

Stepping-Stone Detection via Request-Response
Traffic Analysis1

Shou-Hsuan Stephen Huang2

Robert Lychev3

Jianhua Yang4

Computer Science Department

University of Houston
Houston, TX, 77204, USA

http://www.cs.uh.edu

UH-CS-06-14
December 4, 2006

Keywords: Network security, intrusion detection, network traffic, stepping-stone, clustering, network request-response.

Abstract

In this paper, we propose a new method to detect stepping-stone intrusion by computing the linear-

ity between the numbers of send packets and the numbers of echo packets. The linearity of two relayed
connections is better than that of two non-relayed connections. We develop a connection-chain detection
procedure that may be used as a stepping-stone detection tool. Our procedure is based on analyzing cor-
relations between the frequencies at which cumulative numbers of packets are sent in outgoing connec-
tions and at which packets are sent in that of the incoming connections. The experiment and simulation
results show this method can resist intruders’ time and chaff evasion better than other approaches.

1 This project is supported in part by an REU grant from NSF (SCI-0453498) and DoD's ASSURE Program. The authors
would like to thank Scott Nielsen, Mykyta Fastovets for their participation in the experiments.
2 Department of Computer Science, University of Houston, E-mail: shuang@cs.uh.edu
3 Department of Computer Science, University of Massachusetts, E-mail: rlychev@umass.edu
4 Department of Mathematics and Computer Science, Bennett College, E-mail: jhyang@bennett.edu

Stepping-Stone Detection via Request-Response Traffic Analysis

Shou-Hsuan Stephen Huang1, Robert Lychev2, Jianhua Yang3

1Department of Computer Science, University of Houston
E-mail: shuang@cs.uh.edu

2Department of Computer Science, University of Massachusetts
E-mail: rlychev@umass.edu

3Department of Mathematics and Computer Science, Bennett College
E-mail: jhyang@bennett.edu

Abstract

In this paper, we propose a new method to detect step-

ping-stone intrusion by computing the linearity between
the numbers of send packets and the numbers of echo
packets. The linearity of two relayed connections is better
than that of two non-relayed connections. We develop a
connection-chain detection procedure that may be used as
a stepping-stone detection tool. Our procedure is based on
analyzing correlations between the frequencies at which
cumulative numbers of packets are sent in outgoing con-
nections and at which packets are sent in that of the in-
coming connections. The experiment and simulation re-
sults show this method can resist intruders’ time and chaff
evasion better than other approaches.

Keywords

Network security, intrusion detection, network traffic,
stepping-stone, clustering, network request-response.

1. Introduction

The study of detection and/or prevention of network-

based attacks requires much attention as perpetrators are
becoming more and more capable of compromising much
of critical information infrastructure that we so highly
depend on. Network-based attacks can be either interac-
tive, where a perpetrator is interested in stealing informa-
tion from another member of the network, or non-
interactive, where a perpetrator’s goal is to trigger a mali-
cious software or perform a denial-of-service attack on
another member of the network. Attackers can use a num-
ber of techniques to avoid revealing their identification
and location. Two of the most-commonly used evasion
measures include IP-spoofing and the construction of
stepping-stone chains. The latter involves an intruder
connecting to a victim indirectly through a sequence of
hosts called stepping-stones. Although, some work has
already been done to show a number of effective tech-
niques for tracing spoofed traffic [4, 3, 6, 7], effective

measures for tracking stepping-stone attacks are yet to be
found. The focus of our research is to address the step-
ping-stone detection problem, a portion of the stepping-
stone attack tracking problem, in interactive attacks.

