

Construction and Evaluation of Coordinated
Performance Skeletons

Qiang Xu, Jaspal Subhlok

Computer Science Department

University of Houston
Houston, TX, 77204, USA

http://www.cs.uh.edu

Technical Report Number UH-CS-08-09
May 26, 2008

Keywords: Performance skeletons, Performance prediction, Trace compression

Abstract

Performance prediction is particularly challenging for dynamic foreign environments that cannot be
modeled well, such as those involving resource sharing or foreign system components. Our approach is
based on the concept of a performance skeleton which is a short running program whose execution time in
any scenario reflects the estimated execution time of the application it represents. The fundamental technical
challenge is automatic construction of performance skeletons for parallel MPI programs. The steps are 1)
generation of process execution traces and conversion to a single coordinated logical program trace, 2)
compression of the logical program trace, and 3) conversion to an executable parallel skeleton program.
Results are presented to validate the construction methodology and prediction power of performance
skeletons. The execution scenarios analyzed involve network sharing, different architectures and different
MPI libraries. The emphasis is on identifying the strength and limitations of this approach to performance
prediction.

Construction and Evaluation of
Coordinated Performance Skeletons

Qiang Xu Jaspal Subhlok∗

University of Houston
Department of Computer Science

Houston, TX 77204

Abstract

Performance prediction is particularly challenging for dynamic foreign environments that can-
not be modeled well, such as those involving resource sharing or foreign system components.
Our approach is based on the concept of a performance skeleton which is a short running program
whose execution time in any scenario reflects the estimated execution time of the application it rep-
resents. The fundamental technical challenge is automaticconstruction of performance skeletons
for parallel MPI programs. The steps are 1) generation of process execution traces and conver-
sion to a single coordinated logical program trace, 2) compression of the logical program trace,
and 3) conversion to an executable parallel skeleton program. Results are presented to validate
the construction methodology and prediction power of performance skeletons. The execution sce-
narios analyzed involve network sharing, different architectures and different MPI libraries. The
emphasis is on identifying the strength and limitations of this approach to performance prediction.

Index Terms
Performance skeletons, Performance prediction, Trace compression

1 Introduction

Traditional performance prediction and scheduling for distributed computing environments is
based on modeling of application characteristics and execution environments, with some example
systems discussed in [1, 7, 8, 11]. However, this approach isof limited value in some dynamic
and unpredictable execution scenarios as modeling is impractical or impossible for a variety of
reasons. Some example scenarios are execution with sharingof network or compute resources,
execution with varying number of available processors, or execution with new system architectures
or software libraries.

∗This material is based upon work supported by the National Science Foundation under Grant No. ACI- 0234328
and Grant No. CNS-0410797. Contact email:jaspal@uh.edu

A new approach to performance prediction in such foreign environments is based on the concept
of a performance skeletonwhich is defined to be a short running program whose executiontime
in any scenario reflects the estimated execution time of the application it represents. When the
performance skeleton of an application is available, an estimate of the application execution time
in a new environment is obtained by simply executing the performance skeleton and appropriately
scaling the measured skeleton execution time. The main challenge in this approach is automatic
construction of performance skeletons from applications.Earlier work in this project developed
basic procedures for construction of communication and memory skeletons and explored their
usage in distributed environments [13, 9, 10].

This paper introducesscalableconstruction ofcoordinatedperformance skeletons and evaluates
their ability to predict performance in a variety of execution scenarios. The skeletons developed
are “coordinated” implying that a single SPMD skeleton program is constructed instead of a family
of process level skeletons. Improved compression procedures were developed that allow fast and
nearly linear time skeleton construction. Finally, experimentation is conducted in a wide variety of
scenarios including shared network bandwidth, shared processors, variable number of processors,
different cluster architectures, and different MPI communication libraries. The results highlight
the power and limitations of this approach.

