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I. INTRODUCTION

Wireless sensor networks have wide applications and are predicted to become ubiquitous in the future [1]. A
significant advantage of these networks is that they perform in-network processing and data aggregation. On the
other hand, these networks pose some unique challenges. For economic reasons they are somewhat limited in their
energy, computation and communication power. Furthermore, they also interact with their environments and with
people, which means that security is an important issue.

Among other desirable features, a secure network layer for sensor networks should provide data secrecy, au-
thentication, and protection against replay attacks [1]. Traditional solutions for data secrecy and authentication are
based on cryptographic protocols, which could typically use either public key or shared secret key cryptographic
algorithms. The limitations on computation power and energy consumption make some traditional security protocols,
such as public key cryptography, difficult to deploy. Hence new protocol solutions are needed for such networks.
These protocols must address several aspects of security: key establishment and trust setup, secrecy, authentication,
and privacy. Several such protocols have been proposed in the literature, for example, see [2] and references cited
in [1] for key distribution protocols and [3], [4] for authentication and privacy protocols.

We focus on the detailed modeling and formal analysis of key establishment protocol, called LEAP [5], [2], in
this paper using the AVISPA tool. One of the LEAP scenarios involved the modeling and analysis of µTESLA [3].
Several methods have been proposed for analyzing protocols in the literature and quite a few have been implemented
as well [6], [7], [8], [9], [10]. Our choice of AVISPA is based on its availability on the web, its flexibility and
convenience of specification. AVISPA is a model checking toolbox that has four different backends for analysis.
The modeling of LEAP in the language of AVISPA poses some interesting questions and provides insights into
the protocols as well as the tool itself. We found some problems with LEAP, such as replay attacks, lack of
authentication on HELLO messages, and misuse of the muTESLA protocol. and We propose fixes, which we have
also reanalyzed using AVISPA, for these problems.

The rest of this paper is organized as follows. Section II describes AVISPA in more detail. In Section III presents
the details of LEAP and Section IV presents µTESLA. Section V describes the modeling and analysis. In Section VI
we discuss related work and Section VII presents some conclusions.
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A. Notation
We try to use consistent notation throughout this paper. We specifically note any place where we deviate from

the following meanings.
A,B,C, S = communicating nodes in the network

NA = a nonce generated by node A
M1.M2 = message M1 concatenated with message M2

{M}K = message M encrypted with key K

KAB = symmetric key between nodes A and B
{fK} = a family of pseudo-random functions

MAC(K,M) = a message authentication code (MAC)
on message M using key K

A → B : M = message M sent from A to B
A → ∗ : M = message M broadcast by A

II. AVISPA
The Automated Validation of Internet Security Protocols and Applications (AVISPA) Tool [10] is a set of

applications intended for building formal models of security protocols and for formally analyzing their security
properties. AVIPSA provides the High Level Protocol Specification Language (HLPSL) for specifying protocols
and their security properties. AVISPA also provides tools for formally verifying these protocols. After the protocol
has been modeled using HLPSL, AVISPA translates this high-level model into an intermediate format (IF). The
models can then be input to any of four back-ends provided by AVISPA to determine whether security goals are
achieved or violated.

The four back-ends, OFMC, CL-AtSe, SATMC, and TA4SP, analyze the model in different ways so each may
not provide the same results. In addition, each of the back-ends has a different set of options. For example, the
“short” option in CL-AtSe will return the simplest attack on the protocol as specified instead of returning the first
attack found. We found OFMC and CL-AtSe most useful as they reliably returned results, allowed us to specify
untyped models, and included the xor function. OFMC also provided the “sessco” option which first searches the
specification with a passive intruder ensuring that the honest agents can execute the protocol and then runs a second
session with an active intruder with all the knowledge of the actions of the first session. This option will detect
replay attacks when normal authentication, which provides replay protection, is specified as a security goal. Weak
authentication, which does not provide replay protection, can be specified in cases where the protocol is not meant
to prevent replay attacks.