The stepping-stone detection problem can be stated as
follows: when an adversary, Eve, lounges an interactive
attack on a victim, Bob, by forming a stepping-stone chain
via other members of the network, the challenge is to de-
termine whether any given member, Alice, belongs to that
chain while provably minimizing time, false positive and
false negative rates. Please note, while alias Eve refers to
a real person behind a specific machine, aliases Alice
and/or Bob may refer to stepping-stone and/or victim ma-
chines only. This is because there is no need for anyone to
be using the machines in the stepping-stone chain while
the attack is taking place, although the machines do need
to be turned on. Consider the following scenario. Bob was
discovered to be a victim of an interactive attack whose
immediate source was found to be machine C. Simply
shutting off C from the network is effective in stopping the
attack, but it does not do anything to ensure that the adver-
sary Eve is caught, since C could be just the immediate
stepping-stone, Alice, used by Eve to indirectly connect to
Bob. However, with the ability to correctly determine
whether C is a stepping-stone or not, we can either go up
the chain to discover other stepping-stones and/or catch
Eve, or simply shut down C if it is not a stepping-stone (in
which case it must be Eve). In fact, even when it is not
known that an attack is launched, being able to correctly
determine whether any member of the network is a step-
ping-stone should allow for an effective way of policing
interactive attacks. Stepping-stone detection problem is a
very interesting and useful subject to study, but it must be
noted that just having the capability of even perfect step-
ping-stone detection is not enough to solve the stepping-
stone attack tracking problem. As explained in [12], to
track stepping-stone attacks one also needs to have correct
methods of serializing stepping-stones into a connection
chain.

Much research has already been done in this area, and,
ultimately, all established techniques of identifying a par-

 2

ticular host as a stepping-stone rely on finding strong cor-
relations between that host’s incoming and outgoing traf-
fic. Such correlations can be based on the log-in activity
[5, 8], packet content [9, 10], periodicity of network activ-
ity [15], the timing properties [11, 14], and the packet fre-
quency of the connections [1]. The first two techniques
are not practical because, respectively, it is conceivable
that Eve should be able to forge authentication sessions,
and, since most users use SSH instead of Telnet, it is not
clear how to correlate traffic that is encrypted as it is
passed from host to host. Eve can easily countermeasure
correlation techniques such as the one described in [15] by
introducing random time delays in between individual
and/or collections of packets—jittering. It was shown in
[2] that, in principle, there is no effective way for Eve to
avoid timing-based detection techniques such as the ones
described in [11,14]. However, this is true only under the
assumption that Eve’s jittering of the packets is independ-
ently and identically distributed and that the connection is
long-lived. Also, timing-based detection approaches are
prone to chaff—introduction of superfluous packets at
various stepping-stones. Although techniques based on
finding correlations between packet frequency of incom-
ing and outgoing traffic, as presented in [1], were shown
to be successful against jittering without the assumptions
that were necessary in [2], these techniques do not perform
well with chaffed traffic. Several effective algorithms to
detect stepping-stone chains with chaff and jittering have
been proposed in [16], but all of these methods require a
significant amount of intercepted packet in order to ensure
a small false positive and negative rate. It is yet to de-
velop a technique that is provably successful against jitter
and chaff with a reasonable false positive rate while re-
quiring the observation of a number of packets that is
within practical limits. Our goal is to develop such a tech-
nique.

The rest of this paper is arranged as the following. Sec-
tion 2 discusses our technical method to detect stepping-
stone. Section 3 gives the experimental setup. In Section 4,
we analyze the experimental results and present some dis-
cussions. Finally, we summarize the whole work and pre-
sent the future work in Section 5.

2. Technical Method

Our research is primarily inspired by algorithms dis-

cussed in [1, 19, 20]. As mentioned above techniques that
were discussed in [1] yielded pretty good results against
time jittering. The idea is that sufficiently long strong
correlations between the frequencies at which packets are
sent in outgoing connections and at which packets are re-
ceived in incoming connections should imply high prob-
ability that such connection pairs are stepping-stone wit-
ness. Vice versa should hold as well. However, in this
paper only correlations between streams with the same

direction were discussed. In other words, only the obser-
vation of traffic that is relayed from stepping-stone to
stepping-stone is required by technique they propose (see
Figure 1). We want to check whether our stepping-stone
detection algorithm that focus primarily on determining
such frequency relationships between request and response
streams yields results comparable to, with respect to false
positive and negative rates, what has been achieved in [1],
while requiring less packets to observe.

2.1 The Basics behind Our Approach

Our algorithm requires the observation of traffic that

holds Eve’s commands as well as the traffic that carries
Bob’s responses to Eve’s commands while going through
the stepping-stone Alice (see Figure 2). In other words,
we want to measure correlations of outgoing stream of
outgoing connections and outgoing stream of incoming
connections. Throughout the rest of this paper we will
refer to the former as the SEND and the latter as the
ECHO (see Figure 3).

