
 1

Fast Filtering Heuristics for Perfect Bipartite Matchings1

Rakesh M. Verma1 and Jack Wiedrick
Computer Science Department

University of Houston
Houston, TX, 77204, USA

http://www.cs.uh.edu

UH-CS-08-19
December 20, 2008

Keywords: Graphs, Bipartite Matching, Heuristics,

Performance

Abstract
The bipartite matching problem has wide applicability. For example, in computer science, researchers
have applied bipartite matching in objection recognition, image processing, scheduling, genomics, term
rewriting and formal verification, and computer security. We present a heuristic model of perfect
matchings in bipartite graphs. The goal of the model is to explore the use of low-cost heuristics in
applications where only perfect matchings are desired. The heuristics test for a number of conditions
necessary for perfect matchings to exist in a graph, and as such, they can be used as filters to quickly
identify and exclude unsuitable graphs from further processing. Whereas the best maximum cardinality
bipartite matching algorithms run in about)(2

5

nO time (n being the number of vertices in the bipartite
graph), we show that it’s possible to make a reliable prima facie guess about the potential for a perfect
matching in a given graph in roughly)log(2 nnO time without bookkeeping costs. Although we
represent bipartite graphs by matrices, the heuristics can be adapted to other representations as well.
Proofs of validity and runtime analysis of the heuristics are presented, along with a discussion of their
performance characteristics in practice. A software framework is described that implements each of the
components of the heuristic model and includes various test facilities for exercising them. Empirical
results from the framework demonstrate the effectiveness of the heuristics for graphs with up to 1000
vertices. We find that the heuristic model shows exceptional performance in identifying a very large
percentage of graphs of this size that do not contain a perfect matching (our tests indicate better than
99.9% on average), while never excluding any graph that does.

1Research partly supported by NSF grants CCF-0306475 and DUE-0313880.

 2

Fast Filtering Heuristics for Perfect Bipartite Matchings

Rakesh M. Verma2 and Jack Wiedrick

Computer Science Department, University of Houston, Houston, Texas, 77024

713-743-3348

713-743-3335 (fax)
rverma@uh.edu

Abstract

The bipartite matching problem has wide applicability. For example, in the computer
science field, researchers have applied bipartite matching in objection recognition,
image processing, scheduling, genomics, term rewriting and formal verification, and
computer security. This list of applications is illustrative and is by no means exhaustive.
We present a heuristic model of perfect matchings in bipartite graphs. The goal of the
model is to explore the use of low-cost heuristics in applications where only perfect
matchings are desired (as opposed to merely maximum cardinality matchings). The
heuristics test for a number of conditions necessary for perfect matchings to exist in a
graph, and as such, they can be used as filters to quickly identify and exclude
unsuitable graphs from further processing. Whereas the best maximum cardinality
bipartite matching algorithms run in about)(2

5

nO time (n being the number of vertices
in the bipartite graph), we show that it’s possible to make a reliable prima facie guess
about the potential for a perfect matching in a given graph in roughly)log(2 nnO time
without bookkeeping costs. Although we represent bipartite graphs as square Boolean
matrices and develop the heuristic model within the context of that abstraction, the
heuristics can be adapted to other representations as well. Proofs of validity and
runtime analysis of the heuristics are presented, along with a discussion of their
performance characteristics in practice. A software framework is described that
implements each of the components of the heuristic model and includes various test
facilities for exercising them. Empirical results from the framework demonstrate the
effectiveness of the heuristics for graphs with up to 1000 vertices. We find that the
heuristic model shows exceptional performance in identifying a very large percentage of
graphs of this size that do not contain a perfect matching (our tests indicate better than
99.9% on average), while never excluding any graph that does.

2 Research supported in part by NSF grants CCF 0306475 and DUE 0313880.

 3

1. The Problem

There are many situations where two groups of objects must be matched to each other
in some optimal way. A classic example is boys and girls in a dance class: each student
should have a partner to dance with and ideally the partner should be of the opposite
sex. If we insist that the partners must be of the opposite sex then we have a bipartite
matching problem. If we further insist that the partners be compatible in some fashion,
we’re forced to spend time querying each dancer for potential mismatches as we try to
pair them up. A further complication arises if we require every dancer to have a partner,
because we’re no longer allowed to assume that a compatible match is viable for the
needs of the class. It then becomes a perfect matching problem, and in order to solve it
we usually have to at least try to pair up the girls and boys (i.e., execute some
maximum cardinality bipartite matching procedure through to completion) before we can
discover whether or not it’s possible to find a compatible partner for every student in a
given class. That fact makes this particular problem highly amenable to problem space
filtering—if we could somehow “look” at a class and quickly discern whether a perfect
matching between boys and girls was even likely, we could avoid all the effort of the
matching procedure in hopeless cases.

This problem has broad application. We mention a few of the computer science
applications to illustrate its applicability. In the computer science field, researchers have
applied bipartite matching in objection recognition [12], image processing [], scheduling
[], genomics, term rewriting and formal verification [13], and computer security. A
conceptually simple example from the computing domain is the question of how to
assign parallel threads of execution to different processors—based on each processor’s
availability or affinity for a certain type of work—so that the overall task is guaranteed to
be completed by a given deadline. Another is in rule-based programming, where an
input term must match the left-hand side of a rule completely, perhaps subject to
associative or commutative transformations, before it can be reduced to the right-hand
side.

To the best of our current knowledge on the problem, we are always forced to examine
every compatible pairing at least once times a certain factor dependent on the size of
the graph (roughly the square root of the vertex count; see section 3). But we would
prefer to query each vertex just once, and based on the existence or absence of
edges—and perhaps using cheap analytical tools like sorting and comparison—make a
reasonably accurate guess about whether they can all be paired up or not. Such a
procedure would constitute a heuristic model of the problem that could be used to filter
input to a proper algorithm, hopefully reducing the computational cost of looking for
solutions in the average case. In the remainder of this paper, we explore the
components of one such heuristic model for perfect bipartite matchings.

2. Definitions

2.1. Graphs

 4

A graph ()EVG ,= is a set of vertices in V connected by edges in E . A subgraph

()EVG ′′=′ , as used in this paper is a subset of vertices VV ⊆′ and all edges EE ⊆′
incident on those vertices. A bipartite graph { }()∅=∩×⊆∪= 212121 |, VVVVEVVG is one
whose vertices can be partitioned into two independent sets 1V and 2V such that no
edges in E connect vertices in the same set. A matching M on G is a set of pairwise
nonadjacent elements of E . Equivalently, M can be expressed as a function

(){ }2121)(,|)(,: VuFVuuFuVVF ∈∈=→ . We then call M a perfect matching if the
corresponding function MF is a bijection. If M is a perfect matching, then every
nonempty subset of M is a partial perfect matching on G .

2.2. Matrices

Given an nm× Boolean matrix { } { } { }1,0,,2,1,,2,1: →× nmA ΛΛ , m is the number of row
vectors in A and n is the number of column vectors. (This defines row-major ordering.)
The qp × submatrix A′ of A , where mp ≤ and nq ≤ , is defined by selecting the
intersection of any p rows and q columns from A . (Note that the rows and columns
need not be adjacent.) A is considered a representative of another nm× Boolean matrix
B if B completely covers A , i.e., if ABA =∧ , where the “ ∧ ” operation is the pointwise
Boolean AND of the matrices. If A can be transformed into the identity matrix through
some row-ordering operation, then A is a matching representative of B . (Note that both
A and B must be square in this case.)

