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Abstract

Air Quality Forecasting (AQF) is a new discipline that atf@sito reliably predict atmospheric pollution.
An AQF application has complex workflows and in order to preltimely and reliable forecast results,
each execution requires access to diverse and distribotegutational and storage resources. Deploying
AQF on grids is one option to satisfy such needs, but requhiesrelated grid middleware to support
automated workflow scheduling and execution on grid ressurc

In this paper, we analyze the challenges in deploying an AqQffiGation in a campus grid environment
and present our current efforts to develop a general saoldtio grid-enabling scientific workflow appli-
cations in the GRACCE project. In GRACCE, an applicationsrkilow is described using GAMDL, a
powerful dataflow language for describing application ¢togihe GRACCE metascheduling architecture
provides the functionalities required for co-allocatingdgresources for workflow tasks, scheduling the
workflows and monitoring their execution. By providing arteigrated framework for modeling and
metascheduling scientific workflow applications on gridorgses, we make it easy to build a customized
environment with end-to-end support for application grepldyment, from the management of an appli-
cation and its dataset, to the automatic execution and sisaly its results.

*The work is performed as part of The University of Houstonis1Microsystems Center of Excellence in Geosciences [45].
TThis is an extended version of the paper that is accepteduiligation in the Journal of Grid Computing, 2006.
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Abstract

Air Quality Forecasting (AQF) is a new discipline that atmmto reliably predict atmospheric pollution. An
AQF application has complex workflows and in order to prodiioely and reliable forecast results, each execution
requires access to diverse and distributed computatiomlséorage resources. Deploying AQF on grids is one
option to satisfy such needs, but requires the related gittileware to support automated workflow scheduling
and execution on grid resources.

In this paper, we analyze the challenges in deploying an A@#li@ation in a campus grid environment and
present our current efforts to develop a general solutiongfad-enabling scientific workflow applications in the
GRACCE project. In GRACCE, an application’s workflow is deised using GAMDL, a powerful dataflow language
for describing application logic. The GRACCE metaschetyhrchitecture provides the functionalities required for
co-allocating grid resources for workflow tasks, schedutime workflows and monitoring their execution. By pro-
viding an integrated framework for modeling and metaschiedwscientific workflow applications on grid resources,
we make it easy to build a customized environment with endrit support for application grid deployment, from
the management of an application and its dataset, to thenatiw execution and analysis of its results.
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. INTRODUCTION

Air Quality Forecasting (AQF) [30] is a new discipline thadteampts to reliably predict atmospheric pollution. A
real-world AQF application incorporates multiple, intepgndent computational modules that make intensive use
of numerical tools, requires high compute power for the &ition of meteorological and chemical processes, and
entails the transfer, storage and analysis of a huge amdwitservational and simulation data [7]. We participate
in an effort to build such a service, with the goal of proviglitimely, reliable forecasts of air quality for the
Houston-Galveston region and for several other regionkénSouth Central USA that have encountered problems
with air quality in the recent past [4], [5]. On-going work te University of Houston (UH) aims to create, test
and deploy an AQF application as well as to establish a deitdévelopment and deployment environment.

Grid technologies and middleware [16] provide a potentiedtegy for meeting the computational and storage
needs of AQF executions. In grids, users with large-scatdblpms such as AQF application are able to exploit
multiple distributed high performance computing resosreproduce high quality results that cannot be achieved
from single-domain resources. As grid technology becomatira and standardized, the act of deploying applica-
tions on a grid to efficiently use its resources becomes mmomitant than the work on basic technology and its
standardization. Current middleware efforts focus on tire grid-enabling technologies and hence, applicatiuatle
management and deployment-related issues often falldeutbeir scope. Therefore, additional efforts are required
to augment grid middleware in order to realize end-to-engpeu for domain scientists. In general, such efforts
are still in the experimental stage and related experieacesery application-specific and technology oriented.

The current efforts, including ours [3], [4], on grid aplion deployment often focus on packaging or wrapping
of legacy application codes with services and utilities goid execution and data transport, and offer these via
a web interface to end users. The provision of automatedcapioin-specific scheduling and execution on grid
resources, and thus end-to-end grid environment suppatientists, remains an unsolved challenge. This paper
presents our experience of deploying an AQF application oarmapus grid environment and our current efforts to
develop a solution for grid-enabling AQF-like applicatioas part of the GRACCE project [36]. Our initial efforts

*The work is performed as part of The University of Houstonis $/icrosystems Center of Excellence in Geosciences [45].
This is an extended version of the paper that is accepteduloligation in the Journal of Grid Computing, 2006.



provided a working, but not feature-complete solution tpmart AQF runs on resources across our campus grid
at the UH.

The GRACCE project aims to provide end users with a compiEherapplication grid platform, with support
for the management of the application and its dataset, alsasghe automatic execution and viewing of results.
In GRACCE, application coordination and collaboration gsical in a workflow) are described using GAMDL, a
powerful dataflow language to model an application’s logite GRACCE metascheduling architecture is designed
to be a layer on top of and to extend the available grid middtevto provide automated grid resource co-allocation,
workflow coordination and runtime control. The architeetimcludes a workflow-orchestrated metascheduler with
planning and reservation features, an event-driven warkéingine able to coordinate the scheduling process and
job execution, and a runtime system to control workflow etecu

The organization of this paper is as follows. In Section 2jmmduce the AQF application, our initial efforts in
deploying AQF on the UH Campus grid [3], and related issuefliowing this, the motivations of GRACCE and
the GRACCE solution are discussed and introduced in Sesti@ection 4 presents the GAMDL application model
language, including its structure and features. In Sed@iothe GRACCE metascheduling architecture is described
in details, including the architectural subsystems and faectionalities, and core algorithms and mechanisms. In
Section 6, related work is extensively studied. Finally; eork is concluded in Section 7.

[I. EXPERIENCESRUNNING AQF oN A CAMPUS GRID

The initial grid deployment of our AQF application utilizélge functionalities provided by the Globus toolkit [13]
and realized a working solution to support AQF runs on theueses across our campus grid [4]. In this section,
we introduce the AQF application, its current deploymeatust and the issues that arise with the current approach.

A. AQF Introduction

Our Air Quality Forecasting (AQH application is an integrated computational model for oegi and local
air quality forecasts, and is composed of three subsystdmsPSU/NCAR MM5 weather forecast model [10],
the SMOKE emission system [32], and EPAs CMAQ chemical gport model [8]. An AQF execution is a
computational sequence of the three subsystems with isiageeesolution and decreasing geographical boundaries.
Figure 1 illustrates the workflow of a nested 2-day forecastperation over a single region of interest by a
three-domain computation. The 36km domain computationiges coarse forecast data over the continental USA,
the 12km domain provides data across the south central USd\thtee 4km domain forecasts air quality across a
smaller geographic region. A full forecast in an urban aeguires an additional level of refinement based upon a
1km domain. Each rectangle represents a computational lmadd each arrow indicates the flow of data between
modules. AQF modules may execute on heterogeneous, disiilvesources provided that the dependent files of
each module are transferred to the allocated resourceepdédrome available.