We outline the construction of performance skeletons for parallel MPI programs. Clearly a
performance skeleton must capture the core execution and communication characteristics of an
application. The skeleton construction procedure begins with the generation of process traces of
an MPI application, primarily consisting of the message passing calls interspersed with compu-
tation segments. The first processing step istrace logicalization which is the conversion of the
suite of MPI process level execution traces into a single logical trace. This is followed bytrace
compression which involves identification of the loop structure inherent in the execution trace to
capture the core execution behavior. Finalskeleton construction consists of generation of a dead-
lock free skeleton SPMD program from the compressed logicaltrace. The key steps are illustrated
in Figure 1.

Record execution trace for each process

Logicalize process traces into a single program trace

Compress the program trace by identifying the loop structure

Construct executable
performance skeleton program

APPLICATION

Data Model

Sim 1

Sim 2

Pre

Vis

Stream skeleton

Data Model

Sim 1

Sim 2

Pr
e

Vi
s

Stream

Figure 1. Skeleton construction

The paper is organized as follows. Section 2 presents the procedure for logicalization of MPI

2

traces and section 3 presents the procedures developed for the compression of the logical trace.
Section 4 introduces deadlock free skeleton program generation from the compressed trace. Sec-
tion 5 presents and discusses results from the application of performance skeletons for performance
prediction. Section 6 contains conclusions.

2 Trace logicalization

As high performance scientific applications are generally SPMD programs, in most cases, the
traces for different processes are similar to each other andthe communication between processes
is associated with a well defined global communication pattern. A study of DoD and DoE HPC
codes at Los Alamos National Labs [3] and analysis of NAS benchmarks [12] shows that an over-
whelming majority of these codes have a single low degree stencil as the dominant communication
pattern. These characteristics expose the possibility of combining all processor traces into a single
logical program tracethat represents the aggregate execution of the program - in the same way
as an SPMD program represents a family of processes that typically execute on different nodes.
For illustration, consider the following sections of traces from a message exchange between 4 pro-
cesses in a 1-dimensional ring topology.

Process 0 Process 1 Process 2 Process 3
...
snd(P1,...) snd(P2,...) snd(P3,...) snd(P0,...)
rcv(P3,...) rcv(P0,...) rcv(P1,...) rcv(P2,...)
...

The above physical trace can be summarized as the following logical trace:
Program
...
snd(PR,...)
rcv(PL,...)
...
wherePL and PR refer to the logical left and logical right neighbors, respectively, for each

process in a 1-dimensional ring topology.
Beside reducing the trace size by a factor equal to the numberof processes, the logical program

trace captures the parallel structure of the application. Note that this logicalization is orthogonal to
trace compressionwhich is discussed in the following section.

The logicalization framework has been developed for MPI programs and proceeds as follows.
The application is linked with the PMPI library so that all message exchanges are recorded in a
trace file during execution. Summary information consisting of the number of messages and bytes
exchanged between process pairs is recorded and converted to a binaryapplication communication
matrix that identifies process pairs with significant message traffic during execution. This matrix
is then analyzed to determine the application level communication topology. Once this global
topology is determined, a representative process trace is analyzed in detail and transformed into a
logical program trace where all message sends and receives are to/from a logical neighbor in terms
of a logical communication topology (e.g a torus or a grid) instead of a physical process rank. An
example physical trace and the corresponding logical traceare shown in Table 2.

3

PHYSICAL TRACE
......
MPI Isend(... 1, MPI DOUBLE, 480,
...)
MPI Irecv(... 3, MPI DOUBLE, 480,
...)
MPI Wait() /* wait for Isend */
MPI Wait() /* wait for Irecv */
......
MPI Isend(... 4, MPI DOUBLE, 480,
...)
MPI Irecv(...12, MPI DOUBLE, 480,
...)
MPI Wait() /* wait for Isend */
MPI Wait() /* wait for Irecv */
......
MPI Isend(... 7, MPI DOUBLE, 480,
...)
MPI Irecv(...13, MPI DOUBLE, 480,
...)
MPI Wait() /* wait for Isend */
MPI Wait() /* wait for Irecv */
......

