

An Improved Priority Ceiling Protocol to Reduce
Context Switches in Task Synchronization1

Albert M.K. Cheng and Fan Jiang

Computer Science Department

University of Houston
Houston, TX, 77204, USA

http://www.cs.uh.edu

Technical Report Number UH-CS-05-23
November 5, 2005

Keywords: concurrent programming, context-switching, task synchronization, Priority
Inheritance Protocol, Priority Ceiling Protocol

Abstract

Context switching between concurrent tasks is a pure operating system overhead which
wastes CPU cycles. This paper describes a technique to reduce the number of context
switches which are caused by task synchronization. Our method disallows a higher-
priority task to preemptively seize the CPU if it will be blocked by a lower-priority task
in the future. This protocol is applicable to real-time systems that use preemptive priority
scheduling with binary semaphores to enforce mutual exclusion. We show that this
protocol does not affect task completion times and so is especially suitable for
synchronization in real-time systems where meeting tasks' timing constraints is more

1 This material is based upon work supported in part by the National Science Foundation
under Award Nos. CCR-9111563 and IRI-9526004, by the Texas Advanced Research
Program under Grant No. 3652270, and by a grant from the University of Houston
Institute of Space Systems Operations. This paper is an extended and refined version of a
preliminary and shorter paper [1] presented at IEEE IPDPS 2001.

important than other factors such as task response time or throughput. This protocol can
be combined with priority inheritance protocols to bound the duration of priority
inversion while having the number of context switches reduced. Our simulation shows
that about 10% to 20% of context switches can be avoided using our preemption protocol.

∗This material is based upon work supported in part by the National Science Foundation under Award Nos. CCR-9111563 and IRI-
9526004, by the Texas Advanced Research Program under Grant No. 3652270,and by a grant from the University of Houston Institute of
Space Systems Operations. This paper is an extended and refined version of a preliminary and shorter paper [1] presented at IEEE IPDPS
2001.

An Improved Priority Ceiling Protocol to Reduce
Context Switches in Task Synchronization∗

Albert M.K. Cheng and Fan Jiang

Abstract

Context switching between concurrent tasks is a pure operating system overhead which wastes CPU cycles. This
paper describes a technique to reduce the number of context switches which are caused by task synchronization.
Our method disallows a higher-priority task to preemptively seize the CPU if it will be blocked by a lower-priority
task in the future. This protocol is applicable to real-time systems that use preemptive priority scheduling with
binary semaphores to enforce mutual exclusion. We show that this protocol does not affect task completion times
and so is especially suitable for synchronization in real-time systems where meeting tasks’ timing constraints is
more important than other factors such as task response time or throughput. This protocol can be combined with
priority inheritance protocols to bound the duration of priority inversion while having the number of context switches
reduced. Our simulation shows that about 10% to 20% of context switches can be avoided using our preemption
protocol.

Index Terms

concurrent programming, context-switching, task synchronization, Priority Inheritance Protocol, Priority Ceiling
Protocol.

I. INTRODUCTION

In a real-time system, there are rigid time requirements on the operation of a processor or the flow of data.
The correctness of computation depends on not only the results of computation but also the time at which outputs
are generated. Processing done without obeying the defined time constraints is considered system failure. Thus,
real-time systems are often used to monitor or control certain dedicated operations. For example, the controllers
for the anti-breaking system and airbag in a car must operate and react within a short period of time during a
life-threatening situation. The monitor for a chemical process also needs to respond in a real-time manner in order
to catch every danger signs in a chemical plane. An exploration robot could also be monitored by a real-time
system. It is certainly a requirement of such a system to evaluate the current surroundings in real-time in order to
stop the robot soon enough before it falls into a ditch.

Modern computer systems allow multiple tasks to be loaded into memory and to be executed concurrently. Such
systems are known as multitasking systems. CPU scheduling, which is the process of switching the CPU among
tasks, is the basis of a multitasking operating system. Over the years, various scheduling algorithms have been
developed with emphases on criteria such as CPU utilization, throughput, or task response time. In the area of
real-time systems, the objective of CPU scheduling is to give predictably fast response to urgent or high-priority
tasks. The predictability is usually obtained in terms of tasks meeting their timing requirements. Another measure
of merit in real-time system scheduling is a high degree of schedulability, or the degree of resource utilization at
or below which the timing requirements of tasks can be ensured [5].

A task may share common data with other tasks executing in the system. Concurrent access to shared data may
result in data inconsistency. Mechanisms that force tasks to execute in a certain order so that data consistency is
maintained are known as synchronization policies (or protocols). In a real-time environment, the need for tasks
to synchronize with each other may cause some otherwise schedulable tasks to violate their timing constraints.
Therefore, real-time task synchronization policies are developed to achieve data consistency with as little loss in
schedulability as possible.

∗This material is based upon work supported in part by the National Science Foundation under Award Nos. CCR-9111563 and IRI-
9526004, by the Texas Advanced Research Program under Grant No. 3652270,and by a grant from the University of Houston Institute of
Space Systems Operations. This paper is an extended and refined version of a preliminary and shorter paper [1] presented at IEEE IPDPS
2001.

In this paper, we consider the problem of reducing the number of context switches in a real-time system with
priority-driven preemptive scheduling. Context switches occur whenever one task relinquishes its control of the
CPU to the next task in the system. When tasks are required to synchronize with each other, more context switches
will occur. For example, before using up its share of CPU time, task P may be denied accessing one of its shared
resources by task Q which is currently using the shared data. Consequently, task P has to give up its control of
the CPU even if it is more urgent than task Q and later resume execution when task Q finishes its critical section.
Two context switches are caused by this simple synchronization schema. Such preemption may cause undesired
high processor utilization, high energy consumption, or in some cases, even infeasibility. This is a pure operating
system overhead which is not avoidable.

