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Abstract 
 
In this paper, we propose a new method to detect step-

ping-stone intrusion by computing the linearity between 
the numbers of send packets and the numbers of echo 
packets. The linearity of two relayed connections is better 
than that of two non-relayed connections. We develop a 
connection-chain detection procedure that may be used as 
a stepping-stone detection tool. Our procedure is based on 
analyzing correlations between the frequencies at which 
cumulative numbers of packets are sent in outgoing con-
nections and at which packets are sent in that of the in-
coming connections. The experiment and simulation re-
sults show this method can resist intruders’ time and chaff 
evasion better than other approaches.  
 
Keywords 

Network security, intrusion detection, network traffic, 
stepping-stone, clustering, network request-response. 
 
1. Introduction 

 
The study of detection and/or prevention of network-

based attacks requires much attention as perpetrators are 
becoming more and more capable of compromising much 
of critical information infrastructure that we so highly 
depend on.  Network-based attacks can be either interac-
tive, where a perpetrator is interested in stealing informa-
tion from another member of the network, or non-
interactive, where a perpetrator’s goal is to trigger a mali-
cious software or perform a denial-of-service attack on 
another member of the network. Attackers can use a num-
ber of techniques to avoid revealing their identification 
and location.  Two of the most-commonly used evasion 
measures include IP-spoofing and the construction of 
stepping-stone chains.  The latter involves an intruder 
connecting to a victim indirectly through a sequence of 
hosts called stepping-stones.  Although, some work has 
already been done to show a number of effective tech-
niques for tracing spoofed traffic [4, 3, 6, 7], effective 

measures for tracking stepping-stone attacks are yet to be 
found.  The focus of our research is to address the step-
ping-stone detection problem, a portion of the stepping-
stone attack tracking problem, in interactive attacks. 

The stepping-stone detection problem can be stated as 
follows: when an adversary, Eve, lounges an interactive 
attack on a victim, Bob, by forming a stepping-stone chain 
via other members of the network, the challenge is to de-
termine whether any given member, Alice, belongs to that 
chain while provably minimizing time, false positive and 
false negative rates.  Please note, while alias Eve refers to 
a real person behind a specific machine, aliases Alice 
and/or Bob may refer to stepping-stone and/or victim ma-
chines only.  This is because there is no need for anyone to 
be using the machines in the stepping-stone chain while 
the attack is taking place, although the machines do need 
to be turned on.  Consider the following scenario. Bob was 
discovered to be a victim of an interactive attack whose 
immediate source was found to be machine C.  Simply 
shutting off C from the network is effective in stopping the 
attack, but it does not do anything to ensure that the adver-
sary Eve is caught, since C could be just the immediate 
stepping-stone, Alice, used by Eve to indirectly connect to 
Bob.  However, with the ability to correctly determine 
whether C is a stepping-stone or not, we can either go up 
the chain to discover other stepping-stones and/or catch 
Eve, or simply shut down C if it is not a stepping-stone (in 
which case it must be Eve).  In fact, even when it is not 
known that an attack is launched, being able to correctly 
determine whether any member of the network is a step-
ping-stone should allow for an effective way of policing 
interactive attacks. Stepping-stone detection problem is a 
very interesting and useful subject to study, but it must be 
noted that just having the capability of even perfect step-
ping-stone detection is not enough to solve the stepping-
stone attack tracking problem.  As explained in [12], to 
track stepping-stone attacks one also needs to have correct 
methods of serializing stepping-stones into a connection 
chain. 