LOGICAL TRACE
......
MPI Isend(...EAST, MPI DOUBLE, 480, ...)
MPI Irecv(...WEST, MPI DOUBLE, 480, ...)
MPI Wait() /* wait for Isend */
MPI Wait() /* wait for Irecv */
......
MPI Isend(...SOUTH, MPI DOUBLE, 480, ...)
MPI Irecv(...NORTH, MPI DOUBLE, 480, ...)
MPI Wait() /* wait for Isend */
MPI Wait() /* wait for Irecv */
......
MPI Isend(...SOUTHWEST, MPI DOUBLE, 480, ...)
MPI Irecv(...NORTHEAST, MPI DOUBLE, 480, ...)
MPI Wait() /* wait for Isend */
MPI Wait() /* wait for Irecv */
......

Table 1. Logical and physical trace for the 16-process BT ben chmark

The key algorithmic challenge in this work is the identification of the application communi-
cation topology from the application communication matrixwhich represents the inter-process
communication graph. The communication topology is easy toidentify if the processes are as-
signed numbers (or ranks) in a well defined order, but is a muchharder problem in general. This
is illustrated with a very simple example in Figure 2. The figure shows 9 executing processes with
a 2D grid communication topology. In Figure 2(a) the processes are assigned numbers in row
major order in terms of the underlying 2D grid. However, if the processes were numbered diago-
nally with respect to the underlying 2D grid pattern as indicated in Figure 2(b), the communication
graph with process nodes laid out in row major order would appear as Figure 2(c). Clearly, the
underlying 2D grid topology is easy to identify in the scenario represented in Figure 2(a) by a pat-
tern matching approach but much harder when process numbering follows an unknown or arbitrary
order, a relatively simple instance of which is the scenariorepresented in Figure 2(c). The state of
the art in identifying communication topologies assumes that a simple known numbering scheme
is followed [3].

The reasons topology identification is difficult are 1) establishing if a given communication
graph matches a given topology is equivalent to solving the well knowngraph isomorphismprob-
lem for which no polynomial algorithms exist and 2) there aremany different types of topologies
(different stencils on graph/torus, trees, etc.) and many instantiations within each topology type
(e.g., different number and sizes of dimensions even for a fixed number of nodes). In order to

4

5 7 8

2 4 6

0 1 3

0 1 2

3 4 5

6 7 8

0 1 2

3 4 5

6 7 8

(a) (b) (c)

Figure 2. 2D grid topology with row major and other numbering s

identify if a given communication matrix matches any known topology, the following sequence of
steps are applied as a decision tree with simpler tests applied first for efficiency:

1. Simple Tests: First all possible sizes of grid/tori/tree based on the number of processes
N are identified with prime factoring. Then the number of edgesand the degree ordered
sequence of nodes for the given communication matrix are matched with those for the suite
of known topologies. This step typically eliminates all but1 or a few topologies as possible
matches.

2. Graph Spectrum Test: Based on computing eigenvalues - eigenvalue sets of isomorphic
graphs are identical. Hence if the eigenvalues do not match,the topologies are not a match.

3. Isomorphism Test: Applies graph isomorphism to establish that a given communication
matrix exactly represents a specific topology.

The details of this process are described in [14]. The tracing required for logicalization proce-
dure is very low overhead in computation time and volume as only high level message passing calls
are recorded. The analysis required for each process trace is minimal - only the collection of gross
communication data, such as the number of messages and bytesexchanged. Detailed processing
is limited to a single representative process trace that is transformed to a logical program trace.

Table 2 presents observations from the application of this procedure to selected NAS bench-
marks. The topologies that remain as candidates after each of the tests and the final established
topology are listed along with processing times. Clearly the procedure is effective and efficient.

3 Trace compression

An important step in the process of construction of performance skeletons is the identification
of repeating patterns in MPI message communication. Since the MPI communication trace is
typically a result of loop execution, discovering the executing loop nest from the trace is central to
the task of skeleton construction. The discovery of “loops”here technically refers to the discovery
of tandem repeating patterns in a trace (presumably) due to loop execution.