In testing our models, we found that AVISPA requires extensive experimentation with the many parameters such
as which goals to declare, how many sessions to use, and which options to use. While most secrecy properties are
apparent, authentication properties to be checked are often not as obvious, and in our modeling, we erred on the side
of authenticating too many values. Also, because the authentication property as AVISPA defines it is necessarily in
one direction, we also tried to check all authenticated values in both directions. Secondly, in order to find some of the
attacks we found, we had to experiment with the number and members of sessions of the protocol run concurrently
by AVISPA. For example, we did not find the advanced replay attacks in which the intruder re-establishes an old
key until we had at least three sessions, two with the honest agents and one with the intruder playing one role. We
did not expect to find these precise attacks; however, they became clear as we played with the sessions. Although
the computing power needed is extensive, we recommend having two sessions with honest agents and then at least
one each of the sessions where the intruder plays an honest agent’s role. However, we do not make the claim that
no more attacks can be found after testing sessions in this manner. In addition, we frequently found that by testing
this extensively we found so-called attacks in which the intruder merely acted as the channel, passing messages
back and forth. On this note, one of the challenges of modeling in AVISPA is deciphering the returned attacks and
determining whether they are truly attacks. Finally, the extensive experimentation also included use of the options
available in each back-end, such as the “sessco” and “untyped” options available in OFMC.

III. LEAP
In this section, we first give an overview of Localized Encryption and Authentication Protocol (LEAP) [5] and

then we detail the key establishment protocols.
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A. Overview
LEAP is a key management protocol intended for large-scale wireless sensor networks where the nodes have

limited power, processing, and memory resources. In order to support the in-network processing necessary for
most applications of these networks while at the same time providing security properties, such as security and
authentication, similar to those of pairwise symmetric keys, LEAP specifies four types of keys: individual keys,
pairwise shared keys, cluster keys and group keys.

Individual keys are symmetric keys shared between the base station and each of the nodes. For example, a node
might use the individual key to notify the base station of a suspicious neighbor. Pairwise shared keys are symmetric
keys shared between a node and each of its neighbors. While pairwise shared keys are used to establish cluster
keys, they prevent passive participation which is desirable for in-network processing. Cluster keys are symmetric
keys shared between a node and all of its neighbors. These cluster keys can be used for locally broadcast messages
such as a routing protocol might use and are also used for updating the group key. The group key, a symmetric
key shared between the base station and all of the nodes, allows encrypted and authenticated messages to broadcast
through the whole network.

B. Properties and Goals
LEAP’s goal is to satisfy the security properties of authentication (which they do not define) and confidentiality

in a wireless environment where the intruder may eavesdrop, inject packets, and replay messages. The authors of
LEAP also desire that the protocol will be robust and will survive in the face of security attacks and that the effects
of any attacks be minimized (to a node’s neighbors only, for example). LEAP makes no claims as to defending
against replay or denial of service attacks.

C. Key Establishment
LEAP details how each of these keys are established. The key establishment protocols are meant to be lightweight

and scalable. While keys may be preloaded prior to deployment in cases where the network architecture is known
beforehand, many wireless sensor networks are deployed in environments where such prior knowledge is not possible
and keys must be established either during an initial setup phase or on-the-fly as the network architecture changes.
In addition, preloaded keys must be updated to prevent cryptanalysis attacks.

1) Individual Keys.: Because the base station and each of the nodes is generally known before deployment, the
protocol specifies that the individual keys should be preloaded into the nodes. To save the base station’s memory,
each of these individual keys is generated using a master key, Km, and the node’s unique ID. For example the key
Kas shared between the base station (S) and a node (A) would be Kas = fKm

(A). Thus, when the base station
receives a message from or wishes to send a message to A, the base station can generate the individual key using
the stored master key.

