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Abstract  

This paper introduces Cougar^2, an innovative open source Java framework and toolset that assists 
researchers in designing, developing, and using machine learning and data mining algorithms. The 
primary mission for Cougar^2 is to provide an intuitive API to the research community with the 
abstraction and flexibility necessary to allow painless extension of the core framework. The Cougar^2 
framework introduces and employs the Factory, Algorithm, and Model (FAM) paradigm which represents 
a novel combination of established object-oriented principles, design patterns, strategic abstraction, and 
domain knowledge geared for any machine learning or data mining task. Cougar^2 has been used 
successfully for both state of the art spatial data mining research (regional knowledge discovery and 
clustering) and as the main development tool in a data mining graduate course over the past two years. 
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I. INTRODUCTION 
Advances in database and data acquisition technologies have generated an immense amount of data. Data mining 
and machine learning tools needed to analyze this immense data vary for each researcher, and often one COTS 
(Commercial-off-the-Shelf) product or self-developed algorithm does not meet the needs of the complete data 
mining task. Therefore there is a great need for open source development platforms where individuals can alter the 
machine learning and data mining tools based on their needs and contribute to both the academic and open source 
community at the same time.  

Typically, there are three problems encountered when working with open source data mining projects, especially 
those that involve a team of researchers: (1) individuals need to perform a large number of experiments that involve 
many parameter configurations that should be saved for future analysis and reuse; (2) a new algorithm often 
extends existing work which yields to inter-operability problems and significant effort is essentially wasted porting 
one algorithm into a different learning framework. (3) Former developers leave code without adequate 
documentation which makes it very difficult to reuse and improve. These problems require a unified framework 
that allows for implementing diverse categories of algorithms. Additionally, the framework should provide tools 
and utilities that facilitate the entire lifecycle of use: designing experiments, developing algorithms, and 
implementing software that lives beyond the lifetime of the project. 
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There are many data mining and machine learning open source projects available. The majority of them are 

implemented in Java for platform independence (e.g. Weka [12] and RapidMiner [10]) or in C/C++ for 
computational efficiency (e.g. malibu [9] and Orange [6]). Weka is a collection of machine learning algorithms for 
data mining tasks. It is one of the most popular open source software tool bundles and currently contains more than 
150 algorithms. Developers can either add an algorithm in Weka or integrate Weka’s classes into another system. 
RapidMiner provides a GUI for representing experiments in a tree-like structure called the operator tree and uses a 
multi-layered data view which represents data in memory similar to a database system view. Orange is a framework 
for machine learning and data mining that is implemented in C++ and Python. A graphical user interface is 
provided through a set of building blocks called widgets. Different open source tools have different goals. For 
example, RapidMiner focuses on fulfilling needs of end users and provides a GUI for the users. Unlike end-users, 
researchers are more interested in code validation, libraries/tools that aid algorithm construction, ease of 
implementing new algorithms, template structures, and code reusability.  

In this paper, we introduce Cougar^2 [13] (spoken as Cougar-squared), an open source machine learning and data 
mining framework that provides intuitive APIs for researchers and developers. Cougar^2 provides tools not only to 
facilitate development but also to enhance experiment configuration. In a nutshell, Cougar^2 provides a 
development framework whose goal is to make code easy to write as well as to use. The core functionality consists 
of data representation, an algorithm design paradigm, and an experiment system. The design of algorithms in 
Cougar^2 is based on a 3-role model called Factory, Algorithm and Model (FAM). A parallel experiment system 
allows configuration and consistency checking to be done before running the experiment on multiple machines, 
which greatly enhances the ability to run large-scale experiments. Users can save configured algorithms, trained 
models and experimental results and reuse them later without manually restoring object state. The framework also 
provides additional APIs and tools that assist implementation and data preprocessing. For instance, Cougar^2 
enables a novel region discovery library that assists knowledge discovery in spatial data. Cougar^2 has proven to be 
a robust framework supporting the development of region discovery clustering algorithms; it has been used and 
extended as a development platform in graduate courses and in research conducted by our group for over two years. 
The major components of the Cougar^2 Platform is shown in figure 1. 