Common compression procedures includegzip [16] that constructs a dictionary of frequently
occurring substrings and replaces each occurrence with a representative symbol, andSequitur[4, 5]
that infers the hierarchical structure in a string by automatically constructing and applying grammar
rules for reduction of substrings. Such methods cannot always identify long range loop patterns

5

Benchmark Simple Tests Graph Spectrum TestIsomorphism Test Trace Length Time
(Processes) Records(size) (secs)
BT (121) 11×11 6-p stencil 11×11 6-p stencil 11×11 6-p stencil 50874 30.76

(2106KB)
SP (121) 11×11 6-p stencil 11×11 6-p stencil 11×11 6-p stencil 77414 49.16

(3365KB)
LU (128) 16×8 grid 16×8 grid 16×8 grid 203048 134.30

(9433KB)
CG (128) 3-p stencil 3-p stencil 3-p stencil 77978 47.89

16×2×2×2 grid (3224KB)
MG (128) 8×2×2×2×2 torus 8×2×2×2×2 torus 8×2×2×2×2 torus 9035 7.33

8×4×2×2 torus 8×4×2×2 torus 8×4×2×2 torus (386KB)
8×4×4 torus 8×4×4 torus 8×4×4 torus

Table 2. Identification of communication topologies of NAS b enchmarks. Unique topologies
are listed in boldface with other isomorphic topologies bel ow them.

because of early reductions. An alternate approach is to attempt to identify the longest matching
substring first. However, simple algorithms to achieve thisare at least quadratic in trace length
and hence impractical for long traces. A practical tradeoffis to limit the window size for substring
matching, which again risks missing long span loops [6].

Our research took a novel approach to identifying the loop structure in a trace based on Crochemore’s
algorithm [2] that is widely used in pattern analysis in bioinformatics. This algorithm can identify
all repeats in a string, including tandem, split, and overlapping repeats, inO(nlogn) time. A frame-
work was developed in this research to discover the loop neststructure by recursively identifying
the longest span tandem repeats in a trace. The procedure identifies the optimal (or most compact)
loop nest in terms of the span of the trace covered by loop nests and the size of the compressed loop
nest representation. However, the execution time was unacceptable for long traces; processing of
a trace consisting of approximately 320K MPI calls took over31 hours.

The results motivated us to develop a greedy procedure whichintuitively works bottom up -
it selectively identifies and reduces the shorter span innerloops and replaces them with a single
symbol, before discovering the longer span outer loops. While the loop nest discovered by the
greedy algorithm may not be optimal, it has well defined theoretical properties. A key analytical
result is that the reduction of a shorter span inner loop as prescribed in the greedy algorithm can
impact the discovery of a longer span outer loop only in the following way: if the optimal outer
loop isLo then a corresponding loopLg will be identified despite the reduction of an inner loop.
Lo andLg have identical but possibly reordered trace symbols, butLg may have up to 2 less loop
iterations thanLo. Hence, the loop structure discovered by the greedy algorithm isnear optimal.
The theoretical basis for this procedure is treated in depthin [15].

The optimal and greedy loop nest discovery procedures were implemented and employed to
discover the loop nests in the MPI traces of NAS benchmarks. The key results are listed in Table 3.
As expected, the optimal algorithm discovered perfect loopnests as validated by direct observation.

6

The loop nests discovered by the greedy algorithm were, in fact, identical to the optimal loop nests
except for a minor difference in the case of CG benchmark - thecompressed trace had 21 symbols
instead of 10 and the loop structure was slightly different.However, the time for greedy loop
discovery was dramatically lower, down from 31 hours to 61 seconds for one trace. To the best of
our knowledge, this is the first effort toward extracting complete loop nests from execution traces.

Raw Compression Time Trace Span Compressed Compression
Name Trace Greedy Optimal Major Loop Structure Covered Trace Ratio

Length (secs) (secs) by Loops Length
BT B/C 17106 8.91 311.18 (85)200 = (13 + (4)3 + ... + (4)3)200 99.38% 44 388.77
SP B/C 26888 7.61 747.73 67400 99.67% 89 302.11
*CG B/C 41954 8.48 2021.78 (552)75 = ((21)26 + 6)75 98.68% 10 4195.4
MG B 8909 8.64 113.48 (416)20 93.39% 590 15.1
MG C 10047 10.88 144.54 (470)20 93.56% 648 15.5
LU B 203048 33.16 44204.82 (812)249 = ((4)100 + (4)100 + 12)249 99.58% 63 3222.98
LU C 323048 61.9 113890.21 (1292)249 = ((4)160 + (4)160 + 12)249 99.58% 63 5127.75