Our goal in this paper is to reduce the number of context switches caused by task synchronization in a real-time
system. Our protocol is based on disallowing a higher-priority task to preemptively seize the CPU if it will be
blocked by a lower-priority task in the future. We can apply this simple protocol regardless of the type of system
being considered, real-time or non-real-time, thus making the proposed protocol applicable in any operating system
to reduce context-switching overhead. Furthermore, the protocol can be incorporated into the family of priority
inheritance protocols that are commonly used for real-time task synchronization, accomplishing the same result
concerning blocking and deadlocks while reducing the number of context switches. Our simulation showed that
about 10% to 20% of context switches can be avoided using our preemption protocol. Other systems that would
benefit from our proposed protocol include portable battery-powered devices (such as personal digital assistants
(PDAs) and cellular phones), which should continuously conserve power [8], [4], [7], [17] and further reduce
operating system overhead.

A. Background

The problem of scheduling periodic tasks with hard deadlines equal to the task periods was first studied by Liu
and Layland [5] in 1973. They obtained a necessary and sufficient condition for scheduling a set of independent
periodic tasks in a uniprocessor system with preemption allowed. The scheduler employed was also shown to be
optimal by Dertouzos [3] for arbitrary task sets (not necessarily periodic).

Task synchronization usually adds another level of difficulty for real-time system scheduling. Mok [6] showed
that the problem of deciding whether it is possible to schedule a set of periodic processes is NP-hard when
periodic tasks use semaphores to enforce mutual exclusion. In a real-time system with fixed-priority scheduling,
the goals of the synchronization protocol include not only maintaining task mutual exclusion, but also bounding the
duration of priority inversion, in which a higher-priority task is forced to wait for a lower-priority task to execute.
In [13], Sha et al investigated two protocols that belong to the family of priority inheritance protocols for real-
time synchronization: the Basic Priority Inheritance Protocol (PIP) and the Priority Ceiling Protocol (PCP). They
showed that both protocols avoid uncontrolled (or an unpredictable duration of) priority inversion. They also proved
that the Priority Ceiling Protocol prevents deadlocks and minimizes the priority inversion duration to at most one
critical section. Furthermore, another protocol that applies the method of priority inheritance is introduced in [11]
by Rajkumar et al, called the Optimal Mutex Policy (OMP). This policy is optimal in the sense that it provides the
necessary and sufficient condition for limiting the blocking to a single critical section as well as avoiding deadlocks.
It is an enhancement of the PCP but requires much more information of the system and the tasks in the system
than the PCP does. The focus of this paper is on applying our context switch reduction technique to the PCP and
the OMP. Earlier work in this area includes [2], which provides an extension to PCP, and uses early blocking to
reduce context switches that are resulting from resource synchronization. Inspired by the work of [2], we extend the
theory in such a way that it provides a complete analysis to show the efficacy of early blocking for implementing
this technique with arbitrary policies, which are PCP and OMP. The analysis of OMP even shows that it guarantees
a better worst-case blocking duration while reducing context switches.

Several prior works dealt with task preemptions. [14] aimed at reducing the number of preemptions in an
existing fixed-priority schedule without considering task synchronization. Their method changed the attributes (i.e.
priority) of each task instance independently in an off-line schedule to eliminate unnecessary preemptions. [15]
used preemption threshold to limit task preemptions. Their focus was on the creation of a general model for both
preemptive and non-preemptive scheduling model for a fixed-priority scheduler. Few attentions were placed on
reducing the number of task preemptions. [16] used a technique that is similar to the one described in this paper

to reduce the number of expensive requests to lock semaphore. They implemented this technique on the priority
inheritance protocol. In this paper we present implementations of this technique on both the priority ceiling protocol
and the optimal mutex policy. We also prove the feasibility of this technique on both protocols.

II. GENERAL IDEA

A preemptive priority scheduling algorithm performs a CPU preemption if the priority of a newly initiated task
is higher than that of the currently running task. The lower-priority task has to wait for the higher-priority task
to complete its execution before it can run on the CPU again. Priority inversion occurs when a higher-priority
task is forced to wait for a lower-priority task to finish certain amount of execution. This situation can happen
when the two tasks share common data and the lower-priority task gains access to the data first. To ensure the
consistency of the shared data, the access must be serialized. Therefore, the higher-priority task has to wait for the
lower-priority task to finish its segment of code C which uses the shared data (also known as a critical section).
The higher-priority task is said to be blocked by the critical section C of the lower-priority task. If C is guarded
by a binary semaphore s, then we may also say that the lower-priority task blocks the higher-priority one through
s, and that blocking has occurred.

In the following analysis we assume that the shared data structures are guarded by binary semaphores. A task
obtains and releases access to a shared data structure by locking and unlocking the guarding semaphore, respectively.
Two tasks compete for one shared data structure if and only if they will attempt to lock the same semaphore. If
the critical sections of a task overlap, we require that the task executes those sections in a first-in-last-out order.
That is, overlapping critical sections should be properly nested. Loops in a task’s code are assumed to be unrolled
by the compiler and replaced by straight-line code. All locks required by a task are also known in advance. We
also assume that tasks do not suspend themselves such as for I/O operations. In reality, a task that suspends itself
n times can be regarded as n smaller tasks.

When blocking occurs, the CPU is switched from the higher-priority task to the lower-priority one and later
when the lower-priority task leaves its critical section, the CPU is again switched back to the higher-priority one.
Therefore, two context switches are caused by every blocking. We can simply avoid the unnecessary context switches
by disallowing a higher-priority task to preemptively seize the CPU if it will be blocked by a lower-priority task in
the future. The higher-priority task simply behaves in a very astute and patient manner when it foresees the future.
Putting this idea in a common sense manner: ”since my work will be interrupted by yours later, why don’t you
finish your interrupting part right now so that I can later proceed smoothly.” Thus we have a general principle for
reducing the number of context switches for priority-driven preemptive scheduling:

A task Q is allowed to preempt the running task P on the CPU if and only if the priority of Q is higher
than the priority of P and Q will not later be blocked by lower-priority tasks already in the system.

The most common form of blocking is that caused by synchronization of the critical sections. Thus to determine
whether a task will be blocked later, we only need to check if it will attempt to lock a locked semaphore. This is
our preemption protocol (PP) for task synchronization where binary semaphores are used:

A task Q is allowed to preempt the running task P on the CPU if and only if the priority of Q is higher
than the priority of P and none of the semaphores it will attempt to lock is currently locked by other
tasks.