Alice Eve
(adversary)

The connections observed

Figure

re

re
re

Eve
(adversary)

Figure

incoming st
outgoing: E

Incom
Connec

Figure 3

request

(stepping-stone)

Bob

1: Traffic is monitored in
only

quest

layed
sponse r

Alice
(stepping-stone)

 2: Traffic is monitored in

STEPPING
-STONE

ream
CHO

ing
tion

: SEND and ECHO stream
relayed
request
 (victim)

the same direction

relayed
request

esponse

Bob
(victim)

 both directions

outgoing: SEND

Outgoing
Connection

incoming stream

s are monitored

3

Our hypothesis is that the for a SEND-ECHO pair that
belongs to a real connection chain, the frequency with
which packets leave a stepping-stone in the ECHO stream
is linearly related to the frequency with which packets
leave a stepping-stone in the SEND stream. Therefore, if
a computer has a SEND-ECHO pair that satisfies a par-
ticular margin of linearity, there is a high probability that
it is a stepping-stone. Our hypothesis is based on the fact
that interactive attacks consist of adversaries obtaining
information from the victims for every command the for-
mer send. Thus, the faster the adversary is sending the
commands, the faster the victim is responding to those
commands.

In order to see how correlated a particular ECHO is to a
particular SEND stream we can study the data by relating
ECHO – SEND versus ECHO + SEND (respectively, the
difference and the sum of the number of packets in the
ECHO stream and the number of packets in the SEND
stream). This allows us to look at the packet frequency
relationship between request and response traffic, where
we can treat ECHO + SEND as the time and ECHO –
SEND as the variable of interest. In this space, SEND-
ECHO pair that belongs to a real connection chain should
yield a curve that strongly resembles a line and is rela-
tively smooth. The latter and the former properties may
be quantified by measuring the correlation coefficient and
the average distance of the curve from its linear fit respec-
tively. It should be noted that we cannot expect the ideal
case which would yield a truly linear curve because it can-
not be predicted what the victim’s responses in the ECHO
streams may be. The quantity of the packets in this stream
may vary greatly.

2.2 Computing Correlation Coefficient

The two most popular methods for obtaining r, which is

the correlation coefficient, are the Spearman's Rank Cor-
relation Coefficient and the Product-Moment Correlation
Coefficient. However, we use Excel’s CORREL() func-
tion which takes as input two arrays of equal length and
outputs a correlation coefficient r regarding the input ar-
rays as a number between -1 and +1. If r = -1, then there
is a perfect negative correlation; if r = 1, then you have a
perfect positive correlation. If r = 0, then the correlation
is zero and there is no relationship between the variables.
Here is how Excel computes r [17]:

1. Transform the values in each of the arrays of data
into z-scores. The latter is a measure of how far
any particular value is from the mean of the en-
tire array in units of standard deviations.

2. Multiply together the corresponding z-scores in
each array.

3. Sum all the results produced by step 2.

Divide the result obtained in step 3 by the total number
of pairs of values in the input arrays. The average of the
figures obtained in step 2 is thus obtained. This process
will always produce a number between -1.00 and +1.00.

2.3 Measuring the Smoothness of a Curve

As stated above, the smoothness of a curve can be
measured by calculating the average distance of the curve
from its linear fit. The following formula is a standard
way to calculate the slope m and the y-intercept b of the
line y = mx + b, where x = E+S, and y = E-S [18].

22)(
)(

∑∑
∑ ∑ ∑

−
−

=
xxn

yxxyn
m ,

and

n
xmy

b ∑ ∑−
= .

Given the slope-intercept form of a linear fit of a curve,
it is trivial to measure the average distance of that curve
from this line.