2) Pairwise Shared Key with Single-Hop Neighbor.: Establishing a pairwise shared key with a single-hop neighbor
requires four phases. First, each node calculates a master key from an initial key, Ki, preloaded into all the nodes
and the nodes unique name. Second, each node broadcasts a HELLO message with its name and a nonce. Then
each neighbor replies to the message with a message authenticated using the message authentication code (MAC)
with its master key, which the initial node can check using the neighbor’s identity and the initial key. Third, the
two nodes calculate the pairwise shared key. Finally, once the initial setup timer has expired, the nodes erase both
the initial key and their neighbors’ master keys. For a requestor node A and its neighbor B, the protocol, thus,
requires the following two messages and calculations.

KA = fKi
(A) (1)

KB = fKi
(B)

A → ∗ : A.NA (2)
B → A : B.MAC(KB , NA.B)

KAB = fKB
(A) (3)
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3) Pairwise Shared Key with Multi-Hop Neighbor.: To establish a pairwise shared key with a multi-hop neighbor
requires the use of shared neighbors, called proxies. If a node, A, wishes to establish a pairwise shared key with
its multi-hop neighbor, C, A would first broadcast a QUERY message to all its neighbors with its ID and the ID
of the desired node. The n shared neighbors, Bi, which are single-hop neighbors of A and singe-hop neighbors
of C, send a REPLY message authenticated with the pairwise shared key. Node A splits the new key KAC into n

randomly generated shares Ki such that KAC = K1⊕K2⊕ . . .⊕Kn. A sends these shares to the proxies encrypted
with a pairwise shared key and a verification key fKi

(0). The proxies then re-encrypt the share with the pairwise
key shared between the proxy and C, and the proxies forward the key and the verification key to C. Finally when C
receives the shares from the proxies, C verifies the shares, recreates the new key by KAC = K1 ⊕K2 ⊕ . . . ⊕Kn,
and sends A a DONE message encrypted with the new key.

4) Cluster Key.: The cluster key is established by a node by randomly generating a cluster key and then sending
the key to its neighbors encrypted with pairwise shared keys.

5) Group Key.: Group keys are preloaded into all the nodes prior to deployment. However, because this key
is shared among all the nodes in the network, when one of the nodes is compromised, the group key must be
redistributed so that the intruder cannot send and read encrypted messages for the network. In addition, this key
should be updated regardless of node revocation to prevent cryptanalysis.

6) Node Revocation and Key Redistribution.: Once a node is identified as compromised, the base station generates
a new group key K

′

g and sends a message authenticated using the µTESLA protocol (see Section IV) identifying
the revoked node (C) and providing a verification key fK

′

g
(0) for the new key. The µTESLA key is released one

µTESLA interval later allowing the nodes to authenticate the node revocation message. In order to remove the
revoked node from the network, each node deletes any pairwise keys shared with C and, using the same process
as the first establishment, establishes new keys for cluster keys compromised by C. The base station sends out the
new group key encrypted with a cluster key to its children who in turn verify the new group key and then send
it to their children encrypted with a cluster key and so on until all nodes have the new group key. Here LEAP
assumes a breadth-first spanning tree established by a routing protocol.

IV. µTESLA
µTESLA [3] is an authentication protocol intended for wireless sensor networks. µTESLA assumes that the

base station and the nodes are loosely synchronized and know the upper bound of the time discrepancy. First, the
base station derives a key chain from a randomly generated key Kn using a one-way hash function f ; namely,
Ki = f(Ki+1). The base station then uses these keys in the reverse order from which it calculated them. The
base station authenticates each message sent during a time period Ti with the key Ki. When the nodes receive
these messages, they buffer them until the µTESLA key is released. The base station then waits δ µTESLA time
intervals until Ti+δ to release the key to all the nodes. The nodes can then check the key using a previous key,
Ki = f(Ki+1), and the authentication of buffered messages.

µTESLA also provides a protocol for bootstrapping a receiver node, providing the node an initial key and
information about synchronization. Namely,

A → S : NA

S → A : TS .Ki.Ti.Tint.δ.