Under this protocol, a task will not be running on the CPU if it will later be blocked by the critical section of
another (lower-priority) task. Since each blocking causes two CPU preemption and thus two context switches, we
can reduce the number of context switches to what is minimally required.

A significant property of the PP is that the time at which a task completes will not be affected when this condition
is being used, as shown in the following example:

Example 1: Suppose there are two tasks P and Q, with Q having a priority higher than P. In addition, there is
one shared data structure protected by binary semaphore s.

Suppose task P arrives first and starts its execution on the CPU at time t1. Later P locks semaphore s. At time
t2, P is preempted by some other task before leaving its critical section. Task Q then arrives and preempts the
task on the CPU at time t3. (P is not necessarily preempted by Q because there may be another task with priority
higher than P which arrives before Q does. If there is not such an intermediate priority task, we assume that t 2 =

P

Q

t1 t2 t3 t4 t5 t6 t7 t8

P

Q

t1 t2 t3 t'3 t'4 t'5 t'6 = t’7 t'8

Situation S2

Situation S1

execution of non-critical-section

execution of critical-section

task arrival

lock aquired failed to aquire lock

Fig. 1. An illustration of situation S1 and S2 in Example 1. Task R, which has higher priority than P and lower priority than Q, executes
in time intervals [t2, t3), [t4, t5) of S1 and [t2, t3), [t3, t

′
3) of S2. Task T, which has higher priority than both P and Q, executes in time

interval [t6, t7) of S1 and [t′4, t
′
5) of S2.

t3.) At time t4, Q tries to lock s and finds that s is already locked by P. Therefore the execution of Q has to be
suspended and Q is blocked by task P. P resumes its running later at time t 5 and finishes its critical section at time
t6. Q will start again at time t7 and finishes its execution at time t8 The above situation will result from applying
a traditional preemptive scheduling policy and will be referred to later as situation S1.

Under our new preemption condition, when Q arrives at time t3, it cannot preempt the running task on the CPU
because s is locked by P. P will resume the execution of its critical section at time t ′3, and finish at time t′4. Q will
start execution at time t′5 and will attempt to lock s at time t′6. Task Q will be able to enter its critical section at
time t′7 and will leave it at time t′8. We call this situation S2.

Suppose that t′7 > t7. In both situations, the amounts of time spent on the executions of P and Q before Q enters
its critical section are the same. Therefore, the only possible delay under the PP must be caused by another task
that arrives before time t′7. Tasks that arrives after time t′7 need not be considered because by then any effect of
the preemption protocol should be over.

If a task R whose priority is lower than that of Q but higher than that of P arrives before t′7, then R will gain
control of the CPU only if it arrives in the period [t2, t′4) in situation S2. Since by assumption that if R does not
exist, then t2 = t3, it must be that t2 ≤ t3 < t4. If R arrives in the period [t2, t3), i.e. , before the arrival of Q,
the execution of R cannot cause any delay to Q in either situation. If R arrives in [t3, t4), R will cause a delay to
P’s execution of its critical section and transitively a delay to the waiting task Q in S2. However, in S1, this delay
will be imposed to P after Q suspends itself and waits for P at time t4, because the priority of P is lower than that
of R. Since Q is waiting for P and P for R, R is transitively causing a delay to Q. Therefore if an intermediate
priority task can cause a delay to Q in S2, then it can cause the same amount of delay to Q in S1.

Notice that if R also requests s, the delay to Q will occur only in S1 (if R arrives in [t2, t6)) because R is not
allowed to preempt the task on the CPU under the new condition. R will finish at the same time in both situations,
though, because it has to wait for Q to finish before it can lock s.

If a task T with a priority higher than that of Q arrives before time t′7, T can always preempt the task running
on the CPU in both situations as long as it does not require to lock s. Therefore the amount of delay caused to

both P and Q will be the same in both situations. On the other hand, suppose T will need s. The only thing that
can affect the execution of T is the critical section of P, whereas the only thing that can affect the execution of
the critical section of P is the non-critical section part of Q, and only in S1. Thence the PP will not cause a delay
to the completion of T. If T arrives before time t7, Q is a non-factor on the execution of T and thence t7 = t′7.
Since there is no task that arrives before t7 can cause a delay to the start of Q’s critical section execution, it is
impossible that t7 < t′7. Therefore, the time of completion of Q is not affected by the preemption protocol. Task
P always has to start its section following the critical section after Q has completed. So its time of completion is
not affected either.

In general, the preemption condition will be effective only if some lower-priority task is in its critical section
when the higher-priority task arrives. The preemption protocol trades the execution time of the higher-priority task
before it reaches its critical section with the remaining execution time of the lower-priority task’s critical section
that will cause blocking. Such a trade will not affect the time the higher-priority task enters into its critical section,
neither will it cause a delay to the time when the lower-priority task starts to execute the segment of code right after
its critical section. In fact, if the lower-priority task happens to finish its entire execution with the blocking-causing
critical section, its time of completion will be moved up as a result of using the PP.

The following theorem concludes what we have examined so far:
Theorem 1: No task completion will be delayed as a result of applying the new preemption protocol in a

uniprocessor system using preemptive priority scheduling and binary semaphore for task synchronization.
Proof In Example 1, we have shown the case in which three tasks cause interference to each other’s execution
and none of them will be delayed in their completions. A fourth task, if present, can be treated like R if its priority
level is between that of any two tasks already being considered, or like T if its priority is higher than all tasks
already being analyzed. Applying this strategy to all additional tasks that require consideration, we can see that
none of the task completions will be delayed.

In our preemption protocol, the execution of the higher-priority task is delayed until the lower-priority task has
finished using the locked resource. This allows the CPU to work on the lower-priority task in the critical section
without being switched to the higher-priority task, gets blocked and switched back to the lower-priority task, thus
reducing the number of context switches. Hence, the above theorem shows that our general principle for context
switch reduction does not delay task completion.