Much research has already been done in this area, and, 
ultimately, all established techniques of identifying a par-
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ticular host as a stepping-stone rely on finding strong cor-
relations between that host’s incoming and outgoing traf-
fic.  Such correlations can be based on the log-in activity 
[5, 8], packet content [9, 10], periodicity of network activ-
ity [15], the timing properties [11, 14], and the packet fre-
quency of the connections [1].  The first two techniques 
are not practical because, respectively, it is conceivable 
that Eve should be able to forge authentication sessions, 
and, since most users use SSH instead of Telnet, it is not 
clear how to correlate traffic that is encrypted as it is 
passed from host to host.  Eve can easily countermeasure 
correlation techniques such as the one described in [15] by 
introducing random time delays in between individual 
and/or collections of packets—jittering.  It was shown in 
[2] that, in principle, there is no effective way for Eve to 
avoid timing-based detection techniques such as the ones 
described in [11,14].  However, this is true only under the 
assumption that Eve’s jittering of the packets is independ-
ently and identically distributed and that the connection is 
long-lived.  Also, timing-based detection approaches are 
prone to chaff—introduction of superfluous packets at 
various stepping-stones.  Although techniques based on 
finding correlations between packet frequency of incom-
ing and outgoing traffic, as presented in [1], were shown 
to be successful against jittering without the assumptions 
that were necessary in [2], these techniques do not perform 
well with chaffed traffic.  Several effective algorithms to 
detect stepping-stone chains with chaff and jittering have 
been proposed in [16], but all of these methods require a 
significant amount of intercepted packet in order to ensure 
a small false positive and negative rate.  It is yet to de-
velop a technique that is provably successful against jitter 
and chaff with a reasonable false positive rate while re-
quiring the observation of a number of packets that is 
within practical limits.  Our goal is to develop such a tech-
nique. 

The rest of this paper is arranged as the following. Sec-
tion 2 discusses our technical method to detect stepping-
stone. Section 3 gives the experimental setup. In Section 4, 
we analyze the experimental results and present some dis-
cussions. Finally, we summarize the whole work and pre-
sent the future work in Section 5. 
 
2. Technical Method  

 
Our research is primarily inspired by algorithms dis-

cussed in [1, 19, 20].  As mentioned above techniques that 
were discussed in [1] yielded pretty good results against 
time jittering.  The idea is that sufficiently long strong 
correlations between the frequencies at which packets are 
sent in outgoing connections and at which packets are re-
ceived in incoming connections should imply high prob-
ability that such connection pairs are stepping-stone wit-
ness.  Vice versa should hold as well.  However, in this 
paper only correlations between streams with the same 

direction were discussed.  In other words, only the obser-
vation of traffic that is relayed from stepping-stone to 
stepping-stone is required by technique they propose (see 
Figure 1).  We want to check whether our stepping-stone 
detection algorithm that focus primarily on determining 
such frequency relationships between request and response 
streams yields results comparable to, with respect to false 
positive and negative rates, what has been achieved in [1], 
while requiring less packets to observe. 
 
2.1 The Basics behind Our Approach 

 
Our algorithm requires the observation of traffic that 

holds Eve’s commands as well as the traffic that carries 
Bob’s responses to Eve’s commands while going through 
the stepping-stone Alice (see Figure 2).  In other words, 
we want to measure correlations of outgoing stream of 
outgoing connections and outgoing stream of incoming 
connections.  Throughout the rest of this paper we will 
refer to the former as the SEND and the latter as the 
ECHO (see Figure 3). 
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Our hypothesis is that the for a SEND-ECHO pair that 
belongs to a real connection chain, the frequency with 
which packets leave a stepping-stone in the ECHO stream 
is linearly related to the frequency with which packets 
leave a stepping-stone in the SEND stream.  Therefore, if 
a computer has a SEND-ECHO pair that satisfies a par-
ticular margin of linearity, there is a high probability that 
it is a stepping-stone.  Our hypothesis is based on the fact 
that interactive attacks consist of adversaries obtaining 
information from the victims for every command the for-
mer send.  Thus, the faster the adversary is sending the 
commands, the faster the victim is responding to those 
commands. 

