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Abstract 
The bipartite matching problem has wide applicability. For example, in computer science, researchers 
have applied bipartite matching in objection recognition, image processing, scheduling, genomics, term 
rewriting and formal verification, and computer security. We present a heuristic model of perfect 
matchings in bipartite graphs. The goal of the model is to explore the use of low-cost heuristics in 
applications where only perfect matchings are desired. The heuristics test for a number of conditions 
necessary for perfect matchings to exist in a graph, and as such, they can be used as filters to quickly 
identify and exclude unsuitable graphs from further processing. Whereas the best maximum cardinality 
bipartite matching algorithms run in about )( 2

5

nO  time ( n  being the number of vertices in the bipartite 
graph), we show that it’s possible to make a reliable prima facie guess about the potential for a perfect 
matching in a given graph in roughly )log( 2 nnO  time without bookkeeping costs. Although we 
represent bipartite graphs by matrices, the heuristics can be adapted to other representations as well. 
Proofs of validity and runtime analysis of the heuristics are presented, along with a discussion of their 
performance characteristics in practice. A software framework is described that implements each of the 
components of the heuristic model and includes various test facilities for exercising them. Empirical 
results from the framework demonstrate the effectiveness of the heuristics for graphs with up to 1000 
vertices. We find that the heuristic model shows exceptional performance in identifying a very large 
percentage of graphs of this size that do not contain a perfect matching (our tests indicate better than 
99.9% on average), while never excluding any graph that does. 
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Abstract 
 
The bipartite matching problem has wide applicability. For example, in the computer 
science field, researchers have applied bipartite matching in objection recognition, 
image processing, scheduling, genomics, term rewriting and formal verification, and 
computer security. This list of applications is illustrative and is by no means exhaustive. 
We present a heuristic model of perfect matchings in bipartite graphs. The goal of the 
model is to explore the use of low-cost heuristics in applications where only perfect 
matchings are desired (as opposed to merely maximum cardinality matchings). The 
heuristics test for a number of conditions necessary for perfect matchings to exist in a 
graph, and as such, they can be used as filters to quickly identify and exclude 
unsuitable graphs from further processing. Whereas the best maximum cardinality 
bipartite matching algorithms run in about )( 2

5

nO  time ( n  being the number of vertices 
in the bipartite graph), we show that it’s possible to make a reliable prima facie guess 
about the potential for a perfect matching in a given graph in roughly )log( 2 nnO  time 
without bookkeeping costs. Although we represent bipartite graphs as square Boolean 
matrices and develop the heuristic model within the context of that abstraction, the 
heuristics can be adapted to other representations as well. Proofs of validity and 
runtime analysis of the heuristics are presented, along with a discussion of their 
performance characteristics in practice. A software framework is described that 
implements each of the components of the heuristic model and includes various test 
facilities for exercising them. Empirical results from the framework demonstrate the 
effectiveness of the heuristics for graphs with up to 1000 vertices. We find that the 
heuristic model shows exceptional performance in identifying a very large percentage of 
graphs of this size that do not contain a perfect matching (our tests indicate better than 
99.9% on average), while never excluding any graph that does. 
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1. The Problem 
 
There are many situations where two groups of objects must be matched to each other 
in some optimal way. A classic example is boys and girls in a dance class: each student 
should have a partner to dance with and ideally the partner should be of the opposite 
sex. If we insist that the partners must be of the opposite sex then we have a bipartite 
matching problem. If we further insist that the partners be compatible in some fashion, 
we’re forced to spend time querying each dancer for potential mismatches as we try to 
pair them up. A further complication arises if we require every dancer to have a partner, 
because we’re no longer allowed to assume that a compatible match is viable for the 
needs of the class. It then becomes a perfect matching problem, and in order to solve it 
we usually have to at least try to pair up the girls and boys (i.e., execute some 
maximum cardinality bipartite matching procedure through to completion) before we can 
discover whether or not it’s possible to find a compatible partner for every student in a 
given class. That fact makes this particular problem highly amenable to problem space 
filtering—if we could somehow “look” at a class and quickly discern whether a perfect 
matching between boys and girls was even likely, we could avoid all the effort of the 
matching procedure in hopeless cases. 
 
This problem has broad application. We mention a few of the computer science 
applications to illustrate its applicability. In the computer science field, researchers have 
applied bipartite matching in objection recognition [12], image processing [], scheduling 
[], genomics, term rewriting and formal verification [13], and computer security. A 
conceptually simple example from the computing domain is the question of how to 
assign parallel threads of execution to different processors—based on each processor’s 
availability or affinity for a certain type of work—so that the overall task is guaranteed to 
be completed by a given deadline. Another is in rule-based programming, where an 
input term must match the left-hand side of a rule completely, perhaps subject to 
associative or commutative transformations, before it can be reduced to the right-hand 
side. 
 
To the best of our current knowledge on the problem, we are always forced to examine 
every compatible pairing at least once times a certain factor dependent on the size of 
the graph (roughly the square root of the vertex count; see section 3). But we would 
prefer to query each vertex just once, and based on the existence or absence of 
edges—and perhaps using cheap analytical tools like sorting and comparison—make a 
reasonably accurate guess about whether they can all be paired up or not. Such a 
procedure would constitute a heuristic model of the problem that could be used to filter 
input to a proper algorithm, hopefully reducing the computational cost of looking for 
solutions in the average case. In the remainder of this paper, we explore the 
components of one such heuristic model for perfect bipartite matchings. 
 
 
2. Definitions 
 
2.1. Graphs 
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A graph ( )EVG ,=  is a set of vertices in V  connected by edges in E . A subgraph 

( )EVG ′′=′ ,  as used in this paper is a subset of vertices VV ⊆′  and all edges EE ⊆′  
incident on those vertices. A bipartite graph { }( )∅=∩×⊆∪= 212121 |, VVVVEVVG  is one 
whose vertices can be partitioned into two independent sets 1V  and 2V  such that no 
edges in E  connect vertices in the same set. A matching M  on G  is a set of pairwise 
nonadjacent elements of E . Equivalently, M  can be expressed as a function 

( ){ }2121 )(,|)(,: VuFVuuFuVVF ∈∈=→ . We then call M  a perfect matching if the 
corresponding function MF  is a bijection. If M  is a perfect matching, then every 
nonempty subset of M  is a partial perfect matching on G . 
 
 
2.2. Matrices 
 
Given an nm×  Boolean matrix { } { } { }1,0,,2,1,,2,1: →× nmA ΛΛ , m  is the number of row 
vectors in A  and n  is the number of column vectors. (This defines row-major ordering.) 
The qp ×  submatrix A′  of A , where mp ≤  and nq ≤ , is defined by selecting the 
intersection of any p  rows and q  columns from A . (Note that the rows and columns 
need not be adjacent.) A is considered a representative of another nm×  Boolean matrix 
B  if B  completely covers A , i.e., if ABA =∧ , where the “ ∧ ” operation is the pointwise 
Boolean AND of the matrices. If A  can be transformed into the identity matrix through 
some row-ordering operation, then A  is a matching representative of B . (Note that both 
A  and B  must be square in this case.) 
 