However, there is an additional cost caused by this scheme because, given a task, the scheme needs to know
more information in advance, such as looking up the other lower-priority tasks which would use the same unit
resource. In this case, there is a cost associated with the look-up steps though context switches are saved. Let n
be the total number of tasks, and Ti be the name of every task where i is from 1 to n. The current task Tc has to
look up the other m (m ¡ n) tasks, where m is the number of tasks that require the same resource T c also requires
and that have a priority lower than the priority of Tc. Thus, we now give the formula to describe the look-up cost
introduced by this algorithm:

∑m
k=1 Tk · Xk, where

Xk =

{
1 if task Tk uses the same resource that Tc requires;
0 otherwise;

This formula also applies even if there are multi-unit resources and their usages are nested. Therefore, in the
worst case, assuming every task has to do the look-up step, there would be

∑n−1
m=1 m = n(n−1)

2 look-ups. Hence
the time complexity for this algorithm is O(n2) in the worst case.

III. APPLICATION TO THE PRIORITY INHERITANCE PROTOCOLS

The characteristic of our preemption protocol with respect to task completion has a very interesting implication
on the synchronization of real-time tasks. To remedy the problem of uncontrolled priority inversion in a real-time
system that uses a fixed-priority preemptive scheduling algorithm, protocols that utilize priority inheritance have
been developed. The fundamental idea of priority inheritance is to allow the lower-priority task to temporarily
inherit the priority of a higher-priority one which it has blocked through the use of a semaphore. Once the lower-
priority task releases (or unlocks) the semaphore that the higher-priority task requires, its priority returns to the
level it was at before the blocking of the higher-priority task. In a system that uses our new preemption condition,

blocking is said to occur when a higher-priority task is denied CPU preemption by a lower-priority one under the
preemption protocol. During that blocking period, if we let the lower-priority task assume the priority of the task
it has blocked, we can achieve exactly the same results as those of the basic priority inheritance protocol given in
[6]. What we save under the preemption protocol is the overhead associated with extra context switches resulting
from not using the PP.

Note that our proof of Theorem 1 is one for a system that uses a traditional preemptive priority scheduler,
although the basic idea behind the PP will always stay the same, that is, trading the initial segment of execution of
the higher-priority task with the critical-section execution of the lower-priority task. In those cases where priority
inheritance is applied, the result of no delay under the preemption protocol can be proven in a similar way.

Theorem 2: No task completion will be delayed as a result of applying the new preemption protocol in a
uniprocessor system which uses a fixed-priority preemptive scheduler and also enforces priority inheritance.
Proof Let us consider again Example 1. If task R arrives in the system, it can never gain control of the CPU
between Q’s initiation and completion because P will inherit the priority of Q if it is running anytime during that
period. In other words, during the time Q is in the system, the priority of a task that actually executes on the CPU
is at least as high as that of Q. Therefore, R will have an impact on the system only if it arrives before t3. There
are two situations to be considered here:

P

Q

P

Q

Situation S2

Situation S1

execution of non-critical-section

execution of critical-section

task arrival

lock aquired failed to aquire lock

R

R

t1

t1

t3

t3

Fig. 2. An illustration of situation S1 and S2 in (1) below

(1) If R requires s, R can execute only the part before the critical section guarded by s, and then it will be
blocked. Task P will resume its execution of the critical section and in the meantime task Q arrives. R can resume
and finish only after Q has completed. This is what happens in situation S1 shown in Fig. 2. In S2, however, R
will be blocked on its arrival and gain the control of the CPU only after Q’s completion. In both situations, the
period between R’s initiation and completion includes Q’s entire execution, P’s execution of its remaining critical
section, and R’s entire execution only. Thus R’s completion will not be delayed. An interesting point to be noticed
is that Q’s completion is actually moved up in S2 (shown in Fig. 2) because it has to wait for a shorter period of
time for P to finish its critical section when R’s execution is moved down.

(2) If R does not lock s, it can run only for the period of time between its arrival and Q’s arrival (at time t3).
Then, if it is not finished, R can resume execution only after Q has completed. Therefore, R will finish at the same
time in both situations regardless of whether it is able to finish before t3.

Now suppose there is a task T whose priority is higher than that of Q and which arrives between the period
from t1 to t8 (use the time-line in Fig. 1). Certainly, regardless of whether T locks s, P and Q’s portions after
their respective critical sections will have to wait until T finishes all its execution. On the other hand, if T does not
require to lock s, it will be able to start immediately upon arrival and finish without interruptions in both situations
S1 and S2. If T does need s, then its completion may actually be advanced and never delayed in S 2. To see this,
we first observe that t6 > t′4 because we assume that there is a preemption of P by Q in S1 before t6, but there is
no such preemption in S2. Thus, if T arrives at any time between t2 and t′4, it will experience the same amount of
delay (to wait for P to finish the rest of its critical section) in both situations. Now if T arrives after t′4 and before
t6, T will be blocked by P in S1 but not so in S2. Thus T can actually finish earlier in S2 than in S1. This is the
same situation as in the condition (1) above where R and Q are considered. Here T is like Q and Q like R above.
We have already shown that R’s completion above will not be delayed, so neither will Q’s here.

If more tasks are involved, a similar argument can be used to show that no delay will be caused under the
preemption protocol.

A. Implementation with the Priority Ceiling Protocol

The most effective and easily implemented protocol that uses priority inheritance is the Priority Ceiling Protocol.
The priority ceiling of a binary semaphore is defined to be the priority of the highest-priority task that can lock
this semaphore. The basic idea of the PCP is to deny a task’s request for locking a semaphore if its priority is not
higher than any of the ceilings of semaphores already locked by other tasks. This locking condition of the PCP
ensures that whenever a task P locks a semaphore, no higher-priority task that arrives later will ever attempt to
lock a semaphore locked by a task with priority lower than P’s. See [13] for a detailed discussion of the Priority
Ceiling Protocol.

The advantage of the PCP is that the only additional information needed to implement the protocol is the ceilings
of all semaphores in the system. To implement our new preemption protocol, however, we need to have a list of
all semaphores that a task will ever request. This information can be stored in the process control block of that
task. The task is checked according to the PP when it first arrives in the ready queue of the system.

The list of semaphores is not required if the preemption protocol is combined with the Priority Ceiling Protocol.
Under the PCP, a task is blocked if it requires a semaphore and its priority is lower than the ceiling of some locked
semaphore. This task can resume only after the blocking task releases its semaphore. As this kind of ceiling blocking
is necessary to ensure certain important properties for real-time scheduling, our general principle for context switch
reduction also applies in this situation.