MAC(KAS , TS .Ki.Ti.Tint.δ)

where TS is the base station’s current time, Ki is the most recently released key, Ti is the beginning of the time
interval in which Ki was used, Tint is the length of the µTESLA time interval, δ is the number of intervals before
each key is released, and KAS is a symmetric key shared by A and S.

V. MODELING AND ANALYSIS

We created four different models in our formal analysis of LEAP: establishing pairwise shared keys with single-
hop neighbors, establishing pairwise shared keys with a multi-hop neighbor, establishing a cluster key, and µTESLA.
Each of these protocols must be secure in order for the node revocation and key redistribution protocol to be secure.
We focused on the LEAP’s key establishment protocols rather than the use of the keys because with proper use of
the symmetric keys communications will remain secure.
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A. Change in Notation
Because HLPSL does not have a way to define either f or MAC as previously noted, we use the following

changed notation for this section.
For Creating New Keys

f(K.A) = a one-way hash function using key K on A
For Verification Keys

f(0)K = a one-way hash function using key K on A
For Message Authentication

{MAC(M)}K = a CBC-MAC using key K on message M

B. Definitions
Throughout the following sections we refer to authentication and secrecy properties. We use these terms as they

are defined by the AVISPA creators[10], namely, that the secrecy property is violated when the intruder discovers
a value declared as a secret from the intruder, and that the authentication property is violated when an agent’s
request to verify the value of a variable is witnessed by another agent with different value for this variable. Any
authentication or secrecy attack was found by AVISPA and is based on these definitions.

C. Single-Hop Pairwise Shared Key
We considered two different cases of this model. First, we looked at the case where node A establishes a key

with only one of its neighbors, B. Then we looked at the case where A,B, and C all establish pairwise keys with
each other. We consider them separately here.

1) Establishing One Single-Hop Pairwise Shared Key.: With the first model LEAP specifies exactly the message,
so the model first enacts this sequence of messages. Then, B and A exchange a test message using the same format
as Dolev and Yao [11] showed to be safe using public keys:

HELLO
A → ∗ : A.NA

REPLY
B → A : B.{MAC(NA.B)}KB

Test Messages
A → B : A.{M.A}KAB

.B

B → A : B.{M.B}KAB
.A

where KA = f(Ki.A)

KB = f(Ki.B)

KAB = f(KB .A)

We evaluated the model based on the secrecy of the new keys and the secrecy of the data in the test messages. We
also defined as goals the one-way authentication of the HELLO messages and the two-way authentication of the
test messages.

We found several attacks on this protocol. Using the “sessco” option of OFMC, we found simple replay attacks
at first. The intruder (I) replays A’s earlier messages and B responds as before.

A → ∗ : A.NA

B → A : B.{MAC(NA.B)}KB

A → B : A.{M.A}KAB
.B

B → A : B.{M.B}KAB
.A

Replay
I → ∗ : A.NA

B → I : B.{MAC(NA.B)}KB

I → B : A.{M.A}KAB
.B

B → I : B.{M.B}KAB
.A
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Not only does LEAP not protect against replay attacks, but also this attack produces only wasted resources. We
found replay attacks in all of the following models but we will not mention them.

Secondly, we found a secrecy attack in which the intruder is a member of the network and is aware of the initial
key Ki and the hash function f . Here the intruder is successfully able to establish a pairwise key with A while
pretending to be B.

A → ∗ : A.NA

I → A : B.{MAC(NA.B)}KB

A → I : A.{M.A}KAB
.B

LEAP, however, assumes that the initial setup of pairwise keys is finished, including the erasing of setup keys,
in an amount of time much smaller than the amount of time an intruder would take to compromise a node and
discover the initial key.

The third attack we found was an authentication attack on the initial HELLO message. The intruder changes A’s
initial HELLO message and is able to cause A to create a pairwise key with B while B creates a pairwise key with
the intruder.