 
Fig. 1.  Cougar^2 Platform Major Components 

The remainder of the paper is organized as follows: Section 2 gives details on Cougar^2 system architecture and 
design decisions. Section 3 presents two main applications to illustrate how Cougar^2 is utilized in solving real-
world problems. Section 4 concludes the paper. 

II. SYSTEM ARCHITECTURE 

 
A key design goal of Cougar^2 is to provide minimal concrete functionality in contrast to other platforms that 

include functionality for all potential problems in their designs. Instead, the goal is to provide a core set of 
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interfaces. This permits great flexibility but, more importantly, brings well-established design patterns and practices 
to a data mining library. The primary design areas are data representation, learning algorithms, and experiments.  

A. Data Representation 
A fundamental challenge for any data mining library is representing data such that it is easy to access 
programmatically. The goals for a good design should be that the interface not to be so rigid that elaborate 
workarounds are necessary but not to be so general that errors can be made through misconfiguration. For 
example, a linear regression algorithm views a dataset as a matrix of real-valued numbers and should be agnostic to 
any string-valued data. Likewise, a decision tree needs to know whether features are discrete or continuous.  

A dataset object encapsulates all information a caller needs to know about the data. Data are represented 
logically as a collection of examples, with each example having a fixed set of features. Associated with a feature is 
an object containing summary information (meta-data) such as a lookup table for discrete features or the numeric 
range for real-valued features. An empty dataset object is effectively a header that provides feature information. An 
example is indexed by an integer, but no guarantees are made about the continuity of the index. That is, an index 
uniquely identifies an example, but not all possible index values map to an example. This allows for running data-
parallel algorithms on the same dataset.  

Conceptually, we divide a dataset into so-called real and meta-features. Real features are those available for use 
by a learning algorithm. Meta-features are additional features that are carried along with an example but not 
considered proper features, such as an identifier or a class label. Often a learning algorithm assumes the real 
features have a consistent format, but the algorithm should not have to care about other bookkeeping features that 
are not used for learning.  

We contrast the design of the Cougar^2 Dataset interfaces with those found in Weka. The Instances class in 
Weka contains all functionality related to data access. Because the Instances class is concrete and instantiated in 
nearly every other class in Weka, it is impossible to introduce an improvement to data access without affecting all 
other classes. In the development of an algorithm, it requires some programming effort to determine that the input 
object contains numbers rather than, say, strings or dates. In Cougar^2, the dataset interface provides functionality 
to copy, alter, and access data without any access to the underlying concrete class. A new interface can be utilized 
without affecting any other code. Examples in Weka are encapsulated in an Instance object, which adds an 
overhead for each example. Even moderately sized datasets exceed the memory of typical machines. Cougar^2 
abstracts all storage and many semantic details about the data from the algorithm.    

B. Learning Algorithms 
The process of developing a model has an important and unique software lifecycle. Great time and effort is 

required to implement a learning algorithm. From a software perspective, the input to a learning algorithm is a 
dataset and some configuration parameters. The output is a standalone Model instance, where the model object, 
once trained, does not require the training data (Dataset instance) or the learning algorithm (Algorithm 
instance) for run-time classification or prediction. In Cougar^2, these logical steps in the deployment of a model are 
decoupled into different software roles namely Factory, Algorithm, and Model (FAM) as depicted in Figure 2. To 
exemplify the FAM paradigm, sample code is given in Figure 3. 
 
 

 
 

Fig. 2.  Cougar^2 architecture harnessing the FAM paradigm 
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The factory object contains parameters for a learning algorithm, which can be serialized and reused later to train 

identical models. A factory is a wrapper around the constructor of the algorithm. An algorithm contains the 
necessary parameter validation code in the constructor. Separating the factory from the learning algorithm provides 
significant flexibility as well as code safety. Many learning algorithms have a wide variety of configuration 
parameters that can dramatically affect performance. A factory can be created containing default settings for 
parameters that can be reused for a wide variety of cases. The factories are safe because all parameter checking is 
done in the constructor. The factory will fail to build an improperly configured object. The learning algorithm, once 
properly configured, builds models. It is stateless in the sense that the algorithm object implements a single method, 
call(). The benefit of the stateless approach is that in a large experiment, the factory can be de-serialized and 
models can be built in parallel. 