In order to see how correlated a particular ECHO is to a 
particular SEND stream we can study the data by relating 
ECHO – SEND versus ECHO + SEND (respectively, the 
difference and the sum of the number of packets in the 
ECHO stream and the number of packets in the SEND 
stream).  This allows us to look at the packet frequency 
relationship between request and response traffic, where 
we can treat ECHO + SEND as the time and ECHO – 
SEND as the variable of interest.   In this space, SEND-
ECHO pair that belongs to a real connection chain should 
yield a curve that strongly resembles a line and is rela-
tively smooth.  The latter and the former properties may 
be quantified by measuring the correlation coefficient and 
the average distance of the curve from its linear fit respec-
tively.  It should be noted that we cannot expect the ideal 
case which would yield a truly linear curve because it can-
not be predicted what the victim’s responses in the ECHO 
streams may be.  The quantity of the packets in this stream 
may vary greatly.   

 
2.2 Computing Correlation Coefficient 

 
The two most popular methods for obtaining r, which is 

the correlation coefficient, are the Spearman's Rank Cor-
relation Coefficient and the Product-Moment Correlation 
Coefficient.  However, we use Excel’s CORREL() func-
tion which takes as input two arrays of equal length and 
outputs a correlation coefficient r regarding the input ar-
rays as a number between -1 and +1.  If r = -1, then there 
is a perfect negative correlation; if r = 1, then you have a 
perfect positive correlation. If r = 0, then the correlation 
is zero and there is no relationship between the variables.   
Here is how Excel computes r [17]: 

1. Transform the values in each of the arrays of data 
into z-scores.  The latter is a measure of how far 
any particular value is from the mean of the en-
tire array in units of standard deviations.  

2. Multiply together the corresponding z-scores in 
each array.  

3. Sum all the results produced by step 2. 

Divide the result obtained in step 3 by the total number 
of pairs of values in the input arrays. The average of the 
figures obtained in step 2 is thus obtained. This process 
will always produce a number between -1.00 and +1.00. 

 
2.3 Measuring the Smoothness of a Curve 
 

As stated above, the smoothness of a curve can be 
measured by calculating the average distance of the curve 
from its linear fit.  The following formula is a standard 
way to calculate the slope m and the y-intercept b of the 
line y = mx + b, where x = E+S, and y = E-S [18]. 
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Given the slope-intercept form of a linear fit of a curve, 
it is trivial to measure the average distance of that curve 
from this line. 
 
3. Experimental Setup 

 
We performed two types of experiments: typing and 

secret-stealing.  Both experiments involved 2-3 individu-
als logging onto 2-3 distinct remote hosts via SSH through 
a single stepping-stone, located at University of Houston, 
Texas, from three different hosts.  The stepping-stone 
computer was running our software that was monitoring 
the streams of interest and recording packets in those 
streams.  At the end of the experiment our software would 
relate each ECHO stream to each SEND stream in the 
space of ECHO – SEND versus ECHO + SEND and out-
put it to a file.  These files were later analyzed via Excel 
based on the procedures described 2.2 and 2.3 above.  The 
point of these experiments was to see if we can distinguish 
connection chains that go through the same stepping-stone 
and carry traffic of users who perform similar operations 
at the same time.  The idea here is that if it’s possible to 
correctly distinguish connection chains in such a situation, 
then our procedures should work very well in situations 
where there is only one connection chain and many other 
completely unrelated incoming and outgoing connections.  
Further experimentation if this idea of ours is correct. 

The typing experiment consisted of the participants 
opening a text editor on a victim computer and typing up 
15-minutes worth of text.  The following are the connec-
tion chains: 

  
Jianhua: home computer (via SBC)  stepping-stone  

themis.cs.uh.edu  Mexico 
Robert:  UH-TLC  acl08.cs.uh.edu  stepping-stone  

UMASS 
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Scott:  UH-TLC  stepping-stone  TAMU 
 
For the first three trials all participants were to type 

identical texts simultaneously although at slightly different 
rate.  The last trial involved all three individuals typing 
different texts at different rates and not simultaneously. 
UMASS is a host located in University of Massachusetts, 
and TAMU is a host located in Texas A&M University.  