We can define the combination of the PCP and the PP as follows:

Let s∗ be the semaphore with the highest priority ceiling of all semaphores currently locked by some
tasks in the system. When task P arrives, it cannot preempt the currently running task on the CPU if its
priority is lower than that of the running task, or its priority is not higher than the priority ceiling of s∗

and it will later require to lock a semaphore. In the latter case, P is said to be blocked on semaphore s ∗

and by the task P ∗ which holds the lock on s∗. At the same time, P ∗ will inherit the priority of P until
it finishes the critical section that causes the blocking on P. At that time P ∗ will resume its previous
priority and the highest-priority task will be selected to run.

We call this the priority ceiling preemption protocol (PCPP). It takes advantage of the basic idea of the PCP which
eliminates deadlocks and multiple blocking to a task, and at the same time reduces the number of context switches
by letting the lower-priority tasks finish their blocking-causing critical sections first. This protocol can also be
implemented without much overhead. In addition to the priority ceilings of semaphores, we only need to know
whether a newly arrived task will use a semaphore. We are not even concerned with which semaphore(s) the task
will use.

Corollary 3: Under the priority ceiling preemption protocol, no task completion will be delayed compared to
when the Priority Ceiling Protocol is used.

A detailed proof will not be given for the above corollary as it is very similar to the one for Theorem 2. But
intuitively, we see that the Priority Ceiling Protocol only changes the testing condition of blocking, not the nature
of it. Since our preemption protocol is effective in situations where blocking occurs regardless of how it occurs, it

certainly works with the ceiling blocking of the Priority Ceiling Protocol. Hence the completion of tasks are not
delayed as a result of applying the preemption protocol to the PCP.

Theorem 4: Under the priority ceiling preemption protocol, a task P can be blocked for the duration of at most
one of the critical sections that can cause blocking to P.

Theorem 5: The priority ceiling preemption protocol prevents deadlocks.
Theorems 4 and 5 are derived directly from the results in [13]. Since under the priority ceiling preemption

protocol tasks finish no later than under the Priority Ceiling Protocol, the maximum blocking each task endures
under the PCPP cannot be longer than under the PCP. Thus we have Theorem 4. To obtain Theorem 5, we observe
that the task which is requesting to lock a semaphore must be the currently-running task on the CPU. Two types
of tasks may currently be in the system (but not running): those preempted during their execution and those denied
starting their execution. By the preemption condition, the running task will never require to lock a semaphore that
is already locked by some task of the first type, whereas a task of the second type has locked no semaphores
(it has not even started its execution). Thus a task cannot wait for another task that is already waiting for it and
consequently deadlock can never occur.

In addition to the advantage of achieving the same result as the PCP with a reduced number of context switches
(our experimental results show a reduction of 10% to 20%), some tasks in a certain situation can finish earlier
under the priority ceiling preemption protocol. The following example illustrates this point.

Example 2: Suppose that task P arrives at time 0, requires 6 units of CPU time for execution, and locks the
semaphore s during time units 2–4 of its execution; task Q arrives at time 2, requires 4 units of CPU time, and
locks s during its 3rd time unit; task R arrives at time 6, requires 4 units of CPU time, and locks semaphore s ′

during time units 2–3; and task T arrives at time 7, requires 4 unit of CPU time, and locks s (not s ′) during its
3rd time unit of execution. We also suppose that T has the highest assigned priority, R has the next highest, Q the
3rd highest, and P has the lowest priority among all four tasks. Suppose the priority ceiling of s is the same as the
priority of T, while the priority ceiling of s′ is higher than T’s priority. The different results of scheduling under
the PCP and the PCPP are shown in Fig. 3.

In situation S1, Q is able to preempt P when it arrives, while Q is blocked by P in situation S2. The two time
units of execution of Q in S1 before task R’s arrival have caused R to finish 2 time units later in S1 than in S2.
Notice also that there are 9 context switches in S1 while there are only 5 in S2.

When the locking condition of the Priority Ceiling Protocol is true, the condition of our Preemption Protocol
must be true. This is because if the priority of the newly arrived task is higher than the priority ceiling of all
semaphore, then it must be the highest priority task among all running tasks in the system. It is, therefore, allowed
to lock any semaphore and does not cause extra context switch. Thus, when our preemption protocol is combined
with the Priority Ceiling Protocol, its effectiveness in context switch reduction is retained.

A point to be noted is that according to the PCP, the task that is holding the semaphore with the highest priority
ceiling is not necessarily the task currently executing on the CPU. Another task with a priority lower than the
highest ceiling but having no semaphore requirement may be the running task. Under the PCPP, when a task arrives
with an even higher priority but still no higher than the highest priority ceiling of an already locked semaphore, it
may be blocked because it does require to lock certain semaphore(s). The blocking task (which holds the semaphore
with the highest ceiling) of that newly arrived task should resume execution at this moment and preempt the running
task. Consequently, one context switch is not saved in a situation like this. However, this context switch is the price
we pay to ensure the worst case blocking property of the Priority Ceiling Protocol. Moreover, situations in which a
task with intermediate priority and no semaphore requirement just comes in time to cause such a little disturbance
are not as often as the occurrence of task blocking.

B. Implementation with the Optimal Mutex Policy

Another real-time task synchronization protocol that belongs to the family of priority inheritance protocols is the
Optimal Mutex Policy [11]. The optimality of this policy lies in the fact that no other priority inheritance policy
can guarantee a better worst-case blocking duration while still preventing deadlock. In the following we will look
at whether our preemption protocol can be implemented with the Optimal Mutex Policy to have the number of
context switches reduced while retaining the policy’s properties.

Let P be the task that attempts to lock an unlocked semaphore s. Let s∗ be a semaphore (also referred to as a
mutex because its function is to ensure mutual exclusion) with the highest-priority ceiling locked by tasks other

P

Q

R

T

Situation

one time unit of execution of a critical section guarded by

one time unit of execution of a critical section guarded by

one time unit of non-critical-section execution

Situation

time

time

T

R

Q

P

1

s’

s

S2

S

Fig. 3. An example that compares the PCPP with the PCP

than P, and let Q be the task holding the lock on s∗. The Optimal Mutex Policy allows task P to lock the unlocked
mutex s if and only if at least one of the following conditions is true.

