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Abstract

In this report, we investigate the feasibility of detecting contrast agent in intravascular ultrasound (IVUS)
sequences by the characterization of the radio-frequency (RF) signal using one-class cost-sensitive learning.
Samples from RF signal corresponding to contrast-free baseline IVUS and contrast agent were acquired and
used to compute spectral-based and wavelet-based features over a three-dimensional window of size. The
samples were used to compute two contrast detection classifiers (CDC) based on a one-class cost-sensitive
support vector machines (SVM) method. For the first contrast detection classifier (CDC1), we train the one-
class SVM to recognize the contrast agent RF signal. For the second contrast detection classifier (CDC2)
we train the SVM to recognize baseline IVUS RF signal and detect the contrast agent by the rejection
from this model. The performance of these models was evaluated for frequency-domain and wavelet-based
features using different window sizes by computing the rate of the detection of contrast-agent (CD) and
the rejection of baseline IVUS (BR) for CDC1 and the rate of the detection of baseline IVUS (BD) and the
rejection of contrast agent (CR) for CDC2 in two 40MHz IVUS sequences from swine on which a bolus
injection of contrast agent (SonoVuer) was employed. Using frequency-domain features, the best average
performances for CDC1 (CD=96.61% and BR=95.67%) and CDC2 (BD=96.79% and CR=94.24%) were
obtained for a window of size: (r = 255, θ = 7, t = 13). The best performances for wavelet-based features
for CDC1 (CD=96.79% and BR=94.13%) and CDC2 (BD=98.51% and CR=96.94%) were obtained using
the same window size.
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I. INTRODUCTION

In the majority of cardiovascular diseases, the acute coronary syndromes are the result of inflammation of the
coronary arteries and thrombosis-related complications (i.e., plaque rupture). The vasa vasorum (VV) is a network
of microvessels that nourish the tissues of the wall of bigger vessels [1]. Recent studies have related the presence
of neovascularization in the vasa vasorum of the plaque as a common feature of inflammation [2] and a preceding
or concomitant factor associated with plaque rupture and instability [3], [4]. For this reason, there is an urgent
need for tools that allow detection and measurement of plaque neovascularization and detection of leakage and
entrapment of blood within atherosclerotic plaques. Such measurements can enable developing an index of plaque
vulnerability. Intravascular ultrasound (IVUS) is currently the gold-standard technique for assessing the morphology
of blood vessels and atherosclerotic plaques in vivo. Although IVUS provides reliable cross section images of the
coronary arteries, the in vivo imaging of the coronary VV remains a great challenge due to its small size, its echo
transparency, and the different IVUS artifacts. To overcome these limitations, IVUS is being used in combination
with contrast agents in the form of microbubbles with size similar to red blood cells (RBC). Microbubbles resonate
in response to the pressure changes induced by the ultrasound wave. This makes them several times more echogenic
than normal body tissues and as result they appear bright in the B-mode ultrasound images. These contrast agents
serve as surrogate RBCs and perform acoustically as true intravascular tracers providing, in real-time, the amount
and distribution of neovessels within atherosclerotic lesions [5]. In the literature, two methods have been proposed
for the detection of microbubbles within the vessel wall. The first method [6], [7], [8] uses differential imaging to
quantify the changes in intensity due to microcirculation after the microbubbles’ injection. The disadvantage of these
methods is related to the necessity of using gated sequences and a registration step. These tasks are difficult due to
the nature of the IVUS images. In addition, these methods work with the cartesian B-mode representation. This is
a disadvantage because the transformation to this representation results in loss of potentially valuable information.
In the second method [9], [10], [11], the harmonic oscillations induced on the microbubbles are detected by a
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specially designed IVUS system. The disadvantage of this method is the necessity of a custom-build IVUS system
that is not currently commercially available.

In this work, we investigate the feasibility of detecting contrast agent on IVUS sequences by the characterization
of the radio frequency (RF) IVUS signal using two contrast detection classifiers (CDC) based on one-class cost-
sensitive learning. In the first contrast detection classifier (CDC1), we build a model for the detection of contrast
agent from samples of contrast agent present in the lumen during the microbubble injection. In the second contrast
detection classifier (CMC2), we detect the contrast agent as a change from baseline IVUS (i.e., lumen, intima,
media and adventitia signals acquired from frames prior to the bolus injection).