2.3. Vectors

For a vector ()mxxxX ,,, 21 Λ= , let X be the size of X and)(iX be the value of the i -
th element of X . The count of X , indicated here as)(Xc , is defined as the number of
nonzero entries in X . Given a function ωω →:f , we say X is f -sparse if

)()(XfXc ≤ . X is less than another vector Y if)()(iYiX < for some i and
)()(jYjX = for all ij < . (This defines lexicographic ordering.) Given an nm× Boolean

matrix A and row vectors ()mrrr ,,, 21 Λ in A , we say that A is row-sorted if ji rr ≤
whenever ji < .

3. Background

Bipartite matching is related to the maximum flow problem in two-stage networks and
can be easily reduced to it. Ford and Fulkerson [4] showed that networks can be
defined so that a maximum flow corresponds to a maximum cardinality matching in the
corresponding bipartite graph. See Kennedy [7] for a good overview of this approach.

 5

As a commonly encountered graph problem with a tractable solution, bipartite matching
has many applications [2], but despite extensive research on the problem going back
many decades (Hall’s Theorem [5], below, was an early formulation), no one has
discovered an algorithm with running time much better than)(VEO , which

approaches)(2
5

VO as E approaches its worst-case bound of 2V . An algorithm with
this bound was first discovered by Hopcroft and Karp [6], but was later refined

logarithmically to)log(2
3

VEVO in Alt, Blum, Mehlhorn, and Paul [1], and to

)(log
)log(2

V
EVVEO in Feder and Motwani [3].

Hall’s Theorem: Given a bipartite graph ()EVVG ,21 ∪= , G has a perfect matching iff
for every subset 1VS ⊆ , SSAdj ≥)(, where)(SAdj denotes the set of vertices in 2V
that are adjacent to some vertex of S .

While most work in the literature concentrates on developing faster ways to compute a
maximum cardinality bipartite matching, we believe that inadequate attention has been
devoted to developing ways to avoid such computation in situations where nothing less
than a perfect matching will be useful.

4. A Heuristic Model

4.1. Encoding

Bipartite graphs are mathematically representable in many ways, but we have found the
adjacency matrix representation of the graph’s edge-space most convenient for our
purposes because of the ease with which the component row and column vectors of a
matrix can be sorted and compared. While inefficient for very large and/or very sparse
graphs, the matrix representation is quite workable for small-scale graphs of around
1000 vertices or less, and have the added advantage of a straightforward and efficient
software implementation, being typically stored in contiguous memory for ease of
access via simple pointer arithmetic. Note, however, that although we frame our
heuristic model in these terms, the matrix operations invoked in the operation of the
heuristics are merely a front-end abstraction and can be trivially translated to any
underlying graph representation desired.

Thus, we encode a bipartite graph { }()∅=∩×⊆∪= 212121 |, VVVVEVVG as a Boolean

matrix { } { } { }1,0,,2,1,,2,1: 21[] →× VVG ΛΛ where
()
() �

�
�

�
�
�

∉
∈

=
Eji

Eji
jiG

,0
,1

),([] . We will only

consider square matrices (21 VV =), since a perfect matching is impossible when that

condition is not met. Throughout this paper we denote the size of []G as g , where

 6

21 VVg ⋅= , the number of potential undirected edges in G . Any matching EM ⊆ on G

can be similarly represented as a Boolean matrix][GM , defined analogously to []G .

4.2. The Goal

Given []G as defined above, the problem we stated in section 1—that of making a prima
facie determination as to whether the bipartite graph G could contain a perfect
matching—is now reduced to the following question:

Does there exist a matrix that is a matching representative for []G ?

If such a matching representative exists (see section 2.2), its existence would indicate
that a perfect matching on G also exists. (For simple proof of this fact, consider that the
identity matrix encodes a perfect matching between its rows and columns.) Note that we
are not interested in identifying a specific matching representative per se, only in
determining that one may exist. Furthermore, we wish to do so using only low-cost
heuristic methods that run in time roughly linear in g and that never reject a matrix that
does in fact have a matching representative. In other words, the heuristic model should
encode only easily discoverable and necessary conditions for the existence of a
matching representative for []G .

4.3. The Heuristics

1) No empty columns. For every column jc of []G , 0)(>jcc .

2) Row-sorted and big enough. When []G is row-sorted (see section 2.3), each row of

[]G should not be less than the corresponding row of a g -sized row-sorted identity
matrix.

3) Eliminate “forced moves”. If any k adjacent rows 11 ,,, −++ kiii rrr Λ in []G are “identical”

(i.e.,)()()(11 jrjrjr kiii −++ == Λ for all j in the domain), where 1≥k (rows are
considered self-identical for this heuristic), and krc i =)(, then the set of rows in
question encodes a partial perfect matching on G . []G should be reduced to the

submatrix []G′ formed by eliminating from []G the k identical rows ir and all columns

jc where 1)(=jri . After reduction, []G′ should be tested again. (Note that we also
check for forced moves in columns, but only when 1=k , as checking when 1>k
would require a column-sort of the matrix; see sections 4.7 and 5.1.)

4) No small neighborhoods. Define a function f on the rows ir of []G so that ii rrf ≤)(

(e.g., 2)(ir
irf =). If any row in []G is f -sparse (see section 2.3), then add it to an

initially empty set SR . For all rows Si Rr ∈ where 1)(=jri for some j in the domain

 7

(i.e., where row i has an edge to column j), add j to an initially empty set C if j is
not already a member of C ; when construction of C is complete, SRC ≥ .

5) No deficient row or column sequences. If any k adjacent rows in []G are
“identical”—as defined in heuristic (3) except that we disallow the 1=k case (see
section 4.7)—then krc i ≥)(; a similar property should hold for the columns of []G .

4.4. Examples of the Heuristics at Work

Consider the following 7 x 7 matrices:

765432176543217654321

7
6
5
4
3
2
1

0000001
0000010
0000100
0001000
0010000
0100000
1000000

0000101
0000101
0001000
0001000
1110000
0110000
1000000

0000101
0000101
1000000
0001000
0110000
1110000
0001000

321

�
�
�
�
�
�
�
�
�

�

	

�

�

=

�
�
�
�
�
�
�
�
�

�

	

�

�

=

�
�
�
�
�
�
�
�
�

�

	

�

�

= MMM

1M is a randomly generated matrix, 2M is a row-sorted transformation of 1M , and 3M

is the row-sorted identity matrix of size 1M . Let’s examine what happens when we run

each heuristic to completion on 2M . First, by examining column 2, the reader should
verify that there is no perfect matching of rows and columns in 1M .

Heuristic (1): It is easy to see that column 2 is empty in 1M and 2M . Therefore, both

1M and 2M fail this heuristic. Note that, unlike the other heuristics in the set, row-
sorting is unnecessary; a simple examination of columns will suffice. As we will see
later, this becomes a big advantage as the matching problems grow in size.

Heuristic (2): Most rows of 2M are at least as large as the corresponding rows of 3M ,
but since row 5 is not, 2M will fail this heuristic. Remember that a row comparison
between 1M and 3M would be meaningless; we must use the row-sorted 2M instead.

Heuristic (3): Row 1 of 2M contains a forced move since it has only one “1” and cannot
be matched to any column other than 7. Therefore, we can remove row 1 and column 7
from consideration, yielding the submatrix:

 8

�
�
�
�
�
�
�
�

�

	

�

�

=′

000101
000101
001000
001000
110000
110000

2M

Now rows 1 & 2 and columns 5 & 6 of 2M ′ form a combined forced move; the two rows
and two columns are then removed to form:

�
�
�
�

�

	

�

�

=′′

0101
0101
1000
1000

2M

All the rows of 2M ′′ now contain forced moves of one sort or another, but in order for the
heuristic to run correctly we have to eliminate them one at a time:

�
�
�

�

	

�

�

=′′′
101
101
000

2M

Removing the first forced move also eliminated the second one! It’s now clear that 2M
cannot contain a perfect matching, but the heuristic isn’t smart enough to discover that
yet. It sees that rows 2 & 3 and columns 1 & 3 contain forced moves, so they are
removed:

[]02 =′′′′M

Since removing every forced move left us with no “1”s remaining, 2M fails this heuristic.
But note all the extra work involved in recursively constructing and testing submatrices.
Moreover, sorting by rows is crucial if we want to detect the duplicate rows in linear
time. We will discuss the impact of these facts later on (see section 5.1).

