. 187–208.
[10] Y. Lin, B. Liang, and B. Li, “Data persistence in large-scale sensor networks with decentralized fountain codes,” inProceedings of the

26th IEEE INFOCOM, 2007, pp. 6–12.
[11] J. S. Plank, J. Luo, C. D. Schuman, L. Xu, and Z. Wilcox-O’Hearn, “A performance evaluation and examination of open-source erasure

coding libraries for storage,” inFAST ’09: Proccedings of the 7th conference on File and storage technologies. Berkeley, CA, USA:
USENIX Association, 2009, pp. 253–265.

[12] I. S. Reed and X. Chen,Error-Control coding for Data Networks. Boston, MA: Kluwer Academic, 1999.
[13] K. Araki, M. Takada, and M. Morii, “On the efficient decoding of Reed-Solomon codes based on GMD criterion,” inProc. of the

International Symposium on Multiple-Valued Logic, Sendai, Japan, May 1992, pp. 138–145.
[14] S. Lin and D. J. Costello, Jr.,Error Control Coding: Fundamentals and Applications, 2nd ed. Englewood Cliffs, NJ: Prentice-Hall,

Inc., 2004.
[15] I. Gohberg and V. Olshevsky, “Fast algorithms with preprocessing for matrix-vector multiplication problem,”J. Complexity, vol. 10,

pp. 411–427, December 1994.
[16] Y. S. Han, S. Omiwade, and R. Zheng, “Survivable distributed storage with progressive decoding,” Technical Report UH-CS-09-17,

Department of Computer Science, University of Houston, 2009.
[17] A. G. Dimakis, V. Prabhakaran, and K. Ramchandran, “Decentralized erasure codes for distributed networked storage,”IEEE Trans.

Inform. Theory, vol. 52, no. 6, pp. 2809–2816, June 2006.
[18] D. Gelernter and N. Carriero, “Coordination languages and their significance,”Commun. ACM, vol. 35, no. 2, pp. 97–107, 1992.