Our contribution is a method for the identification of contrast agent in ungated IVUS data based on one-class
cost-sensitive learning using the RF IVUS signal. The primary advantage of this method is that by using the RF
IVUS data, we do not lose information contained in the frequency of the signal. The second advantage is that by
using one-class learning, we do not need to provide “background” samples for building the classifiers. In our case
this is important because, although samples for contrast agent in lumen can be acquired by manual annotations
from an expert, the background can consist of a wide variety of other imaged tissues. Thus, obtaining samples for
the other tissues may be difficult and labor-intensive to obtain.

II. PREVIOUS WORK

The majority of existing methods for IVUS data analysis are focused on the characterization of atherosclerotic
plaque composition [12], [13], [14], [15]. These methods can be divided in two categories: those that extract texture
features from the gray-level IVUS B-mode representation [12], [13] and those that analyze the ultrasound RF signal
[14], [15]. Since the B-mode images are generated using only the amplitude information of the RF signal, those
methods that deal directly with it are expected to provide better results. In fact, it has been shown that the ultrasound
RF signals provide quantitative information on tissue microstructures [16], [17].

Nair et al.[14], [15] proposed a method known as “virtual histology” (IVUS-VH) that is based on the power
spectral analysis (intercept, slope, mid-band fit, and minimum and maximum powers and their corresponding
frequencies) of the IVUS RF signals combined with classification trees. High accuracies (>85%) were reported for
differentiating fibrous, fibrofatty, calcified, and necrotic regions. In addition, Rodriguez-Granillo and Nasu et al. [18],
[19], preset in-vivo studies of this method reporting high correlation with the corresponding histology. Kawasaki
et al. [20], [21] proposed another method of tissue classification using the integrated backscatter (IB) that is a
parameter derived from the RF signal. The resulting values from this parameter are used to divide the tissue into five
categories: thrombus, intimal hyperplasia or lipid core, fibrous tissue, mixed lesions and calcification. This method
has demonstrated high sensitivity and specificity for characterizing calcification (100%, 99%), fibrosis (94%, 84%),
and lipid pool (84%, 97%) [22]. O’Malley et al. [23] presented a study of the feasibility of blood characterization
on IVUS data using features intended to quantify speckle and features based on frequency-domain measures of
high-frequency signal using one-class support vector machines on the RF raw signal, the signal envelope and the
log-compressed signal envelope. Most recently, the feasibility of using wavelet analysis for plaque characterization
using the RF amplitude [24], [25] and the RF signal itself [26] has been studied with promising results. Furthermore,
wavelet analysis has also been used for blood classification [27] and IVUS image segmentation [28], [29].

III. METHODS

Experimental data

In vivo ungated IVUS sequences were acquired in swines using a 40 MHz catheter, from which the raw backscatter
data were sampled at 400 MHz. Recordings were made over several minutes, during which time the catheter was
held steady. Approximately half-way through the recording session, a bolus injection of microbubbles (SonoVuer)
took place proximally to the imaging catheter. This resulted in a brief (1 to 3 s.) period of luminal echo-opacity
followed by a gradual diminution of contrast in the lumen (5 to 10 s.).

A. One-class cost-sensitive learning

The one-class support vector machine (SVM) method is a widely-studied learner or “recognizer”. The strategy
of one-class SVM is to map the data into an infinite feature space and then use a hyper-sphere to describe the data
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in that feature space. The goal is to have the smallest possible hyper-sphere that includes most of the training data.
The trade-off between the radius of the hyper-sphere and the number of training samples that it can hold is set by
the parameter ν ∈ [0, 1]. Small values of ν will attempt to put more data into the hyper-sphere while larger values
of ν will try to squeeze the size of the hyper-sphere. The second parameter of interest is the width, γ, of the SVM
radial basis function (i.e., k(x,x′) = exp(−γ ‖x− x′‖2) for a pair of feature vectors x and x′). Properties of a
good SVM solution include an acceptable classification rate as well as a low number of resulting support vectors
relative to the number of training examples.

B. Features

By stacking the 1-D raw signals we obtain a 2-D frame in polar coordinates. Stacking consecutive frames
over time, we obtain a 3-D IVUS signal volume S(R,Θ, T ) (Fig. 1) where R indicates radial distance from the
transducer, Θ is the angle with respect to an arbitrary origin, and T is the time since the start of the recording (i.e.,
frame number).

Fig. 1. 3-D IVUS signal volume obtained by frame stacking.