A → ∗ : A.NA

I → B : I.NA

B → I : B.{MAC(NA.B)}KB

I → A : B.{MAC(NA.B)}KB

A : KAB = f(KB.A)
B : KIB = f(KB.I)

Although the intruder does not discover either A’s new key or B’s new key, he has violated the authentication goal
as defined by AVISPA. In addition, if B were to request a key from A because B does not yet have a shared key
with A, A would likely mark B as compromised because A believes B already has a shared key. Thus, extensive
attacks of this nature could cripple a wireless sensor network. Based on this attack, we suggest a fix on the original
protocol in which the HELLO messages are authenticated using the sender’s master key.

A → ∗ : A.NA.{MAC(A.NA)}KA

B → A : B.MAC(KB , NA.B)

where KA = f(Ki.A)

KB = f(Ki.B)

KAB = f(KB .A)

In the more recent paper on LEAP+ [2], the authors suggest that the lack of authentication on the HELLO message
would produce only resource attacks; however, we have discovered an attack in which the lack of authentication
produces more than just a resource attack. They have suggested two solutions to this problem: using the current
group key to authenticate the packet or adding randomness to added nodes’ ids.

2) Establishing Single-Hop Pairwise Shared Keys among Three Neighbors.: We also examined the case where
three neighbors must establish pairwise keys between them. LEAP specifies that if two nodes both send HELLO’s,
the first HELLO is given precedence and takes the role indicated by A in the description of LEAP (Section III-C.2);
therefore, in this model, A establishes keys with both B and C because its HELLO is first, and then C establishes
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a key with B because its HELLO is second. We used the following sequence of messages.

HELLO
A → ∗ : A.NA

C → B : C.NC

REPLY
B → A : B.{MAC(NA.B)}KB

C → A : C.{MAC(NA.C)}KC

B → C : B.{MAC(NC .B)}KB

Test Messages
A → B : A.{M1.A}KAB

.B

A → C : A.{M1.A}KAC
.C

C → B : C.{M2.C}KBC
.B

B → A : B.{M1.B}KAB
.A

B → C : B.{M2.B}KBC
.C

C → A : C.{M1.C}KAC
.A

where KA = f(Ki.A)

KB = f(Ki.B)

KC = f(Ki.C)

KAB = f(KB .A)

KAC = f(KC .A)

KBC = f(KB .C)

Here again we used a test message format from Dolev and Yao [11]. We evaluated the model based on the secrecy
of the new keys and the secrecy of the data in the test messages. We also tested the one-way authentication of the
HELLO messages and the two-way authentication of the test messages.

In this case the most significant attack found in AVISPA was again on the authentication of the HELLO messages.
By exploiting the unauthenticated HELLO messages, the intruder causes B to not respond to C while convincing
B that a reply B means for C goes to A. Thus, B and A and B and C do not agree on the value of the HELLO
message.

A → I : A.NA

C → I : C.NC

I → B : A.NI

B → I : B.{MAC(NI .B)}KB

I → B : C.NA

B → I : B.{MAC(NA.B)}KB

I → A : B.{MAC(NA.B)}KB

I → C : A.NA

C → I : C.{MAC(NA.C)}KC

I → A : C.{MAC(NA.C)}KC

Again we suggest authenticating the HELLO message in order to prevent this attack.
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D. Multi-Hop Pairwise Shared Key
We modeled the establishment of the multi-hop pairwise shared key using only two proxies. In this case, node

A wishes to establish a pairwise key with S through proxies B and C. The exchange of messages follows.
QUERY

A → ∗ : A.S

REPLY
B → A : B.A.S.{MAC(B.A.S)}KAB

C → A : C.A.S.{MAC(C.A.S)}KAC

Shares to Proxies
A → B : {K1}KAB

.{f(0)}K1

A → C : {K2}KAC
.{f(0)}K2

Shares to Destination
B → S : {K1}KBS

.{f(0)}K1

C → S : {K2}KCS
.{f(0)}K2

Done Message
S → A : {0}KAS

where KAS = K1 ⊕ K2

Here we have used zero as the DONE message rather than using a freshly generated nonce, because we assume
that the nodes have a pre-established message that means “Done”. Because A and S must already know zero and
agree on it to check the verification keys, A can check this done message unlike a done message modeled with a
nonce. Also, LEAP, saying only that the REPLY is authenticated using a pairwise shared key does not expressly
give the REPLY message format for B and C, so we have modeled it as shown. Because none of the attacks found
involved exploitation of this message, we did not try any alternate packet formats. Our model tests the secrecy of
the new key and the authentication of the key in both directions.