3. Experimental Setup

We performed two types of experiments: typing and

secret-stealing. Both experiments involved 2-3 individu-
als logging onto 2-3 distinct remote hosts via SSH through
a single stepping-stone, located at University of Houston,
Texas, from three different hosts. The stepping-stone
computer was running our software that was monitoring
the streams of interest and recording packets in those
streams. At the end of the experiment our software would
relate each ECHO stream to each SEND stream in the
space of ECHO – SEND versus ECHO + SEND and out-
put it to a file. These files were later analyzed via Excel
based on the procedures described 2.2 and 2.3 above. The
point of these experiments was to see if we can distinguish
connection chains that go through the same stepping-stone
and carry traffic of users who perform similar operations
at the same time. The idea here is that if it’s possible to
correctly distinguish connection chains in such a situation,
then our procedures should work very well in situations
where there is only one connection chain and many other
completely unrelated incoming and outgoing connections.
Further experimentation if this idea of ours is correct.

The typing experiment consisted of the participants
opening a text editor on a victim computer and typing up
15-minutes worth of text. The following are the connec-
tion chains:

Jianhua: home computer (via SBC) stepping-stone

themis.cs.uh.edu Mexico
Robert: UH-TLC acl08.cs.uh.edu stepping-stone

UMASS

 4

Scott: UH-TLC stepping-stone TAMU

For the first three trials all participants were to type

identical texts simultaneously although at slightly different
rate. The last trial involved all three individuals typing
different texts at different rates and not simultaneously.
UMASS is a host located in University of Massachusetts,
and TAMU is a host located in Texas A&M University.

The file downloading experiment consisted of the par-
ticipants searching for a file on a victim computer by go-
ing through a number of directories that contained fake
files. The test directory, consisting of the test files, was
prepared in advance. The target file was copied onto the
attacker’s machine upon discovery. This experiment was
repeated three times. The following are the connection
chains:

Jianhua: cs.uh.edu stepping-stone bayou Mexico
Robert: TLC2 acl08.cs.uh.edu stepping-stone

UMASS
Scott: TLC2 stepping-stone TAMU

We found that implementing time-jittering and chaff is
more complicated. Since we were not able to obtain SST
from Guan Yong et al. [13], we decided to simulate time-
jittering and chaff capabilities by changing the results that
we obtain from regular experiments and performing the
same analysis on the changed data as we usually do on the
regular data.

The time-jittering and chaff were implemented to take
place during the last portion of stepping-stone experi-
ments. It is more convenient to introduce perturbations to
the data while the program that records the packet data is
still running because packet data is organized into a matrix
that is easier to handle. For every stream, SEND and
ECHO, of every connection the time-jittering perturbation
is introduced as an addition of a randomly-chosen time
extension, limited by a pre-specified limit, to the time
stamps of the packet record. Not every packet record was
thus time-jittered; every packet had a probability of only
one-half to be time-jittered. Therefore, at least one-half of
all packet records had their time-stamp be increased by a
time chosen uniformly between 0 and some pre-specified
limit. Microsecond resolution was used.

For every stream, SEND and ECHO, of every connec-
tion the chaff perturbation is introduced as an addition of
packets, whose amount is limited by a pre-specified
amount, to the original stream that is recorded inside a
matrix. Two different ways of chaff were performed. The
first technique consisted of generating a stream of super-
fluous packets, whose capture-time difference is a random
variable with a uniform distribution in the interval of 100-
900 thousand microseconds, and merging this stream with
an actual stream of packets that was recorded during the
experiment. The second technique consisted of inserting a

random number of superfluous packets, ranging from 1-
20, into pseudo-randomly-chosen, with probability of .05-
.10, inter-packet time intervals of the original packet
stream. For both techniques, such parameters represent
the worst-case scenario where the most chaff is intro-
duced. Experiments performed with other time limits are
not discussed here.

4. Analysis and Discussion

The main assumption for our analysis is that the rela-

tionship between E-S and E+S should be linear. As the
reader will see, this assumption is justified by the looks of
the curves of the plots and each curve’s correlation coeffi-
cient. In other words, not only do the curves look linear,
but correlation coefficients, computed using the procedure
described in Section 2.2, for the correlation coefficients of
the curves that correspond to real connection chains are
always above 90%. The fact allows us to use the proce-
dure described in Section 2.3 in order to measure the
smoothness of the curves. It makes sense that the correla-
tion coefficient for experiments without time-jittering and
chaff is positive because our whole study is focused on
interactive attacks, where Eve will get back more packets
from Bob than she sends to Bob. However, this is not the
case for experiments with time-jittering and chaff simula-
tions.

