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Abstract

In this paper, we propose an online motion capture marker labeling approach for multiple interacting
articulated targets. Given hundreds of unlabeled motion capture markers from multiple articulated targets
that are interacting each other, our approach automatically labels these markers frame by frame, by fitting
rigid bodies and exploiting trained structure and motion models. Advantages of our approach include: 1)
our method is an online algorithm, which requires no user interaction once the algorithm starts. 2) Our
method is more robust than traditional the closest point-based approaches by automatically imposing the
structure and motion models. 3) Due to the use of the structure model which encodes the rigidity of each
articulated body of captured targets, our method can recover missing markers robustly. Our approach is
efficient and particularly suited for online computer animation and video game applications.
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Online Motion Capture Marker Labeling for
Multiple Interacting Articulated Targets∗

Qian Yu† , Qing Li, and Zhigang Deng

Abstract

In this paper, we propose an online motion capture marker labeling approach for multiple interacting articulated
targets. Given hundreds of unlabeled motion capture markers from multiple articulated targets that are interacting
each other, our approach automatically labels these markers frame by frame, by fitting rigid bodies and exploiting
trained structure and motion models. Advantages of our approach include: 1) our method is an online algorithm,
which requires no user interaction once the algorithm starts. 2) Our method is more robust than traditional the
closest point-based approaches by automatically imposing the structure and motion models. 3) Due to the use of
the structure model which encodes the rigidity of each articulated body of captured targets, our method can recover
missing markers robustly. Our approach is efficient and particularly suited for online computer animation and video
game applications.

Index Terms

Motion capture, Marker labeling.

I. INTRODUCTION

Motion capture has become one of the popularized methods for acquiring natural and subtle human motions in
entertainment industry and academia. Currently optical motion capture systems, which require a number of optical
markers attached to captured subjects, are widely used. Generally, a number of surrounding calibrated cameras
are employed to reconstruct 3D positions of markers automatically. Based on how markers are identified from
background, we can classify the optical motion capture systems into two types: active and passive. The active
system uses LED markers that pulse in-sync with the cameras’ digital shutters. More widely used passive systems
work with the markers made of a strongly retro-reflective material and an illumination source co-located with
each camera. The passive optical motion capture system can generate accurate 3D position data for the markers
with possibility of a sporadic marker missing due to occlusions. However, in complex capture scenarios, e.g.
capturing multiple interacting subjects, marker correspondences across frames often impose great challenges to the
systems. In this paper, we propose an efficient online marker labeling approach for multiple articulated targets
for the passive optical motion capture system. Given hundreds (or even thousands) of unlabeled markers from
the multiple captured targets that are interacting each other, our approach can automatically label these markers
robustly. When the sporadic marker missing happens, our approach can reliably identify and estimate these missing
markers. Figure 1 shows an input and an output of our approach.

Fig. 1: The left panel shows the snapshot of an input frame - ten persons are hugging. The right panel shows
animation results after the markers are automatically labeled by our approach.
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Comparing with the state of the art, our approach has the following distinctions: first, we aim to track and identify
markers for multiple interacting targets. Tracking a sparse number of markers from a single articulated target is
relatively simple because the markers often do not move much between consecutive frames due to a fairly high
capture rate, e.g. 120 frames per second, as such, a closest point in the next frame is very likely to be the correct
correspondence. However when an interaction among multiple targets exists (e.g., the dataset of ten people hugging
in Fig. 1), the closest point criteria easily leads to wrong correspondences. Second, our algorithm is able to label
markers online. The online feature is critical to various video games and computer animation applications. Third,
our algorithm is tolerant to the marker missing. To our knowledge, this is the first work that can label motion
capture markers online for the multiple interacting targets in complex capture scenarios.

In this approach, a captured subject is modeled as an articulated object composed of multiple rigid bodies that
encode its spatial consistency. This spatial consistency provides important cues to evaluate the marker correspon-
dences over time. Another important cue employed in our work is motion smoothness, which can significantly
speed up the marker labeling process. Due to the noise of the motion capture and the model drifting, both the
spatial consistency in the rigid body and the motion smoothness are needed to be updated continuously.

The remainder of this paper is organized as follows: in Section II, we introduce previous and related work. In
Section III, we introduce the structure models and the motion models, how to fit the rigid bodies, and how to deal
with the marker missing in our approach. In Section IV, we show various experiment results by our approach.
Conclusions and discussion are presented in Section V.