1) The priority of P is greater than the priority ceiling of s∗.
2) The priority of P is equal to the priority ceiling of s∗ and the current critical section of P will not attempt

to lock any mutex already locked by Q.
3) The priority of P is equal to the priority ceiling of s and the lock on mutex s will not be requested by Q’s

preempted critical section.

These conditions are referred to as the locking conditions of the Optimal Mutex Policy. Condition 1 is basically
the locking condition of the Priority Ceiling Protocol, and so we can implement with it our preemption protocol
to save context switches. Conditions 2 and 3 require a closer examination.

One of the most significant properties of the Optimal Mutex Policy is that when a task P is executing on the CPU,
there can be at most one strictly lower-priority task Q that has locked a semaphore s∗ such that the priority ceiling
of s∗ is greater than or equal to the priority of P (see [11]). In other words, when P requests a semaphore and
Condition 1 is false, then there must be a task Q that has locked s∗ and Q is unique. Now suppose P successfully
locks a semaphore because Condition 2 or 3 of the OMP is true. Then the priority of P must be greater than all
the ceilings of semaphores which are locked by tasks other than Q (which has locked s ∗). It follows that P will
not attempt to lock those semaphores. The only semaphores left to be considered are those locked by Q. Condition
2 tells us that P will not attempt in the current critical section to lock those semaphores already locked by Q.

P

Situation 1:

Situation 2:

1 5432

Q
6543 7 111098

6

execution of critical sections guarded by

execution of critical sections guarded by

1312

non-critical execution

1

2s

s

13

10987 11

12

P

Q
0

210

Fig. 4. A closer look at Condition 3 of the OMP

However, it does not say that P will not attempt to lock a semaphore already locked by Q in outer-most critical
sections following the current one, if such critical sections exist. Therefore, P may still be blocked later (by Q) after
it locks a semaphore because Condition 2 is true. To apply our preemption protocol, we must extend this condition
to require that task P, during its whole execution period, will not attempt to lock any semaphore already lock by
task Q. Since the above extension of Condition 2 is a logically sufficient condition for the original Condition 2, the
properties associated with the original condition is retained after the extension. Moreover, the effect of Condition 2
is nil with respect to task completion when in the later stage of its execution, P does require a semaphore locked
by Q.

Example 3: Suppose that task Q arrives at time 0, requires 6 units of CPU time to execute, and locks the
semaphore s1 during time units 2-4 of its execution; task P arrives at time 2, requires 7 units of CPU time, and
locks semaphore s2 during the second time unit and locks s1 during time units 4–6 of its execution. Suppose the
priority ceiling of s1 is equal to the priority of task Q, which is higher than that of task Q.

When locking Condition 2 is used in Situation 1 of Fig. 4, P is able to lock s2 and enter its critical section at
time 3, because its priority is the same as the priority ceiling of s1 and the current critical section of P will not
request to lock any semaphore already locked by Q. At time 5, P requests s 1 and is blocked by Q. P can resume
only after Q finishes its critical section at time 7 and finishes its own execution at time 11, when Q resumes and
finishes at time 13.

In Situation 2, however, Locking Condition 2 is not in effect and P is blocked at time 3 when it attempts to
lock s2. P resumes at time 5 and finishes still at time 11. Task Q’s time of completion is not changed either. Thus
we can see that the only improvement Locking Condition 2 can bring with respect to task completion is when the
higher-priority task does not later lock a semaphore already locked by the lower-priority task.

As we can see from Example 3, any blocking experienced by the higher-priority task means that part of its
execution can resume only after the blocking-causing critical section of the lower-priority task is finished. There
will not be any difference in the completion times of the higher-priority task if the blocking does occur regardless
of when it occurs.

Condition 3 of the OMP is somewhat troublesome. A task that locks a semaphore because Condition 3 is true
may still be blocked if it later attempts to lock any semaphore with a priority ceiling higher than its priority. Similar
to the extension of Condition 2, we can guarantee that the task will not be blocked once it enters its critical section
under Condition 3. But this is achieved by requiring (suppose P and Q are defined as they are in the definition of

the OMP):
1) P does not need to lock a semaphore already locked by Q,
2) all the semaphores that P requires have priority ceilings equal to the priority of that task, and
3) the preempted critical section of Q will not attempt to lock any semaphore that P locks.
We call these the non-blocking requirements of Condition 3. The cost of implementing the non-blocking re-

quirements may much outweigh the saving that we bring about from context switch reduction when we apply our
preemption protocol. Furthermore, while Condition 3 can indeed move up the completion time of task P when P
meets all of the non-blocking requirements, such an “improvement” may be made at the expense of the execution
time of a potential task with a priority higher than that of P.

P

Q

execution of critical-section guarded by s
task arrival

lock aquired

failed to aquire lock

R

execution of critical-section guarded by s*

R fails to lock s* and has to wait for Q

s*

s*

s*

s*

s

s s

Fig. 5. An illustration for Example 4

Example 4: Suppose tasks P and Q are defined as in the definition of the OMP and Q has locked s ∗. Suppose
P starts out its critical section because Locking Condition 1 is false and Locking Condition 3 with non-blocking
requirements is true. Certainly P does not have to wait before completion for Q to finish its critical section guarded
by s∗.

If a task R with a priority higher than that of P arrives and requires to lock s∗ (as in Fig. 5, since the priority
of s∗ is higher than the priority of P), R will be blocked and wait for Q to finish its critical section. P then is
indirectly blocked by and waiting for Q to finish the critical section as well.

