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Abstract 

 
We present a stream tapping protocol that involves clients in the video distribution 
process.  As in conventional stream tapping, our protocol lets new clients tap the most 
recent broadcast of the video they are watching.  While conventional stream tapping 
required the server to send to these clients the part of the video they missed, our protocol 
delegates this task to the clients that are already watching the video, thus greatly reducing 
the workload of the server.  Unlike previous solutions involving clients in the video 
distribution process, our protocol works with clients that can only upload video data at a 
fraction of the video consumption rate and includes a mechanism to control its network 
bandwidth consumption. 
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Abstract 
 

We present a stream tapping protocol that involves clients in the video distribution process.  As in 
conventional stream tapping, our protocol lets new clients tap the most recent broadcast of the 
video they are watching.  While conventional stream tapping required the server to send to these 
clients the part of the video they missed, our protocol delegates this task to the clients that are 
already watching the video, thus greatly reducing the workload of the server.  Unlike previous 
solutions involving clients in the video distribution process, our protocol works with clients that 
can only upload video data at a fraction of the video consumption rate and includes a mechanism 
to control its network bandwidth consumption. 

I. INTRODUCTION 

Distributing videos on demand is a costly proposition, mostly because of the high 
bandwidth requirements of the service.  Assuming that the videos are in MPEG-2 format, 
each user request will require the delivery of approximately six megabits of data per 
second.  Hence, a video server allocating a separate stream of data to each request would 
need an aggregate bandwidth of six gigabits per second to accommodate one thousand 
overlapping requests. 

This situation has led to numerous proposals aimed at reducing the bandwidth 
requirements of VOD services.  These proposals can be broadly classified into two 
groups.  Proposals in the first group are said to be proactive because they distribute each 
video according to a fixed schedule that is not affected by the presence–or the absence–of 
requests for that video.  They are also known as broadcasting protocols.  Other solutions 
are purely reactive: they only transmit data in response to a specific customer request.  
Unlike proactive protocols, reactive protocols do not consume bandwidth in the absence 
of customer requests. 

Nearly all these proposals assume a clear separation of functions between the server, 
which distributes the video, and the customers, who watch it on their personal computers 
or on their television sets.  They do not take advantage of the upstream bandwidth of the 
clients to lower thee server’s workload. 

The stream tapping protocol we present here is the first protocol that can harness the 
collective bandwidth of clients with limited individual upstream bandwidths.  As in  
conventional stream tapping, our protocol requires the server to start a new video 
broadcast whenever a client cannot get enough video data by “tapping” a previous 
broadcast of the same video.   Unlike conventional stream tapping, our protocol uses the 
available upstream bandwidth of previous clients to reduce the amount of video data that 
the server will still have to send to the clients that “tap” a previous broadcast of the video. 
As we will see, delegating these tasks to the clients results in a dramatic reduction of the 
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Fig. 1.  How chaining works. 

server workload at medium to high request arrival rates.   
 

II.  PREVIOUS WORK 

Chaining [4] was the first video distribution protocol to take advantage of the upstream 
bandwidth of its clients.  It constructs chains of clients such that (a) the first client in the 
chain receives its data from the server and (b) subsequent clients receive their data from 
their immediate predecessor.  As a result, video data are “pipelined” through the clients 
belonging to the same chain.  Since chaining only requires clients to have very small data 
buffers, a new chain has to be restarted every time the time interval between two 
successive clients exceeds the capacity β of the buffer of the first client.  Fig. 1 shows 
three sample client requests.  Since client a is the first customer, it will get all its data 
from the server. As client b arrives less than β minutes after customer a, it can receive all 
its data from client a.  Finally client c arrives more than β minutes after client a and must 
be serviced directly by the server. 

The cooperative video distribution protocol [2] extends the chaining protocol by 
taking advantage of the larger buffer sizes of modern clients.  If all clients have buffers 
large enough to store the entire video, the server will never have to transmit video data at 
more than the video consumption rate. 

Stream tapping [1] requires each client set-top box to have a buffer capable of storing 
at least 10 to 15 minutes of video data and to be able to receive data at at least twice the  
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Fig. 2.  How stream tapping works. 

video consumption rate.  This buffer will allow the set-top box to “tap” into data streams 
that were originally created for previous clients, and then store these data until they are 
needed.  In the best case, clients obtain most of their data from an existing stream. 

In particular, stream tapping defines two types of streams.  Complete streams 
broadcast a video in its entirety.  Full tap streams can be used if a complete stream for 
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the same video started Δ ≤  b minutes in the past, where b is the size of the client buffer, 
measured in minutes of video data. In this case, the client begins receiving the complete 
stream right away, storing the data in its buffer.  Simultaneously, it receives a full tap 
stream and uses it to display the first Δ minutes of the video.  After that, the client will 
consume directly from its buffer.   

