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Abstract

Air Quality Forecasting (AQF) is a new discipline that attempts to reliably predict atmospheric pollution.
An AQF application has complex workflows and in order to produce timely and reliable forecast results,
each execution requires access to diverse and distributed computational and storage resources. Deploying
AQF on grids is one option to satisfy such needs, but requiresthe related grid middleware to support
automated workflow scheduling and execution on grid resources.

In this paper, we analyze the challenges in deploying an AQF application in a campus grid environment
and present our current efforts to develop a general solution for grid-enabling scientific workflow appli-
cations in the GRACCE project. In GRACCE, an application’s workflow is described using GAMDL, a
powerful dataflow language for describing application logic. The GRACCE metascheduling architecture
provides the functionalities required for co-allocating grid resources for workflow tasks, scheduling the
workflows and monitoring their execution. By providing an integrated framework for modeling and
metascheduling scientific workflow applications on grid resources, we make it easy to build a customized
environment with end-to-end support for application grid deployment, from the management of an appli-
cation and its dataset, to the automatic execution and analysis of its results.

∗The work is performed as part of The University of Houston’s Sun Microsystems Center of Excellence in Geosciences [45].
†This is an extended version of the paper that is accepted for publication in the Journal of Grid Computing, 2006.
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I. INTRODUCTION

Air Quality Forecasting (AQF) [30] is a new discipline that attempts to reliably predict atmospheric pollution. A
real-world AQF application incorporates multiple, interdependent computational modules that make intensive use
of numerical tools, requires high compute power for the simulation of meteorological and chemical processes, and
entails the transfer, storage and analysis of a huge amount of observational and simulation data [7]. We participate
in an effort to build such a service, with the goal of providing timely, reliable forecasts of air quality for the
Houston-Galveston region and for several other regions in the South Central USA that have encountered problems
with air quality in the recent past [4], [5]. On-going work atthe University of Houston (UH) aims to create, test
and deploy an AQF application as well as to establish a suitable development and deployment environment.

Grid technologies and middleware [16] provide a potential strategy for meeting the computational and storage
needs of AQF executions. In grids, users with large-scale problems such as AQF application are able to exploit
multiple distributed high performance computing resources to produce high quality results that cannot be achieved
from single-domain resources. As grid technology becomes mature and standardized, the act of deploying applica-
tions on a grid to efficiently use its resources becomes more important than the work on basic technology and its
standardization. Current middleware efforts focus on the core grid-enabling technologies and hence, application-level
management and deployment-related issues often fall outside their scope. Therefore, additional efforts are required
to augment grid middleware in order to realize end-to-end support for domain scientists. In general, such efforts
are still in the experimental stage and related experiencesare very application-specific and technology oriented.

The current efforts, including ours [3], [4], on grid application deployment often focus on packaging or wrapping
of legacy application codes with services and utilities forgrid execution and data transport, and offer these via
a web interface to end users. The provision of automated application-specific scheduling and execution on grid
resources, and thus end-to-end grid environment support toscientists, remains an unsolved challenge. This paper
presents our experience of deploying an AQF application on acampus grid environment and our current efforts to
develop a solution for grid-enabling AQF-like applications as part of the GRACCE project [36]. Our initial efforts

∗The work is performed as part of The University of Houston’s Sun Microsystems Center of Excellence in Geosciences [45].
†This is an extended version of the paper that is accepted for publication in the Journal of Grid Computing, 2006.
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provided a working, but not feature-complete solution to support AQF runs on resources across our campus grid
at the UH.

The GRACCE project aims to provide end users with a comprehensive application grid platform, with support
for the management of the application and its dataset, as well as the automatic execution and viewing of results.
In GRACCE, application coordination and collaboration (astypical in a workflow) are described using GAMDL, a
powerful dataflow language to model an application’s logic.The GRACCE metascheduling architecture is designed
to be a layer on top of and to extend the available grid middleware to provide automated grid resource co-allocation,
workflow coordination and runtime control. The architecture includes a workflow-orchestrated metascheduler with
planning and reservation features, an event-driven workflow engine able to coordinate the scheduling process and
job execution, and a runtime system to control workflow execution.

The organization of this paper is as follows. In Section 2, weintroduce the AQF application, our initial efforts in
deploying AQF on the UH Campus grid [3], and related issues. Following this, the motivations of GRACCE and
the GRACCE solution are discussed and introduced in Section3. Section 4 presents the GAMDL application model
language, including its structure and features. In Section5, the GRACCE metascheduling architecture is described
in details, including the architectural subsystems and their functionalities, and core algorithms and mechanisms. In
Section 6, related work is extensively studied. Finally, our work is concluded in Section 7.

II. EXPERIENCESRUNNING AQF ON A CAMPUS GRID

The initial grid deployment of our AQF application utilizedthe functionalities provided by the Globus toolkit [13]
and realized a working solution to support AQF runs on the resources across our campus grid [4]. In this section,
we introduce the AQF application, its current deployment status and the issues that arise with the current approach.

A. AQF Introduction

Our Air Quality Forecasting (AQF†) application is an integrated computational model for regional and local
air quality forecasts, and is composed of three subsystems:the PSU/NCAR MM5 weather forecast model [10],
the SMOKE emission system [32], and EPA’s CMAQ chemical transport model [8]. An AQF execution is a
computational sequence of the three subsystems with increasing resolution and decreasing geographical boundaries.
Figure 1 illustrates the workflow of a nested 2-day forecasting operation over a single region of interest by a
three-domain computation. The 36km domain computation provides coarse forecast data over the continental USA,
the 12km domain provides data across the south central USA, and the 4km domain forecasts air quality across a
smaller geographic region. A full forecast in an urban area requires an additional level of refinement based upon a
1km domain. Each rectangle represents a computational module and each arrow indicates the flow of data between
modules. AQF modules may execute on heterogeneous, distributed resources provided that the dependent files of
each module are transferred to the allocated resources as they become available.

B. Initial Experience of AQF Deployment on Campus Grid

The UH campus grid consists of heterogeneous resources including clusters of Sun SMPs, a Beowulf cluster and
an SGI visualization system with 9 TB storage, all at the UH High Performance Computing Center (HPCC) [38];
and of Beowulf clusters, Sun SMPs and several Sun workstations in several other departments. The AQF modules
are installed and configured on these resources, and disk andtape space is allocated for their daily executions.
Sun Grid Engine (SGE) [43] and Platform LSF [41] have been installed to manage resources within the individual
administrative domains. The Globus toolkit [13] is installed on these resources to provide the utilities for grid job
execution and remote file transfer. The UH HPCC serves as CA [15] for our campus grid and is responsible for
granting grid accounts. To make it as easy as possible for users to interact with the services provided through the
campus grid, EZ-Grid [4], a light-weight web-based portal,has been developed. It uses the Java CoG Kit [12] to
provide a convenient interface to all Globus functions, including grid authentication with X.509 certificates, job
specification, submission and management, file transfers, and query of grid resource information and load status.