B. Initial Experience of AQF Deployment on Campus Grid

The UH campus grid consists of heterogeneous resourceslingl clusters of Sun SMPs, a Beowulf cluster and
an SGl visualization system with 9 TB storage, all at the UlgiHPerformance Computing Center (HPCC) [38];
and of Beowulf clusters, Sun SMPs and several Sun workatiio several other departments. The AQF modules
are installed and configured on these resources, and diskapedspace is allocated for their daily executions.
Sun Grid Engine (SGE) [43] and Platform LSF [41] have beetsitedd to manage resources within the individual
administrative domains. The Globus toolkit [13] is ingtdllon these resources to provide the utilities for grid job
execution and remote file transfer. The UH HPCC serves as GAfft our campus grid and is responsible for
granting grid accounts. To make it as easy as possible fos wgenteract with the services provided through the
campus grid, EZ-Grid [4], a light-weight web-based portas been developed. It uses the Java CoG Kit [12] to
provide a convenient interface to all Globus functionsJuding grid authentication with X.509 certificates, job
specification, submission and management, file transfacsgaery of grid resource information and load status.

In this setup, the AQF workflow is described in an XML file, anéarl script controls the workflow execution
using the Globus toolkit and EZ-Grid. A module in the workfliswdescribed as a task which is mapped to a grid

Tthe acronym AQF from here on denotes our AQF applicationasnteted otherwise.
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Fig. 1. AQF Application Workflow

computational job (thus module, task and job refer to theesantity in different contexts, the termoduleis used

in an application contextaskin a workflow context, angob in a grid context). Dependencies between modules
are specified as parent-child relationships between taskgjich parent tasks produce the data to be consumed by
child tasks. For each task, details about the executablésagel resources are hard-coded in the task RSL files [44].
The Perl script reads the XML file and controls the overalleexion of the AQF tasks, including submitting jobs
to grid resources, initiating file transfers when the dataarilable, and resolving task dependencies.

There are several problems with the above solution. Firstinputational resources are pre-allocated for the AQF
tasks and are assumed to be available during the task exeg@atiiods. The allocated resources specified in the task
RSL files are defined by system administrators, who alsovegke resources in the local schedulers to ensure their
availabilities. Obviously, this human-scheduling apgito#s not suitable for dynamic grid environments — resource
allocation should be automated to provide best decisiosgda@n up-to-date resource load status information.
Secondly, failures in a grid resource will cause the failof¢he whole AQF run unless a user intervenes. There is
no back-up strategy to allocate resources for a task whatieated resource fails. Specifying a secondary resource
in the RSL is one solution, yet normally the secondary resmis rather busy in our environment, and that task
would have to wait in the local queue if submitted. Thirdhe hon-standard XML and script approach for workflow
description and execution control is error-prone and @acenajor burden on end users and system administrators.
Users are required to become adept in XML, Perl and RSL, wisiehdaunting additional effort when working on
AQF deployment. Instead of having to get involved in all dstaf grid setup and resource scheduling, our users
expect a complete application execution environment, feographical user interface to specify the application’s
configuration, to a viewer for execution results.

[1l. M oTIVATIONS AND GRACCE

AQF represents a large number of domain applications thatldviike to exploit grid-enabled resources for
their computation. These applications are no longer beevgldped as monolithic codes, but incorporate multiple
interdependent modules, and entail the transfer and stariitarge amounts of data. Enabling such an application
in grid environments is much more complex than enabling gliegtion that can be wrapped as a single grid job.
From our experience, the following topics must be addressextder to provide support for automatic execution
of AQF-like workflow applications, and to integrate themaire grid environment in a manner appropriate for end
users:

« Automatic scheduling and execution of the application modles: For AQF-like applications which consist
of multiple interdependent computational modules, sutimgita module job should be automated, requiring no
user interaction unless an errors occur. During workflowcaskien, actions to handle the dependencies (such
as transferring intermediate files between resources)dlagp be automatically initiated as the files become
available.



« Resource co-allocation for workflow computation modules ad files: Such capabilities should be provided
by software and should make the best decisions in a dynaridcegwironment to ensure application level
Quality-of-Service. In our AQF case, this means AQF executhust be completed by a certain deadline.

« Execution monitoring, failure handling and notification: Status and errors in workflow execution should
be reported to users without a need for them to actively check

« Modeling and describing application logic and jobs: A modeling language or GUI interface should be
available for end users to describe application dataflowtroblogic and grid jobs.

« Portal interface: A web portal should be available for end users to access {habddies as described above,
and to manage their applications and the application dasacsethe grid.

Many grid software packages have been developed that aimotede partial solutions to the problems listed
above. In Section VI, we study related software and tooldugting workflow definition languages for application
modeling, co-allocation and reservation services pravidg various projects, and workflow enacting engines for
workflow execution control. In our studies, we noticed thaistmof the current efforts address the fundamental
of the above specific issues, such as co-allocation, res@mygplanning and workflow execution. To the best of
our knowledge, there are no efforts to develop an integrgtet metascheduling system. Efforts related to grid
metascheduling for complex workflow applications are alsssing.

To provide full-featured support for the automatic exemutdf AQF-like applications in grid environments, the
integration of available solutions is as important as sgvihe various technical issues. An integrated solution
should provide end-to-end support for application executn a grid. It should provide an extensible framework
that can accommodate the diverse range of requirementssadpooth by the applications and by the underlying
grid systems. Such a framework should be suitable for a wagge of distributed applications, but also support
the construction of customized environments.

Our Solution: GRACCE - Building An Application Grid Enviroent

Driven by the needs of our local AQF effort, the GRACCE (Grigpication Coordination, Collaboration and
Execution) project [36] was proposed to develop a set of griddleware for application deployment. The vision
of GRACCE is to provide scientists with a framework to build @pplication-specific grid environment, from the
management of an application and its dataset, to the autometcution and viewing of results. In the GRACCE
framework, end users are only required to provide appboadiescriptions and resource requirements. GRACCE is
responsible for allocating grid resources for tasks, platasks on the allocated resources for execution, mongori
them, and returning their results back to users. More spadifi GRACCE provides an integrated solution to the
following issues:

« Application modeling and description: GRACCE provides a modeling language, GAMDL, to describe
application logic and workflow. GAMDL has several advancedtiires that are not available in other similar
solutions and is a basis for the integration of a grid metadaler and workflow systems in GRACCE.

« Grid metascheduling: GRACCE defines a grid metascheduling architecture for workfpplications that
addresses the issues of resource co-allocation and résarvevorkflow coordination, and workflow job
execution and monitoring.

« Workflow orchestration and resource co-allocation:In GRACCE, the resource allocation and reservation
process is based upon the application workflow; for exangitding module jobs are allocated on concurrent
resources.

« Standalone system for job submission and monitoringConventionally, the functionalities of job submission
and monitoring are provided by the scheduling or workflowtasys. In GRACCE, they are provided by a
stand-alone runtime system, which allows the runtime systebe developed and integrated without changing
the scheduler and workflow systems.

« Integration: The GRACCE metascheduling architecture is an extensiblmdwork that integrates solutions
to various technical problems in the area of grid schedudind workflow. The architecture is also a platform
for users to integrate their domain applications into grigdi@nments.

