
A Note on An NP-completeness Proof for Cryptographic Protocol Insecurity ∗

Zhiyao Liang and Rakesh M. Verma
zliang@cs.uh.edu, rmverma@cs.uh.edu

Department of Computer Science
University of Houston

Houston, TX, 77204, USA
http://www.cs.uh.edu

Technical Report Number UH-CS-08-15

October 05, 2008

Keywords: Cryptographic protocols, secrecy, NP-complete, formal method.

Abstract

This article discusses the paper “Protocol insecurity with a finite number of sessions and composed keys
is NP-complete” [1]. Some understanding of the paper is recorded in this article. Especially a non-trivial
error of the NP proof of [1] is presented, and we provide a solution to fix this error. We suggest that the
NP-completeness proof can be improved in several aspects.

∗ Research supported in part by NSF grants CCF 0306475 and CNS 0755500.



1

A Note on An NP-completeness Proof for
Cryptographic Protocol Insecurity ∗

Zhiyao Liang and Rakesh M. Verma
zliang@cs.uh.edu, rmverma@cs.uh.edu

Abstract

This article discusses the paper “Protocol insecurity with a finite number of sessions and composed keys is
NP-complete” [1]. Some understanding of the paper is recorded in this article. Especially a non-trivial error of the
NP proof of [1] is presented, and we provide a solution to fix this error. We suggest that the NP-completeness proof
can be improved in several aspects.

Index Terms

Cryptographic protocols, secrecy, NP-complete, formal method.

I. OVERVIEW

The paper “Protocol insecurity with a finite number of sessions and composed keys is NP-complete” [1], which
can also be found at [2], proves the NP-completeness of checking secrecy in a bounded situation. We believe
this is among the most important complexity results of checking cryptographic protocols. The approach of [1] is
extended in a more recent paper [3], which is dedicated to prove that checking secrecy is NP when XOR operations
are allowed. We are motivated to have a thorough understanding of the proofs of [1], not only for the interest
in the theory of complexity of checking cryptographic protocols, but also because we may clarify and improve
our understanding of the features a deterministic checker with possibly optimal performance. I.e., the proof of [1]
discuss the notion of a normal attack, which is a simplest attack to a protocol, and for a deterministic checker, its
performance of checking a protocol may not be any better than finding a simplest attack to the protocol.

In this section we demonstrate an important challenge faced by a NP proof of checking secrecy, which explains
what the error of [1] is about, which is presented in details later, and we discuss the main idea of the NP proof of
[1].

In order to prove that checking secrecy is NP-complete in a certain setting, the proof needs to show that the
size of the solution guessed by the non-deterministic algorithm is bounded by a polynomial w.r.t. the protocol size,
where size can be measured in some proper way, such as the number of bits of the protocol code. A guessed
solution describes a possible run of the protocol, and the solution must describe a substitution of the variables in
the protocol code, since in a run the variables of the protocol are instantiated by terms according to the substitution.

The following example shows that if a term is not represented using a special data structure called DAG, which
is defined later in this paper, in an attack a variable may have an instance with of exponential size w.r.t. the
protocol. Here are the notations for the example, which are similarly used by [1] except the notation for fresh
nonce generation. #A(X,Y ) means that the agent A generates two fresh nonces X and Y . KA means the public
key of agent A. K−1 means the inverse key of an asymmetric key K. For example the inverse key of a public key
is the corresponding private key. {T}sM means a symmetric encryption where the encryption key is M . {T}pKA

means an asymmetric encryption where KA is the encryption key.
Suppose a protocol code is the communication sequence as follows.
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#A0(X0) (A0 ⇒ B0) : A0, B0, {1, e,X0}sk.
#A1(X1, Y1) (A1 ⇒ B1) : A1, B1, {1, X1, Y1}sk.

(B1 ⇒ A1) : B1, A1, {2, X1, [Y1, Y1]}sk.
· · ·
#Ai

(Xi, Yi) (Ai ⇒ Bi) : Ai, Bi, {i,Xi, Yi}sk.
(Bi ⇒ Ai) : Bi, Ai, {i+ 1, Xi, [Yi, Yi]}sk.

· · ·
#Am

(Xm, Ym) (Am ⇒ Bm) : Am, Bm, {m,Xm, Ym}sk.
(Bm ⇒ Am) : Bm, Am, {m+ 1, Xm, [Ym, Ym]}sk.

#A(X,Y ) (A⇒ B) : { A,B,X, {m+ 1, e, Y }sk }
p
KB

.
#B(Secret) (B ⇒ A) : {B,A, Secret}sX .
We assume the attacker does not know the special key k, while the attacker knows the names and public keys

of all agents. A special constant e appears in the messages between A0 B0, and between A B. It is obvious to
prove that the only way for the attacker to know the term Secret is by constructing the message { A,B,X, {m+
1, e, Y,A,B}sk }

p
KB

, which requires that the attacker knows a term {m+ 1, e, Y }sk, call it T , for some integer m,
m > 0. Integers are constants in the protocol. Note that e is a special constant which can not be generated as a nonce.
The only way for the attacker to obtain T is by the following actions. First, obtain the term {1, e,X0, A0, B0}sk
sent from A0 to B0, call it T0. Then construct Msg1 = A1, B1, T0. Send Msg1 to B1, and obtain the term
{1, e, [X0, X0]}sk. Repeat this process m times, each time send Ti to Bi, for some i, 1 ≤ i ≤ m. Finally T is
obtained and the attacker can construct the term { A,B,X, {m+ 1, e, Y }sk }

p
KB

where X is chosen by the attacker.
Then the Secret term is revealed to the attacker. It is obvious that in the attack finally the variable X is instantiated
by e, and the term Y is instantiated by a huge term where X0 appears 2m times, which is obviously exponential
w.r.t. the size of the protocol. However if terms are described as DAGs (introduced later) only m+ 1 nodes need
to be used in the DAG that describe the instance of Y .

The error of [1] is in the proof to show the polynomial size of a substitution for a variable in a non-deterministic
attack.

In [4] a NP-procedure is claimed. We do not focus on the work of [4] since we consider its NP proof is not
comparable to the one of [1] for the following reasons.
• In [4] encryption keys must be atomic, while in [1] encryption keys are more generally allowed to be composed.

Extending atomic keys to composed keys is a non-trivial task, as mentioned in [4], and we think the non-
triviality can be explained as follows. By assuming atomic keys the attacker’s computation to derive a message
from a set of terms E can be organized in two stages, to analyze terms in E as much as possible and construct
terms. But assuming composed keys this two-stage computation, which some proofs may rely on, is not
sufficient. A composed key could be instantiated by any term, which makes the analysis seems to be much
more complex.

• The proof in [4] of the NP result is rather sketchy, which is less than a page besides the procedure. It seems
that the work of [4] for the NP result is on the level of arguing that using DAGs the NP-time result can be
obtained (as mentioned by the abstract of [4]), and is not comparable to the detailed proving in [1]. In [4]
several other problems beside the NP result are addressed, while the main focus of [1] is the NP proof.

In [5] there is a NP-complete result of checking secrecy with a bounded number of role instances. The proof
of [5] assumes atomic key, and the size of each message in a run is assumed to be less than a certain number K.
Bounding the message size makes the NP proof considerably easier, and the DAGs are not needed to represent
terms.

The contributions of the paper can be highlighted as follows:
• We discuss the modeling of [1], and we address several important issues in order to clarify and improve the

modeling, including role instances vs. sessions, specifying variables and constants of a protocol, the attacker’s
initial knowledge, and the definition of normal attack.

• We present an improved and clarified proof of Lemma 4, which is the most important lemma of [1] for proving
the NP result. The improved proof of Lemma 4 uses several generally applicable observations and lemmas,
which is powerful enough to prove other results.

• We prove that the attacker does not need to generate nonces.
• We point out an non-trivial error in the proof of Theorem 1 in [1], which is in the proof of the theorem for
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the NP result, and show a counter-example to clarify the error.
• We have checked the related paper [3], which is more recent than [1], and understand that the error has not

been fixed in [3].
• We provide a solution to fix the non-trivial error and thus prove the NP result of checking secrecy.
• We justify the linear bound on the derivation length for deriving a received message based on the messages

sent earlier and the attacker’s initial knowledge.
Note that for a observation, lemma, corollaries or theorem, if it is marked with a ’*’, then it is provided by this

article, not by [1] or [3], otherwise it is stated [1] and is presented here with the exactly identical statement and
with the same number.

II. THE MODELING AND NOTATIONS OF [1]

In this section the notations and definitions of [1] are presented. Although these notations and definitions can be
found in [1], they are included in this article for three reasons: 1) for the convenience of readers; 2) to discuss some
notions of [1] and to explain them by common ideas of modeling a Dolev-Yao attacker; 3) more importantly these
notations and definitions are used as the solid foundation to present the error, which is described in later sections.

An Atom is an atomic ground term (variable free), i.e., a constant. A message is a ground term (variable free),
while a term can have variable. The asymmetric key must be an atomic term (belonging to the set Keys), while
the symmetric key is allowed to be a composed term. Message and term are defined by the following grammars:

msg ::== Atoms| < msg,msg > |msgpKeys|msgsmsg
term ::= V ar|Atoms| < term, term > |termp

Keys|terms
term

Note that variables can appear in the descriptions of Keys, such as KA. The Keys appearing in the above
grammar for msg can be more proper to be considered as the ground instantiations of keys such as Ka, which is
an instance of KA.

Variables are represented as x, x1, x2 and so on. In an execution (described later), variables are global i.e., all
occurrences of x are substituted together by the same term. Constants are the names starting with uppercase letter.
such as NA. Note that in [6] uppercase letters are used for variables instead.

A protocol is specified by a set of rules:
{(l, Rl ⇒ Sl)|l ∈ ϕ} .

Each rule is associated with an index l, and l has the form (A, i). ϕ is the set of rule indexes. Each principal, say
A is associated with a set of numbers WA, and two numbers i and j in WA can be compared with the relationship
<WA

. Actually <WA
can be simply understood as the common < relationship comparing natural numbers.

Note that the protocol can be considered as a set of roles. Each role is executed by a principal (same as agent).
For a rule (l, Rl ⇒ Sl) where l = (A, 2), it means that in the second step of A’s role, where A receives message
Rl and then sends message Sl. The protocol specified in [1] is role oriented, not a communication sequence, and a
protocol can be a set of non-matching roles, i.e., for a message received in a step of a role, the corresponding role
where the message is sent could be missing. This issue of non-matching roles are explained in more details in [6].

There are cases that in a role an agent may send a message without needing to receive a messages earlier, which
can be expressed using the modeling of [1] as rule where the received message Ri, for some i > 0, is an empty
message.

A correct execution order π is a one-to-one mapping π : ϕ → {1, . . . , |ϕ|card}, where ϕ is the set of rule
indexes of the protocol, and |ϕ|card is the number of elements (cardinality) of ϕ, which is the number of rules of
the protocol specification. Note that in [1] |ϕ| is used to represent the cardinality of ϕ. But later the same notation
|.| is used for a different purpose to define the size of a term; therefore, in this article we use |S|card to indicate
the cardinality of a set S. For all A ∈ Names and i <WA

j, it must be true that π(A, i) < π(A, j). A protocol
execution is given by a ground substitution σ, a correct execution order π and a sequence of environments (an
environment is a set of terms) E0, . . . , E|ϕ|, that satisfy the following conditions.
• The message received in the hth step in the execution is included in the previous environments, denoted as
Rπ−1(h)σ ∈ Eh−1.

• The message sent in hth step in the execution is included in the later hth environment, denoted as Sπ−1(h)σ ∈
Eh.

Note that σ(T ) and Tσ are equivalent and they mean to apply the substitution σ to a term T . It obvious that Eh−1

denotes the set of terms that attacker can obtain before the message is received in the hth step of the execution. It
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is the same as the common idea that the attacker should be able to obtain a message before it is received, and the
attacker records all messages sent in the network.