In this setup, the AQF workflow is described in an XML file, and aPerl script controls the workflow execution
using the Globus toolkit and EZ-Grid. A module in the workflowis described as a task which is mapped to a grid

†the acronym AQF from here on denotes our AQF application unless noted otherwise.
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Fig. 1. AQF Application Workflow

computational job (thus module, task and job refer to the same entity in different contexts, the termmoduleis used
in an application context,task in a workflow context, andjob in a grid context). Dependencies between modules
are specified as parent-child relationships between tasks,in which parent tasks produce the data to be consumed by
child tasks. For each task, details about the executable andtarget resources are hard-coded in the task RSL files [44].
The Perl script reads the XML file and controls the overall execution of the AQF tasks, including submitting jobs
to grid resources, initiating file transfers when the data are available, and resolving task dependencies.

There are several problems with the above solution. Firstly, computational resources are pre-allocated for the AQF
tasks and are assumed to be available during the task execution periods. The allocated resources specified in the task
RSL files are defined by system administrators, who also reserve the resources in the local schedulers to ensure their
availabilities. Obviously, this human-scheduling approach is not suitable for dynamic grid environments – resource
allocation should be automated to provide best decisions based on up-to-date resource load status information.
Secondly, failures in a grid resource will cause the failureof the whole AQF run unless a user intervenes. There is
no back-up strategy to allocate resources for a task whose dedicated resource fails. Specifying a secondary resource
in the RSL is one solution, yet normally the secondary resource is rather busy in our environment, and that task
would have to wait in the local queue if submitted. Thirdly, the non-standard XML and script approach for workflow
description and execution control is error-prone and places a major burden on end users and system administrators.
Users are required to become adept in XML, Perl and RSL, whichis a daunting additional effort when working on
AQF deployment. Instead of having to get involved in all details of grid setup and resource scheduling, our users
expect a complete application execution environment, froma graphical user interface to specify the application’s
configuration, to a viewer for execution results.

III. M OTIVATIONS AND GRACCE

AQF represents a large number of domain applications that would like to exploit grid-enabled resources for
their computation. These applications are no longer being developed as monolithic codes, but incorporate multiple
interdependent modules, and entail the transfer and storage of large amounts of data. Enabling such an application
in grid environments is much more complex than enabling an application that can be wrapped as a single grid job.
From our experience, the following topics must be addressedin order to provide support for automatic execution
of AQF-like workflow applications, and to integrate them into a grid environment in a manner appropriate for end
users:

• Automatic scheduling and execution of the application modules: For AQF-like applications which consist
of multiple interdependent computational modules, submitting a module job should be automated, requiring no
user interaction unless an errors occur. During workflow execution, actions to handle the dependencies (such
as transferring intermediate files between resources) should also be automatically initiated as the files become
available.
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• Resource co-allocation for workflow computation modules and files: Such capabilities should be provided
by software and should make the best decisions in a dynamic grid environment to ensure application level
Quality-of-Service. In our AQF case, this means AQF execution must be completed by a certain deadline.

• Execution monitoring, failure handling and notification: Status and errors in workflow execution should
be reported to users without a need for them to actively check.

• Modeling and describing application logic and jobs: A modeling language or GUI interface should be
available for end users to describe application dataflow, control logic and grid jobs.

• Portal interface: A web portal should be available for end users to access the capabilities as described above,
and to manage their applications and the application data sets on the grid.

Many grid software packages have been developed that aim to provide partial solutions to the problems listed
above. In Section VI, we study related software and tools, including workflow definition languages for application
modeling, co-allocation and reservation services provided by various projects, and workflow enacting engines for
workflow execution control. In our studies, we noticed that most of the current efforts address the fundamental
of the above specific issues, such as co-allocation, reservation, planning and workflow execution. To the best of
our knowledge, there are no efforts to develop an integratedgrid metascheduling system. Efforts related to grid
metascheduling for complex workflow applications are also missing.

To provide full-featured support for the automatic execution of AQF-like applications in grid environments, the
integration of available solutions is as important as solving the various technical issues. An integrated solution
should provide end-to-end support for application execution on a grid. It should provide an extensible framework
that can accommodate the diverse range of requirements imposed both by the applications and by the underlying
grid systems. Such a framework should be suitable for a wide range of distributed applications, but also support
the construction of customized environments.

Our Solution: GRACCE – Building An Application Grid Environment

Driven by the needs of our local AQF effort, the GRACCE (Grid Application Coordination, Collaboration and
Execution) project [36] was proposed to develop a set of gridmiddleware for application deployment. The vision
of GRACCE is to provide scientists with a framework to build an application-specific grid environment, from the
management of an application and its dataset, to the automatic execution and viewing of results. In the GRACCE
framework, end users are only required to provide application descriptions and resource requirements. GRACCE is
responsible for allocating grid resources for tasks, placing tasks on the allocated resources for execution, monitoring
them, and returning their results back to users. More specifically, GRACCE provides an integrated solution to the
following issues:

• Application modeling and description: GRACCE provides a modeling language, GAMDL, to describe
application logic and workflow. GAMDL has several advanced features that are not available in other similar
solutions and is a basis for the integration of a grid metascheduler and workflow systems in GRACCE.

• Grid metascheduling: GRACCE defines a grid metascheduling architecture for workflow applications that
addresses the issues of resource co-allocation and reservation, workflow coordination, and workflow job
execution and monitoring.

• Workflow orchestration and resource co-allocation: In GRACCE, the resource allocation and reservation
process is based upon the application workflow; for example,sibling module jobs are allocated on concurrent
resources.

• Standalone system for job submission and monitoring:Conventionally, the functionalities of job submission
and monitoring are provided by the scheduling or workflow systems. In GRACCE, they are provided by a
stand-alone runtime system, which allows the runtime system to be developed and integrated without changing
the scheduler and workflow systems.

• Integration: The GRACCE metascheduling architecture is an extensible framework that integrates solutions
to various technical problems in the area of grid schedulingand workflow. The architecture is also a platform
for users to integrate their domain applications into grid environments.

IV. GRID APPLICATION MODELING AND DESCRIPTION

To deploy a domain workflow application in grid environments, we must first be able to model and describe
the application workflow and resource requirements in a manner that is appropriate for both end users and for
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integrating with low-level grid middleware. As we outline further below in Section VI, most current workflow
languages model application dataflow as a DAG (Directed Acyclic Graph), and some few of them are able to
describe loops or conditional branches. These languages require users to specify which tasks are executed in
parallel and which tasks must be sequentially executed. These execution relationships could be easily constructed
from a dataflow DAG with software tools, instead of asking users to provide such information.

To help in workflow scheduling, a modeling language should beable to describe the job information pertaining
to a workflow task, e.g. resource requirements, execution history or profile data. Current workflow languages do
not have this capability and rely on other languages such as RSL for this purpose, which introduces additional
complexities when specifying resource multirequests for workflow tasks.

To provide support for both application logic description and grid metascheduling, the GRACCE Application
Modeling and Description Language (GAMDL) was created withthe following features:

• It describes both application data dependencies and control logic (loops and conditional branches) at a high
level of abstraction.

