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Abstract

The performance skeleton of an application is a short righmirogram whose performance in any
scenario reflects the performance of the application itasgmts. Specifically, the execution time of the
performance skeleton is a small fixed fraction of the executime of the corresponding application in
any execution environment. Such a skeleton can be emplayeditkly estimate the performance of a
large application under existing network and node shariihgs paper presents a framework for automatic
construction of performance skeletons of a specified ei@ttime and evaluates their use in performance
prediction with CPU and network sharing. The approach iethas capturing the execution behavior of an
application and automatically generating a syntheticetkhal program that reflects that execution behavior.
The paper demonstrates that performance skeletons ruforirgfew seconds can predict the application
execution time fairly accurately. Relationship of sketetexecution time, application characteristics, and
nature of resource sharing, to accuracy of skeleton basddrpance prediction, is analyzed in detail.

The goal of this research is accurate performance estimatidneterogeneous and shared computation
grids.
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Abstract

The performance skeleton of an application is a short ripirogram whose performance in any scenario
reflects the performance of the application it represemsciically, the execution time of the performance skeleton
is a small fixed fraction of the execution time of the correxting application in any execution environment. Such
a skeleton can be employed to quickly estimate the perfocmafi a large application under existing network and
node sharing. This paper presents a framework for autoratistruction of performance skeletons of a specified
execution time and evaluates their use in performance gtiediwith CPU and network sharing. The approach
is based on capturing the execution behavior of an appdicadind automatically generating a synthetic skeleton
program that reflects that execution behavior. The paperodsirates that performance skeletons running for a
few seconds can predict the application execution timdyfaiccurately. Relationship of skeleton execution time,
application characteristics, and nature of resource sgato accuracy of skeleton based performance prediction,
is analyzed in detail. The goal of this research is accuratéopnance estimation in heterogeneous and shared
computation grids.

Index Terms

Performance modeling, performance prediction, grid cainguresource management

I. INTRODUCTION

Computational grids are emerging as the vehicle for futigh performance scientific and commercial computing.
Execution environments for grids have to address allooatioresources to applications, and that is driven by the
expected performance of an application on different pafta grid. Estimation of application performance has
an important role to play in grid computing, and the problemmiuch more complex for a shared heterogeneous
computation environment than for conventional high penance computing platforms.

The research community clearly recognizes the importarficpedormance estimation in grid environments
and substantial research effort has been invested in theuraaent, modeling, and prediction of various system
resources. Measurement and prediction of CPU availalititybeen studied in [1], [2]. Measurement and modeling
of network bandwidth and latency is a very active area of aede [3], [4], [5], [6]. NWS (Network Weather
Service) [7] and REMOS (Resource Monitoring System) [8] tare systems that have been specifically designed
for measurement of available CPU and network resourceddregrironments. NWS, in particular, is in widespread
use as a CPU and bandwidth monitoring and prediction tool.

Systems for resource management and scheduling for pratménimg on grid environments include Netsolve [9],
Nimrod/G [10], Gallop [11], AppLeS [12] and Condor [13], [[L4These systems rely on measured and predicted
availability of CPU, bandwidth and other resources to madsource allocation and management decisions where
applicable. AppLeS [12] pioneered application level schied, where resource selection is performed by agents
associated with an application based on available resanfoemation, rather than by a central resource manager.
A number of algorithms and frameworks have been proposedefawurce selection in networked environments
based on system status information, some examples beifg[152 Some of the recent research has emphasized
the importance of application properties in resource alion and addresses resource selection based on mapping
application properties to the system status [16], [17]],[1B9], [20], [21].

While the research discussed above represents many diffdirections, the state of the art approach to resource
selection for applications can be broadly summarized asistimg of the following steps:

1) System characterizatioriMeasure and predict the status and availability of systesouees such as CPU

and network capacities.

2) Application characterizationDevelop a model that captures the dependence of an applisapierformance

on availability of resources.
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3) Mapping and schedulingSelect the best nodes to execute the application based dabdasystem status
and application characteristics.

We argue that this state of the art has the following inhelieritations that motivate a different paradigm:

« Maintaining accurate current system status informatioimigerently expensivén order to have recent CPU and
network information whenever a resource assignment aeclss to be made, available system resources have
to be monitored continuously and status information hasetdiwadcast frequently. For network properties,
measurements themselves consume bandwidth and the cayohexeases quadratically with the size of the
available computing grid. High speed backbone networksliake particularly challenging, especially since it
is not desirable to consume a critical shared resource fasarements.