The discussion on the notion of session is important and is included in the next subsection.
The following rewrites can be applied to a set of terms, by replacing the terms on LHS with the set of terms

on the RHS. These rules describe the attacker’s internal computation to analyze and construct terms. Note that the
attacker can also generate fresh nonces. We believe that in [1] the authors assume that the attacker have generated
all of the nonces needed before the start of a protocol run, and these nonces are included in the attacker’s initial
knowledge S0.

Decomposition rules:
• Ld(〈a, b〉) : 〈a, b〉 → a, b, 〈a, b〉.
• Ld({a}pK) : {a}PK ,K−1 → {a}PK ,K−1, a.
• Ld({a{sb) : {a}sb, b→ {a}sb, b, a

Composition rules:
• Lc(〈a, b〉) : a, b→ a, b, 〈a, b〉
• Lc({a}PK) : a,K → a,K, {a}PK
• Lc({a}sb) : a, b→ a, b, {a}sb
For a rewrite rule Ld(T ) or Lc(T ), T is called the principle term of the rule. The rewrite relation between two

set of terms M and M ′, denoted as M →M ′ means there exists one of the rule l→ r described above such that
l is a subset of M and M ′ is obtained by replacing l by r in M . →∗ is the reflexive and transitive closure of →.

Definition 1 (forge). Let E be a set of terms and let t be a term such that there is E′ with E →∗ E′ and t ∈ E′.
Then we say that t is forged from E and it is denoted as t ∈ forge(E).

A derivation is implicitly defined in [1]. It is better to explicitly define it. A derivation of a set of terms E0 is
a sequence E0 →r1 E1 →r2 · · · →rn

En, where Ei for 1 ≤ i ≤ n is a set of terms, and ri is an application of a
rewrite rule described above. If ri, for 1 ≤ i ≤ n, has the form LHSi → RHSi, for two sets of terms LHSi and
RHSi, then it must be true that LHSi ∈ Ei−1 and Ei = Ei−1 ∪RHSi.

Throughout this paper, when there is no confusion comma is used as as the union of two sets. For example for a
set of terms E and a term t, E ∪ {t} can be represented as E, t. For a set of terms E′, E ∪E′ can be represented
as E,E′. For two terms t and t′, {t, t′} can be represented as t, t′.

Definition 2 (attack). Given a protocol P = {R′l ⇒ S′l|l ∈ ϕ}, a secret message Secret and assuming the
intruder has initial knowledge S0, an attack is described by a ground substitution σ and a correct execution order
π : ϕ → 1, . . . , k, where k = |ϕ|card, such that for all i = 1, . . . , k, we have Riσ ∈ forge(S0, S1σ, . . . , Si−1σ)
and Secret ∈ forge(S0, S1σ, . . . , Skσ) where Ri = R′π−1(i) and Si = S′π−1(i).

Here is some explanation. At the ith step of the execution a rule is executed. Suppose the rule has index l, i.e.,
the rule is R′l ⇒ S′l , then Ri is R′l and Si is S′l .. The relationship between i and l is represented by i = π(l) and
l = π−1(i).

Note that since a correct execution order is defined by a substitution and a sequence of environments, we should
clarify the above definition of attack by specify the sequence of environments, from E0 to Ek. Let E0 = S0, where
S0 is a set of atoms describing the attacker’s initial knowledge, which will be discussed later in Section III-B. Let
Ei = {S0, S1σ, · · ·Siσ} for 0 ≤ i ≤ k. Then for the environment Ei, for 0 ≤ i ≤ k, Ei = forge(Ei).

We consider it is better to directly introduce the definition of a protocol execution after the attacker’s behavior
forge() is introduced, and the discussion of the environments are avoided. Then an attack is a protocol execution
such that Secret ∈ forge(Ek).

The size of a message term t is denoted |t| and defined as:
• |t| = 1 for any t ∈ Atoms, except for Charlie, which is the reserved name of the attacker, where |Charlie| =

0.
• recursively, |〈x, y〉| = |{x}y| = |x|+ |y|+ 1.
Given a multiset M of terms, the multiset value M(t) for a term t is 0 t /∈ M , otherwise M(t) is the number

of copies of t in M .
The ordering M � N between two multisets M and N can be defined in the following two equivalent ways.
• M ∪ {s} � N ∪ {t1, . . . , tn} if M = N and s > ti for all i ∈ 1, . . . , n.
• M � N if (i) M 6= N and (ii) whenever N(x) > M(x) then M(y) > N(y) for some y > x.
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Definition 3 (normal attack). Given a protocol P = {R′l ⇒ S′l|l ∈ ϕ}, an attack (σ, π) is normal if the multiset
of non-negative integers {|R1σ|, . . . , |Rkσ|} is minimal, with Ri = R′π−1(i) and Si = S′π−1(i).

Note that the minimal size is only defined on the received messages.
The set of subterms of a term is defined in the usual way. Note that for an encryption its encryption key is

its subterm. Given a set of terms E, the subterms of all of the terms in E is indicated as Sub(E). For a term t,
Sub(t) = Sub({t}).

The DAG representation of a set E of message terms is the graph (V , E) with labeled edges, where:
• the set of vertexes V = Sub(E), the set of subterms of E,
• the set of edges E = {vs →left ve|∃b, vs = {ve}s/pb or vs = 〈ve, b〉} ∪ {vs →right ve|∃b, vs = {b}s/pve or
vs = 〈b, ve〉}.

Remark 1 The DAG-representation is unique.
Suppose there are n subterms of a set of messages E, then there are at most n nodes and 2.n edges in the DAG

representation. The DAG-size of E is denoted by |E|DAG, to be the number of distinct subterms of E. For a term
t, we simply write |t|DAG for |{t}|DAG.

The set of variables that are the subterms of a term t is denoted as V ar(t), similarly V ar(P) means the set of
variables appearing as subterms in the protocol P .

However the above definition of normal attack is unnecessarily complex. In [3] a simpler definition of normal
attack is provided, which uses only DAG size of terms, not the complex multi-sets. It is seems the definition of
normal attack is only used in the proof of Lemma 4 (showed later), an the simplified definition of normal attack
can used to clarify the proof of Lemma 4.

Definition* 1: (new normal attack by [3]). Given a protocol P = {R′l ⇒ S′l|l ∈ ϕ}, an attack (σ, π) is normal
if Σx∈V ar(P)|σ(x)|DAG is minimal.

III. MODELING DISCUSSION

Modeling is the foundation of proofs. When the modeling is improved, correspondingly the result of the proof
is improved.

A. Sessions Versus Role Instances

We think modeling a protocol as a set of roles, where each role is a sequence of steps of sending or receiving
messages, is more direct and convenient than modeling a protocol as a sequence of rules, where the indexes of the
rules are designed to show that the rules that are executed by the same agent must follow a certain relative order in
an execution. We can observe that a rule always combines a message receiving step and a message sending step,
but there are protocols where an agent may receive several messages before sending one.

The notion of session deserves special attention. A session is an execution of the protocol. In [1] π is defined as
a one-to-one map, which means that in an execution the number of steps must be the same as the number of rules
of the protocol, and each rule of the protocol must appear in an execution exactly once. But it is counter-intuitive,
and it may have some trouble to define an attack. There are attacks that do not need to execute all rules of the
protocol. In the more recent paper [3] the definition of an execution (a session) is improved, so that only a subset
of the rules of the protocol may be executed in an execution, and a rule of the protocol can be executed at most
once in an execution. Note that if a rule with index (A, j) is executed in an execution, all rules with the index
(A, i), where i ≤ j, are also executed in the execution.

Since a role can be considered as the sequence of steps executed by the same agent, say A, as described by a
protocol, we can equivalently define a session as an interleaving of the steps of a set of role instances, while the
relative orders of the steps within a role instance are kept in the session, with a special condition that every role
of the protocol can have at most one role instance in a session. This proper interpretation of session used in [1] is
also mentioned in [7].

Considering a bound on the number of role instances (NRI) instead of a bound of the number of sessions is a
better choice to discuss the complexity of checking protocols, for the following two reasons.
• Sessions do not have practical meaning, compared to the notion of role instances. The notion of a session is

global across different role instances, as if there is some logic control over, or some logic connection between,
the role instances so that these role instances are grouped into a session, while every role must have (or can at
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most have) one role instance in this group. However in practice this logical connection between role instances
to form a session is usually not possible. Unless there is some term working as the ID of a session, there is
no clear way to group role instances into a session.

• On the other hand, to organize the actions of sending and receiving messages into a role instance is a built-in
notion of the setting of the problem. Role instance is based on the intention of a regular agent. For a regular
agent A, when A executes some actions of receiving or sending messages, A has a clear intention of whether
the different actions should belong to the same or different role instances. However A’s intension can only
organize the actions of her own, and cannot effect B’s intension. The connection between A and B’s intention
to form a session usually is not clear. That is why in the majority of the researches of checking protocols,
including [5] [8] [9], the notion of sessions is not used. When we try to find an attack of a protocol, usually
we describe (and think about) the attack as a set of role instances, instead of sessions.

We think the NP result of checking protocols assuming a bound on sessions does not directly imply, or is implied
by, the corresponding complexity result of assuming a bound on role instances.

Suppose we want to reduce a problem, call it problem one, of checking secrecy of a protocol Pro with K role
instances, to a problem, call it problem two, of checking secrecy of Pro with K ′ sessions, for some K ′, we think
the reduction is not obvious. Problem one implies that there are no more than K sessions in a run, since each
session introduces at least one role instance. But if we choose K ′ = K, the reduction will not work, since K
sessions could allow K × R role instances, where R is the number of roles in pro, and then the if-and-only-if
property of the reduction will not be satisfied, i.e., maybe there is any attack with K ×R role instances, but there
is no attack with K role instances.

Suppose we want to reduce problem two to problem one, the reduction is not obvious neither. problem two
implies that there are no more than K ′ × R role instances, where R is the number of roles in Pro, since each
session will have no more than R role instances. However if we choose K = K ′ ×R, the if-and-only-if property
of the reduction will not be satisfied, since K ′ × R role instances can possibly allow K ′ × R sessions, not K ′

sessions, where each session introduce just one role instance.
Since considering role instances is more direct and convenient than considering sessions in order to describe an

attack, we believe the NP result of checking protocols with bounded role instances is more useful.

B. The Attacker’s Initial Knowledge

During an execution there is no nonce generated by the attacker or by any agent. All of the nonces generated by
regular agents in a session is assumed to be initially known to the regular agents, which is no problem since the
total number of nonces generated regular agents in a session is no more than the DAG size of the protocol. However
if we similarly consider that all nonces that are generated by the attacker by a normal attack are included in the set
S0, which is considered as the set of terms initially known to the attacker, then the proof may not obviously work
unless there is a bound on the total number of nonces generated by the attack and the bound has to be polynomial
in the DAG size of the protocol. S0 is not specified in the proofs. How to specify and bound S0?

This question seems to be answered at the end of [1], in the conclusion section. The authors of [1] have a
statement that in a normal attack the attacker does not need to generate any nonce at all, since for any attack, if
the nonces generated by the attacker are replaced with the attacker’s name Charlie, it is also an attack. We believe
this statement is true since normally a regular agent do not explicitly check the disequality among nonces.

Note that if the attacker does not generate nonces, and the attacker simply use different levels of encryptions of
its name, say I or Charlie, to simulate different nonces, then if these terms are represented using DAG, it does
not introduce any more cost than actually generating different nonces, since the total number of subterms in a run
by the two approach DAG size is the same.

Although we believe the statement is intuitively true, but to prove it formally may still need some arguments.
We proved this statement in Section VII. We think if a proof can directly allow the attacker to generate nonces it
will have better presentation and be more convincing, and may be more generally applicable for other problems.

Based on this statement, we can consider that the initial knowledge of the attacker assumed in [1] includes the
agent names and public keys, which can be accepted as a part of input of the problem.