We study the feasibility of characterizing the contrast agent’s signal using two types of features: features based
on frequency-domain spectral characterization as proposed by O’Malley et al. [23] and features based on 2-level
2-D discrete wavelet decomposition. These features are defined for a 3-D window of size r× θ× t. The frequency-
domain-based features are computed as:

fΓ
ζ (R,Θ, T ) =

dr/2e∑
i=1

dθ/2e∑
j=1

dt/2e∑
k=1

ijkŴ (i, j, k) , (1)

fΓ
η (R,Θ, T ) = Fζ

dr/2e∑
i=1

dθ/2e∑
j=1

dt/2e∑
k=1

Ŵ (i,j,k)

, (2)

with Γ ∈ S,E,L being S the 3-D signal volume, E the 3-D volume of the signal envelope and L the log-compressed
volume of the signal envelope, and Ŵ defined as the magnitude of the Fourier spectrum of the windowed signal
W centered on the point (R,Θ,T ).

The wavelet decomposition-based features are computed as:

fSA,l(R,Θ, T ) =
dre∑
i=1

dθe∑
j=1

dte∑
k=1

|Al(W (i, j, k))| (3)

fSH,l(R,Θ, T ) =
dre∑
i=1

dθe∑
j=1

dte∑
k=1

|Hl(W (i, j, k))| (4)

fSV,l(R,Θ, T ) =
dre∑
i=1

dθe∑
j=1

dte∑
k=1

|Vl(W (i, j, k))| (5)

fSD,l(R,Θ, T ) =
dre∑
i=1

dθe∑
j=1

dte∑
k=1

|Dl(W (i, j, k))| (6)

where Al(·), Hl(·), Vl(·) and Dl(·) are the approximation, horizontal detail, vertical detail, and diagonal detail,
respectively, at level l of the 2-D discrete wavelet transform decomposition of W .
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C. Contrast agent and baseline samples

The contrast agent samples were obtained from a manual segmentation of the lumen by an expert on those frames
that encompass the period from when the lumen was no longer echo-opaque following injection to when contrast
was no longer visible in the lumen. For obtaining the baseline IVUS samples, we use data from the pre-injection
period that corresponds to those frames that encompass the period from the start of the recording to one frame
before the contrast agent was first visible in the lumen.

Only those samples for which the class remains constant along the 3-D window are used. The features are
computed for this window and are associated with the class contained by it. To improve the scaling of the feature
space, each feature of the samples used for training is normalized to zero mean and unit variance. The normalization
values are retained for use in testing and deployment.

For the CDC1, contrast agent samples are used as examples for the positive class S+ in training and testing. In
addition, baseline IVUS samples are used as negative examples S− for testing, since we know that these samples
are contrast agent-free. Similarly, for the CDC2, samples from the baseline IVUS are used as the positive examples
S+ for training and testing, and samples of contrast agent are used as negative examples S− for testing the detection
of the change.

D. Training

Given a set of positive S+ and negative S− examples, a grid search for the one-class SVM parameters γ and
ν is performed over a subset of the positive and negative samples to optimize the classifiers. Optimization in this
case aims to obtain an acceptable true positive rate on S+, true negative rate on S−, and low number of support
vectors. The one-class SVM models for the CDCs are computed using only the positive examples of the subset
corresponding to each case. Next, the rest of the positive and negative examples are used for testing. Thus, we will
have two performances: rate of samples of the class of interest (contrast agent for CDC1 and baseline IVUS for
CDC2) correctly classified as positive, and rate of other samples correctly classified as negative.

The parameters γ and ν must be selected in such a way that high rate on the classification of both classes is
achieved. Therefore, the criteria for the selection of the best parameters is given by a weighted linear combination
of the accuracy on the classification of both classes:

R = w1RP + w2RN , (7)

where R stands for total rate, RP and RN are the rates of the class of interest and the negative samples respectively,
and w1 and w2 ∈ [0, 1] are the weights associated with the class of interest and negative sample rates respectively.
This can be considered cost-sensitive learning for one-class classifiers.

E. Deployment

The performance of the CDCs was evaluated for the frequency-domain and two-level wavelet-based features
using two different IVUS sequences. Since the performance of the features is related to the window size (r, θ, t)
used for extracting them, we compute the performance of each type of feature separately. We use different sizes
of windows on each experiment for each sequence by computing the average rate of detection of contrast-agent
(CD) and the rejection of baseline IVUS (BR) for CDC1 and the rate of the detection of baseline IVUS (BD) and
the rejection of contrast agent (CR). For all the experiments, the weights used for the cost-sensitive learning were
w1 = 0.6 and w2 = 0.4 for both CDCs.