The file downloading experiment consisted of the par-
ticipants searching for a file on a victim computer by go-
ing through a number of directories that contained fake 
files.  The test directory, consisting of the test files, was 
prepared in advance.  The target file was copied onto the 
attacker’s machine upon discovery.  This experiment was 
repeated three times. The following are the connection 
chains: 

 
Jianhua: cs.uh.edu  stepping-stone  bayou  Mexico 
Robert:  TLC2  acl08.cs.uh.edu  stepping-stone  

UMASS 
Scott:  TLC2  stepping-stone  TAMU 
 

We found that implementing time-jittering and chaff is 
more complicated.  Since we were not able to obtain SST 
from Guan Yong et al. [13], we decided to simulate time-
jittering and chaff capabilities by changing the results that 
we obtain from regular experiments and performing the 
same analysis on the changed data as we usually do on the 
regular data. 

The time-jittering and chaff were implemented to take 
place during the last portion of stepping-stone experi-
ments.  It is more convenient to introduce perturbations to 
the data while the program that records the packet data is 
still running because packet data is organized into a matrix 
that is easier to handle.  For every stream, SEND and 
ECHO, of every connection the time-jittering perturbation 
is introduced as an addition of a randomly-chosen time 
extension, limited by a pre-specified limit, to the time 
stamps of the packet record.  Not every packet record was 
thus time-jittered; every packet had a probability of only 
one-half to be time-jittered.  Therefore, at least one-half of 
all packet records had their time-stamp be increased by a 
time chosen uniformly between 0 and some pre-specified 
limit.  Microsecond resolution was used.   

For every stream, SEND and ECHO, of every connec-
tion the chaff perturbation is introduced as an addition of 
packets, whose amount is limited by a pre-specified 
amount, to the original stream that is recorded inside a 
matrix.  Two different ways of chaff were performed.  The 
first technique consisted of generating a stream of super-
fluous packets, whose capture-time difference is a random 
variable with a uniform distribution in the interval of 100-
900 thousand microseconds, and merging this stream with 
an actual stream of packets that was recorded during the 
experiment.  The second technique consisted of inserting a 

random number of superfluous packets, ranging from 1-
20, into pseudo-randomly-chosen, with probability of .05-
.10, inter-packet time intervals of the original packet 
stream.  For both techniques, such parameters represent 
the worst-case scenario where the most chaff is intro-
duced.  Experiments performed with other time limits are 
not discussed here.   

 
4. Analysis and Discussion 

 
The main assumption for our analysis is that the rela-

tionship between E-S and E+S should be linear.  As the 
reader will see, this assumption is justified by the looks of 
the curves of the plots and each curve’s correlation coeffi-
cient.  In other words, not only do the curves look linear, 
but correlation coefficients, computed using the procedure 
described in Section 2.2, for the correlation coefficients of 
the curves that correspond to real connection chains are 
always above 90%.  The fact allows us to use the proce-
dure described in Section 2.3 in order to measure the 
smoothness of the curves.  It makes sense that the correla-
tion coefficient for experiments without time-jittering and 
chaff is positive because our whole study is focused on 
interactive attacks, where Eve will get back more packets 
from Bob than she sends to Bob.  However, this is not the 
case for experiments with time-jittering and chaff simula-
tions. 

 
4.1 Basic Experiments 

 
It turns out that for both types of the experiments with-

out time-jittering and chaff the packet data of ECHO 
stream of a particular participant yields the smoothest 
curve when related to the packet data of SEND stream of 
that user.  This can be seen just by looking at the curves on 
the plots of ECHO - SEND versus ECHO + SEND of ex-
periments we took at the beginning of this project (see 
Figures 4 and 5 below).  Data obtained from experiment 
shown on Figure 4 was not quantitatively analyzed as this 
experiment does not really model a real interactive attack, 
and basic qualitative analysis here yields the right result.  
Data obtained from experiment shown on Figure 5 was 
quantitatively analyzed with procedure described in 2.3 
above.  Results of this analysis are shown in the legend.  
To summarize, the experiments shown in Figures 4 and 5 
give reassuring results because they show that even when 
participants perform the same set of operations at the same 
time, it is possible to pair each SEND stream with its 
complementary ECHO stream correctly.   