 
2.3. Vectors 
 
For a vector ( )mxxxX ,,, 21 Λ= , let X  be the size of X  and )(iX  be the value of the i -
th element of X . The count of X , indicated here as )(Xc , is defined as the number of 
nonzero entries in X . Given a function ωω →:f , we say X  is f -sparse if 

)()( XfXc ≤ . X  is less than another vector Y  if )()( iYiX <  for some i  and 
)()( jYjX =  for all ij < . (This defines lexicographic ordering.) Given an nm×  Boolean 

matrix A  and row vectors ( )mrrr ,,, 21 Λ  in A , we say that A  is row-sorted if ji rr ≤  
whenever ji < . 
 
 
3. Background 
 
Bipartite matching is related to the maximum flow problem in two-stage networks and 
can be easily reduced to it. Ford and Fulkerson [4] showed that networks can be 
defined so that a maximum flow corresponds to a maximum cardinality matching in the 
corresponding bipartite graph. See Kennedy [7] for a good overview of this approach. 
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As a commonly encountered graph problem with a tractable solution, bipartite matching 
has many applications [2], but despite extensive research on the problem going back 
many decades (Hall’s Theorem [5], below, was an early formulation), no one has 
discovered an algorithm with running time much better than )( VEO , which 

approaches )( 2
5

VO  as E  approaches its worst-case bound of 2V . An algorithm with 
this bound was first discovered by Hopcroft and Karp [6], but was later refined 

logarithmically to )log( 2
3

VEVO  in Alt, Blum, Mehlhorn, and Paul [1], and to 

)( log
)log( 2

V
EVVEO  in Feder and Motwani [3]. 

 
Hall’s Theorem: Given a bipartite graph ( )EVVG ,21 ∪= , G  has a perfect matching iff 
for every subset 1VS ⊆ , SSAdj ≥)( , where )(SAdj  denotes the set of vertices in 2V  
that are adjacent to some vertex of S . 
 
While most work in the literature concentrates on developing faster ways to compute a 
maximum cardinality bipartite matching, we believe that inadequate attention has been 
devoted to developing ways to avoid such computation in situations where nothing less 
than a perfect matching will be useful. 
 
 
4. A Heuristic Model 
 
4.1. Encoding 
 
Bipartite graphs are mathematically representable in many ways, but we have found the 
adjacency matrix representation of the graph’s edge-space most convenient for our 
purposes because of the ease with which the component row and column vectors of a 
matrix can be sorted and compared. While inefficient for very large and/or very sparse 
graphs, the matrix representation is quite workable for small-scale graphs of around 
1000 vertices or less, and have the added advantage of a straightforward and efficient 
software implementation, being typically stored in contiguous memory for ease of 
access via simple pointer arithmetic. Note, however, that although we frame our 
heuristic model in these terms, the matrix operations invoked in the operation of the 
heuristics are merely a front-end abstraction and can be trivially translated to any 
underlying graph representation desired. 
 
Thus, we encode a bipartite graph { }( )∅=∩×⊆∪= 212121 |, VVVVEVVG  as a Boolean 

matrix { } { } { }1,0,,2,1,,2,1: 21[] →× VVG ΛΛ  where 
( )
( ) �

�
�

�
�
�

∉
∈

=
Eji

Eji
jiG

,0
,1

),([] . We will only 

consider square matrices ( 21 VV = ), since a perfect matching is impossible when that 

condition is not met. Throughout this paper we denote the size of []G  as g , where 
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21 VVg ⋅= , the number of potential undirected edges in G . Any matching EM ⊆  on G  

can be similarly represented as a Boolean matrix ][GM , defined analogously to []G . 
 
 
4.2. The Goal 
 
Given []G  as defined above, the problem we stated in section 1—that of making a prima 
facie determination as to whether the bipartite graph G  could contain a perfect 
matching—is now reduced to the following question: 
 
Does there exist a matrix that is a matching representative for []G ? 
 
If such a matching representative exists (see section 2.2), its existence would indicate 
that a perfect matching on G  also exists. (For simple proof of this fact, consider that the 
identity matrix encodes a perfect matching between its rows and columns.) Note that we 
are not interested in identifying a specific matching representative per se, only in 
determining that one may exist. Furthermore, we wish to do so using only low-cost 
heuristic methods that run in time roughly linear in g  and that never reject a matrix that 
does in fact have a matching representative. In other words, the heuristic model should 
encode only easily discoverable and necessary conditions for the existence of a 
matching representative for []G . 
 
 
4.3. The Heuristics 
 
1) No empty columns. For every column jc  of []G , 0)( >jcc . 

2) Row-sorted and big enough. When []G  is row-sorted (see section 2.3), each row of 

[]G  should not be less than the corresponding row of a g -sized row-sorted identity 
matrix. 

3) Eliminate “forced moves”. If any k  adjacent rows 11 ,,, −++ kiii rrr Λ  in []G  are “identical” 

(i.e., )()()( 11 jrjrjr kiii −++ == Λ  for all j  in the domain), where 1≥k  (rows are 
considered self-identical for this heuristic), and krc i =)( , then the set of rows in 
question encodes a partial perfect matching on G . []G  should be reduced to the 

submatrix []G′  formed by eliminating from []G  the k  identical rows ir  and all columns 

jc  where 1)( =jri . After reduction, []G′  should be tested again. (Note that we also 
check for forced moves in columns, but only when 1=k , as checking when 1>k  
would require a column-sort of the matrix; see sections 4.7 and 5.1.) 

4) No small neighborhoods. Define a function f  on the rows ir  of []G  so that ii rrf ≤)(  

(e.g., 2)( ir
irf = ). If any row in []G  is f -sparse (see section 2.3), then add it to an 

initially empty set SR . For all rows Si Rr ∈  where 1)( =jri  for some j  in the domain 



 7 

(i.e., where row i  has an edge to column j ), add j  to an initially empty set C  if j  is 
not already a member of C ; when construction of C  is complete, SRC ≥ . 

5) No deficient row or column sequences. If any k  adjacent rows in []G  are 
“identical”—as defined in heuristic (3) except that we disallow the 1=k  case (see 
section 4.7)—then krc i ≥)( ; a similar property should hold for the columns of []G . 

 
 
4.4. Examples of the Heuristics at Work 
 
Consider the following 7 x 7 matrices: 
 

765432176543217654321

7
6
5
4
3
2
1

0000001
0000010
0000100
0001000
0010000
0100000
1000000

0000101
0000101
0001000
0001000
1110000
0110000
1000000

0000101
0000101
1000000
0001000
0110000
1110000
0001000

321
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1M  is a randomly generated matrix, 2M  is a row-sorted transformation of 1M , and 3M  

is the row-sorted identity matrix of size 1M . Let’s examine what happens when we run 

each heuristic to completion on 2M . First, by examining column 2, the reader should 
verify that there is no perfect matching of rows and columns in 1M . 
 
Heuristic (1): It is easy to see that column 2 is empty in 1M  and 2M . Therefore, both 

1M  and 2M  fail this heuristic. Note that, unlike the other heuristics in the set, row-
sorting is unnecessary; a simple examination of columns will suffice. As we will see 
later, this becomes a big advantage as the matching problems grow in size. 
 
Heuristic (2): Most rows of 2M  are at least as large as the corresponding rows of 3M , 
but since row 5 is not, 2M  will fail this heuristic. Remember that a row comparison 
between 1M  and 3M  would be meaningless; we must use the row-sorted 2M  instead. 
 