The only secrecy attack that AVISPA found was one in which the intruder has compromised all proxies. In this
case the intruder will be able to read each of the shares and form the new key while at the same time sending the
key on to S. LEAP, however, assumes that at most n − 1 of the n proxies are compromised.

AVISPA found two authentication attacks on this protocol both of which are advanced replay attacks. The first
attack involved the establishment of the original key and a reestablishment; by replaying a message from the original
session of the protocol, the intruder is able to give S the wrong key. The agents go through the first session of the
protocol as usual with the intruder copying and saving the messages. When the protocol is started again with the
second session, the following attack occurs. New key shares are noted with primes, and old keys shares from the
previous session are unprimed.

Unauthenticated QUERY
I → ∗ : A.S

B → I : B.A.S.{MAC(B.A.S)}KAB

C → I : C.A.S.{MAC(C.A.S)}KAC

Actual QUERY
A → I : A.S

I → A : B.A.S.{MAC(B.A.S)}KAB

I → A : C.A.S.{MAC(C.A.S)}KAC

Shares to Proxies
A → B : {K ′

1}KAB
.{f(0)}K′

1

A → I : {K ′

2}KAC
.{f(0)}K′

2

I → C : {K2}KAC
.{f(0)}K2

Shares to Destination
B → S : {K ′

1}KBS
.{f(0)}K′

1

C → S : {K2}KCS
.{f(0)}K2

Done Message
K ′

AS = K ′

1 ⊕ K2

S → A : {0}K′

AS
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While the message interception aspect of this attack may not be possible because of the broadcast nature of a
wireless communications environment, we can see that S will not receive the correct key if even one of the proxies
is compromised, contrary to LEAP’s assumption that the protocol is secure up to n − 1 of the n proxies being
compromised.

The second attack is similar but more damaging. This attack occurs after two sessions of the protocol have
occurred. The intruder saves the messages from the first instance of the protocol, and then causes S to revert to the
previous key. Because nodes sleep between communication in order to save on power consumption, the intruder
utilizes the time that A is asleep to instantiate the protocol again with B and C, sending the first key to S again.
While A and S will not be able to communicate, the intruder may have had time to perform cryptanalysis on the
original KAS and read the encrypted messages sent by S to A. Thus, this attack is very serious.

While AVISPA does not directly model that agents can “sleep”, by using a Dolev-Yao intruder model [11] in
which the intruder can intercept messages it effectively models such a situation. In addition, in our modeling we
had the intruder play the role of A in the third session of the composition, which successfully modeled node A
being asleep.

We suggest that the QUERY message be authenticated with a cluster key in order to improve the security of this
protocol. While this fix does not solve the problem of these advanced replay attacks, it does prevent an element of
the attacks that AVISPA found in which the intruder begins the protocol with the proxies before the honest sensor
begins the protocol.

E. Cluster Key
In this model, node A establishes a cluster key KC with its two neighbors, B and C. After establishing the

key, each node broadcasts a test encryption message with randomly generated nonce and its ID encrypted with the
cluster key. The exchange follows.

Distribute Cluster Key
A → B : {KC}KAB

A → C : {KC}KAC

Test Cluster Key
A → ∗ : {NA.A}KC

B → ∗ : {NB .B}KC

C → ∗ : {NC .C}KC

While LEAP does not indicate DONE messages or the content of any messages, we chose to test the use of the key
using the message content format shown by Dolev and Yao [11] to be safely exchanged using public encryption
keys. Our model’s secrecy goals were on the new key and the three nonces. We also tested the authentication on
the key and the three nonces.