• It separates the description of application logic and execution workflow, so that support for partial workflow
does not introduce additional complexities.

• It associates grid job specifications with application module descriptions to support workflow-orchestrated
metascheduling. As a result, there is no need to explicitly specify resource multirequests in a workflow.

• GAMDL allows similar modules to be easily described using multiple-value properties;
In this section, we introduce the core concepts and featuresof GAMDL. The GAMDL descriptions for the

AQF application are listed in APPENDIX A. We refer interested readers to [36] for the GAMDL specification and
schema details.

A. GAMDL Core Documents

GAMDL provides two documents to describe a distributed application and its workflow, theApplication
document and theAppRun document. AnApplication document serves to define application entities, such
as executables, data files and modules, and the dependency relationships between them. AnAppRun document
describe a workflow of an application, such as the modules that are required for the workflow, the start module(s)
and the start time of the workflow. TheApplication document provides a high-level abstract description of
the application from the viewpoints of end users and it should encompass all the related entities required for
an application. TheAppRun document specifies an execution of the application. The separation of the two into
different documents enables the user to specify different workflows based on their needs without defining a new
application each time. This is especially useful for the recurrent execution of an application.

B. Application Dataflow Description

GAMDL models the dataflow of a grid application using the sameconcept as a DAG, and captures both
the dependency relationships between modules and the intermediate files associated with these relationships.
Dependency relationships are defined via either a parent-children (PCn) pattern or a child-parents (CPs) pattern. A
PCn relationship has a parent module and one or more child modules, and a CPs relationship has a child module
and one or more parent modules. Intermediate files in a relationship are specified as pipes. Apipe has apipeIn
and apipeOut element;pipeIn specifies the piped output file of the parent task, andpipeOut specifies the
piped input file of the child task. Each pipe represents only one intermediate file.

GAMDL includes conditional pipes to allow the decision about whether a dependency should be handled to be
made during application execution. Aconditional pipe associates a pipe with anif boolean condition which will
be evaluated after the module completes execution. If it evaluates totrue, the pipe is processed; otherwise, it is
not processed. If the conditions on all pipes in a relationship are evaluated asfalse, runtime dependencies are not
established and the child module will not be executed.

C. Control Logic Description

GAMDL allows the specification of control logic, such as loops or conditional branches, by using conditional
pipes and variables. Avariable is a <name, value> pair associated with anif condition. A new value can only be



6

assigned to the variable if the associatedif condition evaluates totrue; where there is no condition, an assignment
is always made. If thevaluebeing assigned is in the form ofvalue1:value2, value1is assigned if theif condition is
true andvalue2is assigned otherwise. In GAMDL, complex flow controls are achieved by the proper assignment of
variable values and reasoning on the conditions associatedwith pipes and variables A module may assign values to
variables before its execution (in apreAssign element) and/or after its execution (in apostAssign element).
The condition associated with a variable assignment or a pipe is permitted to reference system environment variables
as well as variables defined in other modules. In APPENDIX A.5, we give an example showing how a workflow
with loops and conditional branches is specified using conditional pipes and variables.

D. GAMDL Module Job Specification

In GAMDL, a job description specifies the details about how anapplication module is to be constructed as a grid
computational job, such as executable arguments and resource request information. A module consists of multiple
jobs and a job can only be associated with a module. In this schema, a job workflow is constructed based on
module dependencies. In an application’sAppRun document, which specifies an execution, the included modules,
their dependency relationships and the start module(s) constructs a module graph. The job(s) associated with the
modules are used to construct the corresponding job workflow.

The association of job specifications with a module also eliminates the need to specify resource multirequests for
workflow applications. When allocating resources for workflow tasks, a metascheduler makes resource allocation
decisions based on the given module (task) dependencies. For example, the sibling modules in the workflow are
allocated on resources concurrently. If RSL or the GGF Job Submission Description Language (JSDL) [40] were
used for this instead, the end user would need to explicitly specify resource multirequests to achieve resource
co-allocation [23], [21]. With GAMDL, the user only needs tospecify the resource requests for each module job,
and the metascheduler makes the co-allocation decisions based on the module workflow.

Finally, GAMDL introduces job profile specification, which allows a metascheduler to evaluate historical infor-
mation on module executions to help the resource allocationprocess. For applications like AQF that run everyday
with similar scenarios, it is very easy to predict the execution behavior of a module on resources on which the
module has been executed previously. Based on these predictions, the metascheduler can make much better resource
co-allocation decisions.

V. THE INTEGRATED GRACCE METASCHEDULING ARCHITECTURE

A Grid Metascheduler is “one level of grid middleware that discovers, evaluates and co-allocates resources for
grid jobs, and coordinates activities between multiple heterogeneous schedulers that operate at local or cluster level”.
According to this definition, a metascheduler should have two main capabilities: the “scheduling” capability that
allows it to co-allocate resources for applications requiring collaboration between multiple sites, and the “meta”
capability to negotiate with local schedulers to satisfy global grid requests. In the survey of related work in
Section VI, we show that current efforts to develop a metascheduler [34], [42], [1], [25] emphasize the ”meta” or
brokering functions. Those efforts with some focus on scheduling capabilities address the specific issues of grid co-
scheduling; they include DUROC and GARA for co-allocation and reservation [14], [21], SNAP for negotiation [22],
and Pegasus for planning [9]. It is very hard to integrate these solutions to produce a full-featured grid metascheduler.
Some workflow systems have scheduling features [24], [17], [6], [9], but they do not provide the complete co-
scheduling functionality.

There are two basic strategies for scheduling tasks in workflow applications: just-in-time scheduling and look-
ahead scheduling. A just-in-time scheduler allocates resources for each individual task when it is ready to start.
The allocation process is a one-time resource discovery andmatch-making activity. Look-ahead scheduling plans
the execution of all or a subset of tasks and makes allocationdecisions for them in advance. For heavily-loaded
environments where resources are not immediately available, such planning together with resource reservation can
greatly help to reduce the job queue waiting time. But if using a just-in-time scheduler, it would be hard to find
resources for a newly submitted job in such situations. So just-in-time scheduling is only suitable in lightly-loaded
environments or non-prime periods. The GRACCE metascheduler design is based on look-ahead scheduling.



7

The GRACCE Metascheduling Architecture

GRACCE provides support for workflow-orchestrated metascheduling and defines an architecture to implement
a look-ahead scheduling and execution system. The architecture addresses the issues of metascheduling, workflow
coordination and workflow job execution, and integrates their solutions into a middleware platform. From this
platform, end users can build an application-specific grid environment to manage a grid application in its entire
life cycle.