« Estimating application performance based on system stitusherently error prone Measurement tools
provide resource availability and utilization informatieuch as CPU load factor and unused bandwidth on
various components of a grid. On the other hand, the key rimdition of interest for resource management
is how a particular application will perform on a set of resms under the current system status. Predicting
the performance of application tasks from system statusrimdtion is very difficult. The following examples
underline the complexity:

— The amount of CPU time that a process is likely to get on a caatim node cannot be determined even
when the load average on the node is known since it partlyraépen the synchronization structure of
the parallel and distributed applications in the system.

— The expected duration of a bulk transfer cannot be estimatedrately even when accurate point to
point unused bandwidth information is available since pealeds on the transport protocols used by the
application and other traffic on the network.

Finally even if the performance on individual node compots& and data transfers can be determined,
estimating collective communication and overall applaratperformance is still challenging as it depends
on the nature of sharing in the network and the applicatiancsire.

The conclusion is that it is virtually impossible to estimaipplication performance from network status in many
scenarios. This has motivated us to follow a different apphoto estimating performance in shared heterogeneous
grid environments which is based on the following claim:

The most effective and efficient way to estimate the perfoecmaf an application under the existing status of grid
resources is brief monitored execution of code that mimrhesapplication

We refer to such code as thpeerformance skeletonof the application. More formally, a performance skeleton
is a synthetically generated short running program whosewion time always reflects the performance of the
application it represents. Hence, simply executing thdop@iance skeleton in a shared execution environment
provides an estimate of application performance in thatreninent. The resource selection for an application is
then addressed as follows. A group of candidate node setteigified for execution (using existing approximate
methods) and the final choice is made by comparing the exegctithe of the application skeleton on each node
set.

The central contribution of this paper is a framework for @uiatic construction of accurate performance
skeletons for distributed applications and evaluation loé ttapability of automatically generated skeletons to
predict performance efficiently and accurately.

While we have used resource selection in shared grid envieoits for motivating this research, it is important
to point out that this approach to performance prediction hr@ad applicability. Another example is the prediction
of the performance of important applications on a futurdigecture under simulation. Since execution under sim-
ulation is multiple orders of magnitude slower than realoes®n, this skeleton based approach can be particularly
appropriate. The real application does not have to be stedilat all as the skeleton can be built on existing
machines.

The basic philosophy in construction of a performance stielean be stated as follows. If the skeleton executes
operations that are representative of application executhe performance of the skeleton and the application will
change similarly in response to changes in the executiomamient. Hence, a performance skeleton must capture
the execution behavior of the application in terms of syoofration and message exchange patterns, CPU usage
patterns, and memory access patterns, yet execute for aherytime. Our approach is to measure the application
performance behavior during execution, summarize it bytifieng repeating phases, and then reproduce it as a



synthetic skeleton program.

We briefly discuss other projects that summarize applinatiehavior and their goals. Reed et.al. [22], [23]
generate compact application signatures using a curuggféipproach to reduce event-tracing overheads for online
performance monitoring and tuning. Snavely et.al. [19]atgeapplication and machine signatures to simulate
application behavior across different system or processohitectures. Duesterwald et.al. [24] identify phase
behavior for kernel-level resource aware scheduling.\Bbed et.al. [25], [26] exploit periodic application behawi
to identify portions of the program that are representatifean application for the purpose of architectural
simulations. Our approach is driven by many of the ideas amatepts developed in these projects. However, we
have a very different goal, which is to develop an indepenhdkeleton program. An alternate approach is explored
in FAST [27], a tool that performs abstract simulations whibmpletely avoiding execution of computation code.
This approach ignores program control flow, which can impghet communication pattern and the computation
time. FAST also requires significant modification to the seysrogram, while our approach does not require access
to the source code.

Il. PERFORMANCE SKELETONS

A performance skeleton is defined as a program whose exaditie is directly related to the execution time
of the application it represents; if the execution time okalston is 1/1000th of the application execution time on
a dedicated cluster, then this relationship should holdny execution environment, even when nodes and links
are shared with other applications. This definition is itial, and in practice, the goal is to build a skeleton
that conforms to these conditions as closely as possible.skkleton should also be as short-running as possible
as skeleton execution is an overhead. We would like to painttleat skeleton execution is very different from
actually executing the application for a short time. Theletikom should capture the total execution of an application
in a short time while the beginning part of an applicationyigi¢ally not representative of the entire application
execution.

For the performance behavior of a skeleton to be similar & ¢ an application, the execution and resource
usage patterns of the skeleton must be similar to the domownesponding patterns of the application. We have
the following specific criteria:

1) CPU activity: The processing done by the CPU and CPU busy/idle phase patteuld be similar for the
application and the skeleton.

2) Memory activity:The memory access pattern in the skeleton should be repag¢iserof the application. This
is particularly important to get similar cache performacenodes with different memory hierarchies.