For the cases that disequality tests are allowed to compare two nonces in a role, as addressed in [5], the statement
is not true and the analysis of checking secrecy may have to consider the nonces generated by the attacker. The
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complexity result is not obtained for the problem of checking secrecy in the setting with a bounded number role
instances, unbounded message size, and with disequality check operations allowed. In [5] it is showed that checking
secrecy is NP-complete with bounded role instances, bounded message size, with disequality check allowed, and
without composed keys, which is a setting different from the problem described above.

C. Specification of Variables and Constants of a Protocol

According to the example of protocol specification provided in [1], the variables and constants are specified by
the following way. In the rules of an agent A, i.e. in A’s role, the atomic terms that first appear in some received
messages are others-chosen, and they are represented by variables except the atomic term that represents A’s name
or those specifically indicated as constants. Other atomic terms are self-chosen by A, and they are represented
by atoms (constants). This self-chosen and others-chosen idea is further clarified in [3] where it is clearly stated
that variables first appear in some received messages of A’s rules. Note that the nonces created by A are always
represented by unique constants. Different roles have different variables so that the instantiations of the variables
in one role are independent to the instantiations of the variables of other roles. The process to assign variables and
constants to the roles (a role is the rules executed by the same agent) is called skolemization.

There is one question about the choice of agent constants. In the protocol for the proof of the setting of one
session, in A’s rule, A is replaced with a constant a, and in B’s rules, B is replaced with a constant b. Maybe it
makes sense to assign different agent names to different roles since usually a session, which should be similarly
understood as a communication sequence, agents communicate with each other and these agents are mutually
different. However, the proof of n sessions, n ≥ 2, is by consider n sessions as one single larger session, and the
A’s rules may have at most n copies in the larger session, but each copy is considered independently, i.e. as a
separate role. The question is should the n copies of A associated with n different agent constants? It is possible that
choosing, or not choosing, different agent constants for the n copies of A’s rules in the larger session is irrelevant
to the correctness of checking or not, but it is not clear to prove.

If we describe the question by the modeling using role instances, it could be like: if there are n role instances of
A’s role, should the checker consider all these n role instances be executed by different agents, or don’t have to?
Although the question does not get any easier by stating using role instances, but it seems the statement is more
clarified and with less technical clutter. The researches of [10] and [11] are relevant to the answer of this question.

D. Possible Typos of Notations and Modeling

At the bottom of page 457, the for π(1) = (A, 1), it is a wrong usage of π, it should be π−1(1) = (A, 1).
At the top of page 463: “We define Ri = R′π−1 and Si = S′π−1 “ should be Ri = R′π−1(i) and Si = S′π−1(i)

A possible mistake is that for a protocol with |ϕ|card rules, an execution (of one session) of the protocol should
not be defined with a rigid number of steps of |ϕ|card. Suppose the protocol has 5 rules, there may be an attack
needing only two steps, but maybe it is impossible to include the other three steps in the attack, in order to make
5 steps in the execution, since there may be no way for the attacker to construct the received messages due to the
fact the protocol can be non-matching roles. In [3] this consideration is improved by allowing the rules be executed
in a session be ≤ |ϕ|card.

The overline notation U is defined and used in the proof of Theorem 1 in page 464. But when it is defined, the
line over U is rather small, looks different from the over line notation later used.

IV. TREE OF TERM AND SUBSTITUTION

In order to clarify the proofs of later sections, in this section we define the tree of a term and its relationship
with substitution. The discussions of this section are not provided in [1].

Every term corresponds to a tree, which is a unique representation of the term, where each node of the tree is
associated with a mark and each non-leaf node has links to children nodes, as follows.
• The tree of an atomic term t is a single node marked with t, which is also the top node of the tree.
• The tree of a pair 〈t1, t2〉, has the top node nd with the mark 〈〉, and there are 2 links leaving from nd arranged

from left to right, and the jth link, j ∈ {1, 2} points to the top node of the tree of tj .
• The tree of an encryption of the form {t1}st2 has the top node nd labeled with {}s where the left link of nd

points to the top node of the tree of t1, and the right link of n points to the top node of the tree of t2.



8

• The tree of an encryption of the form {t1}pt2 has the top node nd labeled with {}p where the left link of nd
points to the top node of the tree of t1, and the right link of nd points to the top node of the tree of t2.

If there is a link pointing from node nd to node nd′, then nd is the parent node of nd′, and nd′ is a child node
of nd. If there is a path pointing from node nd to node nd′ in a tree, then nd is an ancestor node of nd′ and nd′ is
a descendant node of nd. Every node in a term tree is associated with a depth, which is a non-negative integer, as
follows: the top node has the depth 0, and for a node with depth j, all of its children nodes have the depth j + 1.

We can obviously determine the unique term represented by a tree based on the structure and the marks of the
nodes of the tree; therefore, we can also assign labels to the nodes of a tree, and the label of a node nd is the term
represented by the tree whose top node is nd.

The following observation on the labels of the nodes of a tree is obviously tree.
• The tree of a pair 〈X1, X2〉, has the top node nd labeled with 〈X,1 , X2〉, where there are 2 links leaving from
n arranged from left to right, and the jth link, j ∈ {1, 2}, points to a node labeled with Xj .

• The tree of {X}pY (same for {X}sY ) has the top node nd labeled with {X}pY (with {X}sY ), where the left
link of nd points to a node labeled with X and the right link of nd points to a node labeled with Y .

We can assign locations to the nodes in the tree of a term T in order to identify them, as follows.
• The top node of the tree of term T has the location 0.
• If the top node nd of a tree of term 〈t1, t2〉 has location L, then the jth child node of nd, which is the top

node of a tree of tj , 1 ≤ j ≤ 2, has the location L.j.
• If the top node nd of a tree of term {t1}↔t2 or {t1}→t2 has location L, then the left child node of nd, which is

the top node of a tree of t1, has the location L.α, and the right child node of nd, which is the top node of a
tree of t2, has the location L.β.

A node nd is an ancestor of a node nd′ if the location of nd is a prefix of the location of nd′.
A substitution σ of the form [t← t′] for two terms t and t′ is function such that given a term T , σ(T ) represents

a term calculated by the following rules.
• If T is t, then σ(T ) = t′.
• If T = 〈t1, t2〉, then σ(T ) = 〈σ(t1), σ(t2)〉.
• If T = {X}pY , then σ(T ) = {σ(X)}pσ(Y ).
• If T = {X}sY , then σ(T ) = {σ(X)}sσ(Y ).
• If T = kX , where i ∈ {0, 1}, then σ(T ) = kσ(X).
Then the definition of a substitution can be extended to [t1 ← t′1; t2 ← t′2; · · · ]. Note that a substitution defined

here allows t and t′ to be any term, ground or not ground, while the substitution associated with a role instance in
a protocol run only replaces variables with ground terms.

For a term g, and a substitution σ = [t← t′], for two (general) terms t and t′, σ(g) represent a term obtained by
replacing every occurrence of t in g with t′. More exactly, we can understand that σ(g) represents a term whose
tree is formed by replacing every subtree, which labeled with t in the tree of g, with a tree of t′. For a set of terms
E, σ(E) means {σ(g)|g ∈ E}. The meaning of applying a substitution to a protocol or an action step (defined
below) is obvious.

The following observations on trees of terms and substitutions can obviously be justified.
1) A node in a tree is labeled or marked by an atomic term if and only if the node is a leaf in the tree.
2) Every node in the tree of a term T is labeled with a subterm of T .
3) If σ is a substitution replacing only atomic terms, then for a term T , if T is a symmetric encryption or an

asymmetric encryption or a pair, then σ(T ) must be a symmetric encryption or an asymmetric encryption or
a pair respectively.

4) For a substitution σ replacing only atomic terms, and a term T , and a node nd at location L in the tree of T
labeled with t, for some t ∈ Sub(T ), there is a node nd′ in the tree of σ(T ) at same location L labeled with
σ(t).

5) For a substitution σ replacing only atomic terms, and a term T , for a non-leave node nd at location L in the
tree of T , there is a node nd′ in the tree of σ(T ) at same location L, such that the mark of nd and the mark
of nd′ are the same.

If a term X occur in T in several positions, then each occurrence of X in T is associated with a different node
that is labeled with X . In contrast, saying that X is a subterm of T does address the different occurrences of X
in T .
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V. RESULTS BEFORE THEOREM 1

We present the lemmas, propositions, and corollaries before Theorem 1. They will be used to prove Theorem
1, and to validate the error that is showed later, i.e., we should verify that the error does not violate any of these
results, and we believe these results are correct. All of the lemmas and corollaries are exactly quoted from [1],
while we only describe the proof ideas.

Lemma 1. For all set of terms E, for all variables x and for all messages t, we have: |E[x← t]|DAG 6 |E, t|DAG.
Note that [x ← t] means a substitution to replace the variable x in E with a ground term t, while all other

variables in E remains the same.
Lemma 1 is very intuitive. |E[x← t]|DAG can be understood as the sum or two parts. Part 1, The DAG size of

removing one atomic term x from sub(E). Part 2, the DAG size of (the number of subterms of) t. Surely the sum
of this two parts is 6 |E, t|DAG.

Corollary 1 For all set of terms E, for all ground substitutions γ, we have |Eγ|DAG 6 |E, γ(x1), . . . γ(xk)|DAG
where {x1, . . . , xk} is the set of variables in V ar. (recall that V ar is the finite set of variables in the protocol).

Corollary 1 can be proved by using Lemma 1 to each variable, one by one.
Remark 2. We only need polynomial time to check that a rule l→ l, r′ can be applied to E and to compute the

resulting DAG of E′, when we have already a DAG-representation of E, l and r′. This is due to the fact that we
only need to first check that all terms in l are also in E and then to compute the DAG-representation E′ of E, r′.

In the above remark E′ = E, r′, where E, r′ means E ∪ r′ for a set of terms r′. Sometimes for a set E and an
element e, E ∪ {e} is represented as E, e.

Definition 4. Given a derivation D = E0 →R1 E1 →R2 · · · →Rn
En, a term t is a goal of D if t ∈ En and

t /∈ En−1.
Definition 5. We denote DerivtE a derivation (normal derivation) of minimal length among the derivations from

E with goal t (chosen arbitrarily among the possible ones).
Note that in Definition 5, a normal derivation has minimal number of rewrite rules applied.
Lemma 2 If there exists t′ such that Ld(t′) ∈ Derivt(E) then t′ is a subterm of E.
Lemma 3 If there exists t′ such that Lc(t′) ∈ Derivt(E) then t′ is a subterm of {t} ∪ E.
Lemma 2 and Lemma 3 are based on the intuitions that the attacker never needs to construct a term and then

later decompose it, or the other way. Another idea is that every term constructed by the attacker must be used in
some way. Note that no nonce is generated in a run. All nonces generated by regular agents or by the attacker are
considered to be initially generated. Allowing the nonces to be generated in the middle of a run seems to be more
proper.

Proposition 1. For any set of terms E and for any term t, if Derivt(E) = E →L1 E1 · · · →Ln
En then

n 6 |t, E|DAG and for all 1 6 i 6 n, |Ei|DAG 6 |t, E|DAG.
Proposition 2. Let t ∈ forge(E) and γ ∈ forge(E) be given with Derivγ(E) ending with an application of a

rule in Lc. Then there is a derivation D with goal t starting from E and verifying Ld(γ) /∈ D.
Note that Proposition 2 does not require that the derivation D with goal t is normal.
Now we clarify the notations of P , P and SP .
• P represents a protocol and P = {R′l ⇒ S′l|l ∈ ϕ}. Remind that R′l ⇒ S′l is a rule of the protocol and l is

the index of the rule.
• P represents a set of terms including the attacker’s initial knowledge plus the messages sent and received by

the rules of P executed in a session, and the rules are numbered by their order appearing in the session.
P = {Rj |j = 1, · · · k} ∪ {Sj |j = 0, · · · k},

where k is the number of rules applied in the session, and k ≤ |ϕ|card. Here S0 is the attacker’s initial
knowledge. Ri and Si means that the ith rule applied in the session has the form R′π−1(i) ⇒ S′π−1(i), for
1 ≤ i ≤ k. Note that the terms in P have variables.