Table 3. Results for optimal and greedy compression procedu res

4 Construction of performance skeletons

The final step in building a performance skeleton is converting a logicalized and compressed
trace into an executable program that recreates the behavior represented in the trace. The trace at
this stage consists of a loop nest with loop elements consisting of a series of symbols, each symbol
representing an MPI Call or computation of a certain duration of time. The trace is converted to
executableC code with the following basic steps:

• The loop nest in the trace is converted to a program loop nest with the number of iterations
reduced to match the desired skeleton execution time.

• The collective and point-to-point communication calls in the trace are converted to MPI
communication calls that operate on synthetic data. The point to point calls generate a global
stencil communication pattern matching the application topology.

• The computation sections are replaced by synthetic computation code of equal duration.

Note that the procedure is simplistic with respect to reproducing computation. The instruction
mix may be different and memory behavior is not reproduced. This is a limitation of the current
work although memory skeletons have been investigated separately in [13].

A direct conversion of MPI trace symbols to MPI calls can result in executable code that may
deadlock. The key issues in ensuring deadlock free communication in a skeleton program are as
follows:

1. Identifying local communication Most MPI calls in a logical trace are matched: there is
a Recvin the trace corresponding to everySend. We refer to these calls asglobal and their
inclusion in the performance skeleton will lead to a stencilcommunication pattern across
executing nodes. However, it is possible that some unmatched MPI Send/Recv calls may
exist in a trace even when there is a dominant global communication pattern, i.e. there may

7

be Send to WESTin the trace but no correspondingSend to EAST. Such calls are labeled
local and either removed or matched with synthetically generatedcalls. While local calls
imply inaccuracy, they are rare in structured codes and necessary to ensure deadlock free
execution. The procedure for marking communication calls as local or global is outlined in
Figure 3. It is based on the basic deadlock free patterns of point to point communication
which are 1) a non blocking Send/Recv with a matching Recv/Send before a corresponding
Wait and 2) One or more blocking Send/Recv calls followed by matching Recv/Send calls.
Note that in the latter case, the code generated for end nodesin the stencil is different from
others, e.g. Send followed by Recv, when it is Recv followed by Send for all other nodes.

2. Unbalanced global communication Even when a pair of communication calls is matched,
it may not be balanced, meaning an MPI Send/Receive and its corresponding MPI Re-
ceive/Send may not be equal in size. Analysis is employed to identify these and force a
match, e.g., by using the median message size of a Send and Recv.

while next-call= First unmarked Send or Recv call in the code existsdo
if next-callis a non-blocking iSend (iRecv)then

Let match-waitbe the corresponding matching Wait call.
Let match-callbe the next matching Recv/iRecv (Send/iSend) in the code.
if match-callis aftermatch-waitor match-waitor match-calldoes not existthen

Mark next-callas local communication.
else

Mark next-callandmatch-callas global communication.
end if

else
[next-callis a blocking Send (Recv).]
Let match-callbe the next matching Recv/Irecv (Send/Isend) in code.
if nomatch-callexists or there is a blocking Send or Recv betweennext-callandmatch-call
then

Mark next-callas local communication.
else

Mark next-callandmatch-callas global communication.
end if

end if
end while

Note: Matching calls have the same datatypes and match in terms of the directions in a communi-
cation pattern, e.g, logical East and West in a 2D torus.

Figure 3. Identification of Global and Local Send and Recv com munication calls

5 Experiments and results

A prototype framework for automatic construction of performance skeletons has been imple-
mented. Automatically generated skeletons were employed to estimate the execution time of cor-

8

responding applications in a variety of scenarios. Prediction accuracy was measured by comparing
the predicted performance with actual application performance.