3) /O activity: The 1/O pattern in the skeleton should be representativéefpplication.

4) Communication and synchronizatiofihe data exchange patterns among processes should ber $omilhe
application and skeleton to preserve the communicationsgndhronization performance. The sizes, types,
frequencies and patterns of network message exchangelsl sfeaimilar.

5) Application phase transitionsAn application transitions between different phases ofcatien at multiple
levels of granularity. The sequence of these phases, aswéie CPU, memory and communication activities
in each phase, should be reflected in the skeleton.

Our long term project goal is to generate skeletons confogntd the above constructive definition but this paper
is limited to performance skeletons which mimic the commation sequences and coarse computation behavior
of the application. Such skeletons are sufficient for praticthe performance of compute and communication
bound applications under resource sharing. Reproductfomemory accesses and fine-grain instruction level
computation behavior is critical for performance estimatacross different processor and memory architectures,
but not essential for simple CPU and network sharing scesaWe discuss our efforts in reproducing memory
behavior for performance prediction in [28].

[1l. AUTOMATIC CONSTRUCTION OF SKELETONS
This research has developed a framework for automatic ieanistn of performance skeletons and implemented
it for message passing MPI programs. We outline the proeentuthis section. The main steps are as follows:

1) Record application’s execution trac&he application is executed on a controlled testbed andxisigion
activity, specifically CPU usage and message exchangescisded. This is thexecution trace.



2) Compress execution trace into an execution signatlites repeated patterns in the recorded execution trace
are identified and used to generate a compact representdtitie trace by introducing a “loop structure”.
The new compact representation is #ixecution signature.

3) Generate a performance skeleton program from the execstigmature: The application execution signature
is converted to a computer program which generates execativity that is similar to the recorded execution
signature, but with the execution time scaled down by a gfaetor K. This is theperformance skeleton.

GUI |Create Skeleton H!Fl!
Sim |- —

Pr By
7 Stream- Skeleton f
Application i
Construct an application skeleton
program from execution signature:
Execute application and . R_educe loop iterations in
capture system activity signature by a reduction factor K
as execution trace: « Construct C program loop
Processor activity structure o
Memory address trace » Convert system behavior into C
Communication pattern code segments

1

Summarize execu%on trace into a compact execution signature:
+ Identify and groups segments of similar system activity
» ldentify repeated sequences and capture loop structure

Fig. 1. Construction of application performance skeletons

This skeleton construction procedure is illustrated inuFégl. This procedure does not involve source code
analysis, modification or instrumentation and hence haadapplicability. The skeleton construction details are
driven by the desired ratio between the execution time of application and the corresponding performance
skeleton, which we call thecaling factor We now discuss each of these steps. Additional details \a#able
in [29].

A. Recording of execution trace

To generate an execution trace, the MPI application is tnk@h a profiling library developed for this purpose
based on PMPI. The application is then executed on a dedit¢agtbed cluster without any competing jobs or
network traffic. The profiling library records informationrfeach application process in a separate trace file. Each
MPI library call, along with the parameters passed to it alsdstart time and end time, are recorded. Timing
measurement is done to microsecond granularity with Ligettimeofdaysystem call [30]. Time for computation
operations is recorded as the time spent between the endeoMt operation and the start of the next MPI
operation. Generation of the trace file requires no moditinadf the application source code. We verified that the
execution time overhead of trace generation is negligiyieically well under 1% of the execution time.

B. Compression of execution trace to execution signature

The application execution trace is a long record of messagbamges and interleaved compute operations of
varying duration. The bulk of an application’s executiomei is typically spent in repeating loops as application
execution activity tends to be cyclic. The goal of this stega identify cyclic behavior in the execution trace to
generate a compact execution signature. Segments of exetaice denoting similar activity qualify for repeating
behavior; exactly identical activity is not required. Tlggcess consists of clustering similar execution events in
the trace followed by the conversion of the repeated oparatéquences into a loop structure.

Clustering similar execution events:
The objective of this stage is to replace the execution ttaca string of symbols where substantially
similar execution events are placed in the same cluster ssigreed the same symbol.