 

 
 

Fig. 3.  Sample code for using FAM paradigm Cougar^2 
 

All configuration parameters, including the training data are provided through the constructor, allowing the 
algorithm to check configuration parameters against the data by only inspecting feature meta-data. Unlike most 
other libraries, a dataset object is provided in the constructor as opposed to the training method. An algorithm may 
have constraints on the data or may need to do some initialization. During this time, the algorithm does not need to 
access the examples, but some errors may occur. The algorithm class asserts that if the algorithm object can be 
created, the parameters and dataset are consistent. It is fail-fast, meaning that configuration errors are detected at 
object creation time; an inconsistent object cannot be created. The output of a learning algorithm is a model, which 
is designed both for post-experiment analysis and deployment in a standalone platform. In classification 
experiments, a model must predict the class label for incoming examples. Often in clustering, contents of the model 
are analyzed without the need for prediction. In either use case, the model can be serialized and reused without any 
functional dependency on the learning algorithm or the factory.  

We compare the Cougar^2 and Weka model lifecycles. In Weka, the FAM roles are combined into one class. In 
addition, Weka provides two methods for configuring a classifier, programmatically or using command line 
options. A classifier must support both. Any necessary checking in a Weka classifier, however, is done in the train 
method. This presents significant safety risks, in that if there is a configuration error, it will be discovered when 
building the model. 

C. Experiments 

The ability to run experiments over a large parameter space is a primary use case behind Cougar^2. It is also a key 
motivation behind the Factory Algorithm Model (FAM) paradigm. In data mining, some of the critical tasks are 
designing a new algorithm, then applying the algorithm to many datasets, and finally determining the effect of 
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algorithm parameter changes. This usually involves testing a number of configurations that is exponential in the 
number of parameters. Supporting these kinds of experiments pose several challenges to most data mining libraries: 

1. Configuring the learning algorithm 
2. Duplicating the configuration for several datasets 
3. Applying the model on the appropriate test set 
4. Computing relevant performance metrics 
5. Recording the configuration and resulting model for post-analysis 
6. Supporting experiment resumption in the event of failure 
7. Running experiments on a cluster of processors 
 
Cougar^2 was designed to address these issues. A Factory object supports the first two requirements. A factory 

can create multiple copies of a learning algorithm that can run on different samples of data. Models can be 
serialized and de-serialized for post-experiment analysis. New performance metrics can be added and the model can 
re-score the examples.  

Traditional file-based dependency checking packages such as make, rake, and ant are very well suited to running 
a graph of tasks on a single machine and re-running tasks as necessary. A research experiment, however, is often 
run and built in stages simultaneously with software implementation. One of the only concrete implementations 
included in the core package of Cougar^2 is the experiment package containing an experiment builder class. A user 
can build and change an experiment programmatically. In the underlying implementation, the state of an 
experiment is a versioned graph of dependencies. An experiment scheduler consults the versioned graph to 
determine which new parts of the experiments need to be run. The primary differences between the experiment 
builder package and file-based tools such as make are that whole sections of the graph can be altered without 
causing a re-run of the experiment and that the experiment system supports parallel execution. Users can mark parts 
of the graph as invalid and all descendants will be scheduled to be re-run. This avoids the complication of having to 
touch files in a file-based dependency structure. 

D. Software Engineering Aspects of Cougar^2 
Cougar^2 became an open source project in late 2006 and remains active today.  All software is freely available 
under the GNU General Public License (GPL v 2.0).  The GPL license was selected in the academic spirit to 
promote the free software movement, thus ensuring all derivations of the source code are always available to 
further the data mining and machine learning research fields. Cougar^2 is currently hosted on dev.java.net 
(Collabnet-based) which provides the project homepage, Subversion source code repository, mailing lists, 
electronic documentation, and issue tracker.  