IV. GRID APPLICATION MODELING AND DESCRIPTION

To deploy a domain workflow application in grid environmentge must first be able to model and describe
the application workflow and resource requirements in a reatimat is appropriate for both end users and for



integrating with low-level grid middleware. As we outlinerther below in Section VI, most current workflow
languages model application dataflow as a DAG (Directed Bcy@raph), and some few of them are able to
describe loops or conditional branches. These languagpsreeusers to specify which tasks are executed in
parallel and which tasks must be sequentially executedsd ke&ecution relationships could be easily constructed
from a dataflow DAG with software tools, instead of askingrade provide such information.

To help in workflow scheduling, a modeling language shouldble to describe the job information pertaining
to a workflow task, e.g. resource requirements, executietotyi or profile data. Current workflow languages do
not have this capability and rely on other languages such is far this purpose, which introduces additional
complexities when specifying resource multirequests forkflow tasks.

To provide support for both application logic descriptiomdagrid metascheduling, the GRACCE Application
Modeling and Description Language (GAMDL) was created wfith following features:

« It describes both application data dependencies and d¢dagic (loops and conditional branches) at a high
level of abstraction.

« It separates the description of application logic and etiesuvorkflow, so that support for partial workflow
does not introduce additional complexities.

« It associates grid job specifications with application nmeddescriptions to support workflow-orchestrated
metascheduling. As a result, there is no need to explicpggcgy resource multirequests in a workflow.

« GAMDL allows similar modules to be easily described usingtiple-value properties;

In this section, we introduce the core concepts and featofeSAMDL. The GAMDL descriptions for the
AQF application are listed in APPENDIX A. We refer interabteaders to [36] for the GAMDL specification and
schema details.

A. GAMDL Core Documents

GAMDL provides two documents to describe a distributed imagibn and its workflow, théApplication
document and théppRun document. AnApplication document serves to define application entities, such
as executables, data files and modules, and the dependdatgnships between them. AAppRun document
describe a workflow of an application, such as the modulesaterequired for the workflow, the start module(s)
and the start time of the workflow. Th&pplication document provides a high-level abstract description of
the application from the viewpoints of end users and it sthaeicompass all the related entities required for
an application. TheAppRun document specifies an execution of the application. Theragpa of the two into
different documents enables the user to specify differesrkflows based on their needs without defining a new
application each time. This is especially useful for theureent execution of an application.

B. Application Dataflow Description

GAMDL models the dataflow of a grid application using the saocomcept as a DAG, and captures both
the dependency relationships between modules and themiadiaite files associated with these relationships.
Dependency relationships are defined via either a parefotreh (PCn) pattern or a child-parents (CPs) pattern. A
PCn relationship has a parent module and one or more childil@®dand a CPs relationship has a child module
and one or more parent modules. Intermediate files in a oekttip are specified as pipes.pipe has apipeln
and apipeOut element;pipeln specifies the piped output file of the parent task, pipeOut specifies the
piped input file of the child task. Each pipe represents omlg mtermediate file.

GAMDL includes conditional pipes to allow the decision abadnether a dependency should be handled to be
made during application execution. donditional pipe associates a pipe with a@h boolean condition which will
be evaluated after the module completes execution. If ituet@s totrue, the pipe is processed; otherwise, it is
not processed. If the conditions on all pipes in a relatigmsine evaluated afalse runtime dependencies are not
established and the child module will not be executed.

C. Control Logic Description

GAMDL allows the specification of control logic, such as Isopr conditional branches, by using conditional
pipes and variables. Aariable is a <name value> pair associated with aif condition. A new value can only be



assigned to the variable if the associaifedondition evaluates ttrue; where there is no condition, an assignment
is always made. If th&aluebeing assigned is in the form @hluel:value2valuelis assigned if théf condition is
true andvalue2is assigned otherwise. In GAMDL, complex flow controls arhieeed by the proper assignment of
variable values and reasoning on the conditions assoaidthgipes and variables A module may assign values to
variables before its execution (inpreAssign  element) and/or after its execution (inpastAssign  element).
The condition associated with a variable assignment or@igipermitted to reference system environment variables
as well as variables defined in other modules. In APPENDIX, Au& give an example showing how a workflow
with loops and conditional branches is specified using dardil pipes and variables.

D. GAMDL Module Job Specification

In GAMDL, a job description specifies the details about howagplication module is to be constructed as a grid
computational job, such as executable arguments and Escequest information. A module consists of multiple
jobs and a job can only be associated with a module. In thiersah a job workflow is constructed based on
module dependencies. In an applicatiofAjgpRun document, which specifies an execution, the included madule
their dependency relationships and the start module(s3tamis a module graph. The job(s) associated with the
modules are used to construct the corresponding job workflow

The association of job specifications with a module alsoiaktes the need to specify resource multirequests for
workflow applications. When allocating resources for wankfltasks, a metascheduler makes resource allocation
decisions based on the given module (task) dependenciegexBmple, the sibling modules in the workflow are
allocated on resources concurrently. If RSL or the GGF Jdim#ssion Description Language (JSDL) [40] were
used for this instead, the end user would need to explicilycBy resource multirequests to achieve resource
co-allocation [23], [21]. With GAMDL, the user only needs gpecify the resource requests for each module job,
and the metascheduler makes the co-allocation decisisedl@an the module workflow.

Finally, GAMDL introduces job profile specification, whicliavs a metascheduler to evaluate historical infor-
mation on module executions to help the resource allocgtioness. For applications like AQF that run everyday
with similar scenarios, it is very easy to predict the exi@gubehavior of a module on resources on which the
module has been executed previously. Based on these pedidhe metascheduler can make much better resource
co-allocation decisions.

V. THE INTEGRATED GRACCE METASCHEDULING ARCHITECTURE

A Grid Metascheduler is “one level of grid middleware thasadivers, evaluates and co-allocates resources for
grid jobs, and coordinates activities between multipletmeneous schedulers that operate at local or clustdt.leve
According to this definition, a metascheduler should have tmain capabilities: the “scheduling” capability that
allows it to co-allocate resources for applications raqgircollaboration between multiple sites, and the “meta”
capability to negotiate with local schedulers to satisfpbgll grid requests. In the survey of related work in
Section VI, we show that current efforts to develop a metedater [34], [42], [1], [25] emphasize the "meta” or
brokering functions. Those efforts with some focus on salieg capabilities address the specific issues of grid co-
scheduling; they include DUROC and GARA for co-allocatiow aeservation [14], [21], SNAP for negotiation [22],
and Pegasus for planning [9]. Itis very hard to integratedtsmlutions to produce a full-featured grid metascheduler
Some workflow systems have scheduling features [24], [$1], [P], but they do not provide the complete co-
scheduling functionality.

There are two basic strategies for scheduling tasks in wawképplications: just-in-time scheduling and look-
ahead scheduling. A just-in-time scheduler allocatesuress for each individual task when it is ready to start.
The allocation process is a one-time resource discoverynzatdh-making activity. Look-ahead scheduling plans
the execution of all or a subset of tasks and makes allocatmisions for them in advance. For heavily-loaded
environments where resources are not immediately avaijlabich planning together with resource reservation can
greatly help to reduce the job queue waiting time. But if gsinjust-in-time scheduler, it would be hard to find
resources for a newly submitted job in such situations. Stijutime scheduling is only suitable in lightly-loaded
environments or non-prime periods. The GRACCE metasckedidsign is based on look-ahead scheduling.