IV. RESULTS

Tables I and II show the number of contrast agent (CA) and baseline IVUS (BL) samples used for training
and testing in each experiment for the first and second sequences, respectively. These samples were used for both
CDCs simply by changing the class of importance (CA for the CDC1 and BL for CDC2). Tables III and IV show
the average performance results when using the frequency-domain and the wavelet-based features, respectively, for
both CDC1 and CDC2.

The best performance for both CDCs and the two type of features are obtained when using a window of
size (r = 255, θ = 7, t = 13). For the frequency-domain features, the best average performance with CDC1 is
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CD=96.61% and BR=95.67%. With CDC2 is BD=96.79% and CR=94.24%. The best performance for wavelet-based
features with CDC1 is CD=96.79% and BR=94.13%. With CDC2 is BD=98.51% and CR=96.94%.

In more detail, the performance of the frequency-domain-based features have a strong dependence on the time
information (t), and a moderate dependence on the radial information (r) for both CDCs. The best results for
this cases are obtained when using a window size with r ≥ 127 and t = 13 independently of the size of θ. For
windows with t < 13, the performance reduce rapidly despite the values of r and t. On the other hand, wavelet-
based features tend to be more consistent independently of the time, angular and radial information as long as the
overall information is sufficient. Here, for CDC1, the best results are obtained using a window of size r = 255
independently of the size of θ and t. However, for CDC2, wavelet-based features are shown to be more robust to
variation on the window size achieving good performance even for the smallest window used in the experiments.

Figures 2 and 3 depict examples of the classification results for CDC1 using the frequency-domain-based features
and wavelet-based features, respectively, on frames corresponding to pre-injection (Fig. 2(a) and Fig. 3(a)) and
during-injection (Fig. 2(b) and Fig. 3(b)) with a window of size (r = 255, θ = 7, t = 13). Most of the
misclassifications on the pre-injection frames occur in the lumen. This is due to the fact that the contrast agent
samples were acquired from the lumen on the frames corresponding to the microbubble injection where some
blood can be still present. However, this does not pose a problem at all since the long-term goal of contrast agent
detection is the revelation of angiogenesis in the plaque. Then, we can exclude the lumen from the analysis. The
majority of the misclassification of the during-injection frames occurs in places where the radial information r of
the corresponding window is near to a change in tissue (i.e., change from lumen to media/adventitia).

(a) (b)

Fig. 2. Classification results for CDC1 using the frequency-domain-based features in (a) IVUS frame before injection and (b) IVUS frame
during the injection. In both images, the green color indicates the pixels classified as contrast agent and the red color those classified as
non-contrast agent.

(a) (b)

Fig. 3. Classification results for CDC1 using the wavelet-based features in (a) IVUS frame before injection and (b) IVUS frame during the
injection. In both images, the green color indicates the pixels classified as contrast agent and the red color those classified as non-contrast
agent.

Figure 4 depicts an example of the classification results for CDC2 using the frequency-domain-based features
and a window of size (r = 255, θ = 7, t = 13). In the pre-injection frame (Fig. 4(a)), we can observe that most
of the misclassifications do not occur in the lumen as with CDC1, but in different places along the wall. This is
due to the lack of samples that are sufficiently representative of all the different tissues in the vessel. Moreover,
in the during-injection frames (Fig. 4(b)) we can observe that most of the contrast agent was detected as a change
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from baseline IVUS data, with only some misclassifications of those samples where the radial information r of
the corresponding window is near to a change on tissue (i.e., change from lumen to media/adventitia). Regarding
the results with CDC2 and wavelet-based features (Fig. 5), we can observe a better performance for both the
pre-injection (Fig. 5(a)) and the during-injection frames (Fig. 5(b)) as expected.

(a) (b)

Fig. 4. Classification results for CDC2 using the frequency-domain-based features in (a) IVUS frame before injection and (b) IVUS frame
during the injection. In both images, the green color indicates the pixels classified as non-baseline and the red color those classified as
baseline.

(a) (b)

Fig. 5. Classification results for CDC2 using the wavelet-based features in (a) IVUS frame before injection and (b) IVUS frame during the
injection. In both images, the green color indicates the pixels classified as non-baseline and the red color those classified as baseline.