II. RELATED WORK

Motion capture (active or passive) is an important technique for many graphics applications. Unlike active
marker and magnetic systems, passive systems do not require users to wear wires or electronic equipment and
thus is more widely applied. However, the passive motion capture systems can only acquire 3D positions of the
markers without temporal correspondences between the markers in different frames. Assuming correct motion
marker correspondences are given, significant research efforts on the motion capture are focused on novel human
motion synthesis [1]–[3] and motion data reusing and editing [4]–[9]. Some other work is focused on estimating
joints’ positions and skeleton (topology and parameterization) for one articulated body [10]–[13].

In order to recover correct marker correspondences over time, the proximity of a marker’s 3D locations in
two consecutive frames has been extensively exploited, which leads to the closest point association assumption.
This assumption is reasonable when a capture rate is high (such as 120 frame/second) and limited interactions
happen between different articulated bodies or subjects [11], [14]–[16]. In the work of [11], [13], a post processing
method was proposed to separate the 3D trajectories of different markers into different clusters using the spectral
clustering [17] for one target. Yan and Pollefeys [18] proposed a similar correspondence matching method based on
the spectral clustering to recover the kinematics chain for a single human subject. In the work of [14], a multiple
hypothesis tracking algorithm was proposed to deal with marker tracking for a single subject. Most of the above
proposed methods employ the assumption that the marker proximity between two consecutive frames determines
the marker correspondences from a single target.

In addition to the proximity, rigidity within each articulated body is also an important cue to estimate the correct
correspondences, especially in the case of a heavy interaction between objects and in the case of a low capture rate.
The rigidity is often used to estimate parameters of skeleton and joints [11], [13]. The work of [12], [19] combines
the rigidity and the proximity for the online tracking for a single human body or for the case with little interaction
between different subjects. However, it has not been demonstrated that these approaches can handle complex motion
capture scenarios where multiple articulated targets (e.g. humans or animals) are captured simultaneously, and dense
interactions among the targets happen.

III. OUR APPROACH

A direct output obtained from an optical motion capture system consists of 3D positions of each marker over
time. In our approach, we apply two cues (rigidity and motion cues) to infer marker correspondences across frames.
An articulated captured subject is approximately regarded as a combination of rigid bodies, and a spatial cue lies
in the rigidity of articulated bodies. Ideally, relative positions of the markers on a rigid body keep fixed over time,
in other words, standard deviations of distances between the markers on the rigid body are expected to be close to
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zero. Based on this observation, our approach automatically constructs a set of rigid bodies from marker motion
data in a training stage. Furthermore, the rigidity of articulated bodies (termed as the structure model) is updated
over time.

The second cue is the motion smoothness of a marker in a short time span, which is useful to narrow down
legitimate candidates for the marker in the next frame. The motion smoothness can be conceptually regarded as a
characteristic for each marker. For example, the motion of a marker on a human torso is very different with that
of a marker on a human foot. Time variant motion characteristics of each marker (termed as the motion model) is
also updated over time.

Fig. 2: Schematic overview of this online marker labeling approach.

Before our online marker labeling approach starts, the structure model (for each rigid body) and the motion
model (for each marker) are initially trained. Once the training is done, the markers in a new motion capture frame
are automatically labeled based on the trained structure models and the motion models that is updated at each time
step. Figure 2 illustrates the procedure of our approach.

A. Model Training and Updating

In this section, we describe how the motion models and the structure models used in our approach are trained
and updated over time. In the training stage, we assume no interaction among multiple captured targets happens,
and typically motion capture systems operate at a high sampling rate, e.g. 120 Hz, we found that the heuristic
closest point rule can be effectively applied to find accurate marker correspondences if there is no abrupt motion or
interaction among subjects. In other words, assume the 3D position of a marker Mi at time step t−1 is represented
as M t−1

i , the correspondence of Mi at time step t is the one that is the closest to M t−1
i .

Fig. 3: The left panel shows a skeleton of a captured subject. The right panel shows the standard deviation of
marker-pair distances, where the brighter indicates the distance between two markers has smaller deviation, and
different colors indicate different rigid bodies.

The rigidity of a rigid body can be encoded as the standard deviations of marker-pair distances within the rigid
body over time. Therefore, our method clusters the markers into a number of the rigid bodies, based on the standard
deviations of the marker-pair distances. All motion frames in the training session are used to compute a distance
matrix D and its standard deviation matrix A for each captured subject. Dij is the mean of the distance between
the ith marker and the jth marker, and Aij is the standard deviation of the distance between the ith marker and the
jth marker. Based on the standard deviation matrix, we select groups of markers which have small group-internal
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standard deviation to form a rigid body. Note that the number of rigid bodies is fixed for tracking once trained. The
typical size (the number of the markers contained) of each rigid body is between three and eight in our experiments.