Heuristic (3): Row 1 of 2M  contains a forced move since it has only one “1” and cannot 
be matched to any column other than 7. Therefore, we can remove row 1 and column 7 
from consideration, yielding the submatrix: 
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�

�

=′

000101
000101
001000
001000
110000
110000

2M  

 
Now rows 1 & 2 and columns 5 & 6 of 2M ′  form a combined forced move; the two rows 
and two columns are then removed to form: 
 

�
�
�
�

�

	










�

�

=′′

0101
0101
1000
1000

2M  

 
All the rows of 2M ′′  now contain forced moves of one sort or another, but in order for the 
heuristic to run correctly we have to eliminate them one at a time: 
 

�
�
�

�

	








�

�

=′′′
101
101
000

2M  

 
Removing the first forced move also eliminated the second one! It’s now clear that 2M  
cannot contain a perfect matching, but the heuristic isn’t smart enough to discover that 
yet. It sees that rows 2 & 3 and columns 1 & 3 contain forced moves, so they are 
removed: 
 

[ ]02 =′′′′M  
 
Since removing every forced move left us with no “1”s remaining, 2M  fails this heuristic. 
But note all the extra work involved in recursively constructing and testing submatrices. 
Moreover, sorting by rows is crucial if we want to detect the duplicate rows in linear 
time. We will discuss the impact of these facts later on (see section 5.1). 
 
Heuristic (4): Initially, we can define a sparse row as one containing a single “1” or less. 
By this definition, rows 1, 4, & 5 of 2M  are sparse. Row 1 covers column 1 and row 4 
covers column 4, but row 5 doesn’t cover any additional columns, so two columns must 
somehow be split between three rows, an impossibility. Thus, 2M  fails this heuristic for 
this definition of sparsity. But if we had defined a sparse row as consisting of two “1”s or 
less, then every row except 3 is sparse. Those six rows cover six columns (1, 3, 4, 5, 6, 
& 7), so 2M  would pass the heuristic for that definition of sparsity. This shows that the 
effectiveness of heuristic (4) is sensitive to the overall density of the matrices being 
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considered. A value of around 50% (three “1”s or less for this example) seems to work 
well on random matrices. 
 
Heuristic (5): There are two sets of duplicate rows in 2M : rows 4 & 5, and rows 6 & 7. In 
the first case, each row contains a single “1”, whereas in the second case each row 
contains two “1”s. Rows 6 & 7 can still both participate in a perfect matching if row 6 is 
matched to column 1 and row 7 to column 3 or vice versa, but rows 4 & 5 cannot. If 
either row claims its “1”, then the other cannot have it, so 2M  fails this heuristic. Like 
with heuristic (3), row-sorting is not theoretically required, but crucial for reducing time 
complexity. 
 
 
4.5. Proof that the Heuristic Set is Valid 
 
Now we prove five theorems (each corresponding to a heuristic above) that establish 
the validity of the heuristic set. Taken together, these theorems show that none of the 
heuristics will reject any matrix that has a perfect matching of rows and columns. 
 
Theorem 1: If a square matrix M  has a perfect matching of rows and columns, then for 
every column jc  of M , )( jcc  is required to be greater than zero. 
 
Proof: Trivial.   
 
Theorem 2: If a row-sorted square matrix M  has a perfect matching of rows and 
columns, then each row of M  must be at least as large as the corresponding row of the 
row-sorted identity matrix I ′  of size M . 
 
Proof (by contradiction): Assume that M  has a perfect matching of rows and columns 
and that there is a row ir  in M  that is not as large as the corresponding row ir′  in I ′ . 
Two cases exist: Either 0)( =irc , or 0)( >irc . The first case is trivial: If one a row of M  
is empty, then there can be no matching column for that row and one of the columns of 
M  must therefore go unmatched (remember that M  is square), so the assertion is 
contradicted. In the second case, first form a partition of the columns of ir′  using the 
single “1” in the row as a pivot point. Call one partition L  and include in L  the column 
with the “1” and every column to the left of it. All columns to the right of it go into the 
second partition, R . Note that Rrc i ≤)(  because ii rr ′< . There are 1−i  rows above ir , 

and since M  is row-sorted all of them are less than or equal to ir . Thus, each of the 

rows above ir  can have at most R  nonzero entries. Moreover, because of the way the 

partition R  was formed, 1−= iR . But if M  has a perfect matching, then the 1−i  rows 

above ir  must be matched to Ri =−1  columns. Since ir  can only be matched to one of 

the same R  columns, one of the columns is matched to more than one row, which 
contradicts the properties of a perfect matching.   
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Corollary 1: A row-sorted square matrix M  can be compared to the row-sorted identity 
matrix I ′  of the same size to determine the possibility of a matching in M . 
 
The following lemma is useful in proving the next theorem. 
 
Lemma 1: If a bipartite graph ( )EVG ,=  contains a perfect matching EM ⊆ , then any 
nonempty subset MM ⊆′  is a perfect matching on the subgraph G′  induced by M ′ . 
 
Proof: M ′  is a matching because M  is a matching. Since M ′  is nonempty, it contains 
at least one edge, and this edge is a perfect matching between the two endpoints of the 
edge. If M ′  contains more than one edge, then the edges are nonadjacent because M ′  
is a matching. Thus, every edge in M ′  connects two distinct vertices in G′ . Since the 
edges in M ′  cover all vertices in G′  (by construction), M ′  is a perfect matching.   
 
Theorem 3: If a square matrix M  has a perfect matching of rows and columns, and a 
submatrix MM ⊆′  contains a single unique perfect matching, then the portions of M  
not covered by M ′  must also contain a perfect matching disjoint from the one in M ′ . 
 
Proof: We prove a more general result. Assume that a set { }∅=∩×= CRCRS |  
contains a perfect matching between R  and C . Partition R  into two disjoint sets 1R  and 

2R  such that 1R  can only be matched to a set CC ⊆1  and to no other subset of C . By 
Lemma 1, such a matching will always exist. Now define the set 12 CCC −= . Since the 
members of 1R  can only be matched to the members of 1C , the matching between 1R  
and 1C  must be present in any perfect matching on S . Moreover, if 2R  cannot be 
matched perfectly to 2C , then S  cannot contain a perfect matching. Therefore, 2R  and 

2C  must also have a perfect matching, which by construction is disjoint from the one 
between 1R  and 1C .   
 
Corollary 2: If S  contains a perfect matching, that matching can be found by first 
finding a matching on 11 CR ×  and then finding a matching on 22 CR × . 
 
Corollary 3: If 2C  is always empty regardless of how 1R  is constructed, then S  contains 

!! CR =  different perfect matchings. 
 
Proof: R  is partitioned such that 1R  can only be matched to 1C  and not to any other 
subset of C . Thus, if all elements in R  must be used in order to achieve that result, it 
follows that every element of C  can be matched in R  ways, and therefore that !R  

perfect matchings exist; CR =  because S  contains a perfect matching, so !! CR = .   
 
Theorem 4: If a square matrix M  has a perfect matching of rows and columns, then the 
nonzero entries in any set of k  rows in M  must cover at least k  distinct columns. 
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Proof: This is a restatement of Hall’s Theorem (see section 3).   
 
Theorem 5: If a square matrix M  has a perfect matching of rows and columns, then the 
number of duplicated identical rows in M  cannot be greater than the number of 
nonzero entries in each identical row. A similar theorem holds for the columns of M . 
 