5.1 Skeleton construction and properties

Skeletons were constructed on “PGH201”, which is a compute cluster composed of 10 Intel
Xeon dual CPU 1.7 GHz machines with 100 Mbps network interfaces connected by a full crossbar
Gigabit Switch. The execution was under MPICH 2.0 library. Experiments were conducted on 16-
process class C NAS benchmarks. The methodology employed allows skeletons to be constructed
to approximate a target skeleton execution time (or equivalently, a target ratio between application
and skeleton execution times). However, there is a minimum execution time for a “good skeleton”
which corresponds to the execution of a single iteration of the main execution loop. This also
determines the maximum possible ratio between the application and skeleton execution times. For
the experiments conducted, the objective was to build the longest running skeleton with execution
time under one minute or a skeleton that executes for approximately 10% of the application execu-
tion time, whichever was lower. The execution times of NAS benchmarks and their skeletons are
shown in Table 5.1. The table also shows the expected execution time ratio for the shortest running
good skeleton, i.e., the maximum possible application to skeleton runtime ratio.

Benchmark Execution Time(s) Execution Time Ratio
Name Skeleton Benchmark Actual skeleton Max possible
BT 45.6 1129.6 24.8 200
CG 40.3 607.6 15.1 75
MG 8.3 79.1 9.5 20
LU 39.1 637.4 16.3 249
SP 43.1 1069.2 24.8 400

Table 4. Benchmark and skeleton execution times for 16 proce ss class C NAS benchmarks

An application and the corresponding performance skeletonshould have approximately the same
percentage of time spent in computation and communication.These were measured for execution
under MPICH 2.0 as well as execution under Open MPI library. The results are presented in
Figure 4.

We note that the computation/communication time percentage is generally very close for bench-
marks and corresponding skeletons. One exception is the CG benchmark, where the difference
is especially striking for execution under Open MPI. We willpresent the performance results for
other benchmarks first and then specifically analyze the CG benchmark.

5.2 Prediction across MPI libraries and cluster architectures

Skeletons constructed with MPICH 2.0 on PGH201 cluster wereemployed to predict perfor-
mance under Open MPI library and on a different cluster called “Shark” which is composed of 24
SUN X2100 nodes with 2.2 GHz dual core AMD Opteron processor and 2 GB main memory. All
nodes are connected through 4x InfiniBand Network Interconnect and Gigabit Ethernet Network
Interconnect. The results are plotted in Figure 5.

9

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

BT bt CG cg MG mg LU lu SP sp

Computation Communication

(a) MPICH 2.0

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

BT bt CG cg MG mg LU lu SP sp

Computation Communication

(b) OpenMPI

Figure 4. Computation/communication time percentage for b enchmarks (uppercase) and skele-
tons (lowercase)

0

5

10

15

20

25

BT MG LU SP Average

E
rr

or
 (

%
)

(a) Across architectures (PGH201 to Shark)

0

5

10

15

20

25

BT MG LU SP Average

E
rr

or
 (

%
)

Shark PGH201

(b) Across libraries (MPICH 2.0 to OpenMPI)

Figure 5. Prediction results across different MPI librarie s/architectures

The prediction errors across the architectures average around 15%. The skeleton construction
procedure employed makes no effort to reproduce the preciseexecution or memory behavior and
only reproduces the execution times in skeletons with synthetic computation code. Hence, in-
accuracy is expected across clusters with different processor and memory architectures. In the
remainder of this paper, for validation purposes, the skeletons employed on Shark were “retuned”
implying that the length of the computation blocks was adjusted to maintain the original ratio
between reference skeleton and application execution.

Figure 5(b) shows the accuracy of performance predicted forOpenMPI with skeletons con-
structed with MPICH 2.0 on the two clusters. The errors are modest averaging below 10% for both
clusters.