V. DISCUSSION

The results obtained in our experiments indicate that it is possible to identify contrast agent in IVUS data using
one-class learning techniques. In addition, we observe that wavelet-based features perform better and are more
robust compared with the frequency-domain-based features.

Since the radius of the hyper-sphere is controlled by the parameter w, cost-sensitive learning is possible with
one-class.

Although our method provides promising results without the necessity of gating or a registration step, the inclusion
of this pre-process could increase accuracy and would allow us to use a smaller window to achieve higher resolution.
Future research includes the use of this preprocessing step and the investigation of new features.

VI. LIMITATIONS

For the results presented here, training and testing were performed on each sequence independently. A topic
of future investigation is whether a classifier trained on one sequence will have similar accuracy when applied to
another (for instance, a sequence recorded from a different subject or even with a different catheter or contrast
agent).

To achieve our ultimate goal of detecting and quantifying the microvasculature, it is necessary to increase the
resolution of our method.

Histological validation would be necessary to determine the accuracy of our approach when applied to the
detection of extra-luminal blood.
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VII. CONCLUSION

We have presented a method for the identification of contrast agent in IVUS with contrast detection models based
on one-class cost-sensitive learning. Both approaches have demonstrated the feasibility of detecting contrast agent
using the raw IVUS signal without the necessity of a reference image or registration.
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TABLE I
NUMBER OF EXAMPLES FROM CONTRAST AGENT (CA) AND BASELINE IVUS (BL) USED FOR TRAINING AND DEPLOYMENT FOR

SEQUENCE 1.

Window size Training Deployment
r θ t CA BL CA BL

255 13 13 18,924 9,055 9,462 4,528
255 13 7 17,949 13,844 8,975 6,921
255 13 5 20,474 16,610 10,238 8,305
255 7 13 14,838 8,473 7,419 4,236
255 7 7 20,165 15,270 10,082 7,634
255 7 5 22,959 18,218 11,479 9,109
255 5 13 15,394 8,693 7,697 4,346
255 5 7 20,912 15,762 10,456 7,881
255 5 5 23,791 18,836 11,896 9,419
127 13 13 27,968 11,570 13,984 5,785
127 13 7 26,046 17,474 13,022 8,737
127 13 5 29,505 20,829 14,753 10,415
127 7 13 21,501 10,665 10,751 5,333
127 7 7 28,754 19,136 14,377 9,568
127 7 5 32,513 22,709 16,256 11,355
127 5 13 31,873 13,636 15,937 6,818
127 5 7 42,713 24,487 21,356 12,243
127 5 5 33,551 23,348 16,775 11,675

63 13 13 33,679 13,041 16,839 6,520
63 13 7 44,922 23,504 22,461 11,752
63 13 5 50,790 27,922 25,396 13,961
63 7 13 36,912 14,306 18,456 7,153
63 7 7 49,196 25,606 24,598 12,803
63 7 5 38,616 25,295 19,308 12,648
63 5 13 38,019 15,267 19,010 7,633
63 5 7 50,689 27,330 25,344 13,664
63 5 5 39,730 25,972 19,865 12,987



10

TABLE II
NUMBER OF EXAMPLES FROM CONTRAST AGENT (CA) AND BASELINE IVUS (BL) USED FOR TRAINING AND DEPLOYMENT FOR

SEQUENCE 2.

Window size Training Deployment
r θ t CA BL CA BL

255 13 13 8,825 17,189 4,412 8,595
255 13 7 19,516 30,081 9,757 15,041
255 13 5 24,371 34,379 12,186 17,189
255 7 13 10,745 17,205 5,373 8,603
255 7 7 23,577 30,110 11,788 15,054
255 7 5 29,309 34,410 14,654 17,206
255 5 13 11,096 17,920 5,548 8,960
255 5 7 24,397 31,360 12,199 15,680
255 5 5 30,294 35,840 15,148 17,920
127 13 13 14,440 18,912 7,220 9,456
127 13 7 30,283 33,096 15,142 16,548
127 13 5 37,046 37,824 18,523 18,912
127 7 13 17,167 18,922 8,584 9,462
127 7 7 12,624 33,114 6,312 16,558
127 7 5 15,394 37,845 7,697 18,923
127 5 13 6,629 19,691 3,315 9,845
127 5 7 13,806 34,459 6,903 17,229
127 5 5 16,802 39,381 8,401 19,691