The standard deviation matrix of one captured subject in our dataset is visualized in Figure 3, where each
rigid body is indicated by different colors, and the standard deviation is truncated to infinity if it is larger than
a threshold. The distance matrix D will be used for validating the correspondences between consecutive frames,
since the marker-pair distances within one rigid body should not be changed over a short time span. Both D and
A are updated when a new frame is available as follows (Eq. 1 and 2):

Dt
ij = (

t∑
τ=t−T+1

√
||M τ

i −M τ
j ||2)/T (1)

Atij = σ(Dt
ij) (2)

In the above equations, T is the size of a sliding window used to update the structure model.
Due to a high capture rate, the motion of each marker within a small time span can be modeled as the motion

with constant velocity. We construct the motion model to reduce the number of legitimate candidates at next frame
and filter out the possible noisy 3D markers (outliers) caused by camera occlusions. The case of marker missing
is discussed in Section III-C. The 3D position of the marker at the next frame (time t) is estimated by the Kalman
filter as follows.

We denote xtk as a hidden state vector of a marker k at time t to be [x, y, z, ẋ, ẏ, ż] (position and velocity in
3D). We consider a linear kinematic model of constant velocity dynamics:

xt+1
k = Akx

t
k + wk (3)

where Ak is the transition matrix, and we assume wk to be a normal probability distribution, wk ∼ N(0, Qk).
The observation ytk = [x, y, z] contains the measurement of the marker’s position in 3D. The observation model is
represented as:

ytk = Hkx
t
k + vk (4)

where H is the measurement matrix and vk is a normal probability distribution, vk ∼ N(0, Rk).
Assume the estimated position of a marker, Mi, at time t is M̂i

t
, then the markers at time t whose Mahalanobis

distance to M̂ t
i is smaller than the threshold is regarded as legitimate candidates. Using this motion model, the

number of legitimate candidates for each marker is significantly reduced. Furthermore, to make this computation
tractable, if the number of candidates for a marker is larger than a pre-defined upper limit, the algorithm will only
take the best K candidates (K is a pre-defined constant). Actually, in our experiments, we found that the average
number of legitimate candidates per marker automatically chosen by the motion model varies from two to four.
Note that a marker at time t can be selected into the candidate sets of several markers. In Section III-B, we describe
how to solve this candidate conflict issue by fitting the rigid bodies.

B. Fitting rigid bodies

In this section, we describe how to assign correct labels {Li}Ni=1 to markers {M t
i }Ni=1 in a new coming frame

(time is t), given the assigned labels in the previous frames {Lji}Ni=1 (here j is from 1 to t−1), and the constructed
structure models D and A. First, based on the motion model and the labels of the markers in the previous frame,
we construct a candidate set for each marker M t

i . Second, since the number of candidates for each marker is
usually small and each rigid body is only composed of several markers (typically from three to eight markers), we
enumerate and evaluate all possible assignments and select the optimum assignment which achieves the maximum
score. Once one rigid body has been selected to be satisfied, the algorithm updates the other unsatisfied rigid bodies
(usually the neighbors) whose candidate sets are changed, and update the structure models and the motion models.
In this way, the algorithm iteratively satisfies the current best rigid body and reduces the number of unlabeled
markers. It is summarized in Algorithm 1.

In this procedure, we introduce a measurement (score) to evaluate how a rigid body is fit with a marker assignment.
The structure information lying in each rigid body provides the best evaluation of the fitting since the distance
between different markers in the rigid body does not change much between two consecutive frame. In other words,
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Algorithm 1 Fitting Rigid Bodies
Input: The labels at the previous frames, 3D positions of all markers in time t, the trained rigid body models D and A
Output: The new labels of all markers at current frame, the updated structure model, and the updated motion mod-
els

1: Based on the motion model (Eq.3 and Eq. 4), create the set of candidates for each marker M t
i at time t.

2: Based on D and A, motion markers are grouped into small rigid bodies {uri}ki=1.
3: Status(uri)=“unsatisfied” and NeedRecomputed(uri)=TRUE for i = 1...k.
4: while at least one rigid body is “unsatisfied” do
5: for ech rigid body uri do
6: if Status(uri) is “unsatisfied” AND NeedRecomputed(uri) is TRUE then
7: search for the best marker-label assignment within uri using an exhaustive search (Eq. 5)
8: Store the optimum assignment as OptAssign(uri), and its score as MaxScore(uri)
9: NeedRecomputed(uri)= FALSE.