• SP means the set of subterms of the terms in P . So SP = Sub(P). In our proofs we will use the notation
Sub(P) more often since it is more intuitive.

• For 0 ≤ i ≤ k, P≤i = {Rj |j = 1, . . . , i} ∪ {Sj |j = 0, . . . , i}.
• σ(P) = {σ(Rj)|j = 1, · · · k} ∪ {σ(Sj)|j = 0, · · · k}. Note that σ(S0) = S0. Similarly for 0 ≤ i ≤ k,
σ(P≤i) = {σ(Rj)|j = 1, · · · k} ∪ {σ(Sj)|j = 0, · · · i}. σ(P<i) is defined similarly.

We avoid using the notation SP≤i, which in [1] means Sub(σ(P≤i)). Instead we directly use Sub(σ(P≤i)) to avoid
confusion.
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Definition 6. Let t and t′ be two terms and θ a ground substitution. Then t is a θ-match of t′ if t is not a variable
and tθ = t′. This will be denoted by t vθ t′.

Lemma 4. Given a normal attack σ for all variable x, there exists t vσ σ(x) such that t ∈ SP .
We provide an improved proof of Lemma 4 in next section.

VI. AN IMPROVED PROOF OF LEMMA 4

Lemma 4 is the most important result of [1] and [3] in order to prove their NP results. We think the proof of
Lemma 4 in [1] can be simplified and clarified in some aspects.

In [1] and [3], the proof of the result of Lemma 4 is by contradiction. Suppose Lemma 4 is not true, then there
is a variable x that violates Lemma 4. Then in a normal attack if we replace σ(x) with a special term u, such that
the size (depending on the definition of term size) of u is smaller than the size of x, then after the substitution the
normal attack is still an attack but with strictly smaller size, which is contradictory to the fact that a normal attack
is defined to be the attack with smallest size.

In the proof of Lemma 4 in [1] the special term u is chosen as the attacker’s name Charlie, and the term size
is defined based on multi-set and is different from DAG size, and the term size of Charlie is specially defined
as 0 which is less than the size of any term. We consider the issue of replacing x by u can be improved in two
aspects. First the size of a term can be directly defined as its DAG size. Second, we will show that for the x that
we assume violates Lemma 4, σ(x) is a composed term. Therefore we can choose any atomic term that is initially
known to the attacker as u, and then it is guaranteed that |u|DAG = 1 < |σ(x)|DAG, and there is no need to specify
the special term size of Charlie, which seems to be awkward. More details are showed later.

The proof process of Lemma 4 in [1] is to define a substitution δ replacing a ground term σ(x) by Charlie, and
then prove that δ(σ(Ri)) ∈ forge(S0, δ(σ(S1)), · · · , δ(σ(Si−1)). We think although the argument is intuitive, it
may need further justification. Only showing δ(σ(Ri)) ∈ forge(S0, δ(σ(S1)), · · · , δ(σ(Si−1)) may not be sufficient
to show that it is still an attack. The following questions need to be answered.
• A message in an execution is formed by apply a substitution σ, which replaces variables with ground terms,

to a message template Msg of the protocol, which is Ri or Si for 1 ≤ i ≤ k. But if we apply a substitution δ,
which replace a ground term with another ground term, to σ(Msg), the result message δ(σ(Msg)) may not
be allowed in an execution, i.e. maybe it is impossible to have a substitution σ′, that replaces variables with
ground terms, and that δ(σ(Msg)) = σ′(Msg).

• There is a claim in the proof Lemma 4 in [1]. Why this claim is needed? Can the key steps of the proof of
Lemma 4 be abstracted out into separate observations, so that the observations can be more generally used to
prove other results?

By the above motivations we provide a different proof of Lemma 4. We prove Observation* 1, 2, 3, and 4, and
and Lemma* 1, which are useful to prove Lemma 4. Note that the observations, lemmas, corollaries and theorems
marked with a ’*’ are provided by this article, not by [1] or [3]. The improved proof avoids some error and is
general enough to prove another important result that the attack needs not to generate nonces, discussed in next
section.

Given a term T , define Atoms(T ) = {t | t ∈ Sub(T ) and t is an atomic and ground term }. Note that atoms
means ground atomic terms in [1]. We can also call an atom as a constant.

Observation* 1: Given a set of terms E0, and a derivation D = E0 →r1 E1 →r2 · · · →rh
Eh, for some h > 0,

for a term t such that t /∈ sub(E0), and t ∈ Eh, then t ∈ forge(E0). Furthermore, there is a step in D using a
compose derivation rule of the form Lc(t).

Proof: This observation can be obviously proved by the induction of steps of the derivation. Only compose
rules can generate new subterms, and each compose rule application, say rj , j > 0, may generate at most one new
subterm that is not included in Sub(Ej−1).

Observation* 2: Given a set of terms E and a term t such that t ∈ forge(E), it is true that Atoms(t) ⊆
Atoms(E).

Proof: There is a derivation D = E0 →L1 E1 →L2 · · ·Eh, starting from E0 = E with the goal t and t ∈ Eh
for h ≥ 0. We can also prove by induction on the steps of D to show that for each Ei, 0 ≤ i ≤ h, it is true that
Atoms(Ei) ⊆ Atoms(E). Then since t ∈ Eh it is true that Atoms(t) ⊆ Atoms(E).
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Observation* 3: For a protocol P , and an execution of P with a substitution σ, and the set of terms P defined
earlier for the session, it is true that for each variable x in V ar(P), Atoms(σ(x)) ⊆ Atoms(P).

Proof: The attacker’s initial knowledge S0 is included in P . S0 includes all nonces that can be generated by
the intruder, and every term in S0 is an atom. It is obvious that Atoms(σ(S0)) = Atoms(S0) ⊆ Atoms(P).

Then we can prove this observation by induction to show that for each step number i, 1 ≤ i ≤ k, it is true that
Atoms(σ(Ri)) ⊆ Atoms(P) and Atoms(σ(Si)) ⊆ Atoms(P).

Base case: i = 1. Since σ(R1) ∈ forge(S0), by Observation* 2, Atoms(σ(R1)) ⊆ Atoms(S0). Since Atoms(S0) ⊆
Atoms(P), Atoms(σ(R1)) ⊆ Atoms(P). Since in a protocol all variables in a sent message must appear at some
received message first, and by the definition of an execution the first executed rule in the session must be the first
rule of some agent, i.e. π−1(1) = (A, 1) for some agent A, it must be true that V ar(S1) ⊆ V ar(R1). Atoms(S1) =
Atoms(σ(V ar(S1))) ∪Atoms(S1) ≤ Atoms(P) ∪Atoms(S1) = Atoms(P).

Induction step: For i > 1, suppose for all j such that 1 ≤ j < i, it is true that Atoms(σ(Rj)) ⊆ Atoms(P)
and Atoms(σ(Sj)) ⊆ Atoms(P). Let S≤j be defined as S0 ∪ {S1} · · · ∪ {Sj}. By the induction hypothesis, it is
obvious that Atoms(σ(S≤j) ⊆ Atoms(P), for 1 ≤ j < i. Since σ(Ri) ∈ forge(σ(S≤i)), and by the induction
hypothesis Atoms(σ(S≤i)) ⊆ Atoms(P), and by Observation* 2, it is true that Atoms(σ(Ri)) ⊆ Atoms(P).
For σ(Si), it is obvious that Atoms(σ(Si)) = Atoms(Si) ∪ Atoms(σ(V ar(Si))). Let (A, h) = π−1(i). By the
specification of the protocol P , each variable y ∈ S(A,h) must appear in some received message R(A,f) for some
f ≤ h. Be the definition of a protocol execution, it must be true that π(A, f) ≤ π((A, h)) = i; therefore, by the
induction hypothesis, it must be true that Atoms(σ(V ar(Si))) ⊆ Atoms(σ(P)). Since Atoms(Si) ⊆ Atoms(P),
it is true that Atoms(σ(Si)) ⊆ Atoms(P).

Substitution and the tree of a term and are defined in Section IV. We consider two kinds of substitutions. One
kind replace variables with ground terms, such as σ = [x← t] for a variable x and a ground term t. The substitution
σ in a protocol execution belongs to this kind. The other kind replaces ground a general term t with another general
term t′, such as δ = [t1 ← t2] for two ground terms t1 and t2. This kind of more general substitutions will be used
in the reasoning of the proofs. We have the following observation.

Observation* 4: Consider a term T that is not ground, a term t that is ground, and a substitution σ, and a
substitution δ, and a substitution σ′, such that the following conditions are satisfied:

1) σ is a substitution replacing variables with ground terms.
2) δ is a substitution from ground terms to ground terms, and δ = [t ← t′] for some ground terms t and t′, i.e.

δ only replaces t.
3) There is no term g such that g ∈ Sub(T ) and g is not a variable and σ(g) = t.
4) σ′ is a substitution replacing variables with ground terms, and is defined as follows. Let Vt = {x|x ∈ V ar(T )

and t ∈ Sub(σ(x))}. For a variable y, if t /∈ Sub(σ(y)), which means y /∈ Vt, then σ′(y) = σ(y), otherwise
if t ∈ Sub(σ(y)), which means y ∈ Vt, then σ′(y) = δ(σ(y)).

It is true that σ′(T ) = δ(σ(T )).
Proof: If the observation is very intuitive, a reader can skip the following proof. We try to prove that the tree

of δ(σ(T )) is the same as σ′(T ) by analyzing the nodes with different locations.
For each variable in T , say variable x, the tree of σ(T ) (respectively the tree of σ′(T )) replaces every leave

node of the tree of T that is marked with x with a tree of σ(x) (respectively by a tree of σ′(x)). The differences
between the tree of σ(T ) and the tree of σ′(T ) are the replacement of the nodes of variables in Vt in the tree of T .

Suppose t ∈ Sub(σ(T )), we can discuss the possible location L of the node labeled with t in the tree of σ(T ).
Note that L may or may not be the location of a node in the tree of T . The possible cases are the follows:
• L is the location of some node nd in the tree of T , and nd is labeled by a term g that is not a variable. Then
σ(g) = t, which is impossible by the condition 3 assumed by the observation.

• L is the location of some node nd in the tree of T , and nd is labeled by a variable x. Then σ(x) = t, and it
must be true that x ∈ Vt.

• L note the location of some node in the tree of T , then there must be some node labeled with a variable x
with location L′, such that L′ is a prefix of L. And it must be true that t ∈ Sub(σ(x)). Then it must be true
that x ∈ Vt.

The locations of the nodes in the tree of T can be categorized in three groups: L1 is the locations of the nodes
that are not labeled by variables. L2 is the locations of the nodes in T that are labeled by variables in Vt. L3 is
the locations of the nodes in T that are labeled by variables not in Vt.
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The locations of the nodes in the tree of σ(T ) can be categorized in three groups. First, L′1 = L1. Second L′2
(and similarly L′3) is the locations of the nodes of a subtree whose top node has a location in L2 (similarly in
L3). Similarly the locations of the nodes in tree of σ′(T ) can be categorized in three groups L′′1 , L′′2 and L′′3 . and
L′1 = L′′1 = L1, and L′′2 = L′2.

It is true that in the tree of σ(T ) and the tree of σ′(T ), the nodes with locations in L′1 ∪ L′2 are the same. The
difference between the tree of σ(T ) and σ′(T ) are the nodes with locations in L′′3 and L′3. In other words, the
difference between the tree of σ(T ) and σ′(T ) is the subtrees that replace the nodes in the tree of T labeled with
X .

By the above reasoning of the locations of the node labeled with t in the tree of σ(T ), we know that applying
δ to σ(T ) will only change some nodes in the subtree that replaces the node in the tree of T labeled with x.