As shown in Figure 2, the GRACCE metascheduling architecture has three subsystems, theMetascheduler ,
theGridDAG workflow engine, and theEPExec runtime system. It employs the concept of an Execution Plan for a
workflow job. TheExecution Plan (EP)contains the scheduling decisions for workflow tasks and themechanisms
to handle task dependencies. TheEP is generated by theMetascheduler in the scheduling process, and is used
by the GridDAG to coordinate task dependencies.EPExec submits workflow tasks to their allocated resources
and manages their execution according to theEP.
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Fig. 2. The GRACCE Metascheduling Architecture

The Metascheduler has two components,MetaPlanner and MetaAlloc . It plans job execution and co-
allocates resources for workflow tasks.MetaPlanner predicts the execution scenario for each task, which is
about when and how the task should be launched.MetaAlloc discovers suitable resources, negotiates the resource
provision and makes reservation with resource providers. The whole metascheduling process is based upon the job
workflow; the decisions made are used to create the jobEP. The Metascheduler is described in detail in
Section V-A.

GridDAG is an event-driven workflow coordination system. At the scheduling stage,GridDAG decides how
to handle dependencies and determines the event activitiesthat are involved in the handling. These decisions
are appended to the jobEP. During job execution,GridDAG coordinates the execution of dependent tasks by
handling and resolving task dependencies. In Section V-B,GridDAG components and event mechanisms are further
discussed.

EPExec is a runtime execution system for workflow jobs. Given a jobEP, EPExec submits task jobs to the
allocated resources, and monitors and manages the execution of these tasks.EPExec sends events related to file
availability or to the status change of task execution toGridDAG for the purpose of handling task dependencies.
During execution,EPExec may adjust theEP according to the real execution scenario.EPExec is discussed in
more detail in Section V-C.

The life-cycle of a workflow job in the GRACCE metaschedulingarchitecture is described briefly below:
1) Users submit a workflow job specified by a GAMDL document to GRACCE.
2) The Metascheduler plans the execution of the job and allocates resources for the individual tasks. It

writes the decision details into the jobEP.
3) The job EP is forwarded toGridDAG which will decide on and set up the mechanisms of dependency

handling; these details are added to the jobEP.
4) According to the jobEP, EPExec submits the first task of the workflow to its allocated resource and monitors

it, thus begins the execution cycle of the job.
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5) During job execution,GridDAG handles task dependencies based on the workflow and the jobEP. When
all dependencies of a task are resolved,GridDAG notifiesEPExec to submit it to its allocated resource.

A. The GRACCE Metascheduler

GRACCE’s Metascheduler has two components, MetaPlanner and
MetaAlloc . MetaPlanner predicts and identifies the execution window for each task, and MetaAlloc
searches a list of candidate resources, negotiates and makes the necessary agreement with resource providers. The
relative execution order of dependent tasks is maintained by the metascheduling process. For independent tasks,
the Metascheduler also considers the possibility of executing them concurrently.

1) Execution Planning: Identify Task Execution Window:A task’s execution window (EW) is a time frame for
carrying out that task.EWstart is theEWstart time, andEWlength denotes theEWlength –EWlength is equal
to the task wall-clock time plus a configurable buffer time. The EWof an ancestor task must finish before the start
of its dependent tasks, but theEW’s of independent tasks can overlap.

Given a workflow job, theMetascheduler planning process identifies theEWs for each task using a breadth-
first graph traversal algorithm. The algorithm starts with the allocation of resources for the first task of the
workflow by MetaAlloc . When resources are allocated,MetaAlloc also identifies the taskEW. Then, the
Metascheduler processes the child tasks of the first task. First,MetaAlloc discovers a list of candidate
resources for each child task and calculates the cost of dependency handling between the resource(s) for the parent
task and the candidate resources for child tasks. Secondly,MetaPlanner predicts the taskEWfor each of the
candidate resources. TheEWstart is calculated by adding theEWstart and EWlength of the parent task as
well as the time required for dependency handling. Thirdly,the taskEWpredicted for each candidate resource are
processed again byMetaAlloc , which will allocate the best resource for the task and determine its EW. The
Metascheduler then moves on to process other tasks.

Since this is a look-ahead scheduling algorithm, it requires the specification of a task’s wall-clock time and
input/output file sizes. If they are not supplied by users, the MetaPlanner predicts them based on the task
execution history or profiling information, which are included in the job’s GAMDL specification. For recurring
jobs, such as AQF, users normally provide historical or profile data to characterize the tasks’ execution on different
resources.

2) Resource Co-Allocation, Negotiation and Reservation:MetaAlloc allocates computational resources for
workflow tasks in a sequence of resource discovery, negotiation, and reservation. During resource discovery,
MetaAlloc queries the Grid Information Services for resources that satisfy the task resource requirements and
are available during itsEW. Firstly, resources are selected by a simple match-making of each attribute of a task’s
specification with static resource information. The resources on which the task is able to run are further evaluated
according to their runtime information. Then, the selectedresources are checked for their availability during the
taskEW, andMetaAlloc finally identifies a list of candidate resources. In the negotiation and reservation stage,
MetaAlloc requests reservation for the candidate resources during a tasksEW. If the local schedulers grant the
requests,MetaAlloc chooses the one that can provide the earliestEWfor the task. A reservation ID is returned
to be used to later access the reservation. If no reservationcould be made on any of the candidates, grace periods
are added to theEWandMetaAlloc again requests reservation for other wall-clock periods within theEWuntil a
reservation is made. IfMetaAlloc cannot reserve any resource for the task,Metascheduler stops to work on
this task and forwards the partialEP to EPExec to launch the job. During job execution,MetaAlloc periodically
attempts to allocate resources for this task.

B. The GridDAG Workflow System

GridDAG is our event-driven workflow system; it is able to coordinatethe scheduling and execution of the
dependent tasks of a workflow job. Compared with other workflow enacting engines,GridDAG is a pure coordi-
nation system, without any execution or monitoring functionalities, which are provided byEPExec in GRACCE.
This givesGridDAG the flexibility to integrate with various remote execution and monitoring utilities. Different
coordination mechanisms can be developed inGridDAG without necessitating additional effort to integrate them
with other GRACCE subsystems.
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1) The GridDAG Eventing Mechanisms:Events are notifications of a status change of task executions or file
transfers, data availabilities, or other situations defined by users, such as for resource accounting purposes. An
event producer detects certain situations or a status change, generates the corresponding event messages and
distributes them. An event consumer receives an event message and invokes the event handlers. TheGridDAG
event mechanism is based on the WS-Notification standard [47], so event messages are XML documents – which
allows the implementations to be platform-neutral in distributed heterogeneous environments.

Four components inGridDAG support the eventing mechanisms: the event chain builder, chain deployer,
GridDAG agent, andDepResolver . The chain builder reads the jobEP forwarded from theMetascheduler
and generates the event chains according to theEP. An event chain is an ordered sequence of events from the partic-
ipating producers to consumers. The chain deployer sends subscription requests to producers. ASubscription
represents the relationship between a consumer, producer,and related event messages. These relationships constitute
the runtime event chains of a workflow job.GridDAG agents coordinate the runtime event activities in each grid
resource. Firstly, as a producer,GridDAG agents detect events occurring on the host resources and send out
event messages. Secondly, as a consumer,GridDAG agents receive event messages from other agents orEPExec
and take actions accordingly.DepResolver is the overall coordinator of dependency handling and resolving.
DepResolver keeps track of the states of task dependencies and decides whether all of the dependencies are
resolved.