10: end if
11: end for
12: r = argmax(MaxScore(uri)) for all uri satisfying Status(uri)=“unsatisfied”
13: status(r)=“satisfied”
14: for each “unsatisfied” rigid body uri do
15: if the candidate set of any marker of uri has intersection with the markers in OptAssign(r) then
16: Update the candidate set of corresponding markers of uri by removing common markers in OptAssign(r).
17: NeedRecomputed(uri)= TRUE.
18: end if
19: end for
20: end while
21: Update the structure model D and A (Eq. 1 and Eq. 2).
22: Update the motion model (Eq.3 and Eq. 4).

if the correct correspondence is selected, the distance matrix among the markers in that rigid body of the new frame
should be consistent with the distance matrix D learned in the structure model. Once we have one possible marker
assignment for the rigid body r in the new frame, we can compute the new distance matrix D′r of the rigid body
r. The score of this assignment is computed as follows (Eq. 5):

C =
∑
i,j

exp

(
−(Dr(i, j)−D′r(i, j))

2

2Ar(i, j)2

)
/N (5)

where N is the number of links in the rigid body. If a marker in this rigid body r has no assigned candidate,
D′r(i, j) will be assigned a constant large value.

C. Missing Marker Auto-Recovery

In a motion capture process, not every marker position at every time instant is tracked correctly: marker missing
happens sporadically. This is usually caused by the occlusions in the optical motion capture procedure. As such,
when a marker is missing, most likely this missing will continue for several frames, even up to tens of frames.

Our approach has a function of auto-recovering the missing markers, even the markers are missing for continuous
tens of frames. Its recovery procedure works as follows: when the Fitting-Rigid-Bodies algorithm (Algorithm 1) is
close to finish, remaining “unsatisfied” rigid bodies are regarded as the rigid bodies enclosing the missing markers.
Due to the high sample rate of the motion capture system, the displacement vectors of one marker to the other
markers in a rigid body in a small time span is approximately fixed. These displacement vectors can be acquired
from the previous frames of the rigid body. Based on this observation, if a marker in a rigid body is missing, given
the other markers in the rigid body and the previously acquired displacement vectors, we compute the average
3D position as an estimation of the missing marker. When the number of the missing markers of the rigid body
is larger, the accuracy of this recovery will decrease. In addition, our auto-recovery algorithm can also deal with
very noisy markers and ghost markers. The noise in inlier (healthy) markers is modeled with the Gaussian model
between the markers’ distance, as such, our algorithm automatically regards these very noisy markers or ghost
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markers as missing markers, because these markers will not be selected into candidate sets. Figure 4 illustrates the
missing marker auto-recovery in this approach.

Fig. 4: The left panel shows displace vectors of a rigid body. In the right panel,red links indicate the average displace
vectors relative to the missing point. And the estimation of the missing marker is the average of predictions from
known markers.

IV. RESULTS AND EVALUATIONS

The test data sets used in our experiments include two motion capture sequences. The first sequence with 1775
frame was captured when five captured persons dog piled in the middle, and each person was put 45 markers.
The second sequence with 1467 frames was captured when ten persons hugged together, and each person was put
47 markers. Both sequences are captured at 120 frames/second and contain intensive interactions among multiple
subjects, while marker sets used are different. Even with the aid of Vicon iQ motion capture processing package,
ground-truth marker labels (of the test data sets) are obtained by painstakingly manual work, which is the major
reason that we only have the limited test data sets for our experiments. Figure 5 shows snapshots of the test data
sets.

The input data to our approach are motion capture frames that are composed of a set of unlabeled 3D points
(except the first frame). Since our approach is designed as an online algorithm, the motion capture frames are fed
into our approach frame by frame. It is assumed that the markers in the first frame for each person is correctly
labeled, which is used to draw the skeleton of the human body. The marker tracking itself does not require any
physical meaning of the markers. We further assume the captured human subjects have enough motion between
different rigid bodies in the initial learning stage. Since the number of rigid bodies is fixed for the labeling once
trained, the initial correspondence is also used to validate the correctness of a rigid body clustering to avoid the
case that no enough inter rigid body motion exists in the initial learning stage. The first 50 frames are used for the
initial training. The assumption of no interaction among the subjects during the first 50 frames is satisfied for both
sequences. And we use the closest point criteria to establish the correspondences in the first 50 frames to initialize
the structure and motion models. If the closest point is not corresponding to the correct one, we manually adjust it.