It is obvious that δ(σ(x)) = σ′(x) for a variable x; therefore, the node labeled with x in the tree of T have the
same replacement in the tree of σ(T ) and in the tree of σ′(T ), which means L′′3 = L′3, and for a location L ∈ L′′3 ,
the node at L in the tree of σ(T ) has the same mark as the node at L in the tree of σ′(T ).

So, the two trees of δ(σ(T )) and σ′(T ) are identical and δ(σ(T )) = σ′(T ).

Lemma* 1: Given a set of terms E, and a term t, such that t ∈ forge(E), and given a substitution δ = [w ← w′],
where w and w′ are two terms (could be ground) and w is not an asymmetric key, and w ∈ forge(E), it is true
that δ(t) ∈ forge(δ(E) ∪ {w′}).

Proof: We clarify the meaning of the statement first. The reason for requiring that w is not an asymmetric
key is to avoid the situation of replacing an asymmetric key, which is an atomic term, with any term that is not an
asymmetric key, which is not allowed for asymmetric encryptions.

The reason for saying δ(t) ∈ forge(δ(E) ∪ {w′}), instead of saying δ(t) ∈ forge(δ(E)) is to avoid an error.
It is possible that w′ /∈ forge(δ(E)). δ(E) means to apply δ to terms in E, not the terms that are derived
from E. For example, consider E = {a, b}, and δ = [〈a, b〉 ← c], it is obvious that 〈a, b〉 ∈ forge(E) but
δ(〈a, b〉) = c /∈ forge(δ(E)) = forge(E). For the reasoning of the proof, details are showed below, considering
forge(δ(E ∪ {w′})) is needed to handle the case that Lc(w) appears in a derivation D from E to goal t.

The reason for saying δ(t) ∈ forge(δ(E)∪ {w′}) instead of δ(t) ∈ forge(δ(E ∪ {w′})) is to avoid an error for
the cases where w ∈ Sub(w′). For example, consider E = {a, b}, and δ = [〈a, b〉 ← {〈a, b〉}↔c ], it is obvious that
〈a, b〉 ∈ forge(E) but

δ(〈a, b〉) = {〈a, b〉}↔c /∈ forge(δ(E, {〈a, b〉}↔c )) = forge(E, {{〈a, b〉}↔c }↔c ).
The reason for requiring that w ∈ forge(E) is to show that there is a derivation from E with the goal w with

the property that Ld(w) does not appear in this derivation. Obviously the normal derivation from E to the goal w
satisfies this property. Then by proposition 2, there is a derivation D from E to the goal t such that Ld(w) does
not appear in D. Let D have the following form

D = E0 →L1 E1 →L2 E2 · · · →Lh
Eh,

where E0 = E, t ∈ Eh, h ≥ 0, Li is an application of a derivation rule, and Li is identified as Lc/d(Ti), for i ≥ 1,
and some term Ti, Ti ∈ Ei−1. Lc/d(Ti) corresponds to LHSi → RHSi, where LHSi and RHSi are two sets of
terms.

Now we want to show that there is a derivation D′ starting from δ(E) with the goal δ(t). D′ can be constructed
as follows. D′ has the same length as D, and has the form

D′ = E′0 →L′1 E
′
1 →L′2 E

′
2 · · · →L′h E

′
h,

where E′0 = δ(E) ∪ {w′}, and the ith step of D′, for 1 ≤ i ≤ h, is defined as follows.
• If the ith step of D, which is Li, has the form Lc(w), then the hth step of D′ is empty rule, i.e. L′i = L∅,

which means doing nothing and E′i = E′i−1.
• Otherwise, Li is not Lc(w), say Li is identified as Lc/d(Ti) for some term Ti, then L′i = δ(Li) = Lc/d(δ(Ti)).
L′i corresponds to LHS′i → RHS′i for two sets LHS′i and RHS′i.

In order to show that D′ is a valid derivation, we have to show two facts that are satisfied at each step, say the
ith step, of D′:

1) LHS′i ⊆ E′i−1. In order to show this, we prove a stronger result by induction: for each i, 0 ≤ i ≤ h,
E′i = δ(Ei) ∪ {w′}.

2) The derivation rule is applicable. There are several cases that a derivation rule is not applicable. (1) The
decomposition rule of an encryption (pair) cannot be applied to a pair (encryption). (2) The composition rule
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of an asymmetric encryption is not applicable using a term that is not an asymmetric key as an asymmetric
key.

We prove that D′ is a valid derivation by induction on the derivation steps.
Normally the induction starts with i = 1 since there is no derivation rule applied for i = 0. However the reasoning

for i = 1 is not simpler than the reasoning for the induction steps when i > 1. In order to move all the similar
reasoning to the induction steps, we can equivalently consider D has a prefix E−1 →L0 E0, where E−1 = E0 and
L0 = L∅. Similarly D′ also has a dummy prefix E′−1 →L′0 E

′
0. Here L∅ corresponds to ∅ → ∅.

Base case: For i = 0. Obviously E′0 = δ(E0)∪ {w′} and the rule L∅ is applicable. So the two facts are satisfied
at step 0.

Induction step: for i ≥ 1, suppose for all j, j < i, the two facts are satisfied, which implies that δ(Ei−1)∪{w′} =
E′i−1. We want to prove that the two facts are also satisfied at step i. We check each possible derivation rule listed
below.
• In D, Li is identified as Lc(Ti), and the following cases are possible.

– Ti = w, then in D′, L′i is a dummy rule. δ(Ei)∪{w′} = δ(Ei−1∪{w})∪{w′} = δ(Ei−1)∪{w′} = E′i−1 =
E′i; therefore, fact 1 is true for step i. Fact 2 is trivially true for the dummy rule.

– Ti 6= w. There are three cases.
∗ Ti = 〈α, β〉. Then α ∈ Ei−1 and β ∈ Ei−1; therefore, {δ(α), δ(β)} ⊆ δ(Ei−1) ⊆ E′i−1. L′i is obviously

applicable and fact 2 is obviously satisfied for i. δ(Ei)∪{w′} = δ(Ei−1∪{〈α, β〉})∪{w′} = δ(Ei−1)∪
{δ(〈α, β〉)} ∪ {w′} = E′i−1 ∪ {δ(〈α, β〉)} = E′i; therefore, fact 1 is true for i.

∗ Ti = {α}pβ . Fact 1 is obviously true by the same reasoning for the case of Ti = 〈α, β〉. For fact 2, we
have to show that δ(β) is an asymmetric key. Since w is not an asymmetric key, and β is a symmetric
key, β 6= w. Because β is atomic, it is true that δ(β) = β, and δ(β) is an asymmetric key. So fact 2 is
satisfied.

∗ Ti = {α}sβ . Fact 1 and fact 2 are satisfied by the same reasoning for case of Ti = 〈α, β〉.
• In D, Li is identified as Ld(Ti). Note that Ti 6= w by the way D is chosen. There are three cases.

– Ti = 〈α, β〉. Ti ∈ Ei−1; therefore, δ(Ti) ∈ δ(Ei−1) ⊆ E′i−1. It is true that δ(Ti) = 〈δ(α), δ(β)〉. Note that
the only possibility that δ(〈δ(α), δ(β)〉) 6= 〈δ(α), δ(β)〉 is when w = 〈δ(α), δ(β)〉, which can be justified
easily by analyzing the tree of a term, but it is impossible by the way D is chosen. So L′i is applicable and
fact 2 is true. δ(Ei) ∪ {w′} = δ(Ei−1) ∪ δ({α, β}) ∪ {w′} = E′i−1 ∪ δ({α, β}) = E′i. So fact 1 is proved.

– Ti = {α}pβ . Then Ti ∈ Ei−1 and β− ∈ Ei−1. Since β− is an asymmetric key, it is true that β− is atomic,
β− 6= w, and, δ(β−) = β−, and δ(β−) is also the inverse key for δ(β) = β. Then following the same
reasoning for the above case of Ti = 〈α, β〉, fact 1 and fact 2 are true.

– Ti = {α}sβ . Then following the same reasoning for the above case of Ti = 〈α, β〉, fact 1 and fact 2 are true.
So we have proved that D′ is a valid derivation from δ(E) ∪ {w′}. Since t ∈ Eh, δ(t) ∈ δ(Eh) ⊆ E′h; therefore,
δ(t) ∈ forge(E′0) = forge(δ(E) ∪ {w′}). Lemma* 1 is proved.

Corollary* 1: Given a set of terms E, and a term t, such that t ∈ forge(E), and given a substitution δ =
[Kg ← Kf ; K−g ← K−f ], where Kg and K−g , and Kf and K−f , are two pairs of asymmetric keys, it is true that
δ(t) ∈ forge(δ(E) ∪ {Kf ,K

−
f }).

Proof: Note that the two pairs of asymmetric keys, Kg and K−g , and Kf and K−f , can represent public keys
and private keys established before a run, where f and g are some agent names, or they can represent asymmetric
keys dynamically generated in a run, where f and g are the unique identities of the two pairs of the keys. Since
Kg and K−g are atomic terms, it is impossible to have a derivation D from E that includes a rule application
represented as Ld(Kg) or Ld(K−g ); therefore, we do not require that {Kg,K

−
g } ⊂ forge(E), while in Lemma* 1

it is required that w ∈ forge(E). The proof is very similar to Lemma* 1, and is even simpler. Given a derivation
D from E0 = E to the goal t, which has the form E0 →L1 E1 →L2 · · ·Eh, we construct a derivation D′ from
E′0 = δ(E)∪{Kf ,K

−
f }, . D′ and D have the same length h, h ≥ 0. For the ith applied in D labeled with Lc/d(Ti),

1 ≤ i ≤ h when h > 1, the ith rule applied in D′ is labeled with Lc/d(δ(Ti)). In order to show that D′ is a valid
derivation, we can prove by induction that E′i = δ(Ei) ∪ {Kf ,K

−
f }, and Lc/d(δ(Ti)) is an applicable rule. Then

since t ∈ Eh, it is true that δ(t) ∈ δ(Eh) ∪ {Kf ,K
−
f } = E′h.

The Improved Proof of Lemma 4:
Proof: Now we prove Lemma 4 by contradiction. Contradiction Assumption: suppose to the contradiction of
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Lemma 4, in a normal attack with substitution σ, there is a variable x such that for every term t that t vσ σ(x),
t /∈ Sub(P).

By Observation* 3, Atoms(σ(x)) ⊆ Atoms(P). If |σ(x)|DAG = 1, then σ(x) is a constant and σ(x) ∈
Atoms(P), which violates the above contradiction assumption of Lemma 4; therefore, |σ(x)|DAG > 1, which
means σ(x) is a ground composed term.

Since all terms in S0 are constants (atoms), it must be true that σ(x) /∈ S0, otherwise there is a σ match of σ(x)
in S0 which is impossible by the contradiction assumption. Since x ∈ V ar(P), it is true that σ(x) ∈ Sub(σ(P)),
i.e., σ(x) ∈ Sub(σ(Sj)) or σ(x) ∈ Sub(σ(Rj)) for some 1 ≤ j. Furthermore, in order to satisfy the contradiction
assumption, every occurrence of σ(x) must be a subterm of σ(y) for some variable y appearing in Sj or Rj , for
1 ≤ j, which can be justified by analyzing the possible location of the tree of σ(x) in the tree of σ(Sj) or σ(Rj),
as discussed in the proof of Observation* 4.

Suppose σ(x) appears in a sent message Sj where j > 0, then there is a variable y appearing in Sj such that
σ(x) is a subterm of σ(y), as explained in the above paragraph. By the way a protocol is specified, and by the
definition of a session, if a variable y appears in Sj , then y must appear in some received message Ri, for some
i ≤ j. This feature on the appearance of variables has been discussed in 3; therefore, there is a smallest integer
nx, nx > 0, such that σ(x) ∈ Sub(σ(Rnx)) and σ(x) /∈ Sub(S0 ∪ {σ(S1)} · · · ∪ {σ(Snx−1}. Since σ(Rnx) ∈
forge(S0, σ(S1), · · · , σ(Snx−1)), by Observation* 1, it is true that σ(x) ∈ forge(S0, σ(S1), · · · , σ(Snx−1)).