Heuristic (4): Initially, we can define a sparse row as one containing a single “1” or less.
By this definition, rows 1, 4, & 5 of 2M are sparse. Row 1 covers column 1 and row 4
covers column 4, but row 5 doesn’t cover any additional columns, so two columns must
somehow be split between three rows, an impossibility. Thus, 2M fails this heuristic for
this definition of sparsity. But if we had defined a sparse row as consisting of two “1”s or
less, then every row except 3 is sparse. Those six rows cover six columns (1, 3, 4, 5, 6,
& 7), so 2M would pass the heuristic for that definition of sparsity. This shows that the
effectiveness of heuristic (4) is sensitive to the overall density of the matrices being

 9

considered. A value of around 50% (three “1”s or less for this example) seems to work
well on random matrices.

Heuristic (5): There are two sets of duplicate rows in 2M : rows 4 & 5, and rows 6 & 7. In
the first case, each row contains a single “1”, whereas in the second case each row
contains two “1”s. Rows 6 & 7 can still both participate in a perfect matching if row 6 is
matched to column 1 and row 7 to column 3 or vice versa, but rows 4 & 5 cannot. If
either row claims its “1”, then the other cannot have it, so 2M fails this heuristic. Like
with heuristic (3), row-sorting is not theoretically required, but crucial for reducing time
complexity.

4.5. Proof that the Heuristic Set is Valid

Now we prove five theorems (each corresponding to a heuristic above) that establish
the validity of the heuristic set. Taken together, these theorems show that none of the
heuristics will reject any matrix that has a perfect matching of rows and columns.

Theorem 1: If a square matrix M has a perfect matching of rows and columns, then for
every column jc of M ,)(jcc is required to be greater than zero.

Proof: Trivial.

Theorem 2: If a row-sorted square matrix M has a perfect matching of rows and
columns, then each row of M must be at least as large as the corresponding row of the
row-sorted identity matrix I ′ of size M .

Proof (by contradiction): Assume that M has a perfect matching of rows and columns
and that there is a row ir in M that is not as large as the corresponding row ir′ in I ′ .
Two cases exist: Either 0)(=irc , or 0)(>irc . The first case is trivial: If one a row of M
is empty, then there can be no matching column for that row and one of the columns of
M must therefore go unmatched (remember that M is square), so the assertion is
contradicted. In the second case, first form a partition of the columns of ir′ using the
single “1” in the row as a pivot point. Call one partition L and include in L the column
with the “1” and every column to the left of it. All columns to the right of it go into the
second partition, R . Note that Rrc i ≤)(because ii rr ′< . There are 1−i rows above ir ,

and since M is row-sorted all of them are less than or equal to ir . Thus, each of the

rows above ir can have at most R nonzero entries. Moreover, because of the way the

partition R was formed, 1−= iR . But if M has a perfect matching, then the 1−i rows

above ir must be matched to Ri =−1 columns. Since ir can only be matched to one of

the same R columns, one of the columns is matched to more than one row, which
contradicts the properties of a perfect matching.

 10

Corollary 1: A row-sorted square matrix M can be compared to the row-sorted identity
matrix I ′ of the same size to determine the possibility of a matching in M .

The following lemma is useful in proving the next theorem.

Lemma 1: If a bipartite graph ()EVG ,= contains a perfect matching EM ⊆ , then any
nonempty subset MM ⊆′ is a perfect matching on the subgraph G′ induced by M ′ .

Proof: M ′ is a matching because M is a matching. Since M ′ is nonempty, it contains
at least one edge, and this edge is a perfect matching between the two endpoints of the
edge. If M ′ contains more than one edge, then the edges are nonadjacent because M ′
is a matching. Thus, every edge in M ′ connects two distinct vertices in G′ . Since the
edges in M ′ cover all vertices in G′ (by construction), M ′ is a perfect matching.

Theorem 3: If a square matrix M has a perfect matching of rows and columns, and a
submatrix MM ⊆′ contains a single unique perfect matching, then the portions of M
not covered by M ′ must also contain a perfect matching disjoint from the one in M ′ .

Proof: We prove a more general result. Assume that a set { }∅=∩×= CRCRS |
contains a perfect matching between R and C . Partition R into two disjoint sets 1R and

2R such that 1R can only be matched to a set CC ⊆1 and to no other subset of C . By
Lemma 1, such a matching will always exist. Now define the set 12 CCC −= . Since the
members of 1R can only be matched to the members of 1C , the matching between 1R
and 1C must be present in any perfect matching on S . Moreover, if 2R cannot be
matched perfectly to 2C , then S cannot contain a perfect matching. Therefore, 2R and

2C must also have a perfect matching, which by construction is disjoint from the one
between 1R and 1C .

Corollary 2: If S contains a perfect matching, that matching can be found by first
finding a matching on 11 CR × and then finding a matching on 22 CR × .

Corollary 3: If 2C is always empty regardless of how 1R is constructed, then S contains

!! CR = different perfect matchings.

Proof: R is partitioned such that 1R can only be matched to 1C and not to any other
subset of C . Thus, if all elements in R must be used in order to achieve that result, it
follows that every element of C can be matched in R ways, and therefore that !R

perfect matchings exist; CR = because S contains a perfect matching, so !! CR = .

Theorem 4: If a square matrix M has a perfect matching of rows and columns, then the
nonzero entries in any set of k rows in M must cover at least k distinct columns.

 11

Proof: This is a restatement of Hall’s Theorem (see section 3).

Theorem 5: If a square matrix M has a perfect matching of rows and columns, then the
number of duplicated identical rows in M cannot be greater than the number of
nonzero entries in each identical row. A similar theorem holds for the columns of M .

Proof (by contradiction): Assume that M contains a perfect matching and is comprised
of nk + identical rows with k nonzero entries in each row, where 0>n . After matching
k of the rows to the corresponding k columns that contain nonzero entries, n rows are
left unmatched. Each of the rows in M has only k nonzero entries, and since each of
those entries has been matched to one of k columns, the remaining entries in the
unmatched rows are zero entries, which cannot be matched to any column, so n rows
will be left out of any matching, which contradicts the assertion. The proof for columns is
similar.

Corollary 4: The rows in question need not be identical. If only k columns must be
matched to nk + rows, there cannot be a perfect matching unless 0=n .

4.6. Independence of the Heuristics

Establishing a clear picture of the implicational relationships between the heuristics in
the set is an ongoing research goal, made difficult by the many combinatorial
possibilities. (In the 7 x 7 case, for example, there are 249 = 562,949,953,421,312
possible Boolean matrices, and even if 99.9% of those are unsorted and thus removed
from consideration, well over 500 billion possibilities remain.) Here, we present our
findings so far.

When we say a heuristic A is independent of heuristic B, we mean that A will correctly
filter a class of matrices of arbitrary size where B will not. This definition differs from
strong independence, or true orthogonality. Note that in the above sense, none of the
heuristics in our set appears to be independent from the others for very small cases
(matrices 4 x 4 or smaller), so we will restrict our attention to 5 x 5 and larger matrices.
As a last caveat, heuristic (4) shows different characteristics depending on the cutoff
density value for sparsity (see section 4.4). In the constructions we assume a constant
value of 50% and leave it as an exercise to extend the results to other values.