The GRACCE Metascheduling Architecture

GRACCE provides support for workflow-orchestrated metaddting and defines an architecture to implement
a look-ahead scheduling and execution system. The artiniéeaddresses the issues of metascheduling, workflow
coordination and workflow job execution, and integratesrtlelutions into a middleware platform. From this
platform, end users can build an application-specific gndirenment to manage a grid application in its entire
life cycle.

As shown in Figure 2, the GRACCE metascheduling architechas three subsystems, thietascheduler
the GridDAG workflow engine, and thEPExec runtime system. It employs the concept of an Execution Riaa f
workflow job. TheExecution Plan (EP)contains the scheduling decisions for workflow tasks andiiteehanisms
to handle task dependencies. TER is generated by thBletascheduler in the scheduling process, and is used
by the GridDAG to coordinate task dependenci&?Exec submits workflow tasks to their allocated resources
and manages their execution according to Eke
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Fig. 2. The GRACCE Metascheduling Architecture

The Metascheduler has two componentdyletaPlanner and MetaAlloc . It plans job execution and co-
allocates resources for workflow taskdetaPlanner predicts the execution scenario for each task, which is
about when and how the task should be launchetaAlloc  discovers suitable resources, negotiates the resource
provision and makes reservation with resource provideng. Wwhole metascheduling process is based upon the job
workflow; the decisions made are used to create theHBb The Metascheduler is described in detail in
Section V-A.

GridDAG is an event-driven workflow coordination system. At the stlimg stage GridDAG decides how
to handle dependencies and determines the event actitlittgsare involved in the handling. These decisions
are appended to the joBP. During job executionGridDAG coordinates the execution of dependent tasks by
handling and resolving task dependencies. In Section 8BJDAG components and event mechanisms are further
discussed.

EPExecis a runtime execution system for workflow jobs. Given a [eB, EPExec submits task jobs to the
allocated resources, and monitors and manages the exeadiftitbese tasksEPExec sends events related to file
availability or to the status change of task executiofstadDAG for the purpose of handling task dependencies.
During executionEPExec may adjust theEP according to the real execution scenaid?’Exec is discussed in
more detail in Section V-C.

The life-cycle of a workflow job in the GRACCE metaschedularghitecture is described briefly below:

1) Users submit a workflow job specified by a GAMDL document RAECE.

2) The Metascheduler  plans the execution of the job and allocates resources #intividual tasks. It

writes the decision details into the jdtP.

3) The jobEP is forwarded toGridDAG which will decide on and set up the mechanisms of dependency

handling; these details are added to the kb

4) According to the jolEP, EPExec submits the first task of the workflow to its allocated resewand monitors

it, thus begins the execution cycle of the job.



5) During job executionGridDAG handles task dependencies based on the workflow and thERobVhen
all dependencies of a task are resolv&didDAG notifies EPExec to submit it to its allocated resource.

A. The GRACCE Metascheduler

GRACCE's Metascheduler has two components, MetaPlanner and
MetaAlloc . MetaPlanner predicts and identifies the execution window for each taskl letaAlloc
searches a list of candidate resources, negotiates andsrtiek@ecessary agreement with resource providers. The
relative execution order of dependent tasks is maintainethé metascheduling process. For independent tasks,
the Metascheduler  also considers the possibility of executing them conculyen

1) Execution Planning: Identify Task Execution Windavtask's execution windowEW is a time frame for
carrying out that taskEWstart is theEWstart time, andEWlength denotes th&Wength —EWlength is equal
to the task wall-clock time plus a configurable buffer tim&e EWof an ancestor task must finish before the start
of its dependent tasks, but ti&A6 of independent tasks can overlap.

Given a workflow job, theMetascheduler  planning process identifies th&/é for each task using a breadth-
first graph traversal algorithm. The algorithm starts wikle tallocation of resources for the first task of the
workflow by MetaAlloc . When resources are allocatddetaAlloc  also identifies the tasEW Then, the
Metascheduler  processes the child tasks of the first task. FikdetaAlloc discovers a list of candidate
resources for each child task and calculates the cost oihdepey handling between the resource(s) for the parent
task and the candidate resources for child tasks. SecoMditaPlanner predicts the taslEWfor each of the
candidate resources. TH&Nstart is calculated by adding thEWstart and EWlength of the parent task as
well as the time required for dependency handling. Thirthg taskEWpredicted for each candidate resource are
processed again biletaAlloc , which will allocate the best resource for the task and deitez its EW The
Metascheduler  then moves on to process other tasks.

Since this is a look-ahead scheduling algorithm, it requittee specification of a task’s wall-clock time and
input/output file sizes. If they are not supplied by userg, MetaPlanner predicts them based on the task
execution history or profiling information, which are indked in the job’'s GAMDL specification. For recurring
jobs, such as AQF, users normally provide historical or fgafata to characterize the tasks’ execution on different
resources.

2) Resource Co-Allocation, Negotiation and ReservatibtfetaAlloc  allocates computational resources for
workflow tasks in a sequence of resource discovery, negotiaand reservation. During resource discovery,
MetaAlloc  queries the Grid Information Services for resources thtsfgathe task resource requirements and
are available during itEW Firstly, resources are selected by a simple match-makirepoh attribute of a task’s
specification with static resource information. The researon which the task is able to run are further evaluated
according to their runtime information. Then, the seleatesburces are checked for their availability during the
task EW andMetaAlloc finally identifies a list of candidate resources. In the niggioin and reservation stage,
MetaAlloc  requests reservation for the candidate resources duriagks EW If the local schedulers grant the
requestsMetaAlloc  chooses the one that can provide the eari®afor the task. A reservation ID is returned
to be used to later access the reservation. If no reservatiold be made on any of the candidates, grace periods
are added to theWandMetaAlloc again requests reservation for other wall-clock periodtiwithe EWuntil a
reservation is made. MetaAlloc cannot reserve any resource for the tadietascheduler  stops to work on
this task and forwards the partiBP to EPExec to launch the job. During job executiolletaAlloc  periodically
attempts to allocate resources for this task.

B. The GridDAG Workflow System

GridDAG is our event-driven workflow system; it is able to coordintie scheduling and execution of the
dependent tasks of a workflow job. Compared with other workmacting enginesGridDAG is a pure coordi-
nation system, without any execution or monitoring fungéitities, which are provided bPExec in GRACCE.
This givesGridDAG the flexibility to integrate with various remote executiamdamonitoring utilities. Different
coordination mechanisms can be develope&iidDAG without necessitating additional effort to integrate them
with other GRACCE subsystems.



1) The GridDAG Eventing Mechanismg&vents are notifications of a status change of task exeautoriile
transfers, data availabilities, or other situations defibg users, such as for resource accounting purposes. An
event producer detects certain situations or a status ehagenerates the corresponding event messages and
distributes them. An event consumer receives an event messmad invokes the event handlers. TRHIDAG
event mechanism is based on the WS-Notification standafd $é7event messages are XML documents — which
allows the implementations to be platform-neutral in distted heterogeneous environments.