2) Data Dependency Handling:Using the GridDAG eventing mechanism to handle data dependency, file
transfers can be in either destination-pull (D-P) or source-push (S-P) mode. The event sequences for these two
modes are shown in Figure 3. In the D-P mode, when theGridDAG agent on the source resource detects that files
are available (1), it sends a corresponding event to the destinationGridDAG agents (2). The destinationGridDAG
agents fetch the files (3) and send events toDepResolver notifying it of file arrivals (4). For the S-P mode,
when files are available (1), the sourceGridDAG agent transfers them to the destination resources (2) and sends
an event to the destinationGridDAG agents and toDepResolver indicating that the intermediate files have been
transferred (3). We expect that the D-P mode works better when multiple destinations are waiting for the same set
of data. the S-P mode is suitable for situations where and data production and movement can be pipelined.
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DepResolver EPExec  
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Dependencies resolved 

3: Fetch files 

R 1 
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Job submission 

1: Files available 

Fig. 3. Event Sequence in File Transfer

C. EPExec Runtime system

EPExec (EP Executer) is the runtime execution system for workflow jobs according to the jobEP. EPExec has
three components,EXEpre , sJSCS, andRTadj , to provide the functionalities of job submission, job monitoring,
and the runtime adjustment of a jobEP.

EPExec is implementation-independent of theMetascheduler andGridDAG subsystems and communicates
with them via platform-neutral event messages. This ensures it to be flexible enough to integrate with various
middleware packages. DifferentEPExec’s can be developed to support different methods of job submission and
remote execution without requiring any changes to theMetascheduler and theGridDAG .

1) Execution Preparation:EPExec’s execution preparation (EXEpre ) adds the the required information for job
submission and workflow control to the jobEP. The details depend on the grid middleware that it is developed
on. Assuming that Globus GRAM is responsible for job submission andGridDAG for workflow coordination, its
work can be summarized as follows:
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• Preparation for GRAM job submission: EXEpre parses the tasks specification, generate a Globus RSL file,
and specifies the locations and names of input and output fileson the selected resources for the task.

• Preparation for dependency handling:EXEpre forwards the jobEP to GridDAG which sets up the event
chains and configures the event consumers and producers, as discussed above.

2) EP Execution and Monitoring:EPExec starts the workflow execution by submitting the job corresponding to
the first task to its allocated resources according to the jobEP. sJSCS (simple Job Submission and Control Service)
is a utility to respond to such submission requests fromEPExec. It calls the remote execution functions, such as
Globusglobus-job-submitto submit a single-executable job. The job is submitted using its resource reservation ID;
this ensures the task is launched within itsEW. A successful submission returns a global job ID, whichEPExec
uses for job monitoring and control.

EPExec monitors task executions in both passive-notification (P-N) mode and active-checking (A-C) mode. In
the P-N mode,EPExec relies on the event messages about job status change to trackthe job. These messages are
sent by theGridDAG agent on the resource where the job executes. In the A-C mode,EPExec calls sJSCS to
query the current state of job execution. The P-N mode alleviatesEPExec from the frequent calling ofsJSCS;
but EPExec may lose track of the job if the event mechanism fails. So normally, both the P-N and A-C modes
are enabled inEPExec for a close monitoring of the job.

3) Runtime Adjustment:EPExec coordinates task executions so that the executions follow the EP. But if a task
completes after itsEW, the RTadj (Runtime Adjuster) component ofEPExec may take actions to adjust theEP
or to make up the delay. In most situations, those tasks that depend on the late task can be started within their
EW’s andRTadj does not need to adjust them. But if the late completions cause the expiration of reservations of
the dependent tasks and they cannot be started in theirEW’s, RTadj uses the following strategy to try to make up
the delay:

First, EPExec submits these tasks to their allocated resources without using reservation. The jobs may be held in
the resource local queues.RTadj then requestsMetascheduler to discover alternative resources for these tasks.
If suitable resources are discovered and allocated,EPExec submits copies of these tasks to these resources. During
execution,EPExec identifies the copy that it thinks will complete first and kills the others. ThusRTadj does its
best to make up for the lost time in past job execution and to minimize the negative impacts on the execution of
later tasks.

If it seems impossible to follow the initial jobEP, RTadj will consider re-scheduling the rest of the tasks. In
this case,RTadj forwards the job sub-workflow toMetascheduler to reschedule. Re-scheduling may cause
low resource usage or wastage because of the cancellation ofprior reservations. TheMetascheduler tries to
avoid this situation by scheduling other jobs onto these reservations if possible.

VI. RELATED WORK

Various projects attempt to solve the problems of grid application modeling and grid scheduling, and provide
certain features that are also incorporated into GRACCE. Inthis section we survey related work in three areas,
grid application modeling and workflow description, grid metascheduling, and workflow engines with scheduling
features.

A. Application Modeling and Workflow Descriptions

Many efforts have aimed to support the specification of workflows for grid applications. Condors DAG [35]
enables the use of a graph that depicts parent-child relationships to specify workflow in applications. Gridbus
workflow [19] describes application DAGs using an XML-basedlanguage (xWFL). But both Condor DAG and
Gridbus workflow do not handle advanced control logic.

The Triana [6] workflow definition language specifies component-based application workflows. Components are
units of executions implemented as Java classes. Non-Java applications have to be wrapped in Java in order to use
Triana.

Business Process Execution Language (BPEL) [33], which combines IBM’s WSFL [46] and Microsoft’s XLANG [27]
standards, is an XML-based workflow definition language to describe enterprise business processes. BPEL works
at web services level; additional extensions are needed to make it easy to use for end users.
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Abstract Grid Workflow Language (AGWL) [28] “describes” application control flow using constructs of an
imperative programming style and is able to describe various complex control logic. But users are required to
specify the details of the control flow, such as stating whichmodules can be executed in parallel. For dataflow
applications, users have to transform the dataflow into control-flow to use AGWL.

Karajan of the Globus CoG Kit [39] is a powerful workflow system that includes a workflow description
language and a workflow engine. Karajan uses similar constructs as AGWL to describe task dependencies, execution
relationships and control logic. To use Karajan, users mustknow the task execution hosts in advance, as well as
the source and destination hosts for file transfers. So Karajan workflow language is more suitable for low-level
workflow execution control than for high-level applicationmodeling.

B. Resource Co-Allocation and Grid Metascheduling

There are also many systems that address specific issues of grid co-scheduling. Globus GRAM [23] and RSL [44]
are the early, de-facto standards for providing solutions for secure job execution in metacomputing environments.
DUROC [21] is an early effort to address the issues of resource co-allocation in the context of Globus and RSL.
Globus GARA [14], Maui Silver [42] and the architecture defined in [11] introduce advanced reservation into the
GRAM co-allocation architecture [31]. SNAP [22], which extends Globus’ GRAM and GARA, proposes a service
negotiation protocol for grid scheduling. Pegasus [9] casts workflow job scheduling issues into the form of AI
planning.