Contrary to the strategy used in [1], based on the results 
from both types of experiments, it is clear that the magni-
tude ECHO – SEND is not bounded for a real stepping-
stone chains.  Even when participants typed the same 
commands at the same time, due to differences in typing 
speed, each participant yielded data with different upper 

 5



boundaries.  Therefore, it is not sufficient for magnitude of 
ECHO – SEND to be within a particular limit in order to 
qualify its corresponding request-response connection pair 
as a part of a stepping-stone chain. 

Results of the typing experiment showed that for some 
connection chains there were more packets in the SEND 
stream than in the ECHO stream (see Figure 4).  Such 
situation could be due to the fact that our software counted 
retransmissions in the SEND stream, and/or because 
ECHO stream consisted of fewer packets, each with a lar-
ger payload, than the SEND stream.  The former was fixed 
prior to the secret-stealing experiment, and the latter could 
be due to the fact that the victim computer received more 
than one packet from the stepping-stone chain before re-
plying.  Overall, however, the number of packets in the 
ECHO stream was about the same as the number of pack-
ets in the SEND stream for the typing experiment.  At no 
point were there more packets in the SEND stream than in 
the ECHO stream for the secret-stealing experiment.  All 
curves based on data from this experiment had a clear 
positive slope (see Figure 5). 
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Figure 4:  Correlations of the ECHO stream of a 
particular participant (Jianhua, Robert, and Scott in
(a), (b), and (c), respectively) to the SEND streams of
all the participants in the typing experiment.
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4.2 Detection with Time Jittering Evasion 
 
We mostly looked at data that resulted from time-

jittering the SEND streams of various connections where 
no time extension exceeded 200 thousand microseconds.  
After undergoing perturbations, every SEND-stream-
packet-record vector was merged with data of various 
ECHO streams.  After time-jittering, while the order of 
SEND packets with respect to each other was preserved, 
the order of SEND packets with respect to ECHO packets 
was not.  This can be seen from Figure 6.  All the SEND 
packets were pushed so far ahead that the curve that corre-
sponds to time-jittered connection chain has a positive 
slope and high negative slope at the beginning and the end 
of the curve respectively.  The last portion of the curve 
cannot have a high negative slope because there should be 
more packets in the ECHO stream than in the SEND 
stream.  This shortcoming causes our simulation to yield 
unrealistic results because it does not take into account 
that some ECHO packet can come only after their corre-
sponding SEND packets.  As can be noticed from the be-
ginning portions of the curves that correspond to connec-
tion chains on Figures 6a and 6b, time-jittering does cause 
noise, but it is insignificant.  The ends of these curves also 
exhibit the shortcomings of our simulation.   

There are two procedures we could try to utilize in or-
der to preserve the order of SEND packets with respect to 
ECHO packets.  The first one deals with matching SEND 
packets to ECHO packets by taking into account the time 
it takes a packet to reach the victim and come back to the 
adversary.  This technique requires us to implement spe-
cial algorithms into our software, and it is not 100% reli-
able.  The second one deals with matching the content of 
the SEND packet to the content of the ECHO packets.  
This technique requires us to use telnet, whose use is not 
allowed for most servers and much time in order to match 

the content of packets correctly.  We think that the results 
that we might obtain once we solve the shortcomings of 
our current time-jittering simulation are not going to be 
very interesting.  We think so because in order for time-
jittering to really affect our results the order of SEND 
packets with respect to the ECHO packets has to be sig-
nificantly disrupted.  However, because some ECHO 
packet can come only after their corresponding SEND 
packets and vice versa, this disruption is not expected to 
be significant.  Therefore, we decided to shift our main 
focus to implementing chaff simulation.   