Now we define a new substitution σ′. We choose any atom t in S0. The idea is that |t|DAG = 1 < |σ(x)|DAG,
since σ(x) is a composed term. Note that S0 6= ∅ since the attacker always knowns its name I . In [1] the
attacker’s name is Charlie, we use I for simplicity. So we can always choose I as the t. Let Vσ(x) be defined as
{y|σ(x) ∈ Sub(σ(y)), and y ∈ V ar(P)}. Let δ be a substitution [σ(x)← I]. Note that δ is a substitution replacing
a ground term σ(x), not replacing a variable. δ(t) means to replace any occurrence of σ(x) in t with I , i.e. in
the tree of t, every subtree of σ(x) (the tree whose top node is labeled with x) is replaced with a tree of I . σ′ is
defined as follows.
• For any variable u such that u ∈ V ar(P)− Vσ(x), σ′(u) = σ(u).
• For any variable y such that y ∈ Vσ(x), σ′(y) = δ(σ(y)). We can observe that σ′(x) = I .
Note that in the proof of Lemma 4 in [1] σ′ is defined in a way that the only difference between σ′ and σ is

the substitution for x, which is incorrect since then the proof of [1] cannot go through by such a definition of σ′.
Now we show that σ′ is associated with a correct execution. We want to show that for each Ri, i ≥ 1, σ′(Ri) ∈

forge(S0, σ
′(S1), · · · , σ′(Si−1)). Since σ is associated with an attack, which is a correct execution, it is true that

σ(Ri) ∈ forge(S0, σ(S1), · · · , σ(Si−1)).
For each i such that 1 ≤ i < nx, it is true that σ(x) /∈ Sub(P<i); therefore,

δ(σ(Ri)) = σ(Ri) ∈ forge(S0, σ(S1), · · · , σ(Si−1)) = forge(δ(S0, σ(S1), · · · , σ(Si−1))).
For each i such that nx ≤ i ≤ k, we can apply Lemma* 1. Since σ(x) ∈ forge(S0, σ(S1), · · · , σ(Si−1)), and

σ(x) is not an asymmetric key, by Lemma* 1, it is true that
δ(σ(Ri)) ∈ forge(δ(S0, σ(S1), · · · , σ(Si−1)), I) = forge(δ(S0, σ(S1), · · · , σ(Si−1)))).

By Observation* 4, it is true that
σ′(Ri) = δ(σ(Ri)),

and
σ′(S0, S1, · · · , Si−1) = δ(σ(S0, S1, · · · , Si−1).

For 1 ≤ i ≤ k it is true that
σ′(Ri) = δ(σ(Ri)) ∈ forge(δ(S0, σ(S1), · · · , σ(Si−1))) = forge(S0, σ

′(S1), · · · , σ′(Si−1)
and σ′ is associated with a correct execution.

Now we show that σ′ is an attack, i.e., the attacker can know a secret term after the execution of P with σ′.
This aspect is not discussed in the proof of Lemma 4 in [1], but is needed. We consider the secret term is declared
similarly to the secret term discussed by [12] for the public key Needham-Schroeder protocol, which is a nonce
generated by a regular agent. In [1] all nonces are represented as unique atoms in a session P; therefore, here we
consider the secret term, call it Secret, is a constant and Secret ∈ Atoms(P ). Let S≤k = S0, S1, · · · , Sk where
Sk is the last message sent in the session. Since Secret ∈ forge(σ(S≤k)), by Lemma* 1, we have

δ(Secret) ∈ forge(δ(σ(S≤k)) ∪ {I}) = forge(δ(σ(S≤k))).
By Observation* 4, it is true that

δ(σ(S≤k)) = σ′(S≤k);
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therefore, Secret = δ(Secret) ∈ forge(δ(S≤k)) = forge(σ′(S≤k)). So Secret is also leaked in the execution
P with σ′. Since the size of σ is strictly larger than sigma′, it σ cannot be associated with a normal attack,
contradiction. So Lemma 4 is true.

VII. PROOF OF NO NONCE AND KEY GENERATION BY THE ATTACKER

In proof of [1] assumes no nonce generation of the attacker, which is mentioned at the end of the summary of
[1]. Since potentially the attacker can generate a huge number of nonces, and all of these nonces are included in
S0, in order to prove the NP result, proving the size of S0 is polynomial of the size of the protocol is necessary. In
[1] the statement is that if the attacker can generate multiple nonces, by replacing all these nonces by the attacker’s
name it is also an attack. Although the statement is intuitive, it is better to have a proof.

Furthermore, how about the asymmetric keys that the attacker can dynamically generate in a run? Nonces cannot
be used as asymmetric keys since they belong to different type, while a nonce may replace any term that is used
as a symmetric key. In [1] this issue is not handled.

Theorem* 1: Consider a protocol P , given a description of an execution of a session P = S0 ∪ {R1, S1, R2,
S2, · · · Rk, Sk} with a substitution σ , where initial knowledge of the attacker S0 includes a nonce nI that is an
atom created by the attacker, and this execution is an attack to P . Define a substitution δ = [nI ← I], where I is
the attacker’s name and I ∈ S0. Define S′0 = δ(S0) = S0−nI . Define σ′ as follows. Define VnI

= {y|y ∈ V ar(P)
and nI ∈ Sub(σ(y))}. For a variable y ∈ V ar(P), if y /∈ VnI

, then σ′(y) = σ(y), otherwise σ′(y) = δ(σ(y)). Let
P ′ be the same as P except that S0 is replaced by S′0. It is true that P ′ with σ′ is also an attack to P .

Proof: Note that σ′(S0) = δ(S0) = S0 − nI = S′0, let S≤h = S0 ∪ {S1} · · · ∪ {Sh}, for 0 ≤ h ≤ k.
And similarly S ′≤h = S′0 ∪ {S1} · · · ∪ {Sh}. Let Secret be the secret term, which is a constant, and Secret ∈
Atoms(R1, S1, R2, S2, · · ·Rk, Sk).

We have to prove two facts. First σ′ and P ′ form a correct execution, which means we have to prove that
σ′(Ri) ∈ forge(σ′(S ′≤i−1)), for 1 ≤ i ≤ k. Since P and σ form a correct execution, it is true that σ(Ri) ∈
forge(σ(S≤i−1)). Since nI ∈ S0 ⊂ forge(Ei−1), and nI is not an asymmetric key, by Lemma* 1 it is true that

δ(σ(Ri)) ∈ forge(δ(σ(S≤i−1)), I) = forge(δ(σ(S≤i−1))).
Call this result fact 1.

Now we want to apply Observation* 4 to show that σ′(Ri) = δ(σ(Ri)), and σ′(Si) = δ(σ(Si)), call this result
fact 2. Particularly, we have to show that the condition 3 of Observation* 4 is satisfied, which requires that it is
impossible to have a term g such that g ∈ Sub(Ri) or g ∈ Sub(Si), for 1 ≤ i ≤ k, and g is not a variable,
and σ(g) = ni. Since nI is a nonce generated by the attacker, it is true that ni /∈ Atoms(R1, S1, · · ·Rk, Sk).
For any term t such that t ∈ Sub(R1, S1, · · ·Rk, Sk), if t is a composed term then σ(t) is also a composed term
and σ(t) 6= nI ; therefore, the condition 3 is satisfied. Other conditions of Observation* 4 are obviously satisfied;
therefore, fact 2 is proved.

Based on fact 1 and fact 2, it is true that
σ′(Ri) = δ(σ(Ri)) ∈ forge(δ(σ(S≤i−1))) = forge(σ′(S≤i−1)).

So P ′ and σ′ form a correct execution.
Second, we have to prove that Secret ∈ forge(σ′(S ′≤k)). Note that Secret 6= nI . We know that Secret ∈

forge(σ(S≤k)). nI is not an asymmetric key; therefore, we can apply Lemma* 1, and by fact 2, and it is true that
Secret = δ(Secret) ∈ forge(δ(σ(S≤k)), I) = forge(δ(S≤k)) = forge(σ′(S≤k)).

The following corollary is very similar to Theorem* 1, but it indicates that for any pair of asymmetric keys,
Kg and K−g , dynamically generated by the attacker in an attack, if they are replaced by KI and K−I , it is still an
attack.

Corollary* 2: Consider a protocol P , given a description of an execution of a session P = S0 ∪ {R1, S1, R2, S2,
· · · Rk, Sk} with a substitution σ , where initial knowledge of the attacker S0 includes a nonce nI that is an atom
created by the attacker, and this execution is an attack to P . Define a substitution δ = [Kg ← KI ; K−g ← K−I ],
where Kg and K−g are a pair of asymmetric keys dynamically generated by the attacker in a run, and KI and K−I are
the attacker’s public key and private key respectively, and {KI ,K

−
I } ⊂ S0. Define S′0 = δ(S0) = S0 −{Kg,K

−
g }.

Define σ′ as follows. Define VnI
= { y|y ∈ V ar(P) and Kg ∈ Sub(σ(y)) or K−g ∈ Sub(σ(y)) }. For a variable
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y ∈ V ar(P), if y /∈ VnI
, then σ′(y) = σ(y), otherwise σ′(y) = δ(σ(y)). Let P ′ be the same as P except that S0

is replaced by S′0. It is true that P ′ with σ′ is also an attack to P .
Proof: The proof is very similar to Theorem* 1. let S≤h = S0 ∪ {S1} · · · ∪ {Sh}, for 0 ≤ h ≤ k. Since P

and σ describe a correct execution, then for 1 ≤ h ≤ k, σ(Si) ∈ forge(σ(S≤h)). By Corollary* 1 it is true that
δ(σ(Rh)) ∈ forge(δ(σ(S≤h) ∪ {KI ,K

−
I }) = forge(δ(σ(S≤h))).

Since Kg and K−g are two atomic terms that are generated by the attacker, it is obvious that there does not exist
a composed term T such that T ∈ Sub(R1, S1, · · ·Rk, Sk) and σ(T ) = Kg or σ(T ) = K−g ; therefore, by applying
Observation* 4, we know that for 1 ≤ i ≤ k, σ′(Ri) = δ(σ(Ri)), and σ′(Si) = δ(σ(Si)).

Based on the above reasoning, we know that P ′ and σ′ form a correct execution. Note that Secret /∈ {Kg,K
−
g }.

Since Secret ∈ forge(σ(S≤k)), then by Corollary* 2, it is true that
Secret = δ(Secret) ∈ forge(δ(σ(E≤k)), I) = forge(δ(S≤k)) = forge(σ′(S≤k)).

Corollary* 3: Given a protocol P and a secret term Secret such that Secret ∈ Atoms(P ), if there is an attack
of P formed by P = S0, R1, S1, · · ·Rk, Sk and σ such that Secret is leaked, then there is an attack formed by
P ′ = S′0, R1, S1, · · ·Rk, Sk and σ′, for some substitution σ′, such that in S′0 no nonce or asymmetric key that is
generated by the attacker is included.

Proof: We can apply Theorem* 1 repeatedly, to update S0 and σ of an attack, and each time a nonce generated
by the attacker, which is included in S0, is replaced with the attacker’s name I , and finally when all nonces generated
by the attacker are replaced with I , and the obtained S′0 and σ′ still form an attack. Then we can apply Corollary*
2 repeatedly to replace every pair of asymmetric keys generated by the attack with KI and K−I , and the obtained
S′0 and σ′ still form an attack

VIII. THE ERROR

Theorem 1 If σ is the substitution in a normal attack then we have for all x ∈ V ar |σ(x)|DAG 6 |P|DAG.
As a reminder, P is defined as {Rj |j = 1, . . . , i} ∪ {Sj |j = 0, . . . , i}. More precisely, P is the rules of the

protocol specification arranged in the order of execution, together with the attacker’s initial knowledge. Remind
that the notation of SP means Sub(P , which is the set of subterms in P .