4.1 Basic Experiments

It turns out that for both types of the experiments with-

out time-jittering and chaff the packet data of ECHO
stream of a particular participant yields the smoothest
curve when related to the packet data of SEND stream of
that user. This can be seen just by looking at the curves on
the plots of ECHO - SEND versus ECHO + SEND of ex-
periments we took at the beginning of this project (see
Figures 4 and 5 below). Data obtained from experiment
shown on Figure 4 was not quantitatively analyzed as this
experiment does not really model a real interactive attack,
and basic qualitative analysis here yields the right result.
Data obtained from experiment shown on Figure 5 was
quantitatively analyzed with procedure described in 2.3
above. Results of this analysis are shown in the legend.
To summarize, the experiments shown in Figures 4 and 5
give reassuring results because they show that even when
participants perform the same set of operations at the same
time, it is possible to pair each SEND stream with its
complementary ECHO stream correctly.

Contrary to the strategy used in [1], based on the results
from both types of experiments, it is clear that the magni-
tude ECHO – SEND is not bounded for a real stepping-
stone chains. Even when participants typed the same
commands at the same time, due to differences in typing
speed, each participant yielded data with different upper

 5

boundaries. Therefore, it is not sufficient for magnitude of
ECHO – SEND to be within a particular limit in order to
qualify its corresponding request-response connection pair
as a part of a stepping-stone chain.

Results of the typing experiment showed that for some
connection chains there were more packets in the SEND
stream than in the ECHO stream (see Figure 4). Such
situation could be due to the fact that our software counted
retransmissions in the SEND stream, and/or because
ECHO stream consisted of fewer packets, each with a lar-
ger payload, than the SEND stream. The former was fixed
prior to the secret-stealing experiment, and the latter could
be due to the fact that the victim computer received more
than one packet from the stepping-stone chain before re-
plying. Overall, however, the number of packets in the
ECHO stream was about the same as the number of pack-
ets in the SEND stream for the typing experiment. At no
point were there more packets in the SEND stream than in
the ECHO stream for the secret-stealing experiment. All
curves based on data from this experiment had a clear
positive slope (see Figure 5).

)

)

)

(a

)

Figure 4: Correlations of the ECHO stream of a
particular participant (Jianhua, Robert, and Scott in
(a), (b), and (c), respectively) to the SEND streams of
all the participants in the typing experiment.

)
(b

(c
(a
(b
6

4.2 Detection with Time Jittering Evasion

We mostly looked at data that resulted from time-

jittering the SEND streams of various connections where
no time extension exceeded 200 thousand microseconds.
After undergoing perturbations, every SEND-stream-
packet-record vector was merged with data of various
ECHO streams. After time-jittering, while the order of
SEND packets with respect to each other was preserved,
the order of SEND packets with respect to ECHO packets
was not. This can be seen from Figure 6. All the SEND
packets were pushed so far ahead that the curve that corre-
sponds to time-jittered connection chain has a positive
slope and high negative slope at the beginning and the end
of the curve respectively. The last portion of the curve
cannot have a high negative slope because there should be
more packets in the ECHO stream than in the SEND
stream. This shortcoming causes our simulation to yield
unrealistic results because it does not take into account
that some ECHO packet can come only after their corre-
sponding SEND packets. As can be noticed from the be-
ginning portions of the curves that correspond to connec-
tion chains on Figures 6a and 6b, time-jittering does cause
noise, but it is insignificant. The ends of these curves also
exhibit the shortcomings of our simulation.

There are two procedures we could try to utilize in or-
der to preserve the order of SEND packets with respect to
ECHO packets. The first one deals with matching SEND
packets to ECHO packets by taking into account the time
it takes a packet to reach the victim and come back to the
adversary. This technique requires us to implement spe-
cial algorithms into our software, and it is not 100% reli-
able. The second one deals with matching the content of
the SEND packet to the content of the ECHO packets.
This technique requires us to use telnet, whose use is not
allowed for most servers and much time in order to match

the content of packets correctly. We think that the results
that we might obtain once we solve the shortcomings of
our current time-jittering simulation are not going to be
very interesting. We think so because in order for time-
jittering to really affect our results the order of SEND
packets with respect to the ECHO packets has to be sig-
nificantly disrupted. However, because some ECHO
packet can come only after their corresponding SEND
packets and vice versa, this disruption is not expected to
be significant. Therefore, we decided to shift our main
focus to implementing chaff simulation.