The Cougar^2 software engineering process is a mixture of open source, distributed development practices and 
Agile development practices.  These practices, taken from eXtreme Programming (XP), include: 

• Continuous Integration (using CruiseControl) 
• Refactoring 
• Incremental Releases 
• Collective Ownership 
• Sustainable Pace 
• Test-Driven Development (TDD) 
 

Arguably the most important of these practices is TDD using JUnit (xUnit framework for Java).  TDD generates 
two primary benefits: well-designed class interfaces and high-quality, correct software.  The former is a less-
obvious byproduct of writing test-case code before any actual classes are implemented.  In this fashion, the class 
interface is designed from the perspective of the class user.  Consider a case of implementing a new linear 
classifier; the user is interested in analyzing the weights when using the classifier, which leads to introducing 
methods for configuring the necessary weights during testing.  The latter benefit of software correctness is due to 
the more obvious fact that the software is being thoroughly and regularly tested. 

III. APPLICATIONS AND CASE STUDIES 

In this section, we demonstrate two main applications of Cougar^2 including spatial clustering algorithms and 
region discovery in spatial data mining; Cougar^2 is the only open source package that provides the libraries to 
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support both applications. Generally, Cougar^2 provides many core classes and interfaces that guide and aid 
developers in effectively implementing algorithms so that developers can 1) speed up new algorithm 
implementation (since core framework classes and utility classes are given, developers can use them and focus 
more on the scope of their work), 2) reduce the number of errors (by performing Test-Driven Development), and 3) 
produce more reusable classes and experimental results (models). 

A. Application I: Spatial Clustering Algorithms 
Generally, there are many clustering approaches that perform clustering by maximizing an objective function such 
as grid-based, representative-based, agglomerative-based, and density-based clustering. Since different clustering 
paradigms can have either implicit or explicit objective functions, Cougar^2 utilizes the fitness functions as an 
optional parameter. By treating fitness functions as a plug-in component, users can adapt clustering algorithms to 
group data in alternative ways (by using different fitness functions). There are diverse clustering algorithms 
implemented in Cougar^2 that allow for plug-in fitness functions. CLEVER [7] is a representative based clustering 
algorithm that uses representatives and randomized hill climbing. MOSAIC [2] is an agglomerative clustering 
algorithm that merges neighboring clusters greedily maximizing a fitness function. Finally, SCMRG [8] is a 
divisive grid-based clustering algorithm that uses multi-resolution grids to identify promising regions. Finally, there 
is another density based clustering algorithm implemented in Cougar^2, namely SCDE [8] that does not rely on any 
plug-in fitness function, but operates using density functions instead. In addition to the clustering algorithms, many 
fitness functions are implemented in Cougar^2 which achieve different knowledge discovery tasks, and are reusable 
among clustering algorithms such as co-location mining [5, 7], hotspot discovery [3], and regional correlation [1].  

For spatial data mining, clustering is commonly performed by using spatial proximity. As discussed in Section 
2.1, the Dataset interface in Cougar^2 is generalized so that clustering algorithms can treat spatial and non-
spatial attributes separately. Therefore, distance functions efficiently calculate a spatial distance between objects 
while clustering algorithms evaluate clusters using non-spatial attributes. Cougar^2 also provides a library of 
distance functions that is also frequently used to build clustering algorithms. 

B. Application II: Region Discovery in Spatial Data Mining 
The FAM architecture of Cougar^2 facilitates research in region discovery algorithms. Similar to clustering, region 
discovery algorithms find structures embedded in low-dimensional (often spatial) data. Unlike clustering 
algorithms, these structures must optimize some fitness function defined on features external to the clustering 
algorithm. An example region discovery task is to find regions in the world with high volcanic activity. Figure 4 
depicts core interfaces involved in region discovery; they establish a particular instantiation of FAM in Cougar^2. 
 