Heuristic (1) is the most independent of the set since it considers only column states,
whereas the others focus primarily on row states. We define a distinguishing class of
matrices for this heuristic using the following construction:

1) Begin with a zero-filled square nn× matrix, where 4>n .
2) Fill the bottom row with “1”s except in the rightmost column, which will retain all “0”s.
3) The remaining rows must each contain exactly 2−n “1”s, arranged so that no two

rows are identical. Here is a 5 x 5 example:

 12

�
�
�
�
�
�

�

	

�

�

01111
00111
01011
01101
01110

Heuristic (3) can also be distinguished with a relatively simple construction. The idea is
to reduce matching possibilities in such a way that the other heuristics are “fooled”:

1) Begin with a zero-filled square nn× matrix, where 4>n .
2) Fill the bottom row with “1”s.
3) Place a single “1” in the rightmost column of the top row.
4) The leftmost column will retain all “0”s except in the bottom row.
5) Place “1”s in rows 2 through 1−n so that each of the rows in question contains at

least two but no more than 2n “1”s, configured so that there are no more than k
identical rows for each pattern containing k “1”s; furthermore, for each row ir , some
entry 1+−≤ inj in that row must contain a “1”. Here is a 5 x 5 example:

�
�
�
�
�
�

�

	

�

�

11111
10010
10010
01100
10000

We have been unable to construct simple algorithms defining distinguishing classes for
the other heuristics, and the only examples we have been able to find are for matrices 7
x 7 or larger for heuristic (4) and 6 x 6 or larger for heuristic (5).

Below is an example of a 7 x 7 matrix distinguishing heuristic (4). Smaller examples
cannot be found because of the requirement that several rows be sparse (i.e., 50% “1”s
or less) without creating any empty columns, duplicate rows or allowing the rows to
become too small. Furthermore, we must have k sparse rows that cover only 1−k or
fewer columns. In the following example, we have managed to create four sparse rows
at the top of the matrix that meet those requirements:

�
�
�
�
�
�
�
�
�

�

	

�

�

0101011
0011001
1110010
1010100
0010100
1000100
1010000

 13

Below is an example of a 6 x 6 matrix distinguishing heuristic (5). The trick is to create
three identical columns containing only two “1”s each, arranging the rest of the matrix so
as to fool the remaining heuristics:

�
�
�
�
�
�
�
�

�

	

�

�

101111
010101
010101
000101
010001
101010

We have yet to discover a matrix that heuristic (2) will filter when the others will not. It is
possible that heuristic (2) is not independent in the sense mentioned above. We can
show that heuristic (2) is pairwise independent from each of the others, but in the cases
we have tested so far, the combination of heuristics (1), (3), (4), and (5) seems to be
sufficient to compensate when (2) is missing. However, we retain (2) because the
system performs faster when it’s included than when it’s not.

4.7. Additional Heuristics

In the course of testing and developing the heuristic set, we considered another
heuristic that later proved redundant in the system:

6) No empty rows. For every row vector ir of []G , 0)(>irc .

It turns out that heuristic (6) is logically implied by the more powerful heuristic (2)—since
the row-sorted identity matrix contains a “1” in every row, and in order to pass heuristic
(2), the rows of a matrix must be at least as large as those of the row-sorted identity
matrix, all rows must therefore contain at least one nonzero entry. But the converse
case is also interesting. In combination with the other heuristics, heuristic (6) can
replace (2) with no apparent loss of effectiveness. As expected, using the simpler
heuristic (6) leads to modest speedups (it doesn’t require the relatively expensive row-
sorting operation), but unlike (2), heuristic (6) is not pairwise independent of (4)—easy
to see by noting that empty rows are always sparse yet contribute nothing to column
coverage. Eliminating the redundancy means reworking heuristic (4) to have it view
empty rows as non-sparse. Not only is this against the spirit of (4), it complicates and
slows its operation by requiring a special-case test for every row examined.
Furthermore, the minor speed gains that can be achieved by replacing heuristic (2) with
(6) may disappear for large matrices—our tests seemed to indicate declining returns
from (6) as matrix size was increased. For all these reasons, heuristic (6) was
eliminated from the set, but the implementation was retained in the test framework (see
section 6.2) so users would have the option of using it in their own custom tests.

 14

Astute readers might also wonder about the different definitions of “identical” in
heuristics (3) and (5). If columns were allowed to be self-identical in heuristic (5), then
heuristic (1) would become subsumed by heuristic (5)—a single empty “duplicate”
column would indicate the absence of a perfect matching. The problem is that heuristic
(5) requires an extra sorting step in order to locate duplicate columns, and sorting is
expensive compared to heuristic (1), which is a simple linear search with typical early
termination (see section 5.1). A similar argument holds for rows, as empty rows are
more rapidly detected by heuristic (2) instead. Thus, the more general version of
heuristic (5) was rejected because allowing heuristics (1) and (2) to run before (5) has
the effect of eliminating many matrices from consideration by the costlier (5).

4.8. Synthesis

The above heuristics reflect conditions necessary for any matrix to have a perfect
matching of rows and columns, so a matrix that fails one of them is guaranteed not to
have a perfect matching. But the converse is not true: A matrix may meet all the above
conditions and still not contain a perfect matching. This can be demonstrated empirically
through application of the heuristics on actual matrices. For example, the following 7 x 7
matrix passes all of the heuristics for any definition of “sparse row”, but encodes no
perfect matching:

7
6
5
4
3
2
1

1111011
0001101
0000101
0001001
1110010
1100010
0001100

�
�
�
�
�
�
�
�
�

�

	

�

�

(Rows 1, 4, 5, & 6 cannot all be matched.)

Nevertheless, the heuristic model proves to be an exceptionally reliable and relatively
low-cost approximation of perfect matchings, making it ideal for use as an input filter to
true matching algorithms in applications where only perfect matchings are desired.

5. Performance

5.1. Runtime Characteristics

The time requirements for most of the heuristics can easily be shown to be close to
linear in g in the worst case (recall that g is the number of potential edges in a graph;
see section 4.1). Here we present detailed runtime analyses for each of the heuristics in
turn:

 15

1) No empty columns. Checking each column of a matrix for the presence of nonzero
entries requires only)()(gOggO =⋅ accesses in the worst case.

2) Row-sorted and big enough. Using an optimal algorithm, sorting the rows of a matrix
requires)log(ggO ⋅ row comparisons, where each row entails at most)(gO
element comparisons. Thus, the worst case for the sorting stage of this heuristic is

)log()log(ggOgggO =⋅⋅ , which is only slightly worse than linear in g . For
the second stage, we note that while comparing row values between two same-size
matrices requires)()(gOggO =⋅ comparisons in general, when the rows of the
matrices are sorted and the algorithm breaks off at the first mismatch, the average
time of failure is closer to)(gO —the cost of comparing two single rows—because
the smallest rows will be examined first. So sorting makes this stage faster, although
the worst-case performance for both stages combined is still)log(gggO + .