Figure 5: Correlations of the ECHO stream of a particular
participant (Jianhua, Robert, and Scott in (a), (b), and (c) re-
spectively) to the SEND streams of all the participants in the
secret-stealing experiment.

(a)

)
(b

7

4.3 Detection with Chaff

We looked at data th

SEND, the ECHO and bot
various connections. After
every vector with perturbed
various ECHO streams.
really makes a difference
ated two plots. The firs
ECHO data of a particular
chaffed SEND data (Figur
plot is used to compare th
ticular user to all the users’
complementary chaffed SE
8d). An important assumpt
only chaffs data of one use
chaffed data of one user to

As can be seen from Fig
does not introduce much n
the data a bit. When only t
curve has a negative slope.
is chaffed and the both stre
positive slope. It must be
ments with the first chaff te
curve that corresponded to
be distinguished due to les
in section 2.3.

As can be seen from F
nique is more aggressive
duces significant noise to t
when only the SEND stre
negative slope; when only
and when both streams are
tive slope. Here we canno
that corresponded to the re
scribed in section 2.3 becau
data so noisy that when o
with that participant’s com
analysis based on proced
yields a number that is lar
ECHO data related to the
(see Figures 8a and 8c). A
both ECHO and SEND st
8b and 8d). Such results, h
ing as they just signify that

of two users performing the same task at the same time)

Figure 6: Correlations
ticular participant (Jian
and c respectively) to
participants in the secr
time-jittered simulation

(c
 Evasion

at resulted from chaffing the
h SEND and ECHO streams of
 undergoing such perturbations,
 data was merged with data of

In order to see whether chaff
for each participant we gener-
t one is used to compare the
user to all the users’ regular and
es 7a, 7c, 8a, 8c). The second
e chaffed ECHO data of a par-
 regular SEND data and his/her
ND data (Figures 7b, 7d, 8b,
ion that we use here is that Eve
r, therefore we do not correlate
that of another user.
ure 7, the first chaff technique

oise to the data, but it stretches
he SEND stream is chaffed, the
 When only the ECHO stream
ams are chaffed, the curve has a
 mentioned that all the experi-
chnique yielded data where the
the real connection chain could
s noise by the means described

igure 8, the second chaff tech-
than the first one and it intro-
he data. Like in the first case,
am is chaffed, the curve has a
 the ECHO stream is chaffed
 chaffed, the curve has a posi-
t always distinguish the curve

al connection by the means de-
se thus-introduced chaff makes
ne’s ECHO data is correlated

plementary chaffed SEND data,
ure described in Section 2.3

ger than the curve of that users
other participant’s SEND data
 similar behavior happens when
reams are chaffed (see Figures
owever, are not very discourag-
 it is difficult to distinguish data

when at least one of the streams is chaffed. There is still a
way to distinguish these connections simply by eliminat-
ing contradiction that various plots may have. Thus, for
example, in the case that Robert’s SEND stream is chaffed,
if curve Scott to Scott in Figure 8c is closer to its liner fit
than curve Robert to Scott is in Figure 8a, then we know
that even though curve Robert to Scott may be closer to its
linear fit than curve Robert to Robert Chaffed is in Figure
8a, Robert’s ECHO data cannot correlate to Scott’s SEND.
By process of elimination, Robert’s ECHO data may then
only correlate to Robert’s chaffed SEND data. Such proc-
ess of elimination requires O(n2) operations, and it needs
to be checked whether it works with many connections.
This shows that the second chaff technique, as opposed to
the first one, is probably what Eve might want to use to
evade our stepping-stone detection approaches. Further
experimentation where participants are not performing the
same tasks should show how well our detection mecha-
nism works with chaffed connections.

of the ECHO stream of a par-
hua, Robert, and Scott in a, b,
the SEND streams of all the
et-stealing experiment with a
.