The Grid Scheduling Use Case Document from the GGF Grid Scheduling Architecture Research Group (GSA-
RG) [37] collects scheduling scenarios for several different types of applications, including complex workflow
applications, component-based applications, application-oriented scheduling in a knowledge grid (K-Grid), agent-
based scheduling, etc. Here, the most relevant two cases, workflow scheduling and K-Grid scheduler, are outlined.

The use case for workflow scheduling aims to define the functional requirements, the process and other related
issues of scheduling workflow applications in grid environments. This use case mentions that an execution schedule
should be generated for workflow applications, but does not address how to generate such a schedule, which we
believe is the most important step of the workflow schedulingprocess.

The K-Grid scheduler [2] described in the second use case is aperformance-oriented resource allocation service
for knowledge discovery and data mining applications. It predicts the computational and I/O cost for each allocation
and makes the best-possible decisions based on this estimation. But the K-Grid scheduler does not reserve resources
for applications and relies on the grid resource discovery services to find the best available resources.

The Community Scheduler Framework (CSF) [34] implements a set of grid services which provide basic
capabilities for grid job submission and resource reservation. These services, developed as wrappers for some
local scheduler utilities, provide a good starting point todevelop a brokerage system. But CSF services only cater
for single executable jobs and lack functionalities for grid co-scheduling.

Maui Silver [42] is an advanced reservation-based grid scheduler which allows a single job to be scheduled
across distributed clusters. Silver relies on the local scheduler to specify and coordinate the job workflow, which
limits it usage to simple workflow applications.

Nimrod/G [25] is a resource management system with a focus oncomputational economy and schedules tasks
based on their deadlines and budgets. Nimrod/G also addresses issues of scheduling single jobs, and does not
address the requirements of workflow applications.

MARS [1] proposes an on-demand scheduler which discovers and schedules the required resources for a critical-
priority task to start immediately. MARS uses a forecastingstrategy to predict runtime resource parameters, such
as queue lengths, utilization, etc.

C. Workflow Engines With Scheduling Features

Workflow related activities have been extensively studied in [18]. Most workflow systems, such as DAGMan [35],
myGrid Taverna [29], GridAnt and Karajan [39] use a very simple strategy to schedule workflow tasks, that is,
they simply submit tasks when their dependencies are resolved. These workflow systems do not have scheduling
and resource allocation features. So, in the following, we only outline those workflow systems that do have certain
scheduling features.
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The Triana [6] workflow engine is a decentralized, event-based system. In Triana, users specify the distribution
policies for mapping workflow tasks onto resources, which could be parallel or pipelined. Triana assumes that
resources are available for these tasks, so it does not allocate resources for them.

The scheduling algorithm of ASKALON [24], [26] and in [20] are similar to our approach to planning the
workflow executions. These algorithms traverse the workflowgraph or subgraph and generate the execution schedule
of the workflow tasks. But they do not specify how the execution time for each workflow task is determined. As
we mentioned before, such information and its accuracy are avital part for planning and look-ahead scheduling.

In GridFlow [17], a workflow is executed according to a simulated schedule. If large delays occur in some
sub-workflows, the rest or all of the workflow may be sent back to the simulation engine and rescheduled. The
concept of a simulated schedule is similar to the execution plan in our architecture. But GridFlow does not address
resource co-allocation and reservation issues in the simulated schedule.

Pegasus [9] constructs a job execution DAG with scheduling information from the application DAG logic. This
process includes querying Globus MDS to find resources for computation and data movement, and querying a Globus
replica location service to locate data replicas. Pegasus submits this DAG to Condor DAGMan for execution, and
hence cannot co-exist with other local schedulers.

VII. C ONCLUSIONS

AQF is a typical application that requires multiple computational resources collaboratively available to produce air
quality forecasting results in a timely fashion. To satisfysuch requirement in grids, many application specific issues
need to be addressed in order to provide a production-quality environment. This paper presents our solutions to
create such an environment for domain scientists to enable their applications on grid. Driven by our AQF application
and based on our experiences of AQF deployment on the UH campus grid, the ongoing GRACCE project aims
to provide an end-to-end solution for automatic application execution on grid environments. Using the GRACCE
middleware, domain scientists are only required to specifythe application logic and resource requirements; GRACCE
is responsible for allocating grid resources for the application, for launching the application, and for the delivery
of the results back to the users.

Currently, there are two major efforts in GRACCE: GAMDL and the GRACCE metascheduler. GAMDL provides
an intuitive means to model an application for grid deployment. It describes application dataflows and allows control
logic to be directly expressed, without additional translation from the dataflow. GAMDL associates job specifications
with workflow descriptions so that there is no need to specifyapplication-level resource multirequests. GAMDL
also allows the specification of job execution history and profiling data, which are used by theMetascheduler
to predict workflow execution behavior.

Our metascheduling efforts in GRACCE study the grid metascheduling issues for workflow jobs, define the
term “Grid Metascheduler” and a metascheduling architecture for workflow applications. The architecture provides
and integrates solutions to various grid scheduling related issues. The three subsystems in the architecture, the
Metascheduler , the GridDAG workflow engine, and theEPExec runtime system constitute an extensible
platform for the integration of grid middleware and applications. Grid middleware solutions can be easily interfaced
with one of the subsystems without changing the other subsystems; and from this platform, end users without any
in-depth grid knowledge are able to easily deploy their applications on the grid.
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APPENDIX A: GAMDL Examples

In this appendix, the core GAMDL description of the AQF application is listed in A.1 - A.3. A.1 reproduces the contents
of the AQF application document, which includes four files to describe the AQF entities. A.2 gives the contents of the
“aqfexe.xml” file which specifies the AQF modules. A.3 lists the file “aqfmddep.xml” that specifies AQF module relationships
asPCnRship elements. In A.4, we give an example of an AQF workflow in anAppRun document. A.5 provides the contents
of a workflow example that has control logic.

GAMDL usesMultiple-value properties (mvproperties) to specify similar application entities. An mvproperty is a property
that may have multiple values. It is defined asmvpName = {v0, v1, ..., vn}, and is referenced by$mvpName. #mvpName

returns the number of values defined. A reference tomvpName replicates the referencing sentence#mvpName times; in
each replica, the reference is replaced with a distinct one of its values. For example, if we definedmsz = {36K, 12K, 4K},
day = {1d, 2d}, the sentenceaqf −mm5− ${dmsz}− ${day} can represent all 6 instances (#md ∗#dmsz ∗#day) of the
AQF MM5 modules in Figure 1. In an XML document, the replication of an mvproperty reference is per-element based. When
the GAMDL parser encounters a reference to an mvproperty, itreplicates the nearest outer element that contains the reference.
This element is called the containing element of the mvproperty reference. The processor does not recursively process the
same references in the child element of the containing element, instead, it instantiates all references to the mvproperty in a
replicate element with the same value. We refer readers to [36] for the details of parsing mvproperty in XML.