The following is the proof of [1] in page 464 and 465.
Proof. Given a set of variable U , we shall write U = {σ(x)|x ∈ U}.
Let us build by induction a sequence of sets Ep ⊆ SP and a sequence of sets Vp of variables such that

|σ(x)|DAG 6 |Ep, Vp|DAG, where p is a number starting from 0.
• Let (E0, V0) be (∅, {x}). We have |σ(x)|DAG 6 |E0, V0|DAG and E0 ⊆ SP .
• Assume that we have built (Ep, Vp) such that |σ(x)|DAG 6 |Ep, Vp|DAG and Ep ⊆ SP , let us define Ep+1 and
Vp+1: If Vp 6= ∅ let us choose x′ ∈ Vp, for any x′. Then there exists t vσ σ(x′) such that t ∈ SP , according
to Lemma 4. Note that it is guaranteed that t is not a variable and x /∈ V ar(t). We define Ep+1 = Ep ∪ {t}
and Vp+1 = V ar(t) ∪ Vp − {x′}.

Since t ∈ SP , Ep+1 ⊆ SP . Now the proof wants to show the following result.

|σ(x)|DAG 6 |Ep+1, Vp+1|DAG (1)

The reason to prove (1) is that this construction will terminate since there is only finite many variables. At the
end, say at the e step, Ve = ∅, and then the last set of terms Ee will have the property that |σ(x)|DAG 6 |Ee|DAG.
Since Ee ⊆ SP , |Ee|DAG 6 |P|DAG, and then theorem 1 is proved.

Now let’s see how (1) is proved in [1]. Let δ = {[y ← σ(y)]/y ∈ V ar(t)}. We show the following result.

|Epδ, Vp|DAG 6 |Ep, Vp − x′, t, V ar(t)|DAG = |Ep+1, Vp+1|DAG (2)

Here is how (2) is proved in [1]. By Corollary 1 on Ep∪{t}∪Vp − x′ for the substitution δ. Remark: tδ = σ(x′).
We obtain the following result (elaborated by the authors of this article).

|Epδ|DAG 6 |Ep, V ar(t)δ|DAG (3)

By Corollary 1 we also have |tσ|DAG 6 |t, V ar(t)|DAG. So we have the following result.

|Vp|DAG = |Vp − x′, x′|DAG = |Vp − x′, tσ|DAG 6 |Vp − x′, t, V ar(t)|DAG (4)
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Then by adding (3) and (4) together we get exactly (2). So (2) is proved.
However having (2) is not enough to show (1). What is said in [1] is that after (2), we have the following result,

(without any explanation):
|Ep, Vp|DAG 6 |Epδ, Vp|DAG 6 |Ep+1, Vp+1|DAG (5)

Note that the second 6 in (5) is (2). So in order to prove (1), after (2) is proved, what we need is simply the
first 6 of (5):

|Ep, Vp|DAG 6 |Epδ, Vp|DAG (6)

Error: (6) cannot be proved.
But how (6) is obtained is not explained by [1]. There is no lemma or proposition or corollary can support (6).
Then if (6) cannot be proved, (5) is not proved, and (1) is not proved, and Theorem 1 is not proved.

Actually (6) appears to be correct, if Corollary 1 is understood in the opposite way. Here is the illusion:
Suppose Corollary 1 is understood in the reverse direction, i.e. if we assume the following result:

|Epδ|DAG > |Ep, var(t)δ|DAG (7)

Then obviously Sub(V ar(t)δ) = Sub(V ar(t)σ) ⊆ Sub(tσ) = Sub(xσ) ⊆ Sub(Vp), where x ∈ Vp and t is chosen
so that σ(t) = σ(x). Note that the two notations of xσ and σ(x) are the same.

Then we have
|Ep, Vp|DAG 6 |Ep, V ar(t)δ, Vp|DAG 6 |Epδ, Vp|DAG.

And then (6) is proved. But it is wrong since it is based on the illusion of (7) which is the contradictory usage of
Corollary 1, except that rare case that = is covered by both 6 and >.

Now we have seen that the proof of (5) is wrong. But on the other hand, is (5) actually wrong and cannot be
proved at all? Here a counter example of (5) to show that |Ep, Vp|DAG 6 |Ep+1, Vp+1|DAG is not true, i.e. the
updating process for the proof is wrong.

Counter Example of (5):
The idea of designing the counter example is to imagine a case during the process to update Ep and Vp, when term
t is introduced to Ep while a variable y is removed from Vp. Then if t is already a subterm of some term in Ep,
adding t does not increase the DAG size. Then if by removing y from Vp some subterms will be removed from
the Sub(Vp), |Ep+1, Vp+1|DAG will decrease from |Ep, Vp|DAG.

Suppose x1 x2 and x3 be three variables. and let a b and c be three constants (atoms).
Suppose in a normal attack, the three variables has the following instantiation.
• σ(x1) = {〈a, b〉}s〈a,b〉
• σ(x2) = 〈a, b〉
• σ(x3) = b
Suppose in the protocol we can find the following three terms .
• t1 = {〈a, x3〉}sx2

.
• t2 = 〈a, x3〉
• t3 = b.
Note that in a protocol both variables and constants can appear. See the example of Otway-Rees protocol in [1]

(page 457). Since t1 and t2 and t3 are not variables, and σ(t1) = σ(x1) and σ(t2) = σ(x2) and σ(t3) = σ(x3).
By the notation defined in Definition 6, we have t1 vσ σ(x1) and t2 vσ σ(x2) and t3 vσ σ(x3).

Now let’s start the process of updating Ep and Vp for the variable x1. We calculate |Ep, Vp|DAG, which is the
number of subterms in Ep and Vp.

1) E0 = ∅, and V0 = {x1}. Choose x1 to be removed, and choose t1 in the protocol for x1 since σ(t1) = σ(x1).
The total set of subterms of E0 and V0 is

{ {〈a, b〉}〈a,b〉, 〈a, b〉, a, b }.
So |E0, V0|DAG = 4.

2) E1 = {t1} = { {〈a, x3〉}x2 }, and V1 = {x2, x3}. V1 = {σ(x2), σ(x3)} = {〈a, b〉, b}. The total set of subterms
of E1 and V1 is
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{ {〈a, x3〉}x2 , 〈a, x3〉, a, x3, x2, 〈a, b〉, b }.
So |E1, V1|DAG = 7. Choose x2 to be removed and choose t2 for x2 since σ(t2) = σ(x2).

3) E2 = {t1, t2} = { {〈a, x3〉}x2 , 〈a, x3〉 }. V2 = {x3}. V2 = {σ(x3)} = {b}. The total set of subterms of E2

and V2 is
{ {〈a, x3〉}x2 , 〈a, x3〉, a, x3, x2, b }.

So |E2, V2|DAG = 6. Choose x3 to be removed and choose t3 for x3 since σ(t3) = σ(x3).
4) E3 = {t1, t2, t3} = { {〈a, x3〉}x2 , 〈a, x3〉, b }, and V3 = ∅. The updating process finishes. The total set of

subterms of E3 and V3 is
{ {〈a, x3〉}x2 , 〈a, x3〉, x2, x3, a, b }.

So |E3, V3|DAG = 6.
Note that |E1, V1|DAG = 7 > 6 = |E2, V2|DAG, since the subterm 〈a, b〉 appears in Sub(E1, V1), but not in

Sub(E2, V2). The property of (5) is violated. An argument to invalidate the counter example may suggest that the
setting of the counter example will not happen for a normal attack to a protocol. But it is rather non-obvious to
justify this argument.

IX. FIXING THE ERROR

In this section we provide our solution to prove a result that is stronger than Theorem 1. The proof uses Lemma
4.

We prove Lemma* 2 first, which is our intuition that leads to the breakthrough. Then the proof of Lemma* 2
can be generalized to prove Corollary* 4. Although Corollary* 4 covers Lemma* 2, we still present and prove
Lemma* 2 first since it is more intuitive to us. Then we prove Lemma* 3, which is stronger than Lemma 4. We
prove Theorem* 2 which is stronger than Theorem 1, and then the error is fixed.

Fixing the error does not need the results as strong as Lemma* 3 and Theorem* 2. For example during the
research of this article we have proved a weaker result first, which is based on Lemma* 2 and Corollary* 4 :

|σ(V ar(P))|DAG ≤ |P|DAG.
This result is stronger than Theorem 1 and is enough to fix the error. However when we try to prove the tight
linear derivation bound, discussed below in Section X, we realized that we need to prove the even stronger results,
which are Lemma* 3 and Theorem* 2.

Lemma* 2: In a normal attack to protocol P , if V ar(P) 6= ∅, there is a variable x such that σ(x) has a σ match
t (denoted as t vσ σ(x)), t ∈ Sub(P), and t is ground.

Proof: Remind that notation t vσ σ(x) means that t ∈ Sub(P) and t is not a variable and σ(x) = σ(t).
If P has no variable, then Lemma* 2 is trivially true. So we only need to consider the cases such that V ar(P)

is not empty.
Suppose to the contradiction of the lemma, in a normal attack, for each variables x, for each t such that t vσ σ(x),

t is not ground (t has a variable as its subterm). Now we go through a process and at the last step of the process
we will show that the contradiction assumption cannot be true. The same process can be used to find the variable
x as described by Lemma* 2. At every step of the process, say the ith step, 1 ≤ i, a variable xi and a term ti is
considered.

At the first step, step 1, choose any variable, call it x1, x1 ∈ V ar(P ). Choose any term, call it t1, such that
t1 vσ σ(x1). By lemma 4, such a t1 always exists. Since t1 is not a variable and not ground, then t1 is a composite
term.

If for the ith step, ti is not ground, i ≥ 1, then the i+ 1th step continues this process by choosing any variable,
call it xi+1 in V ar(ti), and then by choosing ti+1 to be any term such that ti+1 vσ σ(xi+1). Such a ti+1 exists
by Lemma 4.

For step i, 1 ≤ i, if ti is ground, then the contradictory assumption is violated, and the Lemma is true.
Following the contradictory assumption, to continue the reasoning, we consider that ti is not ground. Since ti is

not a variable, ti must be a composite term; therefore, at the i + 1th step xi+1 can always be chosen, which is a
strict subterm of ti. So |σ(xi+1)|DAG < |σ(ti)|DAG. Since σ(xi) = σ(ti), it is true that |σ(xi)|DAG = |σ(ti)|DAG;
hence, |σ(xi)|DAG => |σ(xi+1)|DAG. It means that |σ(xi)|DAG = |σ(ti)|DAG > |σ(xj)|DAG, for i < j. So xi and
xj are two different variables, for i 6= j. For 1 ≤ i < j, since |σ(xi)|DAG > |σ(xj)|DAG, and σ(xj) = σ(tj), it is
true that |σ(xi)|DAG > |σ(tj)|DAG, and xi /∈ Sub(tj). Since set of variables in the protocol P is finite, the process
cannot continue forever. Let j be the last step of this process. Then tj is ground, since otherwise the process can
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continue to the j + 1 step. Since tj is ground, the assumption contradictory to Lemma* 2 is violated, so Lemma*
2 is proved.

Corollary* 4: In a normal attack of a protocol described by P and σ, let G and G’ be any two disjoint sets
of variables and G ∪G′ = V ar(P), assuming V ar(P) is not empty, and G is not empty, it is true that there is a
variable x in G such that σ(x) has a σ match t, i.e. t vσ σ(x), such that t ∈ Sub(P) and V ar(t) ⊆ G′.

Proof:
Suppose Corollary* 4 is not true, then for every variable x in G, for every σ match t of σ(x), i.e. t vσ σ(x), it is

true that V ar(t) 6⊆ G′, which means V ar(t) 6= ∅ (otherwise the corollary is trivially satisfied) and V ar(t)∩G 6= ∅.
We do a process similar to the one in the proof of Lemma* 2 to derive a contradiction. The same process can be

used to find the variable x as described by the corollary. Before the start of the process, choose a variable x0 ∈ G
and a term t0 such that t0 ∈ Sub(P) and t0 vσ σ(x0). Such a t0 exists by Lemma 4. Since we assume Corollary*
4 is not correct, V ar(t0) 6⊆ G′, which means V ar(t0) 6= ∅ and V ar(t0) ∩G 6= ∅.