(a)

 (b)

8

Figure 7: Correlations
particular participant (Rob
and (d), respectively) to th
participants in the secre
chaff simulation via the 1st

(c)

(d)

 of the ECHO stream of a

ert and Scott in (a), (b), (c),
e SEND streams of all the

t-stealing experiment with
 technique.

Figure 8: Correlations of the ECHO stream of a
particular participant (Robert and Scott in (a), (b), (c),
and (d), respectively) to the SEND streams of all the
participants in the secret-stealing experiment with
chaff simulation via the 2nd technique.

(a)
 We have tried to see if our
fying results with respect to ch
ets that hold single characters
heavy packets, usually occurri
(b)
(c)
(d)
data would yield more satis-
aff by analyzing only pack-

. Such analysis ignores any
ng in the ECHO stream that

9

might be a result of a computer putting more than just one
character into a single packet. We were expecting that
such analysis would provide for an easier way to distin-
guish a curve that represents a real connection chain be-
cause such curve would oscillate about the x-axis within
particular limits, while every other curve would go beyond
those limits. This assumption makes sense because with-
out the “heavy” packets every packet in the ECHO stream
would be directly mapped to something that the adversary
typed into the prompt. Our experiments showed that
sometimes our assumptions are true and sometimes they
are wrong as depicted in Figures 9a and 9b respectively.
Further analysis of filtered streams shows no significant
differences from that of unfiltered streams and its discus-
sion is, therefore, omitted from this paper.

5. Conclusions

Based on our experiments we can with confidence say,
that procedure described in section 2.3 always works in
distinguishing connection chains that go through the same

stepping-stone and carry traffic of users who perform
similar operations at the same time when neither time-
jittering nor chaff is introduced. As discussed in section
4.3, we cannot say the same when chaff is involved. Fur-
ther investigation is needed in order to check whether it is
possible to resolve this issue by iteratively eliminating
contradictions as discussed at the end of Section 4.3.

Our project is not complete as more experimentation is
needed before and definitive claims could be regarding our
procedure for finding connection chains. Moreover, fur-
ther investigation is needed to check if our procedure for
establishing connection chains works well in situations
where there is only one connection chain and many other
completely unrelated incoming and outgoing connections.
After all these experiments, some theoretical research is
necessary in order to come up with the minimum number
of monitored packets in order to decided whether a com-
puter belongs to a connection chain or not (this is equiva-
lent to identifying it as a stepping-stone or not) with suffi-
cient negative and positive false rates.

Acknowledgement

This project is supported in part by an REU grant from
NSF (SCI-0453498) and DoD's ASSURE Program. The
authors would like to thank Scott Nielsen, Mykyta Fastov-
ets for their participation in the experiments.

References

(a)
[1] A. Blum, D. Song, and S. Venkataraman, “Detection of Inter-

active Stepping Stones: lgorithms and Confidence Bounds,”
in Proc. of 7th International Symposium on Recent Advances
in Intrusion Detection (RAID '04). SpringerLNCS 3224,
pages 258-277, 2004.

[2] D. Donoho, A.G. Flesia, U. Shankar, V. Paxson, J. Coit, S.
Staniford, “Multiscale Stepping-Stone Detection: Detecting
Pairs of Jittered Interactive Streams by Exploiting Maximum
Tolerable Delay,” in Fifth International Symposium on Re-
cent Advances in Intrusion Detection, Lecture Notes in Com-
puter Science 2516, 2002.

[3] B. Duwairi, A. Chakrabarti, and G. Manimaran, “An Effi-
cient Probabilistic Packet Marking Scheme for IP Trace-
back,” in Proc. of NETWORKING ‘04, LNCS 3042, pages
1263-1269, 2004.

[4] M.T. Goodrich, “Efficent Packet Marking for Large-Scale IP
Traceback,” in Proc. of ACM CCS ’02, pages 117-126, No-
vember 2002.

(b)
Figure 8: Correlations of the ECHO stream of a

particular participant (Robert and Scott in (a) and (b),
respectively) to their respective SEND streams after
filtering out the “heavy” packets in the secret-stealing
experiment.