63 13 13 6,308 19,739 3,153 9,869
63 13 7 13,048 34,542 6,524 17,272
63 13 5 15,866 39,478 7,934 19,738
63 7 13 7,321 19,744 3,661 9,872
63 7 7 15,104 34,552 7,552 17,276
63 7 5 18,327 39,488 9,164 19,744
63 5 13 8,000 20,555 4,000 10,277
63 5 7 16,437 35,971 8,218 17,985
63 5 5 19,908 41,109 9,954 20,555
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TABLE III
AVERAGE RATE OBTAINED FOR THE CLASSIFICATION OF CONTRAST AGENT (CA) AND BASELINE IVUS (BL) FOR CONTRAST

DETECTION CLASSIFIERS 1 AND 2 (CDC1 AND CDC2 RESPECTIVELY) USING FREQUENCY-DOMAIN-BASED FEATURES.

Window size CDC1 CDC2

r θ t CA(%) BL(%) CA(%) BL(%)
255 13 13 94.87 96.85 93.29 93.16
255 13 7 96.47 90.05 92.47 96.63
255 13 5 96.35 82.05 82.80 96.59
255 7 13 96.62 95.68 97.83 96.69
255 7 7 96.61 82.48 85.16 96.74
255 7 5 73.24 81.01 74.58 96.65
255 5 13 91.77 96.36 96.54 96.37
255 5 7 95.15 82.28 82.55 96.60
255 5 5 50.23 94.76 71.57 96.54
127 13 13 93.79 95.24 92.22 95.08
127 13 7 96.65 80.72 86.04 96.45
127 13 5 73.32 78.87 76.05 96.73
127 7 13 96.43 88.83 93.28 96.74
127 7 7 70.08 87.48 75.72 93.80
127 7 5 70.25 81.69 66.17 93.39
127 5 13 93.32 85.04 87.63 90.66
127 5 7 90.54 75.82 73.37 91.05
127 5 5 70.26 80.44 63.40 93.55

63 13 13 91.85 86.96 91.04 90.62
63 13 7 90.83 78.62 79.36 91.21
63 13 5 90.79 72.45 72.36 90.80
63 7 13 90.96 83.45 85.31 90.56
63 7 7 91.12 70.14 72.59 90.84
63 7 5 70.15 75.63 60.19 93.74
63 5 13 90.90 80.42 82.68 90.56
63 5 7 91.09 64.14 69.72 91.22
63 5 5 70.39 72.03 69.30 88.94
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TABLE IV
AVERAGE RATE OBTAINED FOR THE CLASSIFICATION OF CONTRAST AGENT (CA) AND BASELINE IVUS (BL) FOR CONTRAST

DETECTION CLASSIFIERS 1 AND 2 (CDC1 AND CDC2 RESPECTIVELY) USING WAVELET-BASED FEATURES.

Window size CDC1 CDC2

r θ t CA(%) BL(%) CA(%) BL(%)
255 13 13 91.23 94.14 98.62 95.38
255 13 7 96.82 93.29 97.31 96.94
255 13 5 96.70 91.85 94.69 96.81
255 7 13 96.80 94.14 98.51 96.95
255 7 7 96.86 93.04 96.46 96.79
255 7 5 96.87 90.05 93.93 96.57
255 5 13 96.44 94.25 95.63 93.78
255 5 7 96.89 92.69 96.05 96.64
255 5 5 96.82 89.69 93.03 96.55
127 13 13 94.02 91.50 97.17 94.04
127 13 7 96.62 89.15 93.98 96.60
127 13 5 96.79 86.03 90.74 96.72
127 7 13 96.66 91.94 96.44 96.62
127 7 7 93.95 75.13 90.14 97.24
127 7 5 93.78 69.51 88.85 94.34
127 5 13 90.88 77.22 92.01 95.86
127 5 7 90.63 58.86 88.36 94.58
127 5 5 94.02 70.38 86.10 95.73

63 13 13 90.62 70.50 94.44 93.26
63 13 7 90.49 55.90 90.91 93.52
63 13 5 90.86 51.16 86.57 92.68
63 7 13 91.34 62.77 92.31 94.83
63 7 7 91.29 55.03 88.00 94.49
63 7 5 93.65 62.35 83.22 96.09
63 5 13 91.05 64.52 90.86 94.87
63 5 7 90.80 55.93 86.77 93.37
63 5 5 92.37 64.13 81.19 96.41