Clients that can receive data at three times the video consumption rate can use an 
option of the protocol called extra tapping.  Extra tapping allows clients to tap data from 
any stream on the VOD server, and not just from complete streams.  Fig. 2 shows some 
sample client requests.  As client a is the first client, it is serviced by a complete stream, 
whose duration is equal to the duration D of the video.  Since client b arrives  minutes 
after client a, it can share D –  minutes of the complete stream and only requires a full 
tap of duration  minutes. 

tΔ
tΔ

tΔ

 

III. OUR PROTOCOL 

Both chaining and the cooperative protocol require clients capable of sending video data 
at the video consumption rate.  As a result, they exclude most home-based clients because 
these clients typically have upstream bandwidths that are one eighth to one fourth of their 
downstream bandwidths.  While these clients might be able to download video data at 
twice their video consumption rate, they might only be able to forward video data at one 
fourth to one half of that rate. 

We wanted to develop a video distribution protocol that allowed clients to participate in 
the video distribution process even if they could only retransmit data at a fraction the 
video consumption rate.  We thus assumed that: 

1. Clients would be able to receive video data at twice  their video consumption rate; 
2. Clients would only be able to forward video data at a rate equal to a fraction α of 

the same video consumption rate; 
3. Clients would not have to forward video data after they have finished watching that 

video; 
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Fig. 3.   How the full tap streams are distributed by the server and the previous clients. 

4. Clients should have enough buffer space to store the previously viewed portion of 
the video they are watching until they have finished watching it. 

As we can see, our protocol makes few demands on the transmission capabilities of the 
client hardware.  In contrast, it requires client buffers capable of storing an entire video, 
that is, several gigabytes of compressed video data.  Two factors motivated this choice.  
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First, the diminishing cost of every kind of storage makes this requirement less onerous 
today than it would have been a few years ago.  Second, we expected many clients to 
keep the previously viewed portion of the video they are watching in their buffer in order 
to provide the equivalent of a VCR rewind feature.  

Our protocol is a fairly straightforward implementation of stream tapping without 
extra tapping as extra tapping would have required clients to be able to receive videos at 
three times the video consumption rate.  It only differs from the original stream tapping 
protocol in the way it handles tap streams.  While tap streams originally were the sole 
responsibility of the server, this task is now shared by the server and the previous client.  
Consider two consecutive requests for a video of duration D.  Let Τc denote the time 
elapsed since the start of the last complete stream and Δt the time interval between the 
two requests: 
1. If Τc ≥ D, the two requests do not overlap and the second client cannot tap any data 

from the last complete stream.  As in the original stream tapping protocol, the server 
will then start a new complete stream. 

2. If Τc < D, there is an overlap between the current request and the last complete 
stream. As in the original stream tapping protocol, the server will then evaluate 
whether it would be more advantageous to 
keep tapping from the last complete stream or to start a new one.  If the server decides 
to keep tapping from the last complete stream, it will have to provide the second 
client with a full tap stream of duration Τc.  Two alternatives must now be considered: 
a. If Τc ≤ D – Δt, the previous client will provide a fraction α of the full tap stream 

and the server the remaining 1 – α fraction. 
b. If Τc > D – Δt, the previous client will finish watching the video before being able 

to transmit all its share of the full tap stream and the previous client will only be 
able to transmit a fraction cTtD /) - ( Δα of the full tap stream with the server 
transmitting the remainder of the stream. 

If the video is long enough, the new request is likely to overlap with more than one 
previous request.  We propose to harness the available bandwidth of the clients that 
issued these requests in order to further reduce the workload of the server.  The 
contributions of these clients will be subject to two restrictions.  First, upstream 
bandwidth restrictions prevent any client to upload data for two different clients at the 
same time.  Second, we will never require a client to transmit video data after the client 
has finished watching the video. 

Consider for instance how the protocol would handle the three requests displayed in 
Fig. 3.  The first request to the video will be entirely serviced by a complete stream 
coming from the server.  The second request will get the last D – Δt minutes of the video 
by tapping client a’s complete stream and the first Δt minutes from a full tap stream of 
duration Δt.  A fraction α of this stream will be sent by customer a and the remaining 1 –
 α fraction will come from the server.  Assuming that the server decides not to start a new 
complete stream for customer c, that customer would get: 
1. The last D – (Δt + Δt’) minutes of the video by tapping client a’s complete stream; 
2. A fraction α of the first D – (Δt + Δt’) minutes of the video from a tap stream sent by 

customer a; this tap stream will end when customer a will finish watching the video 
D – (Δt + Δt’) minutes after the arrival of customer c; 
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3. A fraction α of the first D – Δt’ minutes of the video from a tap stream sent by 
customer b; this tap stream will end when customer b will finish watching the video 
D – Δt’ minutes after the arrival of customer c; 

4. The remaining portion of the first Δt + Δt’ minutes of the video from the server. 
One last issue to consider is when to halt tapping from the current complete stream 

and start a new one.  To achieve this goal, our protocol keeps track of the minimum 
average request service time of all requests sharing the same complete stream.  Before 
adding a new request to a group, it computes what would be the new average request 
service time of the group if the new request was added to the group.  Should this new 
average request service time be lesser than or equal to the minimum average request 
service time of the group, our protocol adds the new request to the group; otherwise, it 
starts a new group.  This criterion is similar but not identical to that used by Carter and 
Long [1, 2]. 