Fig. 5: Snapshots of our datasets. The left shows a snapshot of the five-person dog pile dataset. The right shows a
snapshot of the ten-persons hug dataset.

In order to evaluate our method, we compared our approach with the closest point based approach that assumes
the correct correspondence is the closest point in the next frame. To make the situation more challenging, we
down-sampled the capture rate from 120 frames/second to 60 frames/second and so on. The down-sampling is
meaningful in practice, because usually 30 frame/second is enough to generate smooth animation and a low capture
rate requires less data bandwidth from an optical capture system. Comparison results are shown in Figure 6. Due
to the use of the structure and motion models, our method actually fits the new input data into the trained model
instead of associating it with the previous frame. Thus our method is able to recover the correct labels even when
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Fig. 6: Comparison results of our approach with the closest point based approach with/without down-sampling.

there exist some errors in previous frame. In contrast, the closest point method will lose tracks once errors happen.
As shown in Figure 6, the labeling results of our approach is significantly better than those of the closest point-based
approach. This gap is even enlarged if down-sampling is applied. Figure 7 shows several comparison results.

In order to evaluate the accuracy of missing marker auto-recovery provided by this approach, we conducted the
following experiments: several markers were randomly removed in the middle of motion capture sequences (up to
twenty continuous frames), then this approach was applied to identify and recover these missing markers. We tested
our approach in various ways by removing markers on different parts of human bodies and varying the number of
continuous missing frames. Figure 8 shows recovery errors in terms of “error over max distance in the rigid body”.
The max distance in the rigid body is defined as the longest marker-pair distance in the rigid body that the missing
marker belongs to.

All testings were done on a PC Workstation (Intel Xeon CPU 3.00GHz, 4.00GB of RAM). On an average, our
algorithm without any code optimization can process (label) one motion capture frame per captured subject in 227
millisecond.

V. DISCUSSION AND CONCLUSIONS

In this paper, we propose an online motion capture marker labeling approach for multiple articulated targets that
are interacting each other. An articulated target is adaptively decomposed into a group of rigid bodies, then motion
models (for each marker) and structure models (for each rigid body) are constructed and updated over time. After
the models are constructed, this online approach can automatically label hundreds of incoming unlabeled markers
frame by frame.

The advantages of our approach are as follows. First our method is an online algorithm which requires no
user interaction once a tracking starts. Second, our method automatically imposes two important constraints of
structure and motion for motion capture marker labeling. In other words, our method is designed to embed the new
observations into the structure model instead of associating them with the previous markers. Thus our method is
able to recover the correct correspondences even when certain measurement noises or errors exist in the previous
frame as long as the correct one is covered by the candidate set. Third, due to the use of the structure models
which encode the rigidity of each articulated body of captured targets, our method can recover the missing markers
robustly.

Although our approach generates significantly better results than the closest point-based approach, our approach
still has some limitations: first, our approach requires an initial learning stage, where motion capture sequences
have no interaction among the captured subjects. Second, if most of markers in a rigid body are missing in a motion
capture sequence, our approach cannot recover those missing markers reliably. Third, the running efficiency of our
approach can not achieve real-time performance on a single personal computer if the number of captured subjects
increases. This is largely due the exhaustive search for matching each rigid body. To alleviate this issue, we need
to improve the efficiency of the procedure of searching for the optimal correspondence of each rigid body. As a
future work, we plan to look into how to efficiently impose local motion smoothness instead of using any global
motion model for this speedup.
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Fig. 7: Frame comparison results of our approach with the closest point based approach. The left panel shows
plotted 3D marker data, the middle panel shows the labeled results by the closest point approach, and the right
panel shows the labeled results by our approach.

In the future, we plan to investigate whether introducing specific human motion models will improve this
approach. Since the markers on a human subject are not moving independently, we can remove the candidates
which conflict with reasonable human motion. Moreover, we are interested in looking into sample-based methods
to avoid enumerate the labeling for each rigid body. This becomes crucial when we have a denser marker layout for
each rigid body. We also plan to optimize the algorithms used in our approach to improve this online approach to
achieve real-time performance. For example, introducing the GPU based parallel computation for each rigid body
on each subject would be a promising way. Lastly, comprehensive evaluations on more complex motion capture
scenarios would be necessary.
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