Four components irGridDAG support the eventing mechanisms: the event chain buildeincdeployer,
GridDAG agent, andepResolver . The chain builder reads the j&P forwarded from theMetascheduler
and generates the event chains according t&EfeAn event chain is an ordered sequence of events from thigpart
ipating producers to consumers. The chain deployer serixsption requests to producers.SAibscription
represents the relationship between a consumer, procarakrelated event messages. These relationships comstitut
the runtime event chains of a workflow joBridDAG agents coordinate the runtime event activities in each grid
resource. Firstly, as a producdsridDAG agents detect events occurring on the host resources aidosgn
event messages. Secondly, as a consuG@dDAG agents receive event messages from other agerE®Bxec
and take actions accordinglifepResolver is the overall coordinator of dependency handling and wsgl
DepResolver keeps track of the states of task dependencies and decidethertall of the dependencies are
resolved.

2) Data Dependency HandlingUsing the GridDAG eventing mechanism to handle data dependency, file
transfers can be in either destination-pull (D-P) or soymgsh (S-P) mode. The event sequences for these two
modes are shown in Figure 3. In the D-P mode, when@hdDAG agent on the source resource detects that files
are available (1), it sends a corresponding event to thendgisih GridDAG agents (2). The destinatiddridDAG
agents fetch the files (3) and send eventDapResolver notifying it of file arrivals (4). For the S-P mode,
when files are available (1), the souréeidDAG agent transfers them to the destination resources (2) amakse
an event to the destinatidBridDAG agents and tepResolver indicating that the intermediate files have been
transferred (3). We expect that the D-P mode works bettenwheltiple destinations are waiting for the same set
of data. the S-P mode is suitable for situations where ana pi@iduction and movement can be pipelined.

GridDAG Dependencies resolve GridDAG | Dependencies resolved
DepResolver » EPExec DepResolver > EPExec
4: Notifying pull done
3: Notitying push done Job subKpission
Job submigsion
2: Notify file ava||ab|||ty 3: Notlfylng push done
| gDAG agent GT gDAG agent GT gDAG agent GT gDAG agentl GT
R2Z 4
l: Files available 3: Fetch files 1: Files available 2: Push files

Destination-Pull mode Source-Push mode

Fig. 3. Event Sequence in File Transfer

C. EPExec Runtime system

EPExec (EP Executer) is the runtime execution system for workflow jobsoading to the jolEP. EPExec has
three component&§XEpre, sJSCS, andRTadj , to provide the functionalities of job submission, job moning,
and the runtime adjustment of a j&.

EPExec is implementation-independent of tMetascheduler andGridDAG subsystems and communicates
with them via platform-neutral event messages. This essiiréo be flexible enough to integrate with various
middleware packages. DiffereEPExec’s can be developed to support different methods of job ssbiom and
remote execution without requiring any changes toMeatascheduler and theGridDAG.

1) Execution PreparationEPEXxec’s execution preparatiorEXEpre ) adds the the required information for job
submission and workflow control to the jdbBP. The details depend on the grid middleware that it is dewdop
on. Assuming that Globus GRAM is responsible for job submissindGridDAG for workflow coordination, its
work can be summarized as follows:
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« Preparation for GRAM job submission: EXEpre parses the tasks specification, generate a Globus RSL file,
and specifies the locations and names of input and outputdilebe selected resources for the task.

« Preparation for dependency handling: EXEpre forwards the jobEP to GridDAG which sets up the event
chains and configures the event consumers and produceriscassked above.

2) EP Execution and MonitoringEPExec starts the workflow execution by submitting the job correpog to
the first task to its allocated resources according to th&RlsJSCS (simple Job Submission and Control Service)
is a utility to respond to such submission requests fiEeirEXxec. It calls the remote execution functions, such as
Globusglobus-job-submito submit a single-executable job. The job is submittedgiggresource reservation ID;
this ensures the task is launched within B8/ A successful submission returns a global job ID, whitfPExec
uses for job monitoring and control.

EPExec monitors task executions in both passive-notification jRydde and active-checking (A-C) mode. In
the P-N modeEPExec relies on the event messages about job status change tatheagdd. These messages are
sent by theGridDAG agent on the resource where the job executes. In the A-C nitelexec calls sJISCS to
guery the current state of job execution. The P-N mode atesEPExec from the frequent calling 08JSCS;
but EPExec may lose track of the job if the event mechanism fails. So mtlynboth the P-N and A-C modes
are enabled irePExec for a close monitoring of the job.

3) Runtime AdjustmentEPExec coordinates task executions so that the executions fohaP. But if a task
completes after itE€W the RTadj (Runtime Adjuster) component &PExec may take actions to adjust theP
or to make up the delay. In most situations, those tasks thpémt on the late task can be started within their
EWs andRTadj does not need to adjust them. But if the late completionsec#us expiration of reservations of
the dependent tasks and they cannot be started in EBvr RTadj uses the following strategy to try to make up
the delay:

First, EPExec submits these tasks to their allocated resources withang ueservation. The jobs may be held in
the resource local queud®Tad]j then requestMetascheduler  to discover alternative resources for these tasks.
If suitable resources are discovered and allocaERExec submits copies of these tasks to these resources. During
execution,EPExec identifies the copy that it thinks will complete first and &ithe others. ThuRTad] does its
best to make up for the lost time in past job execution and taimize the negative impacts on the execution of
later tasks.

If it seems impossible to follow the initial joBP, RTadj will consider re-scheduling the rest of the tasks. In
this caseRTadj forwards the job sub-workflow tdletascheduler  to reschedule. Re-scheduling may cause
low resource usage or wastage because of the cancellatiprionfreservations. Thdletascheduler  tries to
avoid this situation by scheduling other jobs onto theserkedions if possible.

VI. RELATED WORK

Various projects attempt to solve the problems of grid aapion modeling and grid scheduling, and provide
certain features that are also incorporated into GRACCREhis section we survey related work in three areas,
grid application modeling and workflow description, grid taecheduling, and workflow engines with scheduling
features.

A. Application Modeling and Workflow Descriptions

Many efforts have aimed to support the specification of wowkdél for grid applications. Condors DAG [35]
enables the use of a graph that depicts parent-child re&dtips to specify workflow in applications. Gridbus
workflow [19] describes application DAGs using an XML-badadguage (xXWFL). But both Condor DAG and
Gridbus workflow do not handle advanced control logic.

The Triana [6] workflow definition language specifies compurzased application workflows. Components are
units of executions implemented as Java classes. Non-jaligations have to be wrapped in Java in order to use
Triana.

Business Process Execution Language (BPEL) [33], whichb@oas IBM’'s WSFL [46] and Microsoft's XLANG [27]
standards, is an XML-based workflow definition language tecdbe enterprise business processes. BPEL works
at web services level; additional extensions are neededaterit easy to use for end users.
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Abstract Grid Workflow Language (AGWL) [28] “describes” digation control flow using constructs of an
imperative programming style and is able to describe varioomplex control logic. But users are required to
specify the details of the control flow, such as stating whiotdules can be executed in parallel. For dataflow
applications, users have to transform the dataflow intorobflow to use AGWL.

Karajan of the Globus CoG Kit [39] is a powerful workflow systehat includes a workflow description
language and a workflow engine. Karajan uses similar coctstas AGWL to describe task dependencies, execution
relationships and control logic. To use Karajan, users rhnetv the task execution hosts in advance, as well as
the source and destination hosts for file transfers. So Karajorkflow language is more suitable for low-level
workflow execution control than for high-level applicatiorodeling.