 

Figure 5:  Correlations of the ECHO stream of a particular 
participant (Jianhua, Robert, and Scott in (a), (b), and (c) re-
spectively) to the SEND streams of all the participants in the 
secret-stealing experiment. 
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4.3 Detection with Chaff
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Figure 8: Correlations of the ECHO stream of a 
particular participant (Robert and Scott in (a), (b), (c), 
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might be a result of a computer putting more than just one 
character into a single packet.  We were expecting that 
such analysis would provide for an easier way to distin-
guish a curve that represents a real connection chain be-
cause such curve would oscillate about the x-axis within 
particular limits, while every other curve would go beyond 
those limits.  This assumption makes sense because with-
out the “heavy” packets every packet in the ECHO stream 
would be directly mapped to something that the adversary 
typed into the prompt.  Our experiments showed that 
sometimes our assumptions are true and sometimes they 
are wrong as depicted in Figures 9a and 9b respectively.  
Further analysis of filtered streams shows no significant 
differences from that of unfiltered streams and its discus-
sion is, therefore, omitted from this paper. 

 
 

 
 
 
 

 
 
 

 
 
5. Conclusions 
 

Based on our experiments we can with confidence say, 
that procedure described in section 2.3 always works in 
distinguishing connection chains that go through the same 

stepping-stone and carry traffic of users who perform 
similar operations at the same time when neither time-
jittering nor chaff is introduced.  As discussed in section 
4.3, we cannot say the same when chaff is involved.  Fur-
ther investigation is needed in order to check whether it is 
possible to resolve this issue by iteratively eliminating 
contradictions as discussed at the end of Section 4.3.   

Our project is not complete as more experimentation is 
needed before and definitive claims could be regarding our 
procedure for finding connection chains. Moreover, fur-
ther investigation is needed to check if our procedure for 
establishing connection chains works well in situations 
where there is only one connection chain and many other 
completely unrelated incoming and outgoing connections.  
After all these experiments, some theoretical research is 
necessary in order to come up with the minimum number 
of monitored packets in order to decided whether a com-
puter belongs to a connection chain or not (this is equiva-
lent to identifying it as a stepping-stone or not) with suffi-
cient negative and positive false rates. 
 
Acknowledgement 

This project is supported in part by an REU grant from 
NSF (SCI-0453498) and DoD's ASSURE Program. The 
authors would like to thank Scott Nielsen, Mykyta Fastov-
ets for their participation in the experiments. 
 
References 

(a)  
[1] A. Blum, D. Song, and S. Venkataraman, “Detection of Inter-

active Stepping Stones: lgorithms and Confidence Bounds,” 
in Proc. of 7th International Symposium on Recent Advances 
in Intrusion Detection (RAID '04). SpringerLNCS 3224, 
pages 258-277, 2004. 

[2] D. Donoho, A.G. Flesia, U. Shankar, V. Paxson, J. Coit, S. 
Staniford, “Multiscale Stepping-Stone Detection: Detecting 
Pairs of Jittered Interactive Streams by Exploiting Maximum 
Tolerable Delay,” in Fifth International Symposium on Re-
cent Advances in Intrusion Detection, Lecture Notes in Com-
puter Science 2516, 2002. 

[3] B. Duwairi, A. Chakrabarti, and G. Manimaran, “An Effi-
cient Probabilistic Packet Marking Scheme for IP Trace-
back,” in Proc. of NETWORKING ‘04, LNCS 3042, pages 
1263-1269, 2004. 

[4] M.T. Goodrich, “Efficent Packet Marking for Large-Scale IP 
Traceback,” in Proc. of ACM CCS ’02, pages 117-126, No-
vember 2002. 

(b)
Figure 8: Correlations of the ECHO stream of a 

particular participant (Robert and Scott in (a) and (b), 
respectively) to their respective SEND streams after 
filtering out the “heavy” packets in the secret-stealing 
experiment.

[5] H.T. Jung, H.L. Kim, Y.M. Seo, G. Choe, S.L. Min, C.S. 
Kim and K. Koh, “Caller Identification System in the Internet 
Environment,” in Proc.of the UNIX Security Symposium, 
pages 69-78, 1993. 

[6] S. Savage, D. Wetherall, A. Karlin and T. Anderson, “Practi-
cal Network Support for IP Traceback,” in Proc. of the ACM 
SIGCOMM ’00, April 2000. 