3) Eliminate “forced moves”. Finding duplicate rows cannot be done in linear time if the
rows of the matrix are unsorted. When they are sorted, it requires comparing a
maximum of g rows in a single pass, with each comparison taking at most)(gO
accesses; thus,)(gO . However, eliminating forced moves also requires recursively
constructing a series of possibly noncontiguous submatrices for further testing,
which will add considerably to the time and space complexity. In the typical case of
simply constructing a new submatrix using copy operations each time, the
construction will take)(gO time and may be performed as many as g times; even
worse, duplicate rows must be rediscovered each time, which requires more sorting
operations. Thus, the total time complexity for applying this test recursively to
problem completion is ()() ()()gggOgggggO log1log 2 +=⋅⋅+ , which is much
worse than linear. But as expensive as this test is on its own (performing a full
matching from the start is actually cheaper), we have seen that when combined with
the other tests and run relatively late in the sequence, it will only run on a fraction of
the candidate matrices because most matrices without a matching will fail at an
earlier step (see section 5.4). Additionally, reducing the matrices both makes them
smaller and changes their global structure sufficiently that in many cases other,
cheaper heuristics can filter out the new submatrices before this one has a chance
to run again. In practice, this heuristic seems to have only a limited impact on the
runtime of even large problems, but the average-case performance is difficult to
quantify precisely.

4) No small neighborhoods. The time required will depend on how many rows are
chosen for the “sparse” subset. In the worst case, we choose all rows and examine
each element of each row, yielding)()(gOggO =⋅ . This heuristic performs
slightly better when the matrix is row-sorted, because all the sparsest rows will group
together at the top of the matrix. (The sort comes free when heuristic (4) is run at
any point after heuristic (2), because the latter always performs a row-sort.)

5) No deficient row or column sequences. The complexity of finding deficient row
sequences is the same as heuristic (3) for the first stage ()(gO to find duplicate
rows), but for the second stage, the matrix must be re-sorted by columns, yielding a

 16

complexity of)log(gggO + . However, the cost of this heuristic is generally linear in
practice because small duplicate rows are searched for first. If any are found, then
the procedure terminates early without needing to re-sort and search for small
duplicate columns.

5.2. Random Graph Model

Exhaustive enumeration of matrices is feasible for small cases, but we were forced to
rely on a random graph generator for performance testing of the heuristics against
matrices of larger dimensions. Our approach combines a pseudorandom number
generator with a simple, user-modifiable density function (see section 6.2). We populate
each graph with enough randomly generated edges to approximate the specified
density, expressed as a percentage of the edge-space. The density function can also be
randomized, yielding sets of graphs with no fixed density bound. Furthermore, the
appearance of any graph in a given enumeration of graphs over a range of “values”
(edge configurations) can itself be randomized according to a weighted probability
function that simulates the right half of a standard distribution curve—enumerating most
of the graphs near the beginning of the range (where they are sparser) and relatively
less toward the end (where they are denser).

We chose Knuth’s recommended “portable” pseudorandom number generator [8], which
is based on the subtractive recursive polynomial () mXXX n mod2455 −= , where m is
some sufficiently large value (we follow Knuth in using 109). This generator has a fairly
large period (on the order of 255) compared to the linear congruential generators
typically used to implement the C Standard Library ()rand function, and is also very fast
in practice, using only a single subtract and multiply for most iterations. Our
implementation performs two cranks for each generation cycle to produce a pair of
values for indexing a matrix.

For the density function we use the equation dnE 2≈ , where n represents one

dimension of the edge-space and can be any value in the range]..1[g , and d is a
density value between 1% and 100%. The equation is approximate owing to the
possibility that some edges will be generated more than once for the same graph.

5.3. Observed Runtime Costs

Based on the analysis in section 5.1, we can surmise that running all the heuristics in
sequence (assuming a linear average-case runtime for heuristic (3) for ease of
discussion) will require a worst-case time of roughly)log()log25(ggOgggO =+ ,
which suggests that the sorting time dominates. Since sorting is cheaper than matching
(which is around)(4

5

gO with much higher bookkeeping costs; see sections 3 and 6.4), it

 17

always makes sense to run these heuristics beforehand to determine whether a matrix
might contain a perfect matching before attempting to compute one.

Below are a series of figures showing the normalized cost of each heuristic compared to
the performance of all the heuristics running in sequence on 1000 random matrices for
each dimension in the range 10 x 10 through 500 x 500. They largely bear out the
analysis of section 5.1, showing that heuristics (1) and (4) (without a sort) are very
cheap, that the sorting costs of heuristics (2) and (5) approximate the aggregate cost,
and that heuristic (3) is wildly expensive when run alone. Further research is needed to
determine the precise runtime impact of heuristic (3) in practice (i.e., when not run
alone).

Normalized cost of heuristic 1

0.1

1

10

10 110 210 310 410

Dimension

C
os

t (
lo

ga
ri

th
m

ic
)

All heuristics (cost = 1)
Heuristic 1 only

 18

 19

Normalized cost of heuristic 4

0.1

1

10

10 110 210 310 410

Dimension

C
os

t (
lo

ga
ri

th
m

ic
)

All heuristics (cost = 1)

Heuristic 4 only (+sort)

Heuristic 4 only

Normalized cost of heuristic 5

0.1

1

10

10 110 210 310 410

Dimension

C
os

t (
lo

ga
ri

th
m

ic
)

Heuristic 5 only (+sort)
All heuristics (cost = 1)

 20

A further series of runs on one million random matrices of dimensions in the range 5 x 5
through 50 x 50 was timed on a single machine (dual 2.2 GHz processors, 128 KB L1 +
512 KB L2 cache memory per core, 2 GB 2 x 200 MHz DDR RAM on a 5 x 200 MHz
front-side bus), using identical operating conditions for each run and restarting each
time to minimize cache effects. The resulting relation between dimension and absolute
runtime, shown below, confirms that the runtime cost is roughly quadratic with respect
to dimension, i.e., linear in the size of the matrix.

Runtime cost (2x2.2GHz CPU; 2GB RAM)

0

200

400

600

800

1000

1200

5 10 15 20 25 30 35 40 45 50

Dimension

S
ec

on
ds

 (1
00

00
00

 r
an

do
m

)

To further compare the observed runtime performance with our asymptotic analysis in
section 5.1, we plotted the values from the previous figure as a series of ratios between
the observed runtime cost at each dimension and the observed runtime cost at the
highest dimension tested (50 x 50); this expresses the growth of the function as a
normalized curve. We then plotted the normalized curve of nnnf

n
log)(2

505
=

→=
 in the same

fashion and compared it to our observed growth. As the figure below shows, the curves
match almost exactly, providing good empirical confirmation of the predicted cost of
running the full suite of heuristics in sequence.

.

792.050log50/45log45791.01200/950)5050(/)4545(

21.050log50/25log252.01200/240)5050(/)2525(

0043.050log50/5log5005.01200/6)5050(/)55(

2
2

2
2

2
2

2
2

2
2

2
2

etc

xobservedxobserved

xobservedxobserved

xobservedxobserved

=≈==

=≈==

=≈==

 21

Normalized cost ratio

0.001

0.01

0.1

1

5 10 15 20 25 30 35 40 45 50

Dimension

R
at

io
 =

 c
os

t(
n)

 /
co

st
(m

ax
_n

)

All heuristics

n*n*log n

5.4. Empirical Evaluation

The order of the heuristics has been carefully chosen to provide the fastest possible
runtimes for the system while still retaining maximum filtering power, as verified through
empirical testing (see below). Placing heuristic (1) before (2) leads to the best speedups
because (1) can filter out large numbers of candidates without needing to sort them.