B. Resource Co-Allocation and Grid Metascheduling

There are also many systems that address specific issuad abggcheduling. Globus GRAM [23] and RSL [44]
are the early, de-facto standards for providing solutiarsskcure job execution in metacomputing environments.
DUROC [21] is an early effort to address the issues of resureallocation in the context of Globus and RSL.
Globus GARA [14], Maui Silver [42] and the architecture defihin [11] introduce advanced reservation into the
GRAM co-allocation architecture [31]. SNAP [22], which erds Globus’ GRAM and GARA, proposes a service
negotiation protocol for grid scheduling. Pegasus [9] £asbrkflow job scheduling issues into the form of Al
planning.

The Grid Scheduling Use Case Document from the GGF Grid SdimgdArchitecture Research Group (GSA-
RG) [37] collects scheduling scenarios for several difiereypes of applications, including complex workflow
applications, component-based applications, applicagitented scheduling in a knowledge grid (K-Grid), agent-
based scheduling, etc. Here, the most relevant two casekflove scheduling and K-Grid scheduler, are outlined.

The use case for workflow scheduling aims to define the funaticequirements, the process and other related
issues of scheduling workflow applications in grid enviramts. This use case mentions that an execution schedule
should be generated for workflow applications, but does ddtess how to generate such a schedule, which we
believe is the most important step of the workflow schedupinucess.

The K-Grid scheduler [2] described in the second use cas@@&farmance-oriented resource allocation service
for knowledge discovery and data mining applications. édicts the computational and 1/O cost for each allocation
and makes the best-possible decisions based on this detimatt the K-Grid scheduler does not reserve resources
for applications and relies on the grid resource discoveryises to find the best available resources.

The Community Scheduler Framework (CSF) [34] implementsetnf grid services which provide basic
capabilities for grid job submission and resource resematThese services, developed as wrappers for some
local scheduler utilities, provide a good starting poind&velop a brokerage system. But CSF services only cater
for single executable jobs and lack functionalities fordgeb-scheduling.

Maui Silver [42] is an advanced reservation-based grid dalee which allows a single job to be scheduled
across distributed clusters. Silver relies on the locakdaker to specify and coordinate the job workflow, which
limits it usage to simple workflow applications.

Nimrod/G [25] is a resource management system with a focusommputational economy and schedules tasks
based on their deadlines and budgets. Nimrod/G also addressues of scheduling single jobs, and does not
address the requirements of workflow applications.

MARS [1] proposes an on-demand scheduler which discovetseinedules the required resources for a critical-
priority task to start immediately. MARS uses a forecassirgitegy to predict runtime resource parameters, such
as queue lengths, utilization, etc.

C. Workflow Engines With Scheduling Features

Workflow related activities have been extensively studied.B]. Most workflow systems, such as DAGMan [35],
myGrid Taverna [29], GridAnt and Karajan [39] use a very denptrategy to schedule workflow tasks, that is,
they simply submit tasks when their dependencies are redolvhese workflow systems do not have scheduling
and resource allocation features. So, in the following, wly outline those workflow systems that do have certain
scheduling features.
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The Triana [6] workflow engine is a decentralized, eventelasystem. In Triana, users specify the distribution
policies for mapping workflow tasks onto resources, whichld¢de parallel or pipelined. Triana assumes that
resources are available for these tasks, so it does not#dloesources for them.

The scheduling algorithm of ASKALON [24], [26] and in [20] earsimilar to our approach to planning the
workflow executions. These algorithms traverse the workfioaph or subgraph and generate the execution schedule
of the workflow tasks. But they do not specify how the exegutime for each workflow task is determined. As
we mentioned before, such information and its accuracy aiigahpart for planning and look-ahead scheduling.

In GridFlow [17], a workflow is executed according to a simath schedule. If large delays occur in some
sub-workflows, the rest or all of the workflow may be sent backhe simulation engine and rescheduled. The
concept of a simulated schedule is similar to the executian {m our architecture. But GridFlow does not address
resource co-allocation and reservation issues in the ateuiischedule.

Pegasus [9] constructs a job execution DAG with schedulifigrination from the application DAG logic. This
process includes querying Globus MDS to find resources fapedation and data movement, and querying a Globus
replica location service to locate data replicas. Pegashimiss this DAG to Condor DAGMan for execution, and
hence cannot co-exist with other local schedulers.

VIlI. CONCLUSIONS

AQF is a typical application that requires multiple compiataal resources collaboratively available to produce air
guality forecasting results in a timely fashion. To satisfich requirement in grids, many application specific issues
need to be addressed in order to provide a production-guatitironment. This paper presents our solutions to
create such an environment for domain scientists to enhbledpplications on grid. Driven by our AQF application
and based on our experiences of AQF deployment on the UH camid, the ongoing GRACCE project aims
to provide an end-to-end solution for automatic applicatgxecution on grid environments. Using the GRACCE
middleware, domain scientists are only required to speb#yapplication logic and resource requirements; GRACCE
is responsible for allocating grid resources for the agpian, for launching the application, and for the delivery
of the results back to the users.

Currently, there are two major efforts in GRACCE: GAMDL am#tGRACCE metascheduler. GAMDL provides
an intuitive means to model an application for grid deplogpmé describes application dataflows and allows control
logic to be directly expressed, without additional tratistafrom the dataflow. GAMDL associates job specifications
with workflow descriptions so that there is no need to speaffplication-level resource multirequests. GAMDL
also allows the specification of job execution history anafipng data, which are used by thdetascheduler
to predict workflow execution behavior.

Our metascheduling efforts in GRACCE study the grid metadaling issues for workflow jobs, define the
term “Grid Metascheduler” and a metascheduling architector workflow applications. The architecture provides
and integrates solutions to various grid scheduling rdlassues. The three subsystems in the architecture, the
Metascheduler , the GridDAG workflow engine, and th&EPExec runtime system constitute an extensible
platform for the integration of grid middleware and applioas. Grid middleware solutions can be easily interfaced
with one of the subsystems without changing the other siis)s and from this platform, end users without any
in-depth grid knowledge are able to easily deploy their @pgtibns on the grid.
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APPENDIX A: GAMDL Examples

In this appendix, the core GAMDL description of the AQF apation is listed in A.1 - A.3. A.1 reproduces the contents
of the AQF application document, which includes four files to describe the AQF mstitA.2 gives the contents of the
“agfexe.xnilfile which specifies the AQF modules. A.3 lists the filagfmddep.xnilthat specifies AQF module relationships
asPCnRship elements. In A.4, we give an example of an AQF workflow inf@pRun document. A.5 provides the contents
of a workflow example that has control logic.

GAMDL usesMultiple-value properties (mvproperties) to specify similar application entities favproperty is a property
that may have multiple values. It is definedraspName = {v0,v1, ...,vn}, and is referenced bymvpName. #muvpName
returns the number of values defined. A referencentgpName replicates the referencing sentenéenvpName times; in
each replica, the reference is replaced with a distinct drits walues. For example, if we definBnsz = {36K,12K,4K },
day = {1d, 2d}, the sentenceqf — mm5 — ${dmsz} — ${day} can represent all 6 instancegod * #dmsz x #day) of the
AQF MM5 modules in Figure 1. In an XML document, the repliocatiof an mvproperty reference is per-element based. When
the GAMDL parser encounters a reference to an mvpropentgplicates the nearest outer element that contains theerefe.
This element is called the containing element of the mvpitypeference. The processor does not recursively prodess t
same references in the child element of the containing elenimestead, it instantiates all references to the mvpitypiera
replicate element with the same value. We refer readers@pf{8 the details of parsing mvproperty in XML.