Proof (by contradiction): Assume that M  contains a perfect matching and is comprised 
of nk +  identical rows with k  nonzero entries in each row, where 0>n . After matching 
k  of the rows to the corresponding k  columns that contain nonzero entries, n  rows are 
left unmatched. Each of the rows in M  has only k  nonzero entries, and since each of 
those entries has been matched to one of k  columns, the remaining entries in the 
unmatched rows are zero entries, which cannot be matched to any column, so n  rows 
will be left out of any matching, which contradicts the assertion. The proof for columns is 
similar.   
 
Corollary 4: The rows in question need not be identical. If only k  columns must be 
matched to nk +  rows, there cannot be a perfect matching unless 0=n . 
 
 
4.6. Independence of the Heuristics 
 
Establishing a clear picture of the implicational relationships between the heuristics in 
the set is an ongoing research goal, made difficult by the many combinatorial 
possibilities. (In the 7 x 7 case, for example, there are 249 = 562,949,953,421,312 
possible Boolean matrices, and even if 99.9% of those are unsorted and thus removed 
from consideration, well over 500 billion possibilities remain.) Here, we present our 
findings so far. 
 
When we say a heuristic A is independent of heuristic B, we mean that A will correctly 
filter a class of matrices of arbitrary size where B will not. This definition differs from 
strong independence, or true orthogonality. Note that in the above sense, none of the 
heuristics in our set appears to be independent from the others for very small cases 
(matrices 4 x 4 or smaller), so we will restrict our attention to 5 x 5 and larger matrices. 
As a last caveat, heuristic (4) shows different characteristics depending on the cutoff 
density value for sparsity (see section 4.4). In the constructions we assume a constant 
value of 50% and leave it as an exercise to extend the results to other values. 
 
Heuristic (1) is the most independent of the set since it considers only column states, 
whereas the others focus primarily on row states. We define a distinguishing class of 
matrices for this heuristic using the following construction: 
 
1) Begin with a zero-filled square nn×  matrix, where 4>n . 
2) Fill the bottom row with “1”s except in the rightmost column, which will retain all “0”s. 
3) The remaining rows must each contain exactly 2−n  “1”s, arranged so that no two 

rows are identical. Here is a 5 x 5 example: 
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01111
00111
01011
01101
01110

 

 
Heuristic (3) can also be distinguished with a relatively simple construction. The idea is 
to reduce matching possibilities in such a way that the other heuristics are “fooled”: 
 
1) Begin with a zero-filled square nn×  matrix, where 4>n . 
2) Fill the bottom row with “1”s. 
3) Place a single “1” in the rightmost column of the top row. 
4) The leftmost column will retain all “0”s except in the bottom row. 
5) Place “1”s in rows 2 through 1−n  so that each of the rows in question contains at 

least two but no more than 2n  “1”s, configured so that there are no more than k  
identical rows for each pattern containing k  “1”s; furthermore, for each row ir , some 
entry 1+−≤ inj  in that row must contain a “1”. Here is a 5 x 5 example: 

 

�
�
�
�
�
�

�

	














�

�

11111
10010
10010
01100
10000

 

 
We have been unable to construct simple algorithms defining distinguishing classes for 
the other heuristics, and the only examples we have been able to find are for matrices 7 
x 7 or larger for heuristic (4) and 6 x 6 or larger for heuristic (5). 
 
Below is an example of a 7 x 7 matrix distinguishing heuristic (4). Smaller examples 
cannot be found because of the requirement that several rows be sparse (i.e., 50% “1”s 
or less) without creating any empty columns, duplicate rows or allowing the rows to 
become too small. Furthermore, we must have k  sparse rows that cover only 1−k  or 
fewer columns. In the following example, we have managed to create four sparse rows 
at the top of the matrix that meet those requirements: 
 

�
�
�
�
�
�
�
�
�

�

	




















�

�

0101011
0011001
1110010
1010100
0010100
1000100
1010000
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Below is an example of a 6 x 6 matrix distinguishing heuristic (5). The trick is to create 
three identical columns containing only two “1”s each, arranging the rest of the matrix so 
as to fool the remaining heuristics: 
 

�
�
�
�
�
�
�
�

�

	


















�

�

101111
010101
010101
000101
010001
101010

 

 
We have yet to discover a matrix that heuristic (2) will filter when the others will not. It is 
possible that heuristic (2) is not independent in the sense mentioned above. We can 
show that heuristic (2) is pairwise independent from each of the others, but in the cases 
we have tested so far, the combination of heuristics (1), (3), (4), and (5) seems to be 
sufficient to compensate when (2) is missing. However, we retain (2) because the 
system performs faster when it’s included than when it’s not. 
 
 
4.7. Additional Heuristics 
 
In the course of testing and developing the heuristic set, we considered another 
heuristic that later proved redundant in the system: 
 
6) No empty rows. For every row vector ir  of []G , 0)( >irc . 
 
It turns out that heuristic (6) is logically implied by the more powerful heuristic (2)—since 
the row-sorted identity matrix contains a “1” in every row, and in order to pass heuristic 
(2), the rows of a matrix must be at least as large as those of the row-sorted identity 
matrix, all rows must therefore contain at least one nonzero entry. But the converse 
case is also interesting. In combination with the other heuristics, heuristic (6) can 
replace (2) with no apparent loss of effectiveness. As expected, using the simpler 
heuristic (6) leads to modest speedups (it doesn’t require the relatively expensive row-
sorting operation), but unlike (2), heuristic (6) is not pairwise independent of (4)—easy 
to see by noting that empty rows are always sparse yet contribute nothing to column 
coverage. Eliminating the redundancy means reworking heuristic (4) to have it view 
empty rows as non-sparse. Not only is this against the spirit of (4), it complicates and 
slows its operation by requiring a special-case test for every row examined. 
Furthermore, the minor speed gains that can be achieved by replacing heuristic (2) with 
(6) may disappear for large matrices—our tests seemed to indicate declining returns 
from (6) as matrix size was increased. For all these reasons, heuristic (6) was 
eliminated from the set, but the implementation was retained in the test framework (see 
section 6.2) so users would have the option of using it in their own custom tests. 
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Astute readers might also wonder about the different definitions of “identical” in 
heuristics (3) and (5). If columns were allowed to be self-identical in heuristic (5), then 
heuristic (1) would become subsumed by heuristic (5)—a single empty “duplicate” 
column would indicate the absence of a perfect matching. The problem is that heuristic 
(5) requires an extra sorting step in order to locate duplicate columns, and sorting is 
expensive compared to heuristic (1), which is a simple linear search with typical early 
termination (see section 5.1). A similar argument holds for rows, as empty rows are 
more rapidly detected by heuristic (2) instead. Thus, the more general version of 
heuristic (5) was rejected because allowing heuristics (1) and (2) to run before (5) has 
the effect of eliminating many matrices from consideration by the costlier (5). 
 
 
4.8. Synthesis 
 
The above heuristics reflect conditions necessary for any matrix to have a perfect 
matching of rows and columns, so a matrix that fails one of them is guaranteed not to 
have a perfect matching. But the converse is not true: A matrix may meet all the above 
conditions and still not contain a perfect matching. This can be demonstrated empirically 
through application of the heuristics on actual matrices. For example, the following 7 x 7 
matrix passes all of the heuristics for any definition of “sparse row”, but encodes no 
perfect matching: 
 

7
6
5
4
3
2
1

1111011
0001101
0000101
0001001
1110010
1100010
0001100

�
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�

	




















�

�

 

(Rows 1, 4, 5, & 6 cannot all be matched.) 
 