The mvproperty element in each of the GAMDL document includes a file (uhaqf.mvproperties) to specify the mvproperties
used; it defines four mvproperties as follows:

md={mm5, smoke, cmaq}
dmsz={36K, 12K, 4K}
day={d1, d2}
vdmsz={12k, 4k}

A.1: The applicationDocument

<application uid="uhaqf" name="UH-AQF-2005" ... >
<mvproperty file="uhaqf.mvproperties"/>
<description>UH AQF project in 2005 using GRACCE</descrip tion>
<version name="UH-AQF-2005" major="2005" minor="06" bui ld="03"/>

<reference href="aqffiles.xml"/>
<reference href="aqfexe.xml"/>
<reference href="aqfmd.xml"/>
<reference href="aqfmddep.xml"/>

</application>

A.2: The appModulesDocument

<appModules> <mvproperty file="uhaqf.mvproperties"/>
<module uid="mm5-36k" name="MM5 36k for three days">
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<inputFiles>
<ref uid="mm5-36k-in1"/>
<ref uid="mm5-36k-in2"/>
<ref uid="mm5-36k-in3"/></inputFiles>

<outputFiles>
<ref uid="mm5-36k-out1"/>
<ref uid="mm5-36k-out2"/>
<ref uid="mm5-36k-out3"/></outputFiles>

<jobSpec name="mm5-36k job spec">
<launcher>/bin/mm5-36k.sh</launcher>
<directory>/aqf/mm5/</directory>
<arguments>quiet</arguments>
<stdin>/dev/null</stdin>
<stdout>/aqf/log/mm5-36k/stdout.log</stdout>
<stderr>/aqf/log/mm5-36k/stderr.log</stderr>
<indicator name="mm5-36kindicator.sh" />
<preprocesser name="premm5-36k.sh" />
<postprocesser name="postmm5-36k.sh" />
<cleaner name="mm5-36kcleaner.sh" />
<jobType>mpi</jobType>
<sysArch uid="Linux-x86" uname_m="i686" uname_s="Linux "/>
<maxNumberOfCPU>24</maxNumberOfCPU>
<minNumberOfCPU>8</minNumberOfCPU>

</jobSpec></module>

<module uid="mm5-${vdmsz}">
<inputFiles>

<ref uid="mm5-${vdmsz}-in1"/>
<ref uid="mm5-${vdmsz}-in2"/>
<ref uid="mm5-${vdmsz}-in3"/></inputFiles>

<outputFiles>
<ref uid="mm5-${vdmsz}-out1"/>
<ref uid="mm5-${vdmsz}-out2"/>
<ref uid="mm5-${vdmsz}-out3"/></outputFiles>

<jobSpec name="mm5-${vdmsz} job spec">
<launcher>/bin/ mm5-${vdmsz}.sh</launcher>
<directory>/aqf/mm5/</directory>
<indicator name="mm5-${vdmsz}indicator.sh" />
<preprocesser name="premm5-${vdmsz}.sh" />
<postprocesser name="postmm5-${vdmsz}.sh" />
<cleaner name="mm5-${vdmsz}cleaner.sh" />
<jobType>mpi</jobType>
<maxNumberOfCPU>24</maxNumberOfCPU>
<minNumberOfCPU>4</minNumberOfCPU>

</jobSpec></module>

<module uid="smoke-${dmsz}-${day}" >
<inputFiles><ref uid="smoke-${dmsz}-${day}-in1"/></i nputFiles>
<outputFiles><ref uid="smoke-${dmsz}-${day}-out1"/>< /outputFiles>
<jobSpec name="smoke-${dmsz}-${day} job spec">

<launcher>/bin/smoke-${dmsz}-${day}.sh</launcher>
<directory>/aqf/smoke/</directory>
<arguments>quiet</arguments>
<stdout>/aqf/log/smoke-${dmsz}-${day}/stdout.log</s tdout>
<stderr>/aqf/log/smoke-${dmsz}-${day}/stderr.log</s tderr>
<jobType>single</jobType>
<sysArch uid="Linux-x86" uname_m="i686" uname_s="Linux "/>

</jobSpec></module>

<module uid="cmaq-${dmsz}-${day}">
<inputFiles>

<ref uid="cmaq-${dmsz}-${day}-in1"/>
<ref uid="cmaq-${dmsz}-${day}-in2"/></inputFiles>

<outputFiles>
<ref uid="cmaq-${dmsz}-${day}-out1"/>
<ref uid="cmaq-${dmsz}-${day}-out2"/></outputFiles>

<jobSpec name="cmaq-${dmsz}-${day} job spec">
<launcher>/bin/ cmaq-${dmsz}-${day}.sh</launcher>
<directory>/aqf/cmaq/</directory>
<stdout>/aqf/log/cmaq-${dmsz}-${day}/stdout.log</st dout>
<stderr>/aqf/log/cmaq-${dmsz}-${day}/stderr.log</st derr>
<jobType>mpi</jobType>
<sysArch uid="Linux-x86" uname_m="i686" uname_s="Linux "/>

</jobSpec></module>

<module uid="postv-${vdmsz}-${day}" >



16

<inputFiles><ref uid="postv-${vdmsz}-${day}-in1"/></ inputFiles>
<outputFiles><ref uid="postv-${vdmsz}-${day}-out1"/> </outputFiles>
<jobSpec name="postv-${vdmsz}-${day} job spec">

<launcher>/bin/ postv-${vdmsz}-${day}.sh</launcher>
<exeUidRef>uhaqf-postv</exeUidRef>
<arguments>quiet</arguments>
<stdout>/aqf/log/postv-${vdmsz}-${day}/stdout.log</ stdout>
<stderr>/aqf/log/postv-${vdmsz}-${day}/stderr.log</ stderr>
<jobType>mpi</jobType>
<sysArch uid="Linux-x86" uname_m="i686" uname_s="Linux " />

</jobSpec></module>
</appModules>

A.3: The appMdRshipsDocument

<appMdRships>
<pCnRshipSet> <mvproperty file="uhaqf.mvproperties"/>

<PCnRship parentMdUidRef="mm5-36k">
<childMd uidRef="mm5-12k">

<viaPipe inFileUidRef="mm5-36k-out1" outFileUidRef="m m5-12k-in1"/>
<viaPipe inFileUidRef="mm5-36k-out2" outFileUidRef="m m5-12k-in2"/>
<viaPipe inFileUidRef="mm5-36k-out3" outFileUidRef="m m5-12k-in3"/>

</childMd></PCnRship>

<PCnRship parentMdUidRef="mm5-12k">
<childMd uidRef="mm5-4k">

<viaPipe inFileUidRef="mm5-12k-out1" outFileUidRef="m m5-4k-in1"/>
<viaPipe inFileUidRef="mm5-12k-out2" outFileUidRef="m m5-4k-in2"/>
<viaPipe inFileUidRef="mm5-12k-out3" outFileUidRef="m m5-4k-in3"/>

</childMd></PCnRship>

<PCnRship parentMdUidRef="mm5-${dmsz}">
<childMd uidRef="smoke-${dmsz}-d1">

<viaPipe inFileUidRef="mm5-${dmsz}-out1"
outFileUidRef="smoke-${dmsz}-d1-in1"/></childMd>