[7] D. Song and A. Perrig, “Advanced and Authenticated Mark-
ing Scheme for IP Traceback,” in Proc. of IEEE INFOCOM 
’01, April 2001. 

 10



[8] S. Snapp, et al., “DIDS (Distributed Intrusion Detection Sys-
tem) – Motivation, Architecture and Early Prototype,” in 
Proc. of 14th National Computer Security Conference, pages 
167- 176, 1991. 

[9] S. Staniford-Chen, L. T. Heberlein, “Holding Intruders Ac-
countable on the Internet,” in Proc. of the IEEE Symposium 
on Security and Privacy, May 1995. 

[10] X. Wang, D.S. Reeves, S.F. Wu and J. Yuill, “Sleepy Wa-
termark Tracing: An Active Network-Based Intrusion Re-
sponse Framework,” in Proc. of 16th International Confer-
ence on Information ecurity (IFIP/Sec’01), pages 369-384, 
June 2001. 

[11] X. Wang and D.S. Reeves, “Robust Correlation of En-
crypted Attack Traffic Through Stepping Stones by Manipu-
lation of Interpacket Delays,” in Proc. of ACM CCS ’03, Oc-
tober 2003. 

[12] X. Wang, “The Loop Fallacy and Serialization in Tracing 
Intrusion Connections through Stepping Stones,” in Proc. of 
the 2004 ACM Symposium on Applied Computing, ACM 
Press (2004) 

[13] J. Xin, L. Zhang, B. Aswegan, J. Dickerson, T. Daniels, and 
Y. Guan, "A Testbed for Evaluation and Analysis of Stepping 
Stone Attack Attribution  Techniques," in Proc. of the 2nd In-
ternational IEEE/Create-Net Conference on Testbeds and Re-
search Infrastructures for the Development of Networks and 
Communities (TridentCom 2006), Barcelona, Spain, March 
1-3, 2006. 

[14] K. Yoda and H. Etoh, “Finding a Connection Chain for 
Tracing Intruders,” in F. Guppens, Y. Deswarte, D. Gollmann 
and M. Waidner, editors, 6th European Symposium on Re-
search in Computer Security—ESORICS 2000 LNCS-1795, 
October 2000. 

[15] Y. Zhang and V. Paxson, “Detecting Stepping Stones,” in 
Proc. of the 9th USENIX Security Symposium, pages 171-
184, 2000. 

[16] L. Zhang, A. G. Persaud, A. Johnson, Y. Guan, “Detection 
of Stepping Stone Attack under Delay and Chaff Perturba-
tions," in 25th IEEE International Performance Computing 
and Communications Conference, Pheonix, USA, Apr. 2006. 

[17] BizEd, “Correlation Explained on time web.” URL: 
http://www.bized.ac.uk/timeweb/crunching/crunch_relate_ex
pl.htm, accessed at 06-30-06. 

[18] Clemson University, “Physics Tutorial: Linear Regression.”  
URL: http://phoenix.phys.clemson.edu/tutorials/regression/ 
index.html, accessed at 06-30-06. 

[19] Jianhua Yang, Shou-Hsuan Stephen Huang, “A Real-Time 
Algorithm to Detect Long Connection Chains of Interactive 
Terminal Sessions”, Proceedings of 3rd International Confer-
ence on Information Security (Infosecu’04), Shanghai, China, 
November 2004, pp. 198-203.  

[20] Jianhua Yang, Shou-Hsuan Stephen Huang: Matching TCP 
Packets and Its Application to the Detection of Long Connec-
tion Chains, IEEE Proceedings of 19th International Confer-
ence on Advanced Information Networking and Applications 
(AINA’05), Taipei, Taiwan, March 2005, pp. 1005-1010. 

 11


	Abstract
	Abstract
	Keywords
	1. Introduction
	2. Technical Method
	3. Experimental Setup
	4. Analysis and Discussion
	5. Conclusions
	Acknowledgement
	References