The mvproperty element in each of the GAMDL document inctuddile (uhagf.mvproperties) to specify the mvproperties
used; it defines four mvproperties as follows:

md={mm5, smoke, cmaq}
dmsz={36K, 12K, 4K}
day={d1, d2}
vdmsz={12k, 4k}

A.1l: The application Document

<application uid="uhagf' name="UH-AQF-2005" ... >
<mvproperty file="uhagf.mvproperties"/>
<description>UH AQF project in 2005 using GRACCE</descrip tion>
<version name="UH-AQF-2005" major="2005" minor="06" bui 1d="03"/>

<reference href="agffiles.xml"/>

<reference href="agfexe.xml"/>

<reference href="agfmd.xml"/>

<reference href="aqgqfmddep.xml"/>
</application>

A.2: The appModulesDocument

<appModules> <mvproperty file="uhaqgf.mvproperties"/>
<module uid="mm5-36k" name="MM5 36k for three days">



<inputFiles>
<ref uid="mm5-36k-in1"/>
<ref uid="mm5-36k-in2"/>
<ref uid="mm5-36k-in3"/></inputFiles>
<outputFiles>
<ref uid="mm5-36k-outl"/>
<ref uid="mm5-36k-out2"/>
<ref uid="mmb5-36k-out3"/></outputFiles>
<jobSpec name="mmb5-36k job spec">
<launcher>/bin/mm5-36k.sh</launcher>
<directory>/agf/mmb5/</directory>
<arguments>quiet</arguments>
<stdin>/dev/null</stdin>
<stdout>/aqf/log/mm5-36k/stdout.log</stdout>
<stderr>/agf/log/mm5-36k/stderr.log</stderr>
<indicator name="mm5-36kindicator.sh" />
<preprocesser name="premm5-36k.sh" />
<postprocesser name="postmm5-36k.sh" />
<cleaner name="mm5-36kcleaner.sh" />
<jobType>mpi</jobType>
<sysArch uid="Linux-x86" uname_m="i686" uname_s="Linux ">
<maxNumberOfCPU>24</maxNumberOfCPU>
<minNumberOfCPU>8</minNumberOfCPU>
</jobSpec></module>

<module uid="mm5-${vdmsz}">
<inputFiles>
<ref uid="mmb5-${vdmsz}-in1"/>
<ref uid="mm5-${vdmsz}-in2"/>
<ref uid="mmb5-${vdmsz}-in3"/></inputFiles>
<outputFiles>
<ref uid="mm5-${vdmsz}-outl"/>
<ref uid="mm5-${vdmsz}-out2"/>
<ref uid="mm5-${vdmsz}-out3"/></outputFiles>
<jobSpec name="mm5-${vdmsz} job spec">
<launcher>/bin/ mm5-${vdmsz}.sh</launcher>
<directory>/agf/mmb5/</directory>
<indicator name="mm5-${vdmsz}indicator.sh" />
<preprocesser name="premm5-${vdmsz}.sh" />
<postprocesser name="postmm5-${vdmsz}.sh" />
<cleaner name="mm5-${vdmszjcleaner.sh" />
<jobType>mpi</jobType>
<maxNumberOfCPU>24</maxNumberOfCPU>
<minNumberOfCPU>4</minNumberOfCPU>
</jobSpec></module>

<module uid="smoke-${dmsz}-${day}" >
<inputFiles><ref uid="smoke-${dmsz}-${day}-in1"/></i nputFiles>
<outputFiles><ref uid="smoke-${dmsz}-${day}-outl"/>< foutputFiles>
<jobSpec name="smoke-${dmsz}-${day} job spec">
<launcher>/bin/smoke-${dmsz}-${day}.sh</launcher>
<directory>/agf/smoke/</directory>
<arguments>quiet</arguments>

<stdout>/agf/log/smoke-${dmsz}-${day}/stdout.log</s tdout>
<stderr>/aqf/log/smoke-${dmsz}-${day}/stderr.log</s tderr>
<jobType>single</jobType>

<sysArch uid="Linux-x86" uname_m="i686" uname_s="Linux ">

</jobSpec></module>

<module uid="cmag-${dmsz}-${day}">
<inputFiles>
<ref uid="cmag-${dmsz}-${day}-in1"/>
<ref uid="cmag-${dmsz}-${day}-in2"/></inputFiles>
<outputFiles>
<ref uid="cmag-${dmsz}-${day}-outl"/>
<ref uid="cmag-${dmsz}-${day}-out2"/></outputFiles>
<jobSpec name="cmaq-${dmsz}-${day} job spec">
<launcher>/bin/ cmag-${dmsz}-${day}.sh</launcher>
<directory>/agf/cmaqg/</directory>

<stdout>/agf/log/cmaqg-${dmsz}-${day}/stdout.log</st dout>
<stderr>/agf/log/cmaqg-${dmsz}-${day}/stderr.log</st derr>
<jobType>mpi</jobType>

<sysArch uid="Linux-x86" uname_m="i686" uname_s="Linux ">

</jobSpec></module>

<module uid="postv-${vdmsz}-${day}" >



<inputFiles><ref uid="postv-${vdmsz}-${day}-in1"/></ inputFiles>
<outputFiles><ref uid="postv-${vdmsz}-${day}-outl"/> </outputFiles>
<jobSpec name="postv-${vdmsz}-${day} job spec">

<launcher>/bin/ postv-${vdmsz}-${day}.sh</launcher>

<exeUidRef>uhagf-postv</exeUidRef>

<arguments>quiet</arguments>

<stdout>/agf/log/postv-${vdmsz}-${day}/stdout.log</ stdout>
<stderr>/aqf/log/postv-${vdmsz}-${day}/stderr.log</ stderr>
<jobType>mpi</jobType>

<sysArch uid="Linux-x86" uname_m="i686" uname_s="Linux ">

</jobSpec></module>
</appModules>

A.3: The appMdRship€Document

<appMdRships>
<pCnRshipSet>  <mvproperty file="uhaqf.mvproperties"/>
<PCnRship parentMdUidRef="mm5-36k">
<childMd uidRef="mm5-12k">

<viaPipe inFileUidRef="mm5-36k-outl" outFileUidRef="m m5-12k-inl"/>
<viaPipe inFileUidRef="mm5-36k-out2" outFileUidRef="m m5-12k-in2"/>
<viaPipe inFileUidRef="mm5-36k-out3" outFileUidRef="m m5-12k-in3"/>

</childMd></PCnRship>

<PCnRship parentMdUidRef="mm5-12k">
<childMd uidRef="mm5-4k">

<viaPipe inFileUidRef="mm5-12k-outl" outFileUidRef="m m5-4k-inl"/>
<viaPipe inFileUidRef="mm5-12k-out2" outFileUidRef="m m5-4k-in2"/>
<viaPipe inFileUidRef="mm5-12k-out3" outFileUidRef="m m5-4k-in3"/>