Nevertheless, the heuristic model proves to be an exceptionally reliable and relatively 
low-cost approximation of perfect matchings, making it ideal for use as an input filter to 
true matching algorithms in applications where only perfect matchings are desired. 
 
 
5. Performance 
 
5.1. Runtime Characteristics 
 
The time requirements for most of the heuristics can easily be shown to be close to 
linear in g  in the worst case (recall that g  is the number of potential edges in a graph; 
see section 4.1). Here we present detailed runtime analyses for each of the heuristics in 
turn: 
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1) No empty columns. Checking each column of a matrix for the presence of nonzero 
entries requires only )()( gOggO =⋅  accesses in the worst case. 

2) Row-sorted and big enough. Using an optimal algorithm, sorting the rows of a matrix 
requires )log( ggO ⋅  row comparisons, where each row entails at most )( gO  
element comparisons. Thus, the worst case for the sorting stage of this heuristic is 

)log()log( ggOgggO =⋅⋅ , which is only slightly worse than linear in g . For 
the second stage, we note that while comparing row values between two same-size 
matrices requires )()( gOggO =⋅  comparisons in general, when the rows of the 
matrices are sorted and the algorithm breaks off at the first mismatch, the average 
time of failure is closer to )( gO —the cost of comparing two single rows—because 
the smallest rows will be examined first. So sorting makes this stage faster, although 
the worst-case performance for both stages combined is still )log( gggO + . 

3) Eliminate “forced moves”. Finding duplicate rows cannot be done in linear time if the 
rows of the matrix are unsorted. When they are sorted, it requires comparing a 
maximum of g  rows in a single pass, with each comparison taking at most )( gO  
accesses; thus, )(gO . However, eliminating forced moves also requires recursively 
constructing a series of possibly noncontiguous submatrices for further testing, 
which will add considerably to the time and space complexity. In the typical case of 
simply constructing a new submatrix using copy operations each time, the 
construction will take )(gO  time and may be performed as many as g  times; even 
worse, duplicate rows must be rediscovered each time, which requires more sorting 
operations. Thus, the total time complexity for applying this test recursively to 
problem completion is ( )( ) ( )( )gggOgggggO log1log 2 +=⋅⋅+ , which is much 
worse than linear. But as expensive as this test is on its own (performing a full 
matching from the start is actually cheaper), we have seen that when combined with 
the other tests and run relatively late in the sequence, it will only run on a fraction of 
the candidate matrices because most matrices without a matching will fail at an 
earlier step (see section 5.4). Additionally, reducing the matrices both makes them 
smaller and changes their global structure sufficiently that in many cases other, 
cheaper heuristics can filter out the new submatrices before this one has a chance 
to run again. In practice, this heuristic seems to have only a limited impact on the 
runtime of even large problems, but the average-case performance is difficult to 
quantify precisely. 

4) No small neighborhoods. The time required will depend on how many rows are 
chosen for the “sparse” subset. In the worst case, we choose all rows and examine 
each element of each row, yielding )()( gOggO =⋅ . This heuristic performs 
slightly better when the matrix is row-sorted, because all the sparsest rows will group 
together at the top of the matrix. (The sort comes free when heuristic (4) is run at 
any point after heuristic (2), because the latter always performs a row-sort.) 

5) No deficient row or column sequences. The complexity of finding deficient row 
sequences is the same as heuristic (3) for the first stage ( )(gO  to find duplicate 
rows), but for the second stage, the matrix must be re-sorted by columns, yielding a 
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complexity of )log( gggO + . However, the cost of this heuristic is generally linear in 
practice because small duplicate rows are searched for first. If any are found, then 
the procedure terminates early without needing to re-sort and search for small 
duplicate columns. 

 
 
5.2. Random Graph Model 
 
Exhaustive enumeration of matrices is feasible for small cases, but we were forced to 
rely on a random graph generator for performance testing of the heuristics against 
matrices of larger dimensions. Our approach combines a pseudorandom number 
generator with a simple, user-modifiable density function (see section 6.2). We populate 
each graph with enough randomly generated edges to approximate the specified 
density, expressed as a percentage of the edge-space. The density function can also be 
randomized, yielding sets of graphs with no fixed density bound. Furthermore, the 
appearance of any graph in a given enumeration of graphs over a range of “values” 
(edge configurations) can itself be randomized according to a weighted probability 
function that simulates the right half of a standard distribution curve—enumerating most 
of the graphs near the beginning of the range (where they are sparser) and relatively 
less toward the end (where they are denser). 
 
We chose Knuth’s recommended “portable” pseudorandom number generator [8], which 
is based on the subtractive recursive polynomial ( ) mXXX n mod2455 −= , where m  is 
some sufficiently large value (we follow Knuth in using 109). This generator has a fairly 
large period (on the order of 255) compared to the linear congruential generators 
typically used to implement the C Standard Library ()rand  function, and is also very fast 
in practice, using only a single subtract and multiply for most iterations. Our 
implementation performs two cranks for each generation cycle to produce a pair of 
values for indexing a matrix. 
 
For the density function we use the equation dnE 2≈ , where n  represents one 

dimension of the edge-space and can be any value in the range ]..1[ g , and d  is a 
density value between 1% and 100%. The equation is approximate owing to the 
possibility that some edges will be generated more than once for the same graph. 
 
 
5.3. Observed Runtime Costs 
 
Based on the analysis in section 5.1, we can surmise that running all the heuristics in 
sequence (assuming a linear average-case runtime for heuristic (3) for ease of 
discussion) will require a worst-case time of roughly )log()log25( ggOgggO =+ , 
which suggests that the sorting time dominates. Since sorting is cheaper than matching 
(which is around )( 4

5

gO  with much higher bookkeeping costs; see sections 3 and 6.4), it 
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always makes sense to run these heuristics beforehand to determine whether a matrix 
might contain a perfect matching before attempting to compute one. 
 
Below are a series of figures showing the normalized cost of each heuristic compared to 
the performance of all the heuristics running in sequence on 1000 random matrices for 
each dimension in the range 10 x 10 through 500 x 500. They largely bear out the 
analysis of section 5.1, showing that heuristics (1) and (4) (without a sort) are very 
cheap, that the sorting costs of heuristics (2) and (5) approximate the aggregate cost, 
and that heuristic (3) is wildly expensive when run alone. Further research is needed to 
determine the precise runtime impact of heuristic (3) in practice (i.e., when not run 
alone). 
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A further series of runs on one million random matrices of dimensions in the range 5 x 5 
through 50 x 50 was timed on a single machine (dual 2.2 GHz processors, 128 KB L1 + 
512 KB L2 cache memory per core, 2 GB 2 x 200 MHz DDR RAM on a 5 x 200 MHz 
front-side bus), using identical operating conditions for each run and restarting each 
time to minimize cache effects. The resulting relation between dimension and absolute 
runtime, shown below, confirms that the runtime cost is roughly quadratic with respect 
to dimension, i.e., linear in the size of the matrix. 
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To further compare the observed runtime performance with our asymptotic analysis in 
section 5.1, we plotted the values from the previous figure as a series of ratios between 
the observed runtime cost at each dimension and the observed runtime cost at the 
highest dimension tested (50 x 50); this expresses the growth of the function as a 
normalized curve. We then plotted the normalized curve of nnnf

n
log)( 2

505
=

→=
 in the same 

fashion and compared it to our observed growth. As the figure below shows, the curves 
match almost exactly, providing good empirical confirmation of the predicted cost of 
running the full suite of heuristics in sequence. 
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Normalized cost ratio
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5.4. Empirical Evaluation 
 
The order of the heuristics has been carefully chosen to provide the fastest possible 
runtimes for the system while still retaining maximum filtering power, as verified through 
empirical testing (see below). Placing heuristic (1) before (2) leads to the best speedups 
because (1) can filter out large numbers of candidates without needing to sort them. 
 