Relative running times on 106 random 10 x 10 matrices (in order of fastest to slowest)

Test Order Matrix Count Time Matrices Processed Per Second
102345 1000000 32.953 30346
102435 1000000 33.343 29991
102534 1000000 38.546 25943
021345 1000000 41.093 24335
041235 1000000 42.312 23634
051234 1000000 49.000 20408
031245 1000000 67.203 14880

Heuristics (1) and (2) should run first as they are the simplest and fastest. Altering the
relative ordering of (3), (4), and (5) seems to have only minimal impact, but the extra
column-sort required by (5) (see section 5.1) means that it runs slower than the other
heuristics in typical cases, and should generally come last. Heuristic (3)’s bad worst-
case time only kicks in when it runs on its own; it’s faster than both (4) and (5) when (1)
and (2) run first. When the cost of the heuristics is broken down incrementally (see chart

 22

below), the largest jumps in cost are for (2) and (5)—in both cases because of a sorting
step.

Runtime cost (incremental)

0

200

400

600

800

1000

1200

5 10 15 20 25 30 35 40 45 50

Dimension

S
ec

on
ds

 (1
00

00
00

 r
an

do
m

)

All heuristics
Heuristics 1+2+3+4
Heuristics 1+2+3
Heuristics 1+2
Heuristic 1

Exhaustive test runs for dimensions 1 x 1 through 6 x 6 prove that these heuristics are a
perfect approximation of the matching algorithm in the case where the matrix being
tested is 6 x 6 or smaller. (We know from examples like the one in section 4.8 that the
approximation is not perfect in the case of matrices 7 x 7 or greater.)

Exhaustive test results for 1 x 1 – 6 x 6 matrices

Total Matrices Trapped By Dimensio
n Matrix Count

Filtered
With No
Match

Time (sec) Test 0
(unsorted) Test 1 Test 2 Test 3 Test 4 Test 5

1 x 1 2 100% < 1 1
2 x 2 16 100% < 1 6 5 1
3 x 3 512 100% < 1 392 49 16 4
4 x 4 65536 100% 0.062 61660 1129 520 229
5 x 5 33554432 100% 20.047 33177440 70131 41630 24049
6 x 6 68719476736 100% 34194.600 68599599264 13167845 9314089 5791150 2416 320

We ignore unsorted matrices for the exhaustive test runs because sorting and then
testing them would only create redundant work for the program, as well as skew the
counts. (The single bad 1 x 1 matrix was filtered under “Test 2” rather than “Test 1”
because it is treated as a special case in the code.)

After executing a series of runs of dimensions from 7 x 7 up through 20 x 20 using a
reasonably large sample size (100,000 random matrices from each dimension), we

 23

found that well over 99.9% of matrices without perfect matchings were consistently
being filtered by the heuristics (mainly the first three).

Performance results for 7 x 7 – 20 x 20 matrices (105 random each)

Total Matrices Trapped By Dimension Matrix Count Filtered With
No Match

Time
(sec) Test 1 Test 2 Test 3 Test 4 Test 5

7 x 7 100000 100% 1.812 60235 9126 3093
8 x 8 100000 99.997% 2.407 58429 8636 3097
9 x 9 100000 99.991% 3.093 56886 8365 2970
10 x 10 100000 99.985% 3.844 55233 7788 2896 1
11 x 11 100000 99.983% 4.703 53560 7513 2702 2
12 x 12 100000 99.984% 5.469 52347 7165 2548
13 x 13 100000 99.990% 6.422 50831 6857 2400
14 x 14 100000 99.971% 7.484 49269 6683 2318
15 x 15 100000 99.977% 8.516 48823 6397 2076
16 x 16 100000 99.978% 10.484 47117 6220 2032
17 x 17 100000 99.960% 11.938 46652 5989 1898 1
18 x 18 100000 99.977% 13.640 45207 5791 1853
19 x 19 100000 99.983% 15.297 44595 5642 1716
20 x 20 100000 99.980% 17.016 43299 5455 1577

What these results show is that the heuristics perform very well on small matching
problems. Running times are also impressive, with near-linear slowdown as the problem
size increases: a 20 x 20 matrix is four times larger than a 10 x 10 matrix, and takes just
over four times longer to process.

Heuristic (4) was an interesting case. Although it was disappointingly weak at filtering
the output of the earlier heuristics, on its own (with a “sparse” setting of 50%) it was
found to be quite powerful, with better than 83% effectiveness in the 5 x 5 case
(exhaustive) and 88% on a random selection of one million 20 x 20 matrices—actually
improving as the problem size grows. In the random 20 x 20 test case just mentioned it
proved over three times faster (without a sort) than running the complete sequence, and
with only an 11% drop in effectiveness. On 1000 random 500 x 500 matrices, it was five
times faster with only a 1% drop in effectiveness.

Performance results for heuristic (4) in combination and alone

Total Matrices Trapped By Dimension Tests Matrix Count Filtered With
No Match

Time
(sec) Test 1 Test 2 Test 3 Test 4 Test 5

5 x 5 4 33554432 83.492% 249.296 5778026
5 x 5 102345 33554432 100% 474.812 4925281 3956520 1481560
7 x 7 102345 1000000 99.999% 18.093 600817 92622 30492 10 4
20 x 20 4 1000000 88.191% 49.750 440369
20 x 20 102345 1000000 99.978% 158.984 435386 54967 15990
500 x 500 4 1000 99.143% 40.906 66
500 x 500 102345 1000 100% 203.484 66 8

When run alone, each of the heuristics seems to improve in effectiveness on random
graphs as the problem grows, but running (5) alone takes about the same amount of
time as running all of the heuristics together, and (3) alone is orders of magnitude
slower. Unsurprisingly, (1) achieves the fastest solo times, although its effectiveness
lags just marginally behind (4). But when (1) is combined with the rejected heuristic (6)
(see section 4.7), the combination outstrips (4) in both speed and effectiveness.

 24

Performance results on 106 random 20 x 20 matrices for heuristic (1) alone and in
combination with the rejected “no empty rows” heuristic (6)

Total Matrices Trapped By Dimension Tests Matrix Count Filtered With
No Match

Time
(sec) Test 1 Test 6

20 x 20 1 1000000 87.413% 43.312 435386
20 x 20 16 1000000 96.754% 41.390 435386 54511

In short, these tests demonstrate that the solo performance/cost ratio is very good for
the simpler heuristics that don’t require sorts, and average to poor for the more complex
ones that do.

Normalized performance vs cost

1

4.960720559

1.471222929

0.180092567

4.587677817

1.48727126

0.93646324

0

1

2

3

4

5

6

ALL 1 2 (+sort) 3 (+sort) 4 4 (+sort) 5 (+sort)

Heuristic

P
er

fo
rm

an
ce

/c
os

t i
nd

ex
 (h

ig
he

r
is

 b
et

te
r)

For tests of matrices of larger dimensions (up to 500 x 500 have been tested), the
heuristics as a group continue to catch and filter more than 99.9% of random matrices
that do not encode a perfect matching, so we conclude that they are a reliable and
reasonably low-cost approximation of perfect matchings in small to medium-sized
bipartite graphs, and therefore a fast and effective filtering strategy for applications
where only perfect matchings are desired.

 25

6. Test Framework Software

6.1. Overview

A software framework (“adjmat”, short for “adjacency matrix”) for testing the heuristic
model was written in C++. The framework contains powerful and efficient
implementations of Boolean vector and matrix data structures, allowing adjacency
matrices of arbitrary dimension to be generated and passed through the heuristics in
any order. Matrices can be exhaustively or manually enumerated for dimensions up to 8
x 8 (the largest Boolean matrix that will fit into a 64-bit integer), and randomly
enumerated for any dimension. Reporting capabilities include options to output all
matrices considered, or only unfiltered ones, along with matchings when they exist.
Various flag settings and statistics on the effectiveness of the heuristics can also be
output. Complete source code is available from the authors upon request.