10

5.3 Prediction for bandwidth sharing

Figure 6 shows results from performance prediction with network sharing simulated by arti-
ficially reducing the available bandwidth to 50, 20, and 5Mbytes/sec with Linuxiproute2. The
results are presented for the older MPICH 1.2.6 MPI library,in addition to the MPICH 2.0 library.
We consider the predictions to be excellent; the maximum prediction error is below 10% and the
avarage prediction error varies between 2% and 6% for different scenarios. The results validate
that the methodolgy employed models communication accurately,

0

2

4

6

8

10

BT MG LU Average

E
rr

or
 (

%
)

50M 20M 5M

(a) MPICH 1.2.6

0

2

4

6

8

10

BT MG LU SP Average

E
rr

or
 (

%
)

50M 20M 5M

(b) MPICH 2.0

Figure 6. Prediction results with reduced bandwidth availa bility

5.4 Prediction for processor sharing

A set of experiments were conducted to estimate the accuracyof performance prediction with
processor sharing. Each node has an independent CPU scheduler and no gang scheduling is em-
ployed. First, 16 process jobs were run on 8 and 4 processors.(The results are shown for Shark
in this case as all cases cannot run on PGH 201 because of limited memory). The results in Fig-
ure 7(a) show that the average prediction error is in around 10% for 8 processors and 5% for 4
processors, but the maximum errors are over 20% for 8 processors and over 30% for 4 processors.
Figure 7(b) plots the accuracy of performance prediction on16 processors with 2 or 4 synthetic
competing compute bound processes on each node. The prediction errors are rather high averaging
around 30%.

These results point out the limitation of the methodology employed as it does not model com-
putation, synchronization, or memory behavior accurately. Performance with independent CPU
schedulers and sharing is sensitive to these factors. We speculate that the main reason for the rel-
atively low accuracy in the above scenarios is that the skeleton construction procedure does not
model the idle periods caused due to synchronization accurately and some of them are replaced by
computations in skeletons. In the case of processor sharing, the idle periods will be effectively used
by other competing processes making the performance as predicted by skeletons to be inaccurate.
In this set of experiments, errors were the result of the application executing times being less than
those predicted by skeleton execution.

11

0

8

16

24

32

40

BT MG LU SP Average

E
rr

or
 (

%
)

8 Processors 4 Processors

(a) Execution of 16 process job on 8/4 processors (Shark)

0

10

20

30

40

50

60

BT MG LU SP Average

E
rr

or
 (

%
)

2 Competing Processes

4 Competing processes

(b) Execution with synthetic competing processes

Figure 7. Prediction results for processor sharing

5.5 CG benchmark

The prediction errors for the CG benchmark were significantly higher than the rest of the bench-
mark suite for most scenarios, and the results were not included in earlier charts in order to stream-
line the discussion. As examples, the prediction error for CG was around 4 times the average
for other benchmarks for prediction across libraries and prediction with reduced bandwidth. CG
benchmark is very communication intensive and it was observed that the performance of the CG
benchmark was very sensitive to the placement of processes on nodes. The communication topol-
ogy of CG benchmark is shown on the left in Figure 8. The table on the right shows the execution
time for various mappings of processes to nodes. The execution time varies by a factor of two
depending on the location of the processes. The skeleton construction procedure makes no effort
to manage placement of processes on nodes, and the placementfor the skeleton can be different
from the placement of the application. Since the performance is placement sensitive, the frame-
work cannot deliver meaningful results. No other benchmarkexamined exhibited such sensitivity
to process placement.

0 2 8 10

1 3 9 11

4 6 12 14

5 7 13 15

Config Node 1 Node 2 Node 3 Node 4 Time(s)
A 0,1,8,9 2,3,10,11 4,5,12,13 6,7,14,15 496
B 0,1,4,5 2,3,6,7 8,9,12,13 10,11,14,15 568
C 0,1,2,3 4,5,6,7 8,9,10,11 12,13,14,15 272

Figure 8. CG Topology and prediction results. The picture sh ows the process communication
topology. The table shows the execution time of the benchmar k for various placements of
processes on nodes.

12

6 Conclusions and future work

This paper has presented and evaluated a framework for the construction of performance skele-
tons for message passing MPI programs from execution traces. The objective is prediction of
application performance in scenarios where modeling of performance is challenging. A key inno-
vation is that the performance skeletons developed arecoordinated, i.e., a single SPMD skeleton
program is generated for a family of process level traces. The paper describes customized proce-
dures for logicalization and compression of execution traces that were developed for efficient and
scalable generation of performance skeletons.