Relative running times on 106 random 10 x 10 matrices (in order of fastest to slowest) 

Test Order Matrix Count Time Matrices Processed Per Second 
102345 1000000 32.953 30346 
102435 1000000 33.343 29991 
102534 1000000 38.546 25943 
021345 1000000 41.093 24335 
041235 1000000 42.312 23634 
051234 1000000 49.000 20408 
031245 1000000 67.203 14880 

 
Heuristics (1) and (2) should run first as they are the simplest and fastest. Altering the 
relative ordering of (3), (4), and (5) seems to have only minimal impact, but the extra 
column-sort required by (5) (see section 5.1) means that it runs slower than the other 
heuristics in typical cases, and should generally come last. Heuristic (3)’s bad worst-
case time only kicks in when it runs on its own; it’s faster than both (4) and (5) when (1) 
and (2) run first. When the cost of the heuristics is broken down incrementally (see chart 
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below), the largest jumps in cost are for (2) and (5)—in both cases because of a sorting 
step. 
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Exhaustive test runs for dimensions 1 x 1 through 6 x 6 prove that these heuristics are a 
perfect approximation of the matching algorithm in the case where the matrix being 
tested is 6 x 6 or smaller. (We know from examples like the one in section 4.8 that the 
approximation is not perfect in the case of matrices 7 x 7 or greater.) 
 
Exhaustive test results for 1 x 1 – 6 x 6 matrices 

Total Matrices Trapped By Dimensio
n Matrix Count 

Filtered 
With No 
Match 

Time (sec) Test 0 
(unsorted) Test 1 Test 2 Test 3 Test 4 Test 5 

1 x 1 2 100% < 1   1    
2 x 2 16 100% < 1 6 5 1    
3 x 3 512 100% < 1 392 49 16 4   
4 x 4 65536 100% 0.062 61660 1129 520 229   
5 x 5 33554432 100% 20.047 33177440 70131 41630 24049   
6 x 6 68719476736 100% 34194.600 68599599264 13167845 9314089 5791150 2416 320 

 
We ignore unsorted matrices for the exhaustive test runs because sorting and then 
testing them would only create redundant work for the program, as well as skew the 
counts. (The single bad 1 x 1 matrix was filtered under “Test 2” rather than “Test 1” 
because it is treated as a special case in the code.) 
 
After executing a series of runs of dimensions from 7 x 7 up through 20 x 20 using a 
reasonably large sample size (100,000 random matrices from each dimension), we 
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found that well over 99.9% of matrices without perfect matchings were consistently 
being filtered by the heuristics (mainly the first three). 
 
Performance results for 7 x 7 – 20 x 20 matrices (105 random each) 

Total Matrices Trapped By Dimension Matrix Count Filtered With 
No Match 

Time 
(sec) Test 1 Test 2 Test 3 Test 4 Test 5 

7 x 7 100000 100% 1.812 60235 9126 3093   
8 x 8 100000 99.997% 2.407 58429 8636 3097   
9 x 9 100000 99.991% 3.093 56886 8365 2970   
10 x 10 100000 99.985% 3.844 55233 7788 2896  1 
11 x 11 100000 99.983% 4.703 53560 7513 2702  2 
12 x 12 100000 99.984% 5.469 52347 7165 2548   
13 x 13 100000 99.990% 6.422 50831 6857 2400   
14 x 14 100000 99.971% 7.484 49269 6683 2318   
15 x 15 100000 99.977% 8.516 48823 6397 2076   
16 x 16 100000 99.978% 10.484 47117 6220 2032   
17 x 17 100000 99.960% 11.938 46652 5989 1898  1 
18 x 18 100000 99.977% 13.640 45207 5791 1853   
19 x 19 100000 99.983% 15.297 44595 5642 1716   
20 x 20 100000 99.980% 17.016 43299 5455 1577   

 
What these results show is that the heuristics perform very well on small matching 
problems. Running times are also impressive, with near-linear slowdown as the problem 
size increases: a 20 x 20 matrix is four times larger than a 10 x 10 matrix, and takes just 
over four times longer to process. 
 
Heuristic (4) was an interesting case. Although it was disappointingly weak at filtering 
the output of the earlier heuristics, on its own (with a “sparse” setting of 50%) it was 
found to be quite powerful, with better than 83% effectiveness in the 5 x 5 case 
(exhaustive) and 88% on a random selection of one million 20 x 20 matrices—actually 
improving as the problem size grows. In the random 20 x 20 test case just mentioned it 
proved over three times faster (without a sort) than running the complete sequence, and 
with only an 11% drop in effectiveness. On 1000 random 500 x 500 matrices, it was five 
times faster with only a 1% drop in effectiveness. 
 
Performance results for heuristic (4) in combination and alone 

Total Matrices Trapped By Dimension Tests Matrix Count Filtered With 
No Match 

Time 
(sec) Test 1 Test 2 Test 3 Test 4 Test 5 

5 x 5 4 33554432 83.492% 249.296    5778026  
5 x 5 102345 33554432 100% 474.812 4925281 3956520 1481560   
7 x 7 102345 1000000 99.999% 18.093 600817 92622 30492 10 4 
20 x 20 4 1000000 88.191% 49.750    440369  
20 x 20 102345 1000000 99.978% 158.984 435386 54967 15990   
500 x 500 4 1000 99.143% 40.906    66  
500 x 500 102345 1000 100% 203.484 66 8    

 
When run alone, each of the heuristics seems to improve in effectiveness on random 
graphs as the problem grows, but running (5) alone takes about the same amount of 
time as running all of the heuristics together, and (3) alone is orders of magnitude 
slower. Unsurprisingly, (1) achieves the fastest solo times, although its effectiveness 
lags just marginally behind (4). But when (1) is combined with the rejected heuristic (6) 
(see section 4.7), the combination outstrips (4) in both speed and effectiveness. 
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Performance results on 106 random 20 x 20 matrices for heuristic (1) alone and in 
combination with the rejected “no empty rows” heuristic (6) 

Total Matrices Trapped By Dimension Tests Matrix Count Filtered With 
No Match 

Time 
(sec) Test 1 Test 6 

20 x 20 1 1000000 87.413% 43.312 435386  
20 x 20 16 1000000 96.754% 41.390 435386 54511 

 
In short, these tests demonstrate that the solo performance/cost ratio is very good for 
the simpler heuristics that don’t require sorts, and average to poor for the more complex 
ones that do. 
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For tests of matrices of larger dimensions (up to 500 x 500 have been tested), the 
heuristics as a group continue to catch and filter more than 99.9% of random matrices 
that do not encode a perfect matching, so we conclude that they are a reliable and 
reasonably low-cost approximation of perfect matchings in small to medium-sized 
bipartite graphs, and therefore a fast and effective filtering strategy for applications 
where only perfect matchings are desired. 
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6. Test Framework Software 
 
6.1. Overview 
 
A software framework (“adjmat”, short for “adjacency matrix”) for testing the heuristic 
model was written in C++. The framework contains powerful and efficient 
implementations of Boolean vector and matrix data structures, allowing adjacency 
matrices of arbitrary dimension to be generated and passed through the heuristics in 
any order. Matrices can be exhaustively or manually enumerated for dimensions up to 8 
x 8 (the largest Boolean matrix that will fit into a 64-bit integer), and randomly 
enumerated for any dimension. Reporting capabilities include options to output all 
matrices considered, or only unfiltered ones, along with matchings when they exist. 
Various flag settings and statistics on the effectiveness of the heuristics can also be 
output. Complete source code is available from the authors upon request. 
 