As an example, suppose we encounter the following two ojpasain a trace:

MPI _Send(Node 3, 2000 bytesand

MPI _Send(Node 3, 1800 bytes)
If both these events occur only once, they are both replagetié following operation:

MPI _Send(Node 3, 1900 bytes)
Clustering such similar events helps in generating a monepeat representation. Events that are grouped
together are execution phases of approximately equalidaorat message calls with similar parameters.
Our approach treats different MPI primitives and blockingd anon-blocking calls as distinct events,
thus ensuring that they are never grouped together. Weifglghe non blocking calls and associated
MPI1_Wait() to determine the corresponding overlapped region. Thisshedvelop a faithful representation
of the application’s communication structure.
Formally, we have developed a measure for dissimilarityvein¢s in N— dimensional space based on [31],
with one dimension for each parameter of an execution evidre. extent of clustering is controlled by
a similarity thresholdwhich can be assigned a value between 0 and 1. A lower sityilthireshold
represents more strict rules for clustering, but will leadldss compression, while a higher similarity
threshold implies more relaxed rules for clustering andenoompression. A similarity threshold of 0
implies that only identical events are clustered together.
This stage converts the trace log into a string of symbol$ s

BBy BRyBRYRa
where each occurrence of a symbol represents an executm with different occurrences of the same
symbol referring to functionally identical execution et&n
To summarize, clustering of similar events and represgritiem by an “average event” implies some
loss of information but leads to significant compressiom, smbsequently, smaller skeletons. This tradeoff
can be managed with the similarity threshold parameter,thisds discussed in more detail later in this
section.
Identification of cycles:
The objective of this step is to identify and capture repg@eccution behavior as loops to construct the
final execution signature. Since the previous step contiegtexecution trace into a sequence of frequently
repeating symbols, the problem of identifying repeatingli@ation execution behavior is now represented
as the problem of finding repeating sub-strings within angtriAs an example, the following string:

aBpyBBYBBYRa
should be replaced by:

al(8)*1)s[o]?

The procedure consists of recursively identifying the egjmg sub-strings, starting with the largest matches
and working down to sub-string matches of a single symboé fpeating sub-strings are then organized
as recursive loop nests with sub-strings of symbols as lapels and the number of repetitions as the
number of loop iterations. The algorithm is detailed in [29]

An important parameter in the procedure for the constraatioan execution signature is the similarity threshold,
which determines if two similar events can be consideredtidel for the purpose of compression. We now address
how a given value of similarity threshold translates to #jmecules for compression and then discuss how the
value of similarity threshold is determined. For messagesiong operations, the value of the similarity threshold
linearly relates to the maximum difference in message silesed for communication operations to be combined
into a cluster. The above compression procedure is applieasa communication operations without regard to
interleaving computations. When two sequences of comrmatinit events with interspersed computation events are
to be combined, an average value of execution time for theesponding computation events in the sequence is
used to build the compressed sequence. This approach eafgenaximum flexibility in combining computation
events and was found to be effective in our experience.

An iterative process is employed to determine the optimalevaf the similarity threshold based on the desired
compression ratio Q between the length of the executioe @ad the length of the compressed execution signature.
Initially the similarity threshold is set to 0 and the cluitg and compression procedure is applied. If the degree



of compression is less than the desired ratio Q, the siryiléihireshold is increased gradually until the desired
compression of Q (or higher) is achieved. Now, the questiohdw should Q be determined ? Based on our
experience, we have used Q = K/2 where K is the scaling factowden the application execution time and the
desired skeleton execution time. It is desirable to havepgeubound on similarity threshold so that very different
execution events are not combined. In practice, this maypeat significant issue. The maximum similarity threshold
that was required across the NAS benchmarks for meaningkdwtion signatures was always less than .2. The
implication is that limiting combining to closely similavents may be sufficient in practice.

C. Generation of performance skeleton program from exenwignature

The previous stage gave us the execution signature whichciemgpressed record of the complete execution
of the application. The execution signature compressesugr@ information by using a loop structure with loop
bodies representing repeating execution behavior. Our igais step is to create a short running program in a
programming language like C/C++ which reproduces the daddsvn dominant execution behavior represented by
the execution signature. The specific goal is to take theiggimn’s execution sighature and the desissaling
factor K as inputs, and generate an appropriate performance skel@he skeleton construction procedure is
outlined as follows:

1) The numbers of loop iterations in the application sigretare reduced by a factor K. Loop iterations that
form the remainder in this division process are unrolled badome a component of the unreduced part of
the signature.

2) Groups of K occurrences of identical execution operatianywhere in the unreduced part of the skeleton
are identified and replaced by a single occurrence.

3) All remaining unreduced operations a&®aled dowrby a factor K by adjusting their parameters. For compute
operations, the duration of execution is reduced by a fa€tdfor communication operations, the number of
bytes exchanged is reduced by a factor K.

4) This modified application signature is converted to sgtithC code by generating corresponding synthetic
loops, MPI calls, and compute operations.

One weakness of this approach is that scaling down a comatioricoperation by reducing the number of
bytes exchanged is not accurate. Execution time of the szbloperation would typically be higher than expected
because communication operations have two time compgriatescy, which is fixed for all message sizes, and
message transfer