Results are presented to validate the prediction ability ofperformance skeletons in different sce-
narios. It is observed that the skeletons are very effectivein predicting performance when dynamics
of communication change, e.g., when the bandwidth is limited or a new communication library is
deployed. However, the prediction power is limited in otherscenarios where the computation dy-
namics change, e.g., when multiple processes must share a processor. This is not unexpected as the
methodology captures the communication primitives precisely but attempts to recreate the periods
of execution coarsely. In particular, the instruction level execution and memory behavior are not
captured.

The fundamental limitation of this approach to performanceprediction is that it is only applica-
ble to structured applications with a repeating communication pattern for which a representative
input data set is sufficient to capture the execution behavior. However, this covers a large class of
scientific applications. The framework developed can be improved in several ways. The general
computation and memory behavior and the distribution of computation sections across the comput-
ing processes can be captured and incorporated in skeletons. We believe that these enhancements
will overcome the limitations that were pointed out in discussion of results.

Acknowledgement: This material is based upon work supported by the National Science Founda-
tion under Grant No. ACI- 0234328 and Grant No. CNS-0410797

References

[1] H. Casanova, G. Obertelli, F. Berman, and R. Wolski. The AppLeS Parameter Sweep Tem-
plate: User-level middleware for the grid. InSupercomputing 2000, pages 75–76, 2000.

[2] M. Crochemore. An optimal algorithm for computing the repetitions in a word.Inf. Process.
Lett., 12(5):244–250, 1981.

[3] D. Kerbyson and K. Barker. Automatic identification of application communication patterns
via templates. In18th International Conference on Parallel and DistributedComputing Sys-
tems, Las Vegas, NV, September 2005.

[4] C. Nevill-Manning, I. Witten, and D. Maulsby. Compression by induction of hierarchical
grammars. InData Compression Conference, pages 244–253, Snowbird, UT, 1994.

[5] C. G. Nevill-Manning and I. H. Witten. Sequitur.http://SEQUITUR.info.

13

[6] M. Noeth, F. Mueller, M. Schulz, and B. de Supinskii. Scalable compression and replay
of communication traces in massively parallel environments. In 21th IEEE International
Parallel and Distributed Processing Symposium (IPDPS 2007), Long Beach, CA, April 2007.

[7] R. Raman, M. Livny, and M. Solomon. Matchmaking: Distributed resource management
for high throughput computing. In7th IEEE International Symposium on High Performance
Distributed Computing, july 1998.

[8] A. Snavely, L. Carrington, and N. Wolter. A framework forperformance modeling and pre-
diction. InProceedings of Supercomputing 2002, 2002.

[9] S. Sodhi and J. Subhlok. Automatic construction and evaluation of performance skeletons. In
Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium
(IPDPS 2005), Denver, CO, April 2005.

[10] S. Sodhi, Q. Xu, and J. Subhlok. Performance predictionwith skeletons.Cluster Computing:
The Journal of Networks, Software Tools and Applications, 2007. Accepted.

[11] J. Subhlok, P. Lieu, and B. Lowekamp. Automatic node selection for high performance
applications on networks. InProceedings of the Seventh ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, pages 163–172, Atlanta, GA, May 1999.

[12] T. Tabe and Q. Stout. The use of the MPI communication library in the NAS Parallel Bench-
mark. Technical Report CSE-TR-386-99, Department of Computer Science, University of
Michigan, Nov 1999.

[13] A. Toomula and J. Subhlok. Replicating memory behaviorfor performance prediction. In
Proceedings of LCR 2004: The 7th Workshop on Languages, Compilers, and Run-time Sup-
port for Scalable Systems, Houston, TX, October 2004. Published in the ACM Digital Li-
brary.

[14] Q. Xu, R. Prithivathi, J. Subhlok, and R. Zheng. Logicalization of MPI communication traces.
Technical Report UH-CS-08-07, University of Houston, May 2008.

[15] Q. Xu and J. Subhlok. Efficient discovery of loop nests incommunication traces of parallel
programs. Technical Report UH-CS-08-08, University of Houston, May 2008.

[16] J. Ziv and A. Lempel. A universal algorithm for sequential data compression.IEEE Trans-
actions on Information Theory, 23(3):337–343, 1977.

14