6.2. Command Line Interface

adjmat {-? | dimensions [options]}

-? Usage help

If this flag is present as the first argument, then a concise help screen is
displayed. If it appears in any other position, then it is ignored.

dimensions

This is a required parameter indicating the dimensions of matrices to test. Unless
the –x flag is also set, a single value means that matrices from dimension 1 x 1
up to the specified dimension will be considered. (E.g., “adjmat 3” prints all
matrices from 1 x 1 to 3 x 3.) A range of values can be specified using comma or
hyphen notation. (E.g., “adjmat 2,4” prints all 2 x 2 and 4 x 4 matrices, while
“adjmat 2-4” prints 2 x 2, 3 x 3, and 4 x 4.) The –x flag is automatically set when
a custom range is specified. The value of <dimensions> must be more than “1”.

-v Verbose mode

This will output the status of all flags, format parameters, and time statistics.

-x Process specified dimensions exclusively

This overrides the default behavior of enumerating matrices of dimension up to
the given dimension. When set, only the provided dimensions are considered.

-i Ignore unsorted matrices

If this flag is set, then all enumerated matrices are first checked to see if they are
row-sorted, and if not, then they are removed from further consideration. When
the –f flag is set, use –i to override the default behavior of sorting all matrices.

-f Apply filters to the matrices

 26

Unless this flag is set, the specified matrices will merely be enumerated. Set this
to use the heuristic test framework.

-p Prove filter validity (no effect if –f is not also set)

If this flag is set, a matching will be attempted on every matrix caught by one or
more of the heuristics. Use this to verify that the heuristics are working correctly.

-m Output matchings if they exist

If a matching exists for any matrix that would normally be output according to the
current flags, then setting –m will enable output of the matching as a matrix.

-u Output only unfiltered matrices (no effect if –f is not also set; overrides –a)

Set this flag to print only the matrices not filtered by the heuristics.

-a Output all matrices and comment out filtered ones (if –f is also set)

This flag overrides the default behavior of not outputting matrices that do not
contain a matching.

-L Output the matrices as linearized binary strings

Use this flag to compress the output and save space. Matrices are printed as one
long string instead of as a set of rows.

-d Don't output matrices (overrides –m, –a, –u, –L)

If this flag is set, then no matrices are output, regardless of other output settings.

-n Output matrix identifiers

Set this flag to output a unique numeric identifier for each matrix considered
within a given dimension. (Useful for exhaustive or manual enumeration.)

-s Output statistics

Set this flag to output test statistics for each dimension of matrices considered.

-c{d} Set cutoff density for sparse rows at <d>%

This flag allows control of the definition of a “sparse row” as used in test 4. Set to
any value in the range [0,100]. The default value is 50.

-r[n[,d[,s]]] Enumerate <n> random matrices of <d>% density using seed <s>

This flag allows random enumeration (essential for matrices larger than 8 x 8).
The number and density of matrices are adjustable, as well as the initial seed
value for the pseudorandom number generator. The default number is 100, the
default density is randomized (a value of “0” sets this), and the default seed is 0.
Note that because of the nature of the pseudorandom number generator, even a
density value of “100” does not guarantee a full matrix, but a value of “100”
should give more coverage than “90”, etc.

-e{1,2,...|1-2,...} Enumerate only the listed matrices (up to 8 x 8)

 27

Matrices can be manually enumerated using this flag, but only matrices of
dimension up to 8 x 8 (because of implementation limitations). Each number in
range is converted to binary and interpreted as a long string consisting of the
rows of a matrix. A matrix of the same numeric value may be enumerated several
times, depending on the dimensions parameter.

-t{0|1|2|3|4|5|6}+ Specify which tests to perform and in what order

This flag allows the user to selectively run heuristics and fine-tune their running
order. At least one test must be specified or the program will default to doing the
complete suite. The tests are: 0 = sort the matrix; 1 = test each column for the
presence of a “1”; 2 = compare against the row-sorted identity matrix; 3 = test for
forced moves; 4 = test for small neighborhoods (using the cutoff density as
described above); 5 = test for small duplicate rows; 6 = test each row for the
presence of a “1” (not included by default; see section 4.7). Note that if this flag is
set, the matrix will not be sorted by default unless test 0 is specified; this is to
allow fine-tuning of the timing of sorting. The default test suite is “102345”.

6.3. Explanation of Output

The following is a typical example of output from adjmat:

#Dim:
{
7
}
#Flags:
Ver
Xcl
Ign
Fil
Prv
Dnt
Sta
Ctf {50}
Rnd {1000000,50,33333}
Tst {1,6,0,2,3,4,5}

#========7x7

#Testing 1000000 7x7 matrices took 2.718 seconds.
#Rate of testing = 367918 matrices/second.
#**STAT**7x7
#Total matrices: 1000000
#Total passed: 146
#Total bad failures: 0
#Percent passed: 0.0146%
#Total filtered: 999854
Not sorted: 999758
Rows without a 1: 31
Columns without a 1: 40
Not big enough: 3
Not enough pairwise unique 1s: 22
Sparse rows don't cover enough columns: 0
(Sparse = 50% of row capacity)
Duplicate rows/cols with not enough 1s: 0
#Percent filtered: 99.9854%
#Total unfiltered: 0
#Percent unfiltered: 0%
#Unfiltered:Passed = 0:146 = 0%
#Total matchings: 146
#Greedy matchings: 88
#Greedy:Total = 88:146 = 60.274%
#********

The header information beginning with “#Dim” is present whenever the –v (verbose) flag
is set; it shows the values of the command-line parameters. (Verbose mode also
generates time statistics for each dimension showing how long the run of tests took in
seconds and providing a testing rate in matrices per second.) In this case, adjmat was

 28

run on one million randomly generated (Rnd) 7 x 7 matrices (Dim = {7}) exclusively (Xcl)
in verbose mode (Ver), ignoring unsorted matrices (Ign). The program was instructed to
check each filtered matrix for a matching (Prv), matrix output was disabled (Dnt), and
statistics output was enabled (Sta). The cutoff value for heuristic (4) was set at 50% (Ctf
= {50}), the random matrix generator was instructed to produced matrices of 50%
density, starting with a seed value of 33333 (Rnd = {1000000,50,33333}), and the tests
were manually specified to run in the order “no empty columns” > “no empty rows” >
“sort” > “big enough” > “eliminate forced moves” > “no small neighborhoods” > “no small
duplicates” (Tst = {1,6,0,2,3,4,5}).

The statistics listing at the bottom gives a great deal of information about how the
heuristics performed on the test set. Line by line, here is the breakdown:

• “Total matrices”: Number of matrices tested; should match command-line value.
• “Total passed”: Number of matrices not rejected by any heuristic.
• “Total bad failures”: Number of matrices containing a matching that were rejected

by the heuristics. (This should always be 0, or the program has a bug!)
• “Percent passed”: Ratio of “Total passed” to “Total matrices” as a percentage.
• “Total filtered”: Number of matrices caught by the filters; an individual breakdown

of values for each of the heuristics is provided immediately below this line; the
sum of the individual values should equal the total amount.

• “Percent filtered”: Ratio of “Total filtered” to “Total matrices” as a percentage.
• “Total unfiltered”: Number of matrices not containing a matching that were not

caught by the heuristics; the lower, the better.
• “Percent unfiltered”: Ratio of “Total unfiltered” to “Total matrices” as a

percentage; provided for completeness, but not a measure of performance.
• “Unfiltered:Passed”: Ratio of “Total unfiltered” to “Total passed” as both a ratio

and a percentage; this gives an idea of how many filtering opportunities were
missed and is the best measure of heuristic performance.

• “Total matchings”: Should be equal to the difference between “Total passed” and
“Total unfiltered” (if not, there is a bug); this counter is only incremented after the
program actually performs a matching, so it’s useful as a check that the full
matching is behaving correctly.

• “Greedy matchings”: Number of matchings that were discovered by a greedy
matching procedure without needing to run the full matching algorithm (see
section 6.4); the higher, the better.

• “Greedy:Total”: Ratio of “Greedy matchings” to “Total matchings” as both a ratio
and a percentage.

The next example shows the output after adjmat is run with the same parameters as
above, except that unsorted matrices are no longer ignored (i.e., they are sorted by
rows prior to the running of the test suite), matrix identifiers have been added (indicating
where in the enumeration the matrix appeared), and verbose mode is disabled.

 29

#---57514
#0000101
#0010010
#0100001
#0100100
#0100101
#1011011
#1111110
#(Not filtered)

#--233955
#0011010
#0101000
#1001000
#1010101
#1100000
#1100111
#1101000
#(Not filtered)

#--385184
#0000101
#0011010
#0111110
#1000001
#1000100
#1000101
#1100110
#(Not filtered)

#--892493
#0001010
#0010100
#0100100
#0110000
#0110100
#1000111
#1101001
#(Not filtered)

#**STAT**7x7
#Total matrices: 1000000
#Total passed: 613090
#Total bad failures: 0
#Percent passed: 61.309%
#Total filtered: 386910
Not sorted: 0
Rows without a 1: 139162
Columns without a 1: 166533
Not big enough: 7859
Not enough pairwise unique 1s: 73331
Sparse rows don't cover enough columns: 15
(Sparse = 50% of row capacity)
Duplicate rows/cols with not enough 1s: 10
#Percent filtered: 38.691%
#Total unfiltered: 4
#Percent unfiltered: 0.0004%
#Unfiltered:Passed = 4:613090 = 0.000652433%
#Total matchings: 613086
#Greedy matchings: 356703
#Greedy:Total = 356703:613086 = 58.1816%
#********

Statistics show that the performance of the heuristics on this group of matrices was
better than 99.999%. Finally, an example to demonstrate the effect of –e and –m flags:

#Dim:
{
7
}
#Flags:
Ver
Xcl
Mch
All
Enm
{
481927363215310
}

#========7x7

1101101
1001001
1110111
0101010
0101010
1111111
1001110
#%MATCHING%
1000000
0001000
0000001
0000010
0100000
0010000

 30

0000100
#%%%%%%%%%%

#Testing 1 7x7 matrices took 0 seconds.
#Rate of testing = 0 matrices/second.

Here, we instructed the program to output a matrix of our specification (Enm; note that
48192736321531010 = 11011011001001111011101010100101010111111110011102)
and find a matching for it if possible (Mch), printing it out even if no matching existed
(All). The –x (Xcl) flag was set automatically by the presence of the –e flag. The time
statistics are useless in this case because the process terminated so rapidly.

6.4. Hopcroft-Karp Implementation

A matching procedure is used to test the performance of our heuristics. If a matrix
passes all of the heuristics, then we attempt to compute a matching, and if none is
found, then we know that the matrix has slipped through the cracks. We also use the
matching algorithm to verify that a perfect matching does not exist in a matrix that was
rejected by a heuristic (this is enabled by a command-line option; see section 6.2).

The matchings are done using the Hopcroft-Karp algorithm [6], adapted for a Boolean
matrix representation of bipartite graphs. This algorithm was chosen because it has one
of the lowest worst-case bounds for bipartite matching algorithms (see section 3), and
because it’s easy to understand and implement, requiring only basic data structures.

Two optimizations to the algorithm were undertaken. First, we implemented the breadth-
first search for augmenting paths using a one-step lookahead—conceptually analogous
to loop unrolling. Second, before the main procedure we added a “greedy matching”
pass—attempting to pair up as many unmatched vertices as possible in order of
discovery. The greedy matching makes a single pass through the rows of the matrix,
matching each row with the first available column. If no columns are available, then the
row is skipped. Despite the crudeness of the procedure, it finds a perfect matching
about 80% of the time in small cases, but rapidly deteriorates to a near-constant level of
about 5% for larger cases.

Effectiveness of greedy matching

0
10
20
30
40
50
60
70
80
90

100

1 101 201 301 401

Dimension

G
re

ed
y

m
at

ch
in

gs
 (%

 o
f t

ot
al

)

 31

 32

7. Concluding Words

Our goal was to find a reliable, low-cost, prima facie means of determining whether a
given bipartite graph has a perfect matching. It was hoped that the capacity to make
such a determination would enable faster disposition of perfect matching problems by
eliminating from processing any classes of graphs that cannot have perfect matchings—
there is no value in running an expensive matching procedure when you don’t have to.
The heuristic filter model we developed toward this end has proven to be both
exceptionally reliable and reasonably low in cost, allowing us to successfully identify and
filter out more than 99.9% of unusable candidate graphs in time proportional to the cost
of sorting the vertices of the graph by edge counts (an essentially prima facie measure).
Moreover, the model extends the legacy of Hall’s Theorem in offering promising lines for
further research into the conditions necessary for perfect matchings to exist in bipartite
graphs. We believe that the framework we have developed is immediately usable in
such research and extendable to many classes of problems where rapid computation of
perfect matchings is desired.

References

[1] Alt H, Blum N, Mehlhorn K, Paul M. Computing a maximum cardinality matching
in a bipartite graph in time ()nmnO log5.1 . Information Processing Letters 1991;
37: 237-240.

[2] Anderson T, Owicki S, Saxe J, Thacker C. High-speed switch scheduling
 for local-area networks. ACM Transactions on Computer Systems (TOCS), 1993
[3] Cormen T, Leiserson C, Rivest R. Introduction to Algorithms. MIT Press:
 Cambridge, 1990; 600-604.
[4] Dekel E, Sahni S. A Parallel Matching Algorithm for Convex Bipartite Graphs and
 Applications to Scheduling. - 1981
[5] Feder T, Motwani R. Clique Partitions, Graph Compression and Speeding-up
 Algorithms. Proceedings of the 23rd Annual ACM Symposium on Theory of
 Computing. ACM Press, New York, 1991; 123-133.
[6] Ford L, Fulkerson D. Flows in Networks. Princeton University Press: Princeton,
 1962.
[7] Hall P. On Representatives in Subsets. Journal of the London Mathematical
 Society 1935; 10: 26-30.
[8] Hopcroft J, Karp R. An n5/2 algorithm for maximum matchings in bipartite graphs.
 SIAM Journal on Computing 1973; 2 (4): 225-231.
[9] Kennedy R. Solving Unweighted and Weighted Bipartite Matching Problems in
 Theory and Practice. Ph.D. Thesis: Stanford University, Palo Alto, 1995.
[10] Kim WY, Kak AC. 3-D object recognition using bipartite matching embedded in
 discrete relaxation. IEEE Transactions on Pattern Analysis and Machine, 1991
[11] Knuth D. The Art of Computer Programming, Volume 2: Seminumerical
 Algorithms, 2nd Ed. Addison-Wesley Professional: Reading, 1981; 171-173.
[12] Shokoufandeh A, Dickinson S. Applications of Bipartite Matching to Problems
 in Object Recognition. Proceedings, ICCV Workshop on Graph Algorithms and

 33

 Computer, 1999
[13] Taylor W. Protein Structure Comparison Using Bipartite Graph Matching and Its
 Application to Protein Structure - Molecular & Cellular Proteomics, 2002 -
 ASBMB
[14] Verma R, Ramakrishnan I. Tight Complexity Bounds for Term Matching
Problems. Information and Computation Journal, 1992; 101 (1): 33-69.

[EOF]