</childMd></PCnRship>

<PCnRship parentMdUidRef="mm5-${dmsz}">
<childMd uidRef="smoke-${dmsz}-d1">
<viaPipe inFileUidRef="mm5-${dmsz}-out1"
outFileUidRef="smoke-${dmsz}-d1-in1"/></childMd>
<childMd uidRef="smoke-${dmsz}-d2">
<viaPipe inFileUidRef="mm5-${dmsz}-out2"
outFileUidRef="smoke-${dmsz}-d2-in1"/></childMd>
<childMd uidRef="smoke-${dmsz}-d3">
<viaPipe inFileUidRef="mm5-${dmsz}-out3"
outFileUidRef="smoke-${dmsz}-d2-in1"/></childMd></P CnRship>

<PCnRship parentMdUidRef="smoke-${dmsz}-${day}">
<childMd uidRef="cmag-${dmsz}-${day}">
<viaPipe inFileUidRef="smoke-${dmsz}-${day}-outl"
outFileUidRef="cmag-${dmsz}-${day}-in1"/></childMd> </PCnRship>

<PCnRship parentMdUidRef="cmag-${dmsz}-d1">
<childMd uidRef="cmaqg-${dmsz}-d2">
<viaPipe inFileUidRef="cmaqg-${dmsz}-d1-outl"
outFileUidRef="cmag-${dmsz}-d2-in1"/></childMd></PC nRship>

<PCnRship parentMdUidRef="cmag-${dmsz}-d2">
<childMd uidRef="cmaqg-${dmsz}-d3">
<viaPipe inFileUidRef="cmaq-${dmsz}-d2-outl"
outFileUidRef="cmag-${dmsz}-d3-in1"/></childMd></PC nRship>

<PCnRship parentMdUidRef="cmag-36k-${day}">
<childMd uidRef="cmag-12k-${day}">
<viaPipe inFileUidRef="cmag-36k-${day}-out2"
outFileUidRef="cmag-12k-${day}-in2"/></childMd>/PCn Rship>

<PCnRship parentMdUidRef="cmag-12k-${day}">
<childMd uidRef="cmag-4k-${day}">
<viaPipe inFileUidRef="cmag-12k-${day}-out2"
outFileUidRef="cmag-4k-${day}-in2"/></childMd>/PCnR ship>

<PCnRship parentMdUidRef="cmag-${vdmsz}-${day}">
<childMd uidRef="postv-${vdmsz}-$day">
<viaPipe inFileUidRef="cmag-${vdmsz}-${day}-outl"
outFileUidRef="postv-${vdmsz}-${day}-in1"/></childM d></PCnRship>
</pCnRshipSet>
</appMdRships>
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A.4: An appRunDocument for uhagf Application

<appRun uid="uhagf-run" appUid="uhaqgf' startTime="2005 -04-16T15:23:15">
<mvproperty file="uhagf.mvproperties"/>
<modules>
<ref uid="eta-download"/>
<ref uid="mm5-${dmsz}"/>
<ref uid="smoke-${dmsz}-${day}"/>
<ref uid="cmaq-${dmsz}-${day}"/>
<ref uid="postv-${vdmsz}-${day}"/></modules>
<startMd><ref uid="eta-download"/></startMd>
</appRun>

A.5: An Example of Workflow with Loops and Conditional Branches

In the workflow of Figure 4, the modulmd2 generates different output filef1, F2 or others) in different loops and these
files are processed by moduled3 md4or mds The loop count is 100.

Fig. 4. A Workflow with Loop and Conditional Branches

In the GAMDL description shown in the following, moduhed1 postAssign s aloop variable, whose initial value i$00
and stride is-1. The modulemd2 postAssign s two variablesF1lrecentand F2recent Flrecentis set totrue if file F1 is
generated bynd2in the last execution, otherwid€lrecentis set tofalse F2recentis handled similarly with respect to file
F2. The pipe condition formd3-md2CPsRship is set to ‘pipe(F1) && ${Flrecen}”, which is evaluated tdrue if F1 is
generated in the last execution and is available for pipmgrheif conditions forF2 pipe in md4-md2CPsRship and the
else-pipe inmd5-md2CPsRship are similar t&1 pipe. Loop control is specified imd1-md6CPsRship of md1land md6é
using a null pipe with condition “Hoop}<100".

In this example, GAMDL uses some condition functions, suebemnerated(F1)in a condition stringA condition function
is a regular function (binary or script) that returns a baolealue and should not make any modification to its extermals
the following specification, theipe(fleNamejfunction checks whether a file can be piped in or not; §kaerated(fileName)
function checks whether the module execution generatespbeified file; thedefined(variableNaméynction checks whether
a variable is defined or not.

<application name="LoopCon Example" uid="loopcon" >
<appModules>
<module uid="md1">
<postAssign name="loop" value="${loop}-1:100" if="defi ned(loop)"/>
</module>
<module uid="md2">
<outputFiles>
<ref uid="F1"/>
<ref uid="F2"/>
<ref uid="Fx"/></outputFiles>

<postAssign name="Flrecent" value="true:false" if="gen erated(F1)"/>
<postAssign name="F2recent" value="true:false" if="gen erated(F2)"/>
</module>
<module uid="md3"><inputFiles><ref uid="F1"/></inputF iles></module>
<module uid="md4"><inputFiles><ref uid="F2"/></inputF iles></module>

</a'b.pModuIes>

<appMdRships>
<cPsRshipSet>
<CPsRship childMdUidRef="md2">
<parentMd uidRef="md1">
<viaPipe> ... </viaPipe></parentMd></CPsRship>
<CPsRship childMdUidRef="md3"> <!--md3-md2 CPsRship -->



<parentMd uidRef="md2">
<viaPipe if="pipe(F1) && ${Flrecent}"
inFileUidRef="F1" outFileUidRef="F1"/></parentMd></C PsRship>

<CPsRship childMdUidRef="md4"> <!--md4-md2 CPsRship -->
<parentMd uidRef="md2">
<viaPipe if="pipe(F2) && ${F2recent}"
inFileUidRef="F2" outFileUidRef="F2"/></parentMd></C PsRship>

<CPsRship childMdUidRef="md5"> <!--md5-md2 CPsRship -->
<parentMd uidRef="md2">
<viaPipe if="{F1lrecent} && Y{F2recent}"
inFileUidRef="Fx" outFileUidRef="Fx"/></parentMd></C PsRship>

<mvproperty name="md345">
<value>md3</value>
<value>md4</value>
<value>md5</value></mvproperty>

<CPsRship childMdUidRef="md6">
<parentMd uidRef="${md345}">
<viaPipe if="" inFileUidRef="${md345}-out"
outFileUidRef="${md345}-out"/></parentMd></CPsRship >

<CPsRship childMdUidRef="md1"> <!--md1-md6é CPsRship -->
<parentMd uidRef="md6">
<viaPipe if=" ${loop} < 100" inFileUidRef="/dev/null"
outFileUidRef="/dev/null"/></parentMd></CPsRship>

<CPsRship childMdUidRef="md7">
<parentMd uidRef="md6"><viaPipe ... /></parentMd></CPs Rship>
</cPsRshipSet>
</appMdRships>
</application>
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