From the above example, we see under Condition 3 it is possible that a task like R arrives and offsets the benefit
of this condition, whereas under Conditions 1 and 2 no such task (with priority higher than that of the current
running task but no higher than the highest priority ceiling of locked semaphores) will exist. Consequently, Locking
Condition 3, though constituting the optimality of the Optimal Mutex Policy, is undesirable to be implemented with
our preemption protocol. Therefore, our sub-optimal mutex preemption protocol is stated as follows:

Let s∗ be the semaphore with the highest priority ceiling of all semaphores currently locked by some
task Q in the system. When a task P arrives, it can preempt the running task R on the CPU only if P’s
priority is higher than R’s and one of the following is true:

1) P has no semaphore requirement;
2) P will require to lock a semaphore and P’s priority is higher than the priority ceiling of s∗;
3) P’s priority is equal to the priority ceiling of s∗ and P will not attempt to lock any semaphore

already locked by Q.
If P’s priority is higher than that of R but P is unable to preempt R, we say that P is blocked on s∗ by
task Q. According to the principle of priority inheritance, Q will resume its execution at P’s priority and
return to its previous priority when it exits the critical section guarded by s∗.

This derived protocol does not affect most of the properties of the Optimal Mutex Policy regarding deadlocks
and task blocking. A task will experience a blocking duration of at most one critical section of a lower-priority
task and the system is deadlock-free. Most importantly, a considerable number of context switches are saved as a
result.

87653 42 9

Aperiodic Tasks = 50000
Number of

With the PP

Without the PP

10

Number of

Maximum Number of a Task’s Critical Sections

Context Switches

1

70000

0

10000

20000

30000

80000

60000

50000

40000

Fig. 6. Context switches comparison by using PCPP versus PCP

C. Simulation Results

We used simulation programs to study the effect of our derived protocol PCPP in comparison with the original
protocol PCP.

First, we simulated a non-real-time system using a traditional preemptive scheduler. Tasks are randomly generated
with exponential inter-arrival times. There are ten priority levels in the system and tasks are assigned a random
priority on arrival. The number of semaphores in the system is also ten but tasks are all given a maximum number
of outer-most critical sections that they will have. In the original system, tasks are blocked when they attempt
to lock a locked semaphore while in the modified system with the preemption protocol in effect, tasks can only
be blocked at the time of their arrival. The simulation result is shown in Fig. 6. The horizontal axis shows the
maximum number of critical sections each task will need to execute. The relationship is weak between the number
of critical sections that a task can have and the number of blockings caused by task synchronization. Our simulation
showed that about 10% to 20% of context switches can be avoided using our preemption protocol.

In another simulation, we randomly generated one thousand sets of ten periodic real-time tasks. In each set,
tasks are assigned relative priorities according to their periods. There are also ten semaphores in the system with
randomly generated priority ceilings. Each task also has a maximum number of critical sections that it can execute.
The semaphores to be locked by a task for its critical sections have priority ceilings equal to or higher than the
priority of that task. The Priority Ceiling Protocol and the Priority Ceiling Preemption Protocol are implemented
for comparison. The result is shown in Fig. 7 in terms of average percentage of context switches reduced by the
PCPP compared to the PCP.

As we can see, the average percentage of context switch reduction ranges in the tens and twenties in either a
real-time or a non-real-time environment. Since one context switch can be associated with each task arrival, the
number of context switches will equal the number of tasks (or task instances if the task is periodic) when there is
no preemption. Each preemption leads to one extra context switch when the preempted task resumes whereas each
blocking causes two more context switches. The essence of our protocol is to combine preemption with blocking.
The composite effect of the number of tasks, the number of critical sections each task has, the duration of critical
sections, and the task period (or arrival time in non-real-time systems) determines the number of blockings that
actually occur. In general, our protocol can save a large number of context switches, especially when the number
of task blockings is substantial. For real-time scheduling, the more serious the problem of priority inversion, the
more significant the effect of our protocol.

Percentage of
Context Switch Reduction

10
0

10.0%

20.0%

Maximum Number of A Task’s Critical Sections

Number of Periodic Tasks = 10

5.0%

15.0%

91 2 3 4 8765

Fig. 7. Average percentage of context switches reduced by PCPP compared to PCP

IV. CONCLUDING REMARKS

A. Conclusion

In this paper, we have presented a new protocol for task preemption in a static-priority system where binary
semaphores are used to enforce mutual exclusion. The underlying idea of this protocol is to allow to finish first
any critical section that will cause blocking to a higher-priority task. As a result, we can achieve a reduction in the
number of context switches used while causing no delay to task completion. We have also applied this preemption
protocol to real-time synchronization where priority inheritance is used to avoid unbounded priority inversion. It
is shown that the preemption protocol can be very easily implemented with the Protocol Ceiling Protocol and we
call the combination of the two the Priority Ceiling Preemption Protocol. This new protocol uses fewer context
switches than the Priority Ceiling Protocol while retaining the advantages of the PCP.

The preemption condition can also be implemented with other priority inheritance protocols such as the Optimal
Mutex Policy. We have examined the three locking conditions of the OMP and determined which ones of the three
that our preemption protocol can be applied to. The result is a protocol not as optimal as the OMP with respect to
single critical-section blocking, but we have shown reasons not to have such an optimality.

We have performed simulations to compare the number of context switches occurred under the original protocols
with the derived ones. Both real-time and non-real-time systems have been studied. The results are similar because
the number of context switches that can be saved is dependent upon the number of task blocking, which in turn
can be a function of many factors such as task initiation times and length of critical sections. The percentages of
context switch savings normally range in the tens and twenties in either system environments.

B. Future Work

In this paper our focus is on the preemptive scheduling of static-priority tasks in a uniprocessor system where
corresponding synchronization protocols are used. More simulation and evaluation work is still on the way. These
include an implementation of PP with OMP, a simulation comparison of PP with PCP and OMP, an evaluation of
the overhead of implementing PP in a real operating system, and a comparison with the results in [16]. Research
on the techniques of context switch reduction can be extended into the following areas:

• In a system that assigns dynamic priorities to tasks such as those using the Earliest Deadline or the Least Laxity
scheduling algorithms, more context switches are usually required than in a system that applies static-priority
scheduling. However, dynamic-priority scheduling algorithms normally achieve higher CPU utilization than
the static-priority ones. Investigation on the tradeoff between the CPU utilization and the system overhead due
to context switches is needed to determine which algorithm has the best overall performance under various
circumstances.