[5] H.T. Jung, H.L. Kim, Y.M. Seo, G. Choe, S.L. Min, C.S.
Kim and K. Koh, “Caller Identification System in the Internet
Environment,” in Proc.of the UNIX Security Symposium,
pages 69-78, 1993.

[6] S. Savage, D. Wetherall, A. Karlin and T. Anderson, “Practi-
cal Network Support for IP Traceback,” in Proc. of the ACM
SIGCOMM ’00, April 2000.

[7] D. Song and A. Perrig, “Advanced and Authenticated Mark-
ing Scheme for IP Traceback,” in Proc. of IEEE INFOCOM
’01, April 2001.

 10

[8] S. Snapp, et al., “DIDS (Distributed Intrusion Detection Sys-
tem) – Motivation, Architecture and Early Prototype,” in
Proc. of 14th National Computer Security Conference, pages
167- 176, 1991.

[9] S. Staniford-Chen, L. T. Heberlein, “Holding Intruders Ac-
countable on the Internet,” in Proc. of the IEEE Symposium
on Security and Privacy, May 1995.

[10] X. Wang, D.S. Reeves, S.F. Wu and J. Yuill, “Sleepy Wa-
termark Tracing: An Active Network-Based Intrusion Re-
sponse Framework,” in Proc. of 16th International Confer-
ence on Information ecurity (IFIP/Sec’01), pages 369-384,
June 2001.

[11] X. Wang and D.S. Reeves, “Robust Correlation of En-
crypted Attack Traffic Through Stepping Stones by Manipu-
lation of Interpacket Delays,” in Proc. of ACM CCS ’03, Oc-
tober 2003.

[12] X. Wang, “The Loop Fallacy and Serialization in Tracing
Intrusion Connections through Stepping Stones,” in Proc. of
the 2004 ACM Symposium on Applied Computing, ACM
Press (2004)

[13] J. Xin, L. Zhang, B. Aswegan, J. Dickerson, T. Daniels, and
Y. Guan, "A Testbed for Evaluation and Analysis of Stepping
Stone Attack Attribution Techniques," in Proc. of the 2nd In-
ternational IEEE/Create-Net Conference on Testbeds and Re-
search Infrastructures for the Development of Networks and
Communities (TridentCom 2006), Barcelona, Spain, March
1-3, 2006.

[14] K. Yoda and H. Etoh, “Finding a Connection Chain for
Tracing Intruders,” in F. Guppens, Y. Deswarte, D. Gollmann
and M. Waidner, editors, 6th European Symposium on Re-
search in Computer Security—ESORICS 2000 LNCS-1795,
October 2000.

[15] Y. Zhang and V. Paxson, “Detecting Stepping Stones,” in
Proc. of the 9th USENIX Security Symposium, pages 171-
184, 2000.

[16] L. Zhang, A. G. Persaud, A. Johnson, Y. Guan, “Detection
of Stepping Stone Attack under Delay and Chaff Perturba-
tions," in 25th IEEE International Performance Computing
and Communications Conference, Pheonix, USA, Apr. 2006.

[17] BizEd, “Correlation Explained on time web.” URL:
http://www.bized.ac.uk/timeweb/crunching/crunch_relate_ex
pl.htm, accessed at 06-30-06.

[18] Clemson University, “Physics Tutorial: Linear Regression.”
URL: http://phoenix.phys.clemson.edu/tutorials/regression/
index.html, accessed at 06-30-06.

[19] Jianhua Yang, Shou-Hsuan Stephen Huang, “A Real-Time
Algorithm to Detect Long Connection Chains of Interactive
Terminal Sessions”, Proceedings of 3rd International Confer-
ence on Information Security (Infosecu’04), Shanghai, China,
November 2004, pp. 198-203.

[20] Jianhua Yang, Shou-Hsuan Stephen Huang: Matching TCP
Packets and Its Application to the Detection of Long Connec-
tion Chains, IEEE Proceedings of 19th International Confer-
ence on Advanced Information Networking and Applications
(AINA’05), Taipei, Taiwan, March 2005, pp. 1005-1010.

 11

	Abstract
	Abstract
	Keywords
	1. Introduction
	2. Technical Method
	3. Experimental Setup
	4. Analysis and Discussion
	5. Conclusions
	Acknowledgement
	References