We found two authentication attacks on this model. The first attack AVISPA found was one in which the intruder
prevents one of the neighbor nodes from receiving the new cluster key but allows that same neighbor to receive the
test messages. While such an attack is difficult in a wireless environment, it would be possible for the intruder to
jam a message by sending a high-energy signal [1]. LEAP is not meant to prevent such denial-of-service attacks,
and, in fact, they do not assume that the intruder can remove messages from the network, but this attack has
significant implications on LEAP’s key exchanges.

The second attack was akin to the second attack on the multi-hop pairwise shared key. After two sessions of
the protocol (one keying and a second re-keying), the intruder can send the original key to the neighbors while A
is asleep. If this key has already been compromised, the intruder will be able to read any messages the neighbors
send using this old key. Also, because the cluster key is used to update the group key, this attack could prevent
nodes from receiving the new group key.
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F. µTESLA
We model µTESLA using a base station, S, and a node A. First, node A is bootstrapped, and then S sends three

test messages to A along with a message disclosing the last key in the chain.

Bootstrap Request
A → S : NA

Bootstrap
S → A : Ka.M1.{MAC(Ka.M1)}KAS

Messages
S → I : Ka.M2.{MAC(M2)}Kb

S → I : Kb.M3.{MAC(M3)}Kc

S → A : Kc.M4.{MAC(M4)}Kd

S → A : Kd

where Ka = f(Kb) = f(f(Kc)) = f(f(f(Kd)))
Because AVISPA does not model time accurately, we chose to model the synchronization part of the bootstrapping

message as randomly generated data. For this same reason, we also chose to model the time intervals with a series
of separate intervals. Because µTESLA does not specify how the keys are released, we chose to release the keys
with the next message (and therefore in the next time interval) that needs authentication. µTESLA specifies that the
keys are released after δ time intervals; although the implementation of the authors of µTESLA uses two, LEAP
specifies that the keys are released after only one interval; because our main goal is testing LEAP, we wait only
one interval. We tested the model for the authentication of the request message, the data in the bootstrap message,
and the three test messages.

AVISPA found the following attack on the authentication of the request message and the authentication of one
of the test messages.

Bootstrap Request
A → I : NA

I → S : NI

Bootstrap
S → A : Ka.M1.{MAC(Ka.M1)}KAS

Delayed Messages
S → I : Ka.M2.{MAC(M2)}Kb

S → I : Kb.M3.{MAC(M3)}Kc

False Message
I → A : Ka.MI .{MAC(MI)}Kb

where MI is a message from the intruder.
First, this attack assumes that the intruder can intercept and delay messages which contradicts the broadcast

nature of wireless networks. In addition, this attack takes advantage of the lack of proper time synchronization with
the AVISPA tool; however, because the node and the base station may not be perfectly synchronized, it is possible
for the intruder to use the time discrepancy to send the first message after the server’s interval has lapsed and the
server has released the old key but before the node’s interval has lapsed. Such an attack is possible only when keys
are released in the next interval. If the release delay is more than one interval, then such an attack is not possible
as long as the maximum synchronization error as defined by µTESLA is less than the duration of one interval.
LEAP, however, releases the previous key in the next interval and thus, is susceptible to this serious attack.

Based on this attack, we suggest that LEAP utilize the µTESLA protocol with the two-interval wait instead of
the single-interval wait. While this does extend the time required to revoke a node and redistribute a new group
key, it provides additional security.