A. Handling Client Failures 

To operate correctly, our protocol requires all clients to forward video data to the next 
customers for the same video.  Any client failure will deprive all subsequent customers 
from their video data.  

There is a simple solution to the problem.  Let us return to the scenario of Fig. 3 
where client c receives most of its tap stream from clients a and b while client b receives  
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Fig. 4.  Server bandwidth requirements of the new stream tapping protocol. 

almost half of its tap stream from client a.  Any failure of either client a or client b would 
immediately affect the correct flow of data to client c.  A failure of client a will require 
the server to take over the role of client a and send the missing video data to clients b and 
c.  A failure of client b would have less impact on the server workload as it would also 
free client a from its obligation to send client b a fraction of its tap stream, thus freeing 
enough upstream bandwidth to let client a take over the role of client b and send most of 
the missing video data to client c.  Making the protocol fault-tolerant will thus require the 
server to keep track of which client is sending video data to each client.   
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IV.  PERFORMANCE EVALUATION 

Fig. 4 displays the server bandwidth requirements of our new stream tapping protocol for 
selected values of α and request arrival rates varying between one and one thousand 
requests per hour.  All bandwidths are expressed in multiples of the video consumption 
rates.  We assumed that the server was broadcasting a two-hour video and that request 
arrivals could be modeled by a Poisson process. 

In addition, the dotted line represents the server bandwidth requirements of the 
original stream tapping protocol with extra tapping.  Let us observe that the comparison 
between the two protocols is not totally fair since extra tapping requires clients capable of 
receiving video data at three times the video consumption rate, while our protocol only 
requires clients capable of receiving video data at two times that rate. 

As we can see, our new stream tapping protocol outperforms conventional stream 
tapping even when clients can only forward data at one fourth of the video consumption 
rate, that is, when α= 0.25.  These results are much better than those of an earlier version 
of the protocol that would not allow clients to receive video data from more than one 
client [3]. 

This excellent performance comes however at a stiff price.  As seen on Fig. 5, the 
network bandwidth requirements of our stream tapping protocol increase much more 
rapidly than those of the original stream tapping protocol when the client request arrival 
rate exceeds ten requests per hour.  This phenomenon can be explained in part by the fact 
that our protocol does not allow extra tapping.  A more important factor is the way the 
server decides when to start a new complete stream.  Since the clients handle 

most of the tap streams, adding extra requests to any existing group has a negligible 
impact on the server workload.  As a result, the server will not start a new complete 
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Fig. 5.  Network bandwidth requirements of the new stream tapping protocol. 

stream before the end of the previous one.  Thus the average duration of a tap stream is 
equal to half the duration of the video and the average network bandwidth is roughly 
equal to one half the bandwidth required by a unicast scheme. 

A simplistic solution to this problem would be to limit the size of the tap streams to a 
fraction �max of the duration of the video.  This would reduce the average duration of 
these streams and proportionally reduce the network bandwidth.  This solution would 
however affect the performance of the protocol at low arrival rates, where long tap 
streams are the norm.  Having investigated several other options, we found out that the 
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best way to limit the growth of the network bandwidth was to limit the size of the tap 
streams at high arrival rates. We did not want to complicate the design of the server by 
requiring it to maintain some moving average of the request arrival rates for each video.  
We decided instead to use as threshold the number of clients sharing the same complete 
stream and force the server to start a new complete stream whenever (a) the size of the 
tap stream would otherwise exceed a fraction �max of the duration of the video and (b) 
more than Nmax requests were already sharing the current complete stream. 

Fig. 6 and 7 display the impact of this modification to the server and network 
bandwidth of our protocol.  We considered clients capable of uploading data at one-
fourth the video consumption rate and set our �max to 0.25.  Each individual curve 
corresponds to a different value of Nmax.  We see that limiting the tap stream length to one 
fourth of the video duration reduces by a factor of four the network bandwidth of the 
protocol while increasing the server bandwidth at the highest arrival rates by the same 
factor. Even under these conditions the server bandwidth remains well below that of the 
original stream tapping protocol. 
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Fig. 6.  Server bandwidth requirements of the protocol for 

α = 0.25 and βmax = 0.25. 
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Fig. 7.  Network bandwidth requirements of the protocol for α = 0.25 and βmax = 0.25. 

 

V.  CONCLUSIONS 

We have presented a stream tapping protocol that involves clients in the video 
distribution process.  Our protocol is tailored to environments where client machines are 
able to download video data at twice the video consumption rate but can only forward 
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video data at a fourth to a half of that rate.  We observed that our technique achieved a 
dramatic reduction of the server workload at medium to high request arrival rates but also 
resulted in much higher network bandwidth consumptions.  These increases can however 
be controlled by requiring the server to restart complete streams at some specific 
intervals. 
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