 
Fig. 4.  Core interfaces in region discovery framework 

 
Three new elements are introduced: FitnessFunction, an interface for plug-and-play fitness functions, 

RegionDiscoveryModel that provides a concrete model implementation specific to region discovery, and  
RegionDiscoveryFactory, a specialized factory interface denoting configuration that is common to all 
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region discovery algorithms. Outputs of region discovery typically consist of a set of clusters and its corresponding 
regional patterns.  

The main focus when performing a region discovery task is on designing and constructing a fitness function and 
selecting an appropriate clustering algorithm. In addition, it requires running and comparing a lot of experiments 
and summarizing the results. We can broadly define three tasks performed in region discovery: 1) pre-processing, 
2) identifying a fitness function representing a region discovery task, 3) applying a clustering algorithm that allows 
for the plug-in fitness function to generate a clustering. Cougar^2 provides some frequently used tools to facilitate 
the pre-processing step such as sampling and normalizing data, and providing an adapter interface to Weka’s 
preprocessing utilties. In addition, Cougar^2 provides utilities for loading and storing experiment data: defining 
meta attributes describing spatial datasets in .xml format (both numeric and nominal features), reading data from 
.csv files or .arff files (Weka file format), and saving data and clustering models into files. For the second task, 
Cougar^2 provides structural classes to construct fitness functions in such a way that the fitness functions are 
reusable in any clustering algorithm. In addition, the fitness functions possess the additive property, thereby 
enhancing incremental computation. For the third task, there are several clustering algorithms available in 
Cougar^2 as discussed in the previous section. 

Now, we describe four case studies of region discovery implemented in Cougar^2. The first case study is 
association rule mining and regional scoping. In [3], we focus on discovering regional association rules that 
demonstrate associations between high/low Arsenic concentrations and other chemical concentrations. Regional 
scoping in [4] is further applied in order to identify the scope of the regions where the association rules are valid. 
The second case study is co-location mining; we are interested in identifying regions where sets of attributes are 
co-located. In [5], we mine feature-based hotspots where extreme densities of deep ice and shallow ice co-locate on 
Mars. Other work in [7] discovers not only co-location regions but also regional co-location patterns between 
Arsenic and other chemical contamination in Texas water wells. The third case study is regional correlation 
pattern discovery using PCA. In [1], we are interested in finding regional patterns in spatial datasets which may not 
exist globally. In particular, we apply a Principal Component Analysis (PCA)-based fitness function to discover 
regional correlation patterns—a strong correlation between a fatal disease and set of chemical concentrations in 
Texas water wells. Finally, change analysis analyzes how interesting regions are different in two different time 
frames. In [11], the region discovery framework is used in developing change analysis approaches and a set of 
change predicates are incorporated in analyzing changes in several locations on earth where deep earthquakes are in 
close proximity to shallow earthquakes. 

IV. CONCLUSION 

In this paper, Cougar^2, an open source data mining and machine learning framework is presented that provides 
intuitive APIs for researchers and developers. These APIs are made available the research community with the 
abstraction and flexibility necessary so that extension of the core framework can be achieved easily.  

The Cougar^2 framework introduces and employs the Factory, Algorithm, and Model (FAM) paradigm which 
enables developers to save and reuse both configurations and experimental results. FAM is a novel combination of 
established object-oriented principles, design patterns, and domain knowledge geared for any machine learning or 
data mining task. The framework also provides additional APIs and tools that assist implementation and data 
preprocessing. For instance, Cougar^2 enables a novel region discovery library that assists knowledge discovery in 
spatial data.  

Additionally two main applications and four case studies in the areas of spatial clustering algorithms and region 
discovery in spatial data mining are provided to demonstrate the capabilities of Cougar^2 platform. Cougar^2 has 
proven to be a robust framework supporting the development of region discovery clustering algorithms; it has been 
used and extended as a development platform in graduate courses and in research conducted by our group for over 
two years. 
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