Also note that the intruder has used the unauthenticated request message in his attack. While the lack of
authentication in the request message does no damage in this instance nor in the LEAP protocol, in another
use of µTESLA such an attack could be fatal. Hence, we recommend that the protocol authenticate the request
with a MAC using a pairwise shared symmetric key, such as the individual key from LEAP.
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VI. RELATED WORK

Security of wireless sensor networks is an emerging topic of interest. However, to the best of our knowledge,
there are only a handful of very recent papers on formal analysis of wireless sensor network protocols [12], [13],
[14]. In [12], the authors analyze (also with AVISPA) a combination of the TinySec authentication protocol with
three scenarios of the LEAP protocol (pairwise-key, cluster key and multi-hop). Two of their scenarios deal only
with the TinySec protocol, which we do not study here. As for the LEAP scenarios we note the following.

In [12] the authors report a man-in-the-middle attack for pairwise-key establishment, whereas we also report a
replay attack and a secrecy attack with an insider attacker besides a similar man-in-the-middle attack. For the cluster
key case [12] report a type confusion flaw with a DONE message, whereas we found two authentication attacks.
Let us also note that the LEAP paper does not specify a DONE message for the cluster key scenario (even if there
was a DONE message it would presumably be something whose type is known to the sensors). For the multi-hop
case [12] report a replay attack, whereas we discovered two authentication attacks. As far as replay attacks are
concerned, as mentioned above, we do not report them since they are known to exist for all scenarios and their
prevention is a separate issue that must be addressed with other techniques not included in the TinySec and LEAP
papers.

In [13] the authors analyze a different protocol (again with AVISPA) called Minisec together with two LEAP
scenarios: establishing and testing a single-hop pairwise shared key and establishing and testing a cluster key. They
use an authenticated HELLO in the first case and do not find any attacks. They also find no attacks in the second
case because they do not use the done message as they did in [12]. We believe that the two attacks we report were
missed since the session definitions of AVISPA require extensive experimentation. In fact, the second authentication
attack we found required three sessions, the last of which required the intruder playing the role of an honest agent
in the session. Note that the absence of an attack with AVISPA gives a measure of confidence, but it is not a
proof of protocol security since AVISPA (and other similar tools) must impose a bound on the role instances to get
decidability. We have not been able to access the most recent paper [14] so far.

VII. CONCLUSIONS

We performed a formal analysis of LEAP using the AVISPA tool. We specifically looked at LEAP’s key
establishment protocols for pairwise shared keys between single-hop neighbors, for pairwise shared keys between
multi-hop neighbors, and for cluster keys. We also modeled µTESLA in order to determine whether LEAP’s use
of µTESLA for the authentication of node revocation messages is secure. We modeled these cases because they
are all necessary foundations to LEAP’s group key redistribution plan.

We found that the protocol for establishing pairwise shared keys for single-hop neighbors is vulnerable to replay
attacks, secrecy attacks from compromised nodes, and authentication attack on the HELLO message. LEAP does
not protect against replay attacks, and the secrecy attack requires that one of the protocol’s assumptions is violated.
We recommend that LEAP utilize a HELLO message authenticated with the node’s master key to overcome the
authentication attack.

We found that the protocol for establishing pairwise shared keys for multi-hop neighbors is vulnerable to a
secrecy attack when all the proxies are compromised, an authentication attack on the key by a single compromised
proxy, and an advanced replay attack that re-establishes an old key. While none of these attacks hinge on the lack of
authentication in the QUERY message, we suggest adding authentication to this message as the intruder QUERYs
before the honest agent does in the attacks we found.

We found that the protocol for establishing cluster keys is vulnerable to a denial-of-service attack on the receiving
neighbors and an advanced replay attack that re-establishes an old key. LEAP, however, protects against neither
denial-of-services attacks nor replay attacks.

Finally, we found that LEAP’s implementation of µTESLA is flawed because it releases the previous key after
only one µTESLA interval, allowing an intruder to take advantage of the synchronization error between the base
station and the receiving nodes. Although we found no attacks which hinged on the lack of authentication in the
bootstrap request message, the attack we found did utilize this void.

Proposed fixes were effective in our experiments in some cases as mentioned above. We also found that modeling
time with AVISPA is nontrivial and that one has to experiment with many different session scenarios in AVISPA
so as not to miss any attacks.
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