 
6.2. Command Line Interface 
 
adjmat {-? | dimensions [options]} 
 
-? Usage help 

If this flag is present as the first argument, then a concise help screen is 
displayed. If it appears in any other position, then it is ignored. 

 
dimensions 

This is a required parameter indicating the dimensions of matrices to test. Unless 
the –x flag is also set, a single value means that matrices from dimension 1 x 1 
up to the specified dimension will be considered. (E.g., “adjmat 3” prints all 
matrices from 1 x 1 to 3 x 3.) A range of values can be specified using comma or 
hyphen notation. (E.g., “adjmat 2,4” prints all 2 x 2 and 4 x 4 matrices, while 
“adjmat 2-4” prints 2 x 2, 3 x 3, and 4 x 4.) The –x flag is automatically set when 
a custom range is specified. The value of <dimensions> must be more than “1”. 

 
-v  Verbose mode 

This will output the status of all flags, format parameters, and time statistics. 
 
-x  Process specified dimensions exclusively 

This overrides the default behavior of enumerating matrices of dimension up to 
the given dimension. When set, only the provided dimensions are considered. 

 
-i Ignore unsorted matrices 

If this flag is set, then all enumerated matrices are first checked to see if they are 
row-sorted, and if not, then they are removed from further consideration. When 
the –f flag is set, use –i to override the default behavior of sorting all matrices. 

 
-f Apply filters to the matrices 
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Unless this flag is set, the specified matrices will merely be enumerated. Set this 
to use the heuristic test framework. 

 
-p Prove filter validity (no effect if –f is not also set) 

If this flag is set, a matching will be attempted on every matrix caught by one or 
more of the heuristics. Use this to verify that the heuristics are working correctly. 

 
-m Output matchings if they exist 

If a matching exists for any matrix that would normally be output according to the 
current flags, then setting –m will enable output of the matching as a matrix. 

 
-u Output only unfiltered matrices (no effect if –f is not also set; overrides –a) 

Set this flag to print only the matrices not filtered by the heuristics. 
 
-a Output all matrices and comment out filtered ones (if –f is also set) 

This flag overrides the default behavior of not outputting matrices that do not 
contain a matching. 

 
-L Output the matrices as linearized binary strings 

Use this flag to compress the output and save space. Matrices are printed as one 
long string instead of as a set of rows. 

 
-d Don't output matrices (overrides –m, –a, –u, –L) 

If this flag is set, then no matrices are output, regardless of other output settings. 
 
-n Output matrix identifiers 

Set this flag to output a unique numeric identifier for each matrix considered 
within a given dimension. (Useful for exhaustive or manual enumeration.) 

 
-s Output statistics 

Set this flag to output test statistics for each dimension of matrices considered. 
 
-c{d} Set cutoff density for sparse rows at <d>% 

This flag allows control of the definition of a “sparse row” as used in test 4. Set to 
any value in the range [0,100]. The default value is 50. 

 
-r[n[,d[,s]]] Enumerate <n> random matrices of <d>% density using seed <s> 

This flag allows random enumeration (essential for matrices larger than 8 x 8). 
The number and density of matrices are adjustable, as well as the initial seed 
value for the pseudorandom number generator. The default number is 100, the 
default density is randomized (a value of “0” sets this), and the default seed is 0. 
Note that because of the nature of the pseudorandom number generator, even a 
density value of “100” does not guarantee a full matrix, but a value of “100” 
should give more coverage than “90”, etc. 

 
-e{1,2,...|1-2,...} Enumerate only the listed matrices (up to 8 x 8) 
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Matrices can be manually enumerated using this flag, but only matrices of 
dimension up to 8 x 8 (because of implementation limitations). Each number in 
range is converted to binary and interpreted as a long string consisting of the 
rows of a matrix. A matrix of the same numeric value may be enumerated several 
times, depending on the dimensions parameter. 

 
-t{0|1|2|3|4|5|6}+ Specify which tests to perform and in what order 

This flag allows the user to selectively run heuristics and fine-tune their running 
order. At least one test must be specified or the program will default to doing the 
complete suite. The tests are: 0 = sort the matrix; 1 = test each column for the 
presence of a “1”; 2 = compare against the row-sorted identity matrix; 3 = test for 
forced moves; 4 = test for small neighborhoods (using the cutoff density as 
described above); 5 = test for small duplicate rows; 6 = test each row for the 
presence of a “1” (not included by default; see section 4.7). Note that if this flag is 
set, the matrix will not be sorted by default unless test 0 is specified; this is to 
allow fine-tuning of the timing of sorting. The default test suite is “102345”. 

 
 
6.3. Explanation of Output 
 
The following is a typical example of output from adjmat: 
 
#Dim: 
{ 
7 
} 
#Flags: 
# Ver 
# Xcl 
# Ign 
# Fil 
# Prv 
# Dnt 
# Sta 
# Ctf {50} 
# Rnd {1000000,50,33333} 
# Tst {1,6,0,2,3,4,5} 
 
#========7x7 
 
#Testing 1000000 7x7 matrices took 2.718 seconds. 
#Rate of testing = 367918 matrices/second. 
#**STAT**7x7 
#Total matrices:     1000000 
#Total passed:       146 
#Total bad failures: 0 
#Percent passed:     0.0146% 
#Total filtered:     999854 
# Not sorted:                             999758 
# Rows without a 1:                       31 
# Columns without a 1:                    40 
# Not big enough:                         3 
# Not enough pairwise unique 1s:          22 
# Sparse rows don't cover enough columns: 0 
#     (Sparse = 50% of row capacity) 
# Duplicate rows/cols with not enough 1s: 0 
#Percent filtered:   99.9854% 
#Total unfiltered:   0 
#Percent unfiltered: 0% 
#Unfiltered:Passed = 0:146 = 0% 
#Total matchings:    146 
#Greedy matchings:   88 
#Greedy:Total =      88:146 = 60.274% 
#******** 

 
The header information beginning with “#Dim” is present whenever the –v (verbose) flag 
is set; it shows the values of the command-line parameters. (Verbose mode also 
generates time statistics for each dimension showing how long the run of tests took in 
seconds and providing a testing rate in matrices per second.) In this case, adjmat was 
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run on one million randomly generated (Rnd) 7 x 7 matrices (Dim = {7}) exclusively (Xcl) 
in verbose mode (Ver), ignoring unsorted matrices (Ign). The program was instructed to 
check each filtered matrix for a matching (Prv), matrix output was disabled (Dnt), and 
statistics output was enabled (Sta). The cutoff value for heuristic (4) was set at 50% (Ctf 
= {50}), the random matrix generator was instructed to produced matrices of 50% 
density, starting with a seed value of 33333 (Rnd = {1000000,50,33333}), and the tests 
were manually specified to run in the order “no empty columns” > “no empty rows” > 
“sort” > “big enough” > “eliminate forced moves” > “no small neighborhoods” > “no small 
duplicates” (Tst = {1,6,0,2,3,4,5}). 
 