• Between the EDS and the LLS, it seems that the EDS requires a smaller amount of context switches than
the LLS. Since in the EDS, the task’s (relative) priority becomes fixed once it arrives in the system, we can
determine the current priority ceiling of a semaphore by calculating the task arrival times and deadlines. Our
preemption protocol may be applied to the EDS since it is effective as long as there are priority inversions.
More studies are required to find a synchronization protocol for the EDS and apply our protocol to it.

• Under the Least Laxity algorithm, since a task’s priority can still change after the task’s arrival in the system,
the concept and effect of blocking are very different than under other scheduling algorithms. We surmise that
the effect of task P waiting for task Q is nil unless the section of Q that causes the waiting is the last execution
section of Q, since the waiting task P’s priority will be increasing and P will have more “leverage” to gain
more execution time on the CPU. If this is true, then as in our preemption protocol, we can simply allow for
a longer duration of waiting in the middle of task execution so as to reduce the number of context switches.

• The proposed protocol assumes complete knowledge of the locks required by each task. Ongoing work attempts
to extend the protocol to use partial or no knowledge of future locks required by each task. Furthermore, work
is under way to modify the protocol to take advantage of current multithreaded systems.

• In a multiprocessor system, if task migration is not allowed, the concept of blocking is generalized to include
the time a task spends on waiting for a task of any priority but on a different processor [9], [10]. This is
so because if there is no data sharing among the tasks on different processors, a task cannot be blocked by
any task of any priority on another processor [10]. The blocking of a task by another task on a different
processor is referred to as remote blocking. When a task P is initiated on a processor, there may be a task
Q on a different processor that has locked the semaphore s required by P. By the time P has executed to
actually attempt to lock s, Q might have release it so that there won’t be any blocking at all. On the other
hand, two tasks running at the same time on different processors may require to lock the same semaphore.
Thus one task may potentially block another when their resource requirements overlap and they are executing
simultaneously. Since our context-switch reduction technique works only if blocking does take place without
applying the technique, analysis and calculations must be performed on tasks to make certain that a priority
inversion is going to occur before we can apply the technique to save context switches.

• When the same task can be executed on different processors, task migration replaces context switch as the
greater operating system overhead. In other words, a preempted task may resume execution on a different
processor than it was on before the preemption. To reduce task migration overhead, research is needed to find
a multiprocessor scheduler that does not preempt tasks and switch them to a different processor unless it is
absolutely necessary.

V. ACKNOWLEDGEMENT

Thanks go to Chen Feng and Bin Lu for help in revising and improving the paper. Also, thanks go to the
reviewers for the very detailed reviews and helpful suggestions.

REFERENCES

[1] F. Jiang and A. M. K. Cheng, “A Context Switch Reduction Technique for Real-Time Task Synchronizati on,” Proc. IEEE-CS Intl.
Parallel and Distributed Processing Symp., San Francisco, CA, CD format, May 2001.

[2] T. Baker, “A Stack-Based Resource Allocation Policy for Real-time Processes,” Proc. IEEE Real-Time Systems Symposium, Dec. 1990.
[3] M. L. Dertouzos, “Control robotics: The procedural control of physical processes,” Proc. IFIP Cong., pp. 807-813, 1974.
[4] C.-H. Hsu, U. Kremer, and M. Hsiao, “Compiler-directed dynamic voltage/frequency scheduling for energy reduction in mircoproces-

sors,” Proceedings of the 2001 international symposium on Low power electronics and design, ACM Press, pp. 275-278, 2001.
[5] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in a hard real-time environment,” Journal of the ACM,

vol. 20, no. 1, pp. 46-61, Jan. 1973.
[6] A. K. Mok, “Fundamental design problems of distributed systems for the hard reak time environment,” PhD Thesis, M.I.T., 1983.
[7] P. Pillai and K. G. Shin, “Real-time dynamic voltage scaling for low-power embedded operating systems,” in Proceedings of the

eighteenth ACM symposium on Operating systems principles, ACM Press, 2001, pp. 89-102.
[8] A. Qadi, S. Goddard and S. Farritor, “A Dynamic Voltage Scaling Algorithm for Sporadic Tasks,” Proc. IEEE Real-Time Systems

Symposium, Dec. 2003.
[9] R. Rajkumar, “Real-time synchronization protocols for shared memory multiprocessors,” Proc. 10th IEEE Int. Conf. on Distributed

Computing Systems, pp 116-123, May 1990.
[10] R. Rajkumar, L.Sha and J. Lehoczky, “Real-time synchronization protocols for multiprocessors,” Proc. 9th IEEE Real-Time Systems

Symposium, pp. 259-269, Dec. 1988.

[11] R. Rajkumar, L. Sha, J. P. Lehoczky, and K. Ramamritham, “An optimal priority inheritance policy for synchronization in real-time
systems,” Advances in Real-Time Systems, pp. 249-271, New Jersey: Prentice Hall, 1995.

[12] I. Rhee and G. R. Martin, “A scalable real-time synchronization protocol for distributed systems,” Proc. IEEE Real-Time Systems
Symposium, pp. 18-27, 1995.

[13] L. Sha, R. Rajkumar and J. P. Lehoczky, “Priority inheritance protocols: an approach to real-time synchronization,” IEEE Transactions
on Computers, pp. 1175-1185, Sept. 1990.

[14] Radu Dobrin. and Gerhard Fohler, “Reducing the Number of Preemptions in Fixed Priority Scheduling,” EuroMicro Conference on
Real-Time Systems, 2004.

[15] Yun Wang, and Manas Saksena, “Scheduling Fixed-Priority Tasks with Preemption Threshold,” IEEE Real-Time and Embedded
Technology and Applications Symposium, 1999.

[16] Khawar M. Zuberi, and Kang G. Shin, “An Efficient Semaphore Implementation Scheme for Small-Memory Embedded Systems,” IEEE
Real-Time Technology and Applications Symposium, 1997.

[17] Yan Wang, and A. M. K. Cheng, “A Dynamic-Mode DVS Algorithm under Dynamic Workloads,” Proc. IEEE-CS Real-Time and
Embedded Technology and Applications Symposium WIP Session, San Francisco, March 2005. Also as invited paper, ACM Special
Interest Group on Embedded Systems (SIGBED) Review, Volume 2, Number 2, April 2005.

	cover.pdf
	Abstract

	TR.pdf