<childMd uidRef="smoke-${dmsz}-d2">
<viaPipe inFileUidRef="mm5-${dmsz}-out2"

outFileUidRef="smoke-${dmsz}-d2-in1"/></childMd>
<childMd uidRef="smoke-${dmsz}-d3">

<viaPipe inFileUidRef="mm5-${dmsz}-out3"
outFileUidRef="smoke-${dmsz}-d2-in1"/></childMd></P CnRship>

<PCnRship parentMdUidRef="smoke-${dmsz}-${day}">
<childMd uidRef="cmaq-${dmsz}-${day}">

<viaPipe inFileUidRef="smoke-${dmsz}-${day}-out1"
outFileUidRef="cmaq-${dmsz}-${day}-in1"/></childMd> </PCnRship>

<PCnRship parentMdUidRef="cmaq-${dmsz}-d1">
<childMd uidRef="cmaq-${dmsz}-d2">

<viaPipe inFileUidRef="cmaq-${dmsz}-d1-out1"
outFileUidRef="cmaq-${dmsz}-d2-in1"/></childMd></PC nRship>

<PCnRship parentMdUidRef="cmaq-${dmsz}-d2">
<childMd uidRef="cmaq-${dmsz}-d3">

<viaPipe inFileUidRef="cmaq-${dmsz}-d2-out1"
outFileUidRef="cmaq-${dmsz}-d3-in1"/></childMd></PC nRship>

<PCnRship parentMdUidRef="cmaq-36k-${day}">
<childMd uidRef="cmaq-12k-${day}">

<viaPipe inFileUidRef="cmaq-36k-${day}-out2"
outFileUidRef="cmaq-12k-${day}-in2"/></childMd>/PCn Rship>

<PCnRship parentMdUidRef="cmaq-12k-${day}">
<childMd uidRef="cmaq-4k-${day}">

<viaPipe inFileUidRef="cmaq-12k-${day}-out2"
outFileUidRef="cmaq-4k-${day}-in2"/></childMd>/PCnR ship>

<PCnRship parentMdUidRef="cmaq-${vdmsz}-${day}">
<childMd uidRef="postv-${vdmsz}-$day">

<viaPipe inFileUidRef="cmaq-${vdmsz}-${day}-out1"
outFileUidRef="postv-${vdmsz}-${day}-in1"/></childM d></PCnRship>

</pCnRshipSet>
</appMdRships>
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A.4: An appRunDocument for uhaqf Application

<appRun uid="uhaqf-run" appUid="uhaqf" startTime="2005 -04-16T15:23:15">
<mvproperty file="uhaqf.mvproperties"/>

<modules>
<ref uid="eta-download"/>
<ref uid="mm5-${dmsz}"/>
<ref uid="smoke-${dmsz}-${day}"/>
<ref uid="cmaq-${dmsz}-${day}"/>
<ref uid="postv-${vdmsz}-${day}"/></modules>

<startMd><ref uid="eta-download"/></startMd>
</appRun>

A.5: An Example of Workflow with Loops and Conditional Branches

In the workflow of Figure 4, the modulemd2 generates different output files (F1, F2 or others) in different loops and these
files are processed by modulemd3, md4or md5. The loop count is 100.

 

md1 

md3 

md2 

md6 

md5 

md7 

md4 

F1             F2                   else 

loop < 100 

Fig. 4. A Workflow with Loop and Conditional Branches

In the GAMDL description shown in the following, modulemd1postAssign s a loop variable, whose initial value is100
and stride is-1. The modulemd2 postAssign s two variables,F1recentand F2recent. F1recentis set totrue if file F1 is
generated bymd2 in the last execution, otherwiseF1recentis set tofalse; F2recentis handled similarly with respect to file
F2. The pipe condition formd3-md2CPsRship is set to “pipe(F1) && ${F1recent}”, which is evaluated totrue if F1 is
generated in the last execution and is available for piping in. The if conditions forF2 pipe in md4-md2CPsRship and the
else-pipe inmd5-md2CPsRship are similar toF1 pipe. Loop control is specified inmd1-md6CPsRship of md1 and md6
using a null pipe with condition “${loop}<100 ”.

In this example, GAMDL uses some condition functions, such as generated(F1), in a condition string.A condition function
is a regular function (binary or script) that returns a boolean value and should not make any modification to its externals. In
the following specification, thepipe(fileName)function checks whether a file can be piped in or not; Thegenerated(fileName)
function checks whether the module execution generates thespecified file; thedefined(variableName)function checks whether
a variable is defined or not.
<application name="LoopCon Example" uid="loopcon" >

<appModules>
<module uid="md1">

<postAssign name="loop" value="${loop}-1:100" if="defi ned(loop)"/>
</module>
<module uid="md2">

<outputFiles>
<ref uid="F1"/>
<ref uid="F2"/>
<ref uid="Fx"/></outputFiles>

<postAssign name="F1recent" value="true:false" if="gen erated(F1)"/>
<postAssign name="F2recent" value="true:false" if="gen erated(F2)"/>

</module>
<module uid="md3"><inputFiles><ref uid="F1"/></inputF iles></module>
<module uid="md4"><inputFiles><ref uid="F2"/></inputF iles></module>
...

</appModules>

<appMdRships>
<cPsRshipSet>

<CPsRship childMdUidRef="md2">
<parentMd uidRef="md1">

<viaPipe> ... </viaPipe></parentMd></CPsRship>
<CPsRship childMdUidRef="md3"> <!--md3-md2 CPsRship -->
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<parentMd uidRef="md2">
<viaPipe if="pipe(F1) && ${F1recent}"

inFileUidRef="F1" outFileUidRef="F1"/></parentMd></C PsRship>

<CPsRship childMdUidRef="md4"> <!--md4-md2 CPsRship -->
<parentMd uidRef="md2">

<viaPipe if="pipe(F2) && ${F2recent}"
inFileUidRef="F2" outFileUidRef="F2"/></parentMd></C PsRship>

<CPsRship childMdUidRef="md5"> <!--md5-md2 CPsRship -->
<parentMd uidRef="md2">

<viaPipe if="!{F1recent} && !{F2recent}"
inFileUidRef="Fx" outFileUidRef="Fx"/></parentMd></C PsRship>

<mvproperty name="md345">
<value>md3</value>
<value>md4</value>
<value>md5</value></mvproperty>

<CPsRship childMdUidRef="md6">
<parentMd uidRef="${md345}">

<viaPipe if="" inFileUidRef="${md345}-out"
outFileUidRef="${md345}-out"/></parentMd></CPsRship >

<CPsRship childMdUidRef="md1"> <!--md1-md6 CPsRship -->
<parentMd uidRef="md6">

<viaPipe if=" ${loop} < 100" inFileUidRef="/dev/null"
outFileUidRef="/dev/null"/></parentMd></CPsRship>

<CPsRship childMdUidRef="md7">
<parentMd uidRef="md6"><viaPipe ... /></parentMd></CPs Rship>

</cPsRshipSet>
</appMdRships>

</application>