The statistics listing at the bottom gives a great deal of information about how the 
heuristics performed on the test set. Line by line, here is the breakdown: 
 

• “Total matrices”: Number of matrices tested; should match command-line value. 
• “Total passed”: Number of matrices not rejected by any heuristic. 
• “Total bad failures”: Number of matrices containing a matching that were rejected 

by the heuristics. (This should always be 0, or the program has a bug!) 
• “Percent passed”: Ratio of “Total passed” to “Total matrices” as a percentage. 
• “Total filtered”: Number of matrices caught by the filters; an individual breakdown 

of values for each of the heuristics is provided immediately below this line; the 
sum of the individual values should equal the total amount. 

• “Percent filtered”: Ratio of “Total filtered” to “Total matrices” as a percentage. 
• “Total unfiltered”: Number of matrices not containing a matching that were not 

caught by the heuristics; the lower, the better. 
• “Percent unfiltered”: Ratio of “Total unfiltered” to “Total matrices” as a 

percentage; provided for completeness, but not a measure of performance. 
• “Unfiltered:Passed”: Ratio of “Total unfiltered” to “Total passed” as both a ratio 

and a percentage; this gives an idea of how many filtering opportunities were 
missed and is the best measure of heuristic performance. 

• “Total matchings”: Should be equal to the difference between “Total passed” and 
“Total unfiltered” (if not, there is a bug); this counter is only incremented after the 
program actually performs a matching, so it’s useful as a check that the full 
matching is behaving correctly. 

• “Greedy matchings”: Number of matchings that were discovered by a greedy 
matching procedure without needing to run the full matching algorithm (see 
section 6.4); the higher, the better. 

• “Greedy:Total”: Ratio of “Greedy matchings” to “Total matchings” as both a ratio 
and a percentage. 

 
The next example shows the output after adjmat is run with the same parameters as 
above, except that unsorted matrices are no longer ignored (i.e., they are sorted by 
rows prior to the running of the test suite), matrix identifiers have been added (indicating 
where in the enumeration the matrix appeared), and verbose mode is disabled. 
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#---57514 
#0000101 
#0010010 
#0100001 
#0100100 
#0100101 
#1011011 
#1111110 
#(Not filtered) 
 
#--233955 
#0011010 
#0101000 
#1001000 
#1010101 
#1100000 
#1100111 
#1101000 
#(Not filtered) 
 
#--385184 
#0000101 
#0011010 
#0111110 
#1000001 
#1000100 
#1000101 
#1100110 
#(Not filtered) 
 
#--892493 
#0001010 
#0010100 
#0100100 
#0110000 
#0110100 
#1000111 
#1101001 
#(Not filtered) 
 
#**STAT**7x7 
#Total matrices:     1000000 
#Total passed:       613090 
#Total bad failures: 0 
#Percent passed:     61.309% 
#Total filtered:     386910 
# Not sorted:                             0 
# Rows without a 1:                       139162 
# Columns without a 1:                    166533 
# Not big enough:                         7859 
# Not enough pairwise unique 1s:          73331 
# Sparse rows don't cover enough columns: 15 
#     (Sparse = 50% of row capacity) 
# Duplicate rows/cols with not enough 1s: 10 
#Percent filtered:   38.691% 
#Total unfiltered:   4 
#Percent unfiltered: 0.0004% 
#Unfiltered:Passed = 4:613090 = 0.000652433% 
#Total matchings:    613086 
#Greedy matchings:   356703 
#Greedy:Total =      356703:613086 = 58.1816% 
#******** 

 
Statistics show that the performance of the heuristics on this group of matrices was 
better than 99.999%. Finally, an example to demonstrate the effect of –e and –m flags: 
 
#Dim: 
{ 
7 
} 
#Flags: 
# Ver 
# Xcl 
# Mch 
# All 
# Enm 
{ 
481927363215310 
} 
 
#========7x7 
 
1101101 
1001001 
1110111 
0101010 
0101010 
1111111 
1001110 
#%MATCHING% 
# 1000000 
# 0001000 
# 0000001 
# 0000010 
# 0100000 
# 0010000 
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# 0000100 
#%%%%%%%%%% 
 
#Testing 1 7x7 matrices took 0 seconds. 
#Rate of testing = 0 matrices/second. 
 
Here, we instructed the program to output a matrix of our specification (Enm; note that 
48192736321531010 = 11011011001001111011101010100101010111111110011102) 
and find a matching for it if possible (Mch), printing it out even if no matching existed 
(All). The –x (Xcl) flag was set automatically by the presence of the –e flag. The time 
statistics are useless in this case because the process terminated so rapidly. 
 
6.4. Hopcroft-Karp Implementation 
 
A matching procedure is used to test the performance of our heuristics. If a matrix 
passes all of the heuristics, then we attempt to compute a matching, and if none is 
found, then we know that the matrix has slipped through the cracks. We also use the 
matching algorithm to verify that a perfect matching does not exist in a matrix that was 
rejected by a heuristic (this is enabled by a command-line option; see section 6.2). 
 
The matchings are done using the Hopcroft-Karp algorithm [6], adapted for a Boolean 
matrix representation of bipartite graphs. This algorithm was chosen because it has one 
of the lowest worst-case bounds for bipartite matching algorithms (see section 3), and 
because it’s easy to understand and implement, requiring only basic data structures. 
 
Two optimizations to the algorithm were undertaken. First, we implemented the breadth-
first search for augmenting paths using a one-step lookahead—conceptually analogous 
to loop unrolling. Second, before the main procedure we added a “greedy matching” 
pass—attempting to pair up as many unmatched vertices as possible in order of 
discovery. The greedy matching makes a single pass through the rows of the matrix, 
matching each row with the first available column. If no columns are available, then the 
row is skipped. Despite the crudeness of the procedure, it finds a perfect matching 
about 80% of the time in small cases, but rapidly deteriorates to a near-constant level of 
about 5% for larger cases. 
 

Effectiveness of greedy matching
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7. Concluding Words 
 
Our goal was to find a reliable, low-cost, prima facie means of determining whether a 
given bipartite graph has a perfect matching. It was hoped that the capacity to make 
such a determination would enable faster disposition of perfect matching problems by 
eliminating from processing any classes of graphs that cannot have perfect matchings—
there is no value in running an expensive matching procedure when you don’t have to. 
The heuristic filter model we developed toward this end has proven to be both 
exceptionally reliable and reasonably low in cost, allowing us to successfully identify and 
filter out more than 99.9% of unusable candidate graphs in time proportional to the cost 
of sorting the vertices of the graph by edge counts (an essentially prima facie measure). 
Moreover, the model extends the legacy of Hall’s Theorem in offering promising lines for 
further research into the conditions necessary for perfect matchings to exist in bipartite 
graphs. We believe that the framework we have developed is immediately usable in 
such research and extendable to many classes of problems where rapid computation of 
perfect matchings is desired. 
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