At the ith step, i ≥ 1, choose a variable, call it xi, from V ar(ti−1) such that xi ∈ G, and choose a term ti such
that ti ∈ Sub(P) and ti vσ σ(xi). By Lemma 4 such a ti exists.

By the same reasoning for proving Lemma* 2, no variable will repeatedly appear in this process, i.e. for i 6= j,
xi 6= xj , and this process will end since G is finite; hence, at the end of this process, say at the wth step, there
is variable xw, xw ∈ G, such that for every term tw such that tw ∈ Sub(P) and tw v σ(xw) (tw always exists
by Lemma 4), it must be true that V ar(tw) ∩ G = ∅, which means V ar(tw) = ∅ or V ar(tw) ⊆ G′, and the
contradictory assumption is violated; thus, Corollary* 4 is true.

Lemma* 3: In a normal attack to a protocol described by P and σ, for every variable x such that x ∈ V ar(P)
the following fact is satisfied: For every term y such that y ∈ Sub(σ(x)), there is a term t such that t ∈ Sub(P)
and t is not a variable and y = σ(t).

Proof: We use a process to enumerate the variables in V ar(P), and Lemma* 3 is proved by induction along
this process. At every step of the process, say the ith step for i ≥ 0, A set of variables Vi is considered.

Before the start of the process, at step 0, V0 = V ar(P).
At the ith step, i ≥ 1, if Vi−1 6= ∅, a variable in Vi−1 is chosen, call it xi, such that the following condition is

satisfied:
• There is a term ti, ti ∈ Sub(P), ti is not a variable, σ(ti) = σ(xi) (i.e, ti vσ σ(xi)), and V ar(ti) ⊆

(V ar(P)− Vi−1).
Then Vi = Vi−1 − xi. The process ends at the ith step if Vi = ∅.

We prove by induction on the step number i, i ≥ 1, that for xi the fact stated in Lemma* 3 is true.
Base case: for i = 1. V ar(P) − V0 = ∅. Consider ∅ ⊆ ∅. By Lemma 1*, we can always find a variable x in

V ar(P) such that there is a term t in Sub(P) and t is not a variable and t is ground, which means V ar(t) = ∅, and
σ(x) = σ(t). x is the chosen variable x0. Sub(σ(x)) = Sub(σ(t)) = Sub(t). Since t is ground and t ∈ Sub(P),
obviously Sub(t) ⊆ P . So the base case is proved.

Induction step: Suppose at step i, i > 1, it is true that for each variable xj chosen at steps j, j < i, the fact stated
in Lemma* 3 is true. Note that for each variable Y in V ar(P) − Vi−1, Y has been enumerated in this process,
and by the induction hypothesis each term in Sub(σ(Y )) has a σ match in Sub(P). At step i, let xi be a variable
chosen from Vi−1, as described by the process, such that there is a term ti, ti ∈ Sub(P), ti is not a variable,
σ(xi) = σ(ti), and V ar(ti) ⊆ (V ar(P)−Vi−1). By Corollary* 4 such a ti always exists. Let Gi = {g|g ∈ Sub(ti)
and g is not a variable}. The we have the following result:

Sub(σ(xi)) = Sub(σ(ti)) = σ(Gi) ∪ Sub(σ(V ar(ti))).
For any term w such that w ∈ Sub(σ(xi)), there are two cases.

1) w ∈ σ(Gi). Since for any term g in Gi, g is not a variable, and g ∈ Sub(P), the fact of Lemma* 3 is satisfied
in this case.

2) w ∈ Sub(σ(V ar(ti))). Then there is a variable xj for j < i such that w ∈ Sub(σ(xj)). By the induction
hypothesis, there is a term t such that t is not a variable and t ∈ Sub(P) and w = σ(t). So the fact of Lemma*
3 is satisfied in this case.

So the induction step is proved, so is Lemma* 3.

Theorem* 2: |σ(P))|DAG ≤ |P|DAG.
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Proof: Let G = {g|g ∈ Sub(P) and g is not a variable}. It is true that
Sub(σ(P)) = σ(G) ∪ Sub(σ(V ar(P))).

By the Lemma* 3, for each term t such that t ∈ Sub(σ(V ar(P))), there is a term g such that g ∈ Sub(P) and
g is not a variable and σ(g) = t, which means that g ∈ G and t ∈ σ(G); therefore, Sub(σ(V ar(P))) ⊆ σ(G);
therefore, the above equation can be modified as

Sub(σ(P)) = σ(G) ∪ Sub(σ(V ar(P))) = σ(G).
Now we can prove that

|σ(P))|DAG = |Sub(σ(P))|card = |σ(G)|card ≤ |G|card ≤ |Sub(P)|card = |P|DAG.

Theorem* 2 is stronger than Theorem 1 and implies Theorem 1.

X. JUSTIFYING THE POLYNOMIAL BOUND ON DERIVATION LENGTH

There is another fact that is not proved by [1], but is needed for proving the NP-completeness result.
For each received message Rh, the attacker needs to construct it based on its initial knowledge S0 and the

set of messages sent earlier by regular agents, {S1, S2, · · ·Sh−1}, before Rh is received by a regular agent. Then
there must be a derivation E →l1 E1 →l2 . . . Ej , where E = {S0, S1, S2, · · ·Sh−1}, and Rh ∈ Ej . In order to
show the NP-completeness result, it must be shown that the cost of applying these rules the l1, l2, . . . lj must be
polynomial in the size of the input of the problem n = |P|DAG. By Remark 2, it is obvious that to determine if a
rule is applicable, and to apply a rule, need only polynomial time, actually linear time. So the remaining question
is whether j is polynomial in n or not.

The authors of [1] consider the number of rules in each of the derivation is at most n, which is mentioned in
the Non-deterministic procedure in Fig. 1, and the first paragraph in Section 3.4.1. There is no explanation for this.
The reason seems to be Proposition 1. Proposition 1 shows that m 6 |t, E|DAG, where m is the number of rules
in the derivation for term t based on E. If Proposition 1 shows that the number of derivation rules is no more than
n, then [1] must have considered that

|Rhσ, S0σ, S1σ, S2σ, · · ·Sh−1σ|DAG 6 n. (Linear Derivation Length)

However the above equation is not proved. Note that without applying the substitution σ, the above equation is
obviously true. However, with the substitution σ, its proof may not obvious at the first glance.

If we try to prove the above equation of linear derivation length using Lemma 4, which shows that for every
variable x σ(x) ∈ Sub(σ(P)). However Lemma 4 does not show that Sub(σ(x)) ⊆ Sub(P); therefore, we cannot
directly prove a stronger result supporting the linear derivation bound equation that |Sub(σ(P))|card < |Sub(P)|card.

Suppose Theorem 1 is true (although it is not proved in [1] due to the error mentioned in the above section).
We can have

|Rhσ, σS0, σS1, σS2, · · ·σSh−1|DAG 6 n2.
The reason is that there are at most n variables appearing in the DAG representation of (S0,P), and also at most
n variables in in {Rh, S0, S1, . . . , Sh−1}, and the instantiation of each variable by σ has the DAG size at most n.
Theorem 1 bound the size of the instantiation of single variable in a normal attack, not for all variables. For two
different variables x and x′, Sub(xσ) ∩ Sub(x′σ) could be empty, which implies the above n2 bound.

By Theorem* 2 it is obvious that
|Rhσ, σS0, σS1, σS2, · · ·σSh−1|DAG 6 |P|DAG = n.

Since there are at most n rule in a derivation, and there are at most n derivation needed for the attack, and the
cost to apply a single rule is n, the total cost to generate all received messages by the non-deterministic algorithm
is O(n3), as stated in [1] at the beginning of section 3.4.1.

XI. ON THE RELATED PAPER [3]

The more recent paper [3] clarifies the modeling in several aspects comparing to [1].
• The definition of a normal attack is directly based on DAG size, while in [1] in addition to DAG size, a special

size |.| is defined, which is not necessary. Also the proof of the corresponding result of Lemma 4 in [3] does
not depend on the special term Charlie, which is used in [1].
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• The definition of a session is clarified. In a session only a subset of the protocol rules are included, while
each rule can appear at most once.

• The idea that variables first appear in some received message is clarified.
However we have checked the proofs of [3] and we consider there is still some problem of justifying the

corresponding result of Theorem 1 after the corresponding result of Lemma 4 is proved. We consider that the case
of not allowing XOR operators is a special case of allowing XOR, and in the ideal situation the proofs of [3]
should also prove the NP result of checking secrecy without XOR. With this special interest, just assuming the
XOR operators are not allowed, a lot of details of the proofs of [3] can be omitted. But we think that the error of
[1], as discussed by this article, is not fixed in [3]. The definition and the presentation of oracle rules in [3] need
to be clarified.

XII. SUMMARY

We humbly point out an error and the aspects that can be improved of [1]. Although [1] has proved a very
important result, which is Lemma 4, there is an error in the proof of Theorem 1, which seemly is due to a wrong
assumption that the DAG size of an instantiation of a term T is no less than the DAG size of the term, i.e.
|T |DAG ≤ |Tσ|DAG, for a term T and a substitution σ, which is wrong. We provide a non-trivial solution to fix
and prove a result that is stronger than Theorem 1. Besides, the proof of Lemma 4 is improved and the linear
bound on the derivation length of driving a received message is justified.

We suggest that an improved proof of NP-completeness of checking secrecy can be established with the following
preferred features.
• The setting is to bound the number of role instances, instead of sessions. As discussed earlier, the NP-complete

result of assuming a bound of the number of sessions does not imply exactly the corresponding complexity
result of assuming a bound on the number of role instances. We believe that considering a bound on role
instance, the proving methods of this paper can be adapted to prove the NP result.

• A normal attack is defined directly using DAG size, similar to [3], as demonstrated in the improved proof of
Lemma 4.

• The initial knowledge of the attacker is clarified. Also the cases allowing the attacker to generate nonces are
explicitly considered, or the fact the attacker does not need to generate any nonce is justified, as showed by
this article.

• A deterministic model checker, with soundness and completeness, is proposed. And the NP proof is to check
the shortest possible branch of the deterministic checker that can find an attack. This kind of presentation can
have several advantages as follows.
– The idea of normal attack and its practical meaning for designing a deterministic model checker is clarified.
– Unification is introduced while the DAG data structure can be used for linear unification cost. The motivation

of using DAG representation is to avoid exponential cost to apply substitution to terms. Similarly using DAG
can to avoid exponential cost of unifying of two terms. However in [1] there is no argument where to unify
two terms is required. In the papers addressing the deterministic algorithms of checking cryptographic
protocols such as [9] and [8] unification is used extensively.

– Lemma 4, which is the most close step for proving Theorem 1 by [1], can be proved more intuitively.
Imagine running a model checker like Athena [9] or constraint solving [8]. For a variable x received in a
message, the instantiation of x must be used in some way in the attack. x may either be unified with a
term sent in a role instance or be unified with an atom initially known to, or created by, the attacker. The
instantiation of x should not be more complex than the requirements of the unifications related to x in a
normal attack. Then lemma 4 may be proved following this kind of argument.

• The key features of the NP-completeness proof are clarified so that the proof can be extended, following a
general template, to cover other cases such as when XOR is allowed.

• The NP-hardness proof should directly address the protocols as communication sequences while the secret term
is declared practically such as the secret term specified in the well-known attack to the public key Needham-
Shroeder protocol [13]. In the reduction of the NP-hardness proof in [1] the secret term is sent in a message
that is not encrypted, which means such a secret term will always be leaked if the protocol is a communication
sequence. This kind of non-satisfying aspects have been discussed in [14] and [15].

We especially appreciate the discussion with Dr. Vitaly Shmatikov on the research of this article.
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