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Abstract

Topology engineering concerns with the problem of automatic determination of physical layer parameters
to generate a network with desired properties. In this paper, we investigate joint power control, channel
assignment and radio interface selection for robust provisioning of link bandwidth in infrastructure multi-
radio multi-channel(MR-MC) wireless networks in presence of channel variability and external interfer-
ence. To characterize the logical relationship between spatial contention constraints and power control, we
formulate the joint power control and radio-channel assignment as a generalized disjunctive programming
problem. The generalized Benders decomposition techniques is applied to decompose the radio-channel
assignment (combinatorial constraints) and network resource allocation(continuous constraints) so that
the problem can be solved efficiently. The proposed algorithm is guaranteed to converge to the optimal
solution within a finite number of iterations. We have evaluated our scheme using traces collected from a
wireless mesh testbed and simulation studies in Qualnet. Experiments show that the proposed algorithm
is superior to existing schemes in providing larger interference margin, and reducing outage and packet
loss probabilities.
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I. INTRODUCTION

Deployment of wireless infrastructure networks (e.g., on-campus WiFi networks, wireless mesh networks in rural
communities, WiMax) faces many challenges from the need of regular site survey (“can you hear me now?”) to
the difficulty in configuring a plural of system or device parameters to meet end-user requirements. The later issue
is further exacerbated by inherent dynamics due to changes in channel condition, environments, user population,
and co-existing networks. While online adaptation of configurations in face of such dynamics is desirable from
performance optimization perspective, its practice in real systems shall be taken with some cautions for two reasons.
First, collection of state information required for adaptation are often delayed and incomplete. Second, significant
protocol overhead is incurred in collecting these information and reconfigure the system. Furthermore, in extreme
cases, instability may ensue if adaption is performed too frequently. Consequently, as been demonstrated by current
Internet practice, adaption of network configurations is often limited to local domain or infrequently on a network
scale. This motives us to design robust solutions that may not be optimized for the current state but continue to
perform well in presence of moderate degree of network dynamics.

In this paper, we address the problem of robust topology engineering in infrastructure wireless networks. Topology
engineering is defined as automatic determination of physical layer parameters to generate a network with the
desired properties. Compared to topology control, a well-studied problem in ad hoc networks, topology engineering
is more general in that the objective is not limited to network connectivity [17]–[19], [21], [31] or interference
reduction [10], [29], [30], rather the traffic-carrying operational aspect of a network such as provisioning of link
bandwidth based on a prior knowledge of link (cell)-level demands. Robustness of a topology engineering solution
is quantified by “interference margin”, a notion first proposed by Hua et al. [13]. Generally speaking, interference
margin reflects the allowance toward fluctuating link condition and unmanageable interferences while sustaining
desired level of quality of service.

With the decreasing cost and increasing programmability of wireless devices, many tunable parameters are now
at our disposal in topology engineering. In this paper, we consider the choice of transmission power, channel
assignment and radio interface in multi-radio multi-channel(MR-MC) wireless networks. Finding a robust set of
parameters to meet link bandwidth requirements is non-trivial. First, spatial contention relation between links is
no longer fixed, instead, it depends on transmit power levels. This makes it hard to incorporate power control and



2

spatial contention constraints in a single optimization framework. Second, the optimization problem involves the
radio-channel assignment (combinatorial constraints), and network resource limitation (continuous constraints). It
belongs to the mixed-integer nonlinear programming(MINLP) problems, which is known to be NP-hard in general
[24]. In this paper, we overcome these barriers by exploiting the specific structure of the problem at band, and by
introducing additional variables and constraints. To decouple spatial contention constraint from the power control,
we introduce disjunctive sets to characterize the logical relation of power control and spatial contention between
links, which can be relaxed and expressed as a set of linear constraints. To address the MINLP problem, the
generalized Benders decomposition technique [11] is applied to decompose the optimization problem to a primal
problem and a master problem. The primal problem is obtained by fixing the binary variables from the original
problem, and the master problem is obtained via nonlinear duality theory for the solution of binary variables. The
proposed algorithm is guaranteed to converge to the optimal solution within a finite number of iterations.

Using traces collected from a wireless mesh testbed, we conduct a set of experiments to evaluate the performance
of the proposed topology engineering solution and compare it with other existing schemes. We also incorporate the
trace data in the Qualnet simulator [26] and compare the performance of several algorithms through simulation study.
The experiments show that the proposed algorithm is superior to existing schemes in providing larger interference
margin, and reducing outage and packet loss probability in presence of channel variability. We also demonstrate
the convergence behavior of the proposed algorithm.

Main contribution: In this paper, we make the following contributions.
• Incorporation of bandwidth requirements in topology engineering in MR-MC wireless networks.
• A new power control, channel assignment and radio interface assignment scheme is designed with several

advantageous features: i) incorporating measurement-driven interference and link capacity model; ii) robustness
to external interference and fluctuation of channel, and iii) provable convergence to global optimality.

The rest of this paper is organized as follows. In Section III, we provide a categorization of existing work. The
models assumed and the problem statement are formally defined in Section IV. The solution based on generalized
Benders decomposition technique is presented in Section V. Evaluation using real-world trace data from our mesh
testbed and simulation is presented in Section VI. Finally, we conclude the paper with future research avenue in
Section VII.

II. BACKGROUND AND RELATED WORK

Topology control in multihop wireless networks is a topic received much attention in the research community. The
primary goal of topology control is “to determine the transmit power level of each node so as to maintain network
connectivity, mitigate interference, improve spatial reuse, while consuming the minimum possible power” [10]. The
work in [17]–[19], [21], [31] deal with the selection of common or heterogeneous power to maintain connectivity.
The impact of interference based on physical model has been addressed in [10], [29], [30]. In this paper, we
deliberately avoid using the term “topology control” because of two salient differences from existing work. First,
almost all existing topology control scheme limits themselves to networks with a single channel, single radio
interface per node. This greatly limits the ability to mitigate interference and increase capacity. Second, we view
topology not just as reachability among nodes but also how well they are connected and how much bandwidth can
be sustained between pairs of nodes in presence of transmission activity in other part of the network. This is the
reason the term “topology engineering” is introduced.

Many channel assignment schemes have been proposed in literature. They can be roughly categorized as, traffic-
agnostic [14], [28] vs traffic-aware [13], [24], [25], assuming binary [3], [15], [24], [25] vs physical interference
and link capacity model [14], centralized [3], [15], [24], [25] and distributed schemes [14], [28]. A more detailed
survey of channel allocation schemes can be found in [13].

Very little work addresses the issue of joint channel allocation and power control in infrastructure wireless
networks. Leveraging the prior work on power control, user association [20], and channel assignment [14], Broustis
et al. [5] design measurement-driven guidelines (MDG) for the combination of the three functions to improve the
overall network capacity in dense WLANs. It has been shown that intelligent frequency allocation across APs,
load-balancing of user affiliations across APs, and adaptive power-control for each AP shall be done in sequence
based on the current operational conditions such as existence of overlapping APs or non-cooperative APs. In [9],
Foschini and Miljanic proposed heuristic for joint autonomous channel assignment and channel allocation in cellular



3

networks. The authors assume each base station is associated a pre-determined set of orthogonal channels. Based
on use arrival process, the algorithm determines which channel among the set of orthogonal channels and power
levels to be used for uplink and downlink communication. Though the proposed heuristic is fully distributed, due to
its online nature, global optimality cannot be achieved. Digham [8] proposed a centralized joint power and channel
allocation in a single cell cognitive radio network. Three constraints are imposed, namely, i) total power constraint
among all users, ii) channel constraint (no two user can use the same channel) and iii) interference constraints to
primary users. In our formulation, we impose per radio power constraint and allow sharing of the same channel
among users in TDD fashion.

III. WIRELESS NETWORK MODELS

A. Overview

The MR-MC wireless networks considered in this paper can be modeled as a directed and connected graph
G = (N ,L), where a link l is in L if and only if: (i) the transmitter of the link can communicate with the receiver
directly; (ii) a positive link bandwidth requirement Dl is associated with link l.

Each node n ∈ N has Rn radios, each radio can switch between Q orthogonal channels. We assume Rn ≤ Q
since it is not useful to operate multiple radios on the same channel simultaneously. If the number of incident links
of a node is larger than the number of its radios, some of its radios will be shared by multiple links. All radios are
assumed to be half-duplex, so if multiple links are assigned to the same radio, they should be scheduled to transmit
at different time since only one link can be served by the radio at each time.

We assume that each wireless interface has per-link power control capability, that is, if multiple links are assigned
to the same radio, the radio can operate at different power levels for different links. Without loss of generality,
each radio is assumed to be limited by a minimum power level Pmin and a maximum power level Pmax.

Each link l is associated with a unique pair of radios at the transmitter and the receiver, and a single channel. This
formulation can be extended to the case when multiple radios are used concurrently to support the demand between
a pair of transmitter and receiver nodes by introducing multiple logical links. To characterize the assignment of
radios and channel for a link l, and its spatial contention relation with other links, we define four binary variables
as follows,
• xi

l: equals 1 if radio i is assigned to link l at the transmitter node, and 0 otherwise.
• yj

l : equals 1 if radio j is assigned to link l at the receiver node, and 0 otherwise.
• uq

l : equals 1 if channel q is assigned to link l, and 0 otherwise.
• vk

l : equals 1 if link l is contended by link k over the same channel, and 0 otherwise.
Since each link can only use one transmitting radio and one receiving radio, and one channel at each time, the
following constraints should hold for any feasible radio and channel assignment solution,

∑

i∈Rsl

xi
l = 1,

∑

j∈Rtl

yj
l = 1, and

∑

q∈Q

uq
l = 1,∀l ∈ L (1)

In the following, without abusing the notations, let x, y, u and v denote the multisets of elements {xi
l}, {yj

l }, {uq
l },

{vk
l } respectively for i ∈ Rsl

, j ∈ Rtl
, q ∈ Q and l, k ∈ L, where sl and tl denote the transmitter and receiver of

link l.

B. Interference margin and effective link capacity

We consider the generalized physical interference model whereby all concurrent transmissions are treated as
interference to a link l when the transmitter of the link is transmitting to its intended receiver. In this model, the
signal-to-interference-plus-noise ratio (SINR) at the receiver is given by

SINRl =
PlGll

N0 + Ie + Ic
(2)

where Pl is the transmit power allocated to link l, Gkl is the channel gain from the transmitter of link k to the
receiver of link l, N0 is noise power. The perceived interference at the receiver consists of two terms, Ie is the
external interference from non-manageable devices or networks (e.g., o-existing WLANs, WPANs and other EMI
sources), and Ic is the interference from the concurrent transmissions within the same networks. In particular, the
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concurrent interference Ic can be given by Ic =
∑

k 6=l PkGkl, which depends on the location of all concurrent
transmissions to the receiver nodes. Here we make a conservative approximation and assume that Ic is dominated
by the strongest concurrent transmission. The most conservative scenario occurs when the interfering node is on the
extended line of the link locating in the opposite direction of the transmitter. In this case, the concurrent interference
can approximated as Ic ≈ PmaxGcl, where Gcl is the channel gain from interfering node to the receiver, assuming
the node transmits with maximum power level.

Two sources of variability exist in deployed networks. First, the channel gain between the transmitter and receiver
is subject to large-scale and small-scale fading due to signal attenuation over distance, shadowing, and multipath
effects etc. The second are external interferences from devices operating in overlapping or adjacent spectrum bands.
The variations of channel gain and external interferences are generally unmanageable, and the interference level is
difficult to predict.

To capture these effects, the interference margin concept was introduced in [13] as a quantitative measure to
characterize robustness to channel and external interference variability, where the interference margin σl is defined
for each link l to represent the maximum channel and external interference variability that can be tolerated to
sustain the targeted transmission rate for the link. We can re-write the effective SINR as a function of the link
transmit power, mean channel gain and the interference margin as

SINRl =
PlḠll

N0 + Ic + σl
(3)

where the mean channel gain Ḡll can be obtained from measurement data.
Let the effective link capacity Bl of link l is a function of the effective SINR, or Bl = f(SINRl). For example,

for Gaussian broadcast channel, the effective link capacity is found to be bounded by

Bl ≤ B log
(

PlḠll

N0 + Ic + σl

)
,∀l ∈ L. (4)

where B is the channel bandwidth in hertz. The interference margin should be chosen to ensure SINRl ≥ γ such
that a target link capacity is achievable.

To understand the physically meaning of interference margin, let us consider the case where the worst-case
realization of channel gain Gllis bounded by (1−∆)Gll. It is easy to show that as long as σl ≥ Ie+∆(N0+Ic)

1−∆ , the
target link capacity can be attained.

C. Power control and spatial contention constraints

(a)P1 < P2 ⇒ S1 ⊆ S2 (b)
vl

k1
= 1 ⇒ PlGlk1 + N0 ≥ β

vl
k1

= 0 ⇒ PlGlk2 + N0 < β

Fig. 1. Transmission power vs. spatial contention domain

Representation of contention relations among wireless links depends on many factors, including the transmit
power, topological relation, and the contention model. In this paper, we adopt the transmitter-based contention
model after the carrier sensing mechanism used in IEEE 802.11 MAC. Note the contention relation is asymmetric
in general. Specifically, we assume that a link l is contending with a link k if only if the perceived power level at

Details are omitted due to space limit.
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the transmitter of link k is higher than a certain threshold β when link l is transmitting. That is, if PlGlk +N0 ≥ β,
we say link l is contending with link k; otherwise if PlGlk + N0 < β, link l is not contending with link k.

The contending domain Sl of a link l is defined as the set of links with which link l contends, or equivalently,
Sl = {k : PlGlk+N0 ≥ β}. Clearly, Sl depends on link l’s transmit power level. For instance, as shown in Fig. 1(a),
the contending domain S1 with lower transmit power level P1 is a subset of the contending domain S2 with higher
transmit power level P2. Thus, it is non-trivial to model power control and spatial contention constraints in a single
optimization framework.

To address this problem, we introduce an indicator variable vl
k to characterize the contention relation between

links l and k. That is, vl
k = 1 iff link l is contending with link k, or PlGlk +N0 ≥ β; or else vl

k = 0, which implies
PlGlk + N0 < β. The feasible region of Pl can then be determined by the value of vk

l . For example, in Fig. 1(b),
vl
k1

= 1 and vl
k2

= 0, which limits the feasible region of Pl to the gray area.
The logical relation of vl

k and Pl can be captured by disjunctive sets, consisting of two disjunctions separated
by the or(

∨
) operator and negation(¬) operator:

[
vl
k

PlGlk + N0 ≥ β

]∨ [ ¬vl
k

PlGlk + N0 < β,

]
(5)

which can be understood as a logical expression enforcing only one set of constraint based on the value of vl
k.

Note that the degree of freedom of vl
k’s is limited. They are subject to several constraints:

• Minimum and maximum power constraint: If PminGlk + N0 ≥ β, then vl
k ≡ 1. That is, if the received

power at the transmitter of link k is sufficiently large even when the transmitter of link l is using the minimum
power level, then vl

k should always equal to one. Similarly, vl
k ≡ 0 if PmaxGlk + N0 < β.

• Symmetry constraint should be imposed to guarantee that contention relationship is symmetric, namely,
vl
k = vk

l . Kawadia [21] and Kauffmann2007 [14] have both argued the need for symmetric carrier sensing and
packet reception for better performance.

• Spatial dependency is due to the spatial correlation among links. Consider the scenario with three links
k1, k2 and l as shown in Fig. 1(b), Glk1 and Glk2 denote the channel gain between l and k1, k2 respectively.
Without loss of generality, assuming Glk1 ≤ Glk2 , or PlGlk1 ≤ PlGlk2 . This implies (i) if vl

k1
= 1, then

PlGlk2 + N0 > PlGlk1 + N0 ≥ β. Therefore, vl
k2

= 1; (ii) if vl
k2

= 0, then vl
k1

also equals to 0 since
PlGlk1 + N0 ≤ PlGlk2 + N0 < β. The above relationship can be expressed more compactly as follows:

vl
k1
≤ vl

k2
,∀k1, k2, l, iff Glk1 < Glk2 . (6)

D. Radio and channel constraints

To characterize the contention relationship in wireless networks, we adopt the set of constraints in line with
maximal scheduling [6], [32], which yields simple distributed scheduling similar to the IEEE 802.11 DCF. The
formulation can be readily extended to other forms of contention characterization such as that using clique con-
straints.

Let Ls
l and Lt

l denote the set of links sharing the same transmitter and receiver with link l, respectively; and
Lc

l = L\(Ls
l ∪Lt

l) denotes the set of links that may interfere with link l(including link l itself). Consider contention
from all links sharing the same radios or channel, the aggregate time required to satisfy the demand of link l
(operating in radio i, j and channel q) and that of all its contending links is bounded by,

Tl =
∑

k∈Ls
l

xi
kDk

Bk
+

∑

k∈Lt
l

yj
kDk

Bk
+

∑

k∈Lc
l

uq
kv

k
l Dk

Bk
, (7)

where Dk/Bk is the time to satisfy the traffic demand of link k. Tl is a function of (x, y, u, v) and (σ, P ). In the
worst case, all contending links form a clique and should be scheduled at different time. Therefore, it is required
that

Tl(x, y, u, v, σ, P ) ≤ 1,∀l ∈ L. (8)

The RHS of the above inequality can be replaced by a factor κ (κ ≥ 1) to reflect the looseness of maximal
scheduling constraints resulting in a tighter capacity region. However, schedulability is not always guaranteed when
κ > 1.
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IV. ROBUST POWER CONTROL AND CHANNEL ASSIGNMENT

A. Problem formulation

In robust topology engineering, the goal is to determine a set of transmit power, radio-channel assignment for all
links such that the link bandwidth remain satisfied in presence of moderate channel dynamics. Intuitively, the larger
the interference margin, the more robust the resulting power and radio-channel assignment to channel variability
and external interferences. To this end, we define a utility function Ul for each link l, which is a function of the
interference margin σl. It has the following properties: (i) the utility function Ul(σl) is monotonic increasing, strictly
concave and 2nd order differentiable; (ii) Ul(σl) is additive so that the aggregated utility of all links is

∑
l∈L Ul(σl).

Different utility functions have been defined for different fairness models, such as proportional fairness and max-min
fairness [23].

The robust power control and radio-channel assignment problem can be formally stated as a network utility
maximization problem with the constraints specified by (1), (5), (6) and (8) as follows:

max
∑

l∈L
Ul(σl)

s.t. Tl(x, y, u, v, σ, P ) ≤ 1,∀l ∈ L,[
vl

k

PlGlk + N0 ≥ β

]∨ [ ¬vl
k

PlGlk + N0 < β

]
,∀l, k ∈ L

vl
k1
≤ vl

k2
,∀k1, k2, l, Glk1 < Glk2 .

vk
l = vl

k,∀k, l ∈ L∑

i∈Rsl

xi
l = 1,

∑

j∈Rtl

yj
l = 1,

∑

q∈Q

uq
l = 1,∀l ∈ L,

xi
l, y

j
l , u

q
l , v

k
l = {0, 1},∀l ∈ L,

Pmin ≤ Pl ≤ Pmax,∀l ∈ L,

σl ≥ 0,∀l ∈ L

(9)

This problem belongs to the generalized disjunctive program(GDP) problem [2], where the discrete choices of
spatial contention relations are represented by Boolean variables vl

k in the forms of disjunctions. This GDP problem
can be transformed to a mixed-integer nonlinear programming problem using relaxation techniques discussed in
the following subsections.

B. Relaxation of disjunctive set

There are several ways to relax the disjunctive set (5), such as the big-M formulation, the Beaumont surrogate
and the convex hull relaxation [2]. Depending on the property of the disjunctive set, there is a trade-off between the
tightness of the relaxation and the complexity. The disjunctive set in (5) is a proper set because the intersection of
the feasible region of all disjunctions is empty. In this case, the big-M formulation is as tight as other two relaxation
techniques, but with much lower complexity. Therefore we choose the big-M formulation to relax the disjunctive
set (5) with the following constraints:

β − PlGlk −N0 ≤ M1(1− vl
k)

PlGlk + N0 − β ≤ M2v
l
k

(10)

where M1 and M2 are two sufficiently large valid upper bounds for Pl obtained as follows ,

M1 = max{β − PlGlk −N0|Pmin < Pl ≤ Pmax}
= β − PminGlk −N0

(11)

and

M2 = max{PlGlk + N0 − β|Pmin < Pl ≤ Pmax}
= PmaxGlk + N0 − β

(12)

respectively.
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Substituting (11) and (12) into (10), and re-arranging the equations, we can obtain

mk
l ≤ Pl ≤ Mk

l ,∀l, k ∈ L. (13)

where

mk
l = [PminGlk(1− vl

k) + (β −N0)vl
k]/Glk

Mk
l = [PmaxGlkv

l
k + (β −N0)(1− vl

k)]/Glk

Eq.(13) suggests that the transmit power Pl is constrained by a set of lower and upper bounds determined by the
contention indicator variable vl

ks. A compact form of the feasible region for Pl can be derived as follows,

max
k∈L

{mk
l } ≤ Pl ≤ min

k∈L
{Mk

l },∀l ∈ L. (14)

Note that if vl
k = 0, we have mk

l = Pmin and Mk
l = (β−N0)/Glk; otherwise, if vl

k = 1, we have mk
l = (β−N0)/Glk

and Mk
l = Pmax. This implies that the constraint Pl ∈ [Pmin, Pmax] is redundant and can be incorporated into

(14).

C. Relaxation of product variables

The radio and channel constraint in (7) includes a binary product uq
k · vk

l . We introduce an auxiliary variable
zk,q
l = uq

k · vk
l . Clearly, zk,q

l can only be 0 or 1 depending on the values of uq
k and vk

l , and their relation is bounded
by following linear constraints [22]
• If uq

k = 0 or vk
l = 0, then zk,q

l = 0. This is equivalent to the following linear constraint

−uq
k − vk

l + 2zk,q
l ≤ 0 (15)

• If uq
k = 1 and vk

l = 1 then zk,q
l = 1. This is equivalent to the following linear constraint

uq
k + vk

l − zk,q
l ≤ 1 (16)

Therefore, the radio and channel constraint can be rewritten as




Tl(x, y, z, σ, P )

=
∑

k∈Ls
l

xi
kDk

Bk
+

∑

k∈Lt
l

yj
kDk

Bk
+

∑

k∈Lc
l

zk,q
l Dk

Bk
≤ 1

− uq
k − vk

l + 2zk,q
l ≤ 0,∀k ∈ L,

uq
k + vk

l − zk,q
l ≤ 1,∀k ∈ L.

(17)

D. Convex approximation of the effective link capacity
In general, the effect link capacity is not a concave function of the transmit power and interference margin

variables. However, for the Gaussian broadcast channel, the effective link capacity Bl is known to be upper bounded
by Shannon’s capacity formula as Bl = B log(1 + SINRl). When the SINR is relatively higher, we can use the
approximation log(1+x) ≈ log(x) and introduce the log variable for Pl and σl applying the geometric programming
techniques [4], that is, P̃l = log(P ), σ̃l = log(σl). The effective link capacity Bl can be re-written as

Bl ≈ B log
(

eP̃lḠll

N0 + eσ̃l

)
= −B log

(
N0

Ḡll
e−P̃l +

1
Ḡll

eσ̃l−P̃l

)
(18)

Thus the effective link capacity Bl is a concave function of the variables P̃l and σ̃l since ”log-sum-exp” expressions
are convex [4].
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E. Problem transformation
Applying the big-M relaxation (14) to the disjunctive sets, the binary linearization (17) to the product of binary

variables, and the convex approximation of effective link capacity(18), we transform the GDP form of the problem
defined in (9) to mixed integer nonlinear programming (MINLP) problem as follows,

max
∑

l∈L
Ul(σ̃l)

s.t. Tl(x, y, z, σ̃, P̃ ) ≤ 1,∀l ∈ L,

− uq
k − vk

l + 2zk,q
l ≤ 0,∀l, k ∈ L,

uq
k + vk

l − zk,q
l ≤ 1,∀l, k ∈ L,

vl
k1
≤ vl

k2
,∀k1, k2, l, Glk1 < Glk2 ,

vk
l = vl

k,∀k, l ∈ L,∑

i∈Rsl

xi
l = 1,

∑

j∈Rtl

yj
l = 1,

∑

q∈Q

uq
l = 1,∀l ∈ L,

xi
l, y

j
l , u

q
l , v

k
l , zk,q

l = {0, 1},∀l ∈ L,

max
k∈L

{mk
l } ≤ eP̃l ≤ min

k∈L
{Mk

l },∀l ∈ L,

(19)

where (x, y, u, v, z) are a set of binary variables, σ̃ and P̃ are a set of continuous variables.

V. GENERALIZED BENDERS DECOMPOSITION SOLUTION

In general, the MINLP problems is known to be NP-hard problems and no efficient solutions exist because the
complexity may increase exponentially with problem size. However, the MINLP problem in (19) has a special
property in that it is convex with respect to continuous variables if the discrete variables are fixed. The generalized
Benders decomposition (GBD) [11] has been proposed for MINLP problem with this property. In a recent work
[13], GBD technique has been applied for solving the channel assignment problem with similar structure.

The basic idea of the GBD algorithm is to decompose the original MINLP problem to a primal problem and
a master problem and solve them iteratively. The primal problem corresponds to the original problem with fixed
binary variables, solving this problem provides the information about the lower bound and the Lagrange multipliers
corresponding to the constraints. The master problem is derived through nonlinear duality theory using the Lagrange
multipliers obtained from the primal problem. The solution to the master problem gives the information about the
upper bound as well as the binary variables that can be used for primal problem in next iteration.

A. Primal problem

In the following, for the easy of exposure, let Ω := (x, y, z, u, v) represent the set of binary variables, and Ω̂
denotes the binary variables with specific values in {0, 1}.

The primal problem of the MINLP problem in (19) is obtained by fixing the binary variables to Ω̂:

P(Ω̂)





f(Ω̂) = max
∑

l∈L
Ul(σ̃l)

s.t. Tl(Ω̂, σ̃, P̃ ) ≤ 1,∀l ∈ L,

max
k∈L

{mk
l } ≤ eP̃l ≤ min

k∈L
{Mk

l },∀l ∈ L,

σ̃l ≥ 0,∀l ∈ L.

(20)

where f(Ω̂) is the value function of the primal problem. Since the optimal solution of this problem is also a
feasible solution to problem (19), the optimal value f(Ω̂) provides a lower bound to the original problem.

In general, not all choices of binary variables lead to a feasible primal problem. It should be treated differently
depending on whether the primal problem is feasible or not:
• Feasible Primal

If the primal problem is feasible, we form the partial Lagrangian for the primal problem by introducing
Lagrange multipliers λ ∈ RL only for the constraints Tl(Ω̂, σ̃, P̃ ) ≤ 1,∀l ∈ L. Namely,

L(Ω̂, σ̃, P̃ , λ) =
∑

l∈L
Ul(σ̃l) +

∑

l∈L
λl

(
1− Tl(Ω̂, σ̃, P̃ )

)
(21)
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The objective function of the dual problem is defined as

V (λ) = sup
σ̃,P̃



L(Ω̂, σ̃, P̃ , λ)

∣∣∣∣∣∣
max
k∈L

{mk
l } ≤ eP̃l ≤ min

k∈L
{Mk

l },
σ̃l ≥ 0, ∀l ∈ L.



 (22)

The Lagrange dual problem associated with the feasible primal problem (20) is to solve

min V (λ)

s.t. λ º 0.
(23)

• Infeasible Primal
If the primal problem is infeasible, we define a set Γ as

Γ = {Ω̂|Tl(Ω̂, σ̃, P̃ ) ≤ 1, for some σ̃, P̃}
and consider the following feasibility-checking problem

F(Ω̂)





g(Ω̂) = min
∑

l∈L1

wlT
+
l (Ω̂, σ̃, P̃ )

s.t. Tl(Ω̂, σ̃, P̃ ) ≤ 1,∀l ∈ L2.

max
k∈L

{mk
l } ≤ Pl ≤ min

k∈L
{Mk

l },∀l ∈ L.

σ̃l ≥ 0,∀l ∈ L.

where T+
l = max(0, Tl − 1), L1 is set of infeasible constraints, L2 is the set of feasible constraints, and

L = L1 ∪ L2. The weights wls are nonnegative and not all zero. In particular, if we let wl = 1, l ∈ L1, it is
equivalent to a l1-minimization problem. In this case, a partial Lagrangian for the infeasible primal problem
can be defined by introducing Lagrange multipliers µ ∈ RL for the constraints as

G(Ω̂, σ̃, P̃ , µ) =
∑

l∈L
µl(Tl(Ω̂, σ̃, P̃ )− 1) (24)

It is shown in [11] that Ω̂ belong to the set Γ if and only if they satisfy the following system:

0 ≥ inf
σ̃,P̃

G(Ω̂, σ̃, P̃ , µ),∀µ ∈ Λ

where Λ = {µl ≥ 0,
∑

l∈L
µl = 1.} (25)

B. Master problem

The original MINLP problem defined in (19) can be written as

max
Ω

∑

l∈L
Ul(σ̃l) = max

Ω
f(Ω)

= max
Ω

(min
λ

sup
σ̃,P̃

L(Ω, σ̃, P̃ , λ))

= max β

s.t. β ≤ sup
σ̃,P̃

L(Ω, σ̃, P̃ , λ)),∀λ º 0,

Ω ∈ {0, 1} ∩ Γ.

(26)
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where the first equality is obtained from (22) and (23). Incorporating (25) into (26), we can make the constraints
over set Γ explicit and obtain the following master problem:

M(σ̃, P̃ , λ, µ)





max β

s.t. β ≤ sup
σ̃,P̃

L(Ω, σ̃, P̃ , λ),∀λl ≥ 0,

0 ≥ inf
σ̃,P̃

G(Ω, σ̃, P̃ , µ),∀µl ∈ Λ,

− uq
k − vk

l + 2zk,q
l ≤ 0,∀l, k ∈ L,

uq
k + vk

l − zk,q
l ≤ 1,∀l, k ∈ L,

vl
k1
≤ vl

k2
,∀k1, k2, l, Glk1 < Glk2 ,

vk
l = vl

k,∀k, l ∈ L,∑

i∈Rsl

xi
l = 1,

∑

j∈Rtl

yj
l = 1,

∑

q∈Q

uq
l = 1,

Ω ∈ {0, 1}.

(27)

Note that the master problem has two inner optimization problems as its constraints, which need to be considered
for all λ and µ. This implies that the master problem has a very large number of constraints. In [16], following
relaxations have been proposed for the first two constraints of master problem at iteration n as

β ≤ L̃(Ω(i), σ̃(i), P̃ (i), λ(i)),∀i ∈ P̃n,

0 ≥ G̃(Ω(i), σ̃(i), P̃ (i), µ(i)),∀i ∈ Fn,
(28)

The relaxed constraints at ith iteration(i ≤ n) are given respectively by

L̃(Ω(i), σ̃(i), P̃ (i), λ(i)) = L(Ω(i), σ̃(i), P̃ (i), λ(i))

+∇ΩL(Ω(i), σ̃(i), P̃ (i), λ(i))(Ω− Ω(i))

and

G̃(Ω(i), σ̃(i), P̃ (i), λ(i)) = G(Ω(i), σ̃(i), P̃ (i), µ(i))

+∇ΩG(Ω(i), σ̃(i), P̃ (i), µ(i))(Ω− Ω(i))

P̃n and Fn are the set of feasible and infeasible primal problems solved up to iteration n:

P̃n := {i ≤ n : P̃(Ω(i)) is feasible}
Fn := {i ≤ n : F(Ω(i)) is infeasible}

(29)

C. Algorithm

Main procedure: The GBD algorithm is operated in an iterative way as shown in Algorithm 1. In each iteration
n, the optimal primal-dual pair (σ̃(n), P̃ (n), λ(n))(for feasible primal problem) or (σ̃(n), P̃ (n), µ(n))(for infeasible
primal problem) are solved with fixed integer variables Ω(n), which are fed into (27) to solve the relaxed master
problem. The relaxed problem provides an upper bound to the master problem and can be used to generate the
primal problem in the next iteration, then the same procedure is repeated until converges.

In this procedure, the sequence of upper bounds is non-increasing and the set of lower bounds is nondecreasing,
and the domain of the binary variables are finite. The two sequences are proven to converge and the algorithm will
stop at the optimal solution (Ω∗, σ̃∗, P̃ ∗) within a finite number of iterations [11], [16].
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Algorithm 1: GBD power control and channel assignment algorithm
input : Link-level traffic demand Dl,∀l ∈ L.
output: Binary variables Ω, link transmission power P and interference margin σ.
begin

Set m = 1 and choose Ω(n) ∈ {0, 1}.
LB0 ← −∞, UB0 ←∞,P0 ← ∅,F0 ← ∅.
while LGn−1 < UBn−1 do

if the primal problem is feasible then
Solve the primal problem P(Ω(n)) to obtain optimal solution σ̃(n), P̃ (n) and λ(n);
Pn ← Pn−1 ∪ {n}, Fn ← Fn−1;
LBn ← max(LBn−1, f(Ω(n)));
if LBn = f(Ω(n)) then

(Ω∗, σ̃∗, P̃ ∗) ← (Ω(n), σ̃(n), P̃ (n));
end

else if the primal problem is infeasible then
Solve the feasibility-check problem F(Ω(n)) to obtain the optimal solution σ̃(n), P̃ (n) and µ(n);
Pn ← Pn, Fn ← Fn−1 ∪ {n};

end
Solve the master problem M(σ̃(n), P̃ (n), λ(n), µ(n)) to obtain the optimal solution Ω(n+1) and β(n);
UBn ← β(n), n ← n + 1;

end
return Ω∗, σ̃∗ and P̃ ∗.

end

Primal problem: The primal problem can be solved distributively using the dual decomposition technique. Let us
consider the feasible primal case, from (17) and (20), we have

L(Ω̂, σ̃, P̃ , λ) =
∑

l∈L
Ul(σ̃l) +

∑

l∈L
λl

(
1− Tl(Ω̂, σ̃, P̃ )

)

=
∑

l∈L
Ul(σ̃l) +

∑

l∈L
λl

(
1−

∑

k∈Ls
l

xi
kDk

Bk

−
∑

k∈Lt
l

yj
kDk

Bk
−

∑

k∈Lc
l

zk,q
l Dk

Bk

)

=
∑

l∈L

[
Ul(σ̃l)− γl

Dl

Bl

]
+

∑

l∈L
λl

where γl is the aggregate multipliers of links conflicting with link l over radio and channel, which is given by

γl =
∑

k∈Ls
l

λkx
i
k +

∑

k∈Lt
l

λky
j
k +

∑

k∈Lc
l

λkz
k,q
l

Given γl, each link l can find σ̃l and P̃l by solving its local Lagrangian function as follows

(σ̃l(γl), P̃l(γl))

= arg max
σ̃l,P̃l



Ul(σ̃l)− γl

Dl

Bl

∣∣∣∣∣∣
max
k∈L

{mk
l } ≤ eP̃l ≤ min

k∈L
{Mk

l },
σ̃l ≥ 0,∀l ∈ L.





The Lagrangian multipliers can be obtained by solving the following dual problem as

min
λº0

∑

l∈L

[
Ul(σ̃l)− γl

Dl

Bl

]
+

∑

l∈L
λl (30)

which can be solved using the following gradient method,

λl =
[
λl − α(1− Tl(Ω̂, σ̃, P̃ ))

]+
(31)

where α is a sufficiently small positive step size, and [·]+ denotes the projection onto the nonnegative orthant.
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Algorithm 2: Time Slot Scheduling Algorithm
input : Slot demand nl and conflicting set Il,∀l ∈ L.
output: Time slot assignment A.
begin

t ← 0;
while there exists a link l ∈ L with nl > 0 do

A(t) ← ∅, U(t) ← {l|nl > 0, l ∈ L}.
while U(t) 6= ∅ and nl > 0,∀l ∈ U(t) do

Select a link l ∈ U(t) and set l∗ ← arg maxl′∈Il
nl′ ;

A(t) ← A(t) ∪ {l∗};
U(t) ← U(t) \ ({l∗} ∪ Il∗);
nl∗ ← nl∗ − 1;

end
t = t + 1;

end
return A.

end

Master problem: The values of interference margin, transmit power and Lagrangian multiplier obtained from the
primal problem by each link need to be reported to a central server(e.g., the gateway nodes in a mesh network)
for solving the master problem (27). Note that in each iteration, only the latest information needs to be reported,
the communication cost is constant and low. The relaxed master problem is a integer linear programming(ILP)
problem, which can be solved using some ILP solvers such as ”glpk” [12]. The complexity of solving the master
problem can be reduced since it does not need to solve the problem to optimality in each iteration, therefore, some
heuristic algorithms can be used to find an integer solution in order to generate an optimality cut, however, the
convergence of the procedure may not be guaranteed [7].

D. Scheduling

Given the power, radio and channel assignment results, it remains to decide when a link should be scheduled
for packet transmission. We devise a TDMA schedule so that in each time slot only a set of conflict-free links are
scheduled for transmission. Let nl denote the number of slots required by a link l, which is given by nl = dDl/Blτe,
where τ is the slot duration. Let Il denote the set of links conflicting with link l. For a time slot t, let A(t) denote
the set of links assigned in this time slot, and U(t) denote the remaining links yet to be assigned. The scheduling
algorithm works as in Algorithm 2.

The above algorithm is essentially a maximal scheduling, where in each time slot, the set of links belonging to
a maximal independent set are scheduled. Maximal scheduling yields simple distributed implementations [6], [32].

VI. PERFORMANCE EVALUATION

A. Evaluation setup

In this section, we evaluate the performance of the proposed robust power(RP) and radio-channel assignment
scheme using measurement traces and simulation. For comparison purpose, other two algorithms have been imple-
mented as baselines
• The FP(fixed power) algorithm uses the radio-channel assignment algorithm proposed in [13] with fixed transmit

power for all links.
• The SP(symmetric power) algorithm incorporates the power control scheme in [20] and channel assignment

scheme in [14], both using the Gibbs sampler technique. The power control algorithm tries to optimize both
transmit power and carrier sense threshold to preserve the symmetry sensing among links.

The received signal strength(RSS) measurements are collected from an indoor testbed (Fig. 2). Each node is
an embedded Wireless Router Application Platform (WRAP) board with 233 MHz AMD Geode SC1100 CPU,
64Mb DRAM, with two Mini PCI Atheros 802.11a/b/g wireless cards and one Ethernet port. Multiple rounds
of measurements are conducted to build RSS profile for all links. In each round, only one node is scheduled to
broadcast 100 UDP packets of 12 bytes payload at the lowest data rate (1Mbps), other nodes can receive the packet
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and extract the RSS information from the received packet using the radiotap header in MADWIFI driver [1]. The
average value of the RSS of each link are used as inputs for the experiments.

In the experiments, all nodes have the same total number of radios varying between 1 and 2, and the same
number of total orthogonal channels varying from 1 to 4. The minimum and maximum power levels are 1 dBm and
15dBm respectively. Twenty set of link bandwidth vectors are randomly generated as inputs, and the final results
show both the average value and standard deviation for all experiments.

B. Numerical results

We first evaluate the interference margin obtained from the three algorithms. Since the SP algorithm does not
generate interference margins and link rate vector itself, we take the link transmit power, radio-channel assignment
results of the algorithm as inputs to our algorithm to compute these values skipping the power and radio-channel
assignment steps.

Fig. 3 shows the interference margin obtained by three algorithms with different of radios (1 to 2) and channels
(1 to 4). The dashed lines correspond to the results with one radio(R=1), the solid lines correspond to the results
with two radios(R=2). The interference margin is computed as the minimum value among all links in the same
setting on all experiments. As expected, when the number of radios and channels increases, the interference margin
attainable by all schemes increases. However, the increments tend to flatten out for more radios and channels. The
RP algorithm outperforms other two schemes in providing larger interference margin. The performance gain of RP
algorithm over FP algorithm is more prominent with small number of channels. This is because RP algorithm can
reduce the contention and improve the spatial reuse by optimizing the transmit power level. The performance gap
between RP and FP algorithm decreases as the number of channel increases, which suggests that both algorithms
can take advantage of channel assignment for improving the spatial reuse, the contribution of power control is not
dominate in these cases. The performance of SP algorithm is the worst because it is agnostic to link bandwidth
requirement, and it does not optimize transmit power and channel assignment jointly.

Note that the power control and radio-channel assignment decision of these algorithm is made based on the average
RSS values on all links. It is interesting to study the impact of short-term channel variation on the performance of
these three algorithms. In the second set of experiments, a large number of RSS samples are generated for each
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link using its RSS CDF profile. For each set of RSS values, we compute the SINR for each individual links and
obtain their achievable transmit rates, with which we can check the radio and contention constraint (8) for each link.
An outage occurs if this constraint is violated, and we define the outage probability as the percentage of violated
constraints. This procedure is repeated 1000 times. The outage probability obtained by for these three algorithms
is shown in Fig. 4. We see that that RP algorithm incurs less outage probability than other two algorithms under
most cases, in particular with smaller number of channels. Although our algorithm does not explicitly optimize
for the outage probability (which is dependent on RSS variation over time), a larger interference margin generally
provides higher allowance to link variability. This is consistent with our intuition. It can also be observed from
these figures that the outage probabilities are significantly reduced when more radios and channels are employed.

Fig. 5 shows the convergence behavior of the proposed algorithm for the case of 2 radios, 4 channels. In the
figure, the upper bound returned by the master problem decreases monotonically and converges to the lower bound
obtained from the primal problem. Optimality is obtained at around 50 iterations.

C. Simulation results

In this section, we compare the performance of the algorithms using the Qualnet simulator [27]. We choose
Qualnet because it provides a PATHLOSS-MATRIX propagation model which incorporates a three-dimensional
matrix indexed by source node, destination node, and time to calculate path loss between nodes. The same topology
as the testbed is used in the simulations. The TDMA MAC protocol in Qualnet is modified to allow transmission
of multiple packets within a slot. The TDMA schedule is generated using the algorithm discussed in Section V
and imported to the simulation. Since 802.11a PHY only supports 8 transmission rates (6, 9, 12, 18, 24, 36, 48,
54Mbps), link rates obtained from the three algorithms are rounded to the next higher rate level supported by
802.11a and remain fixed throughout the simulation runs.

To study the effects of external interference, we introduce four interference sources located in the four corners
of the testbed, each source can inject AWGN signals at -30dBm. We consider three scenarios for the activities of
these interference sources:
• No interference – None of these interference sources is activated during the simulation.
• Random interference – Only one of the randomly selected interference sources is activated in each time slot.
• Persistent interference – All interference sources are activated during the simulation.
Fig. 6 shows the packet loss probability obtained by three algorithms for the case that no interference source is

activated. In this case, packet losses are mainly due to the channel variations. We see that RP algorithm incurs less
packet losses than other two algorithms under most cases. This is consistent with the numerical results.

Fig. 7 and 8 show the results for random and persistent interference cases respectively. As expected, due to the
existence of external interference and channel variation, the packet loss probabilities are higher than the previous
experiments. It can be seen from these figures that the RP algorithm achieves better performance than the other
two schemes. This demonstrates that the proposed algorithm is more robust to channel variations and external
interference than other schemes.
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VII. CONCLUSIONS

We present an optimal joint power control and radio-channel assignment scheme for robust traffic engineering
in multi-radio multi-channel(MR-MC) wireless networks. The objective is two folded i) to support link bandwidth
requirements, and ii) to be resilient to moderate channel variations or external interferences. Both numerical and
simulation results show that the proposed algorithm outperforms existing schemes in providing larger interference
margin, and reducing outage and packet loss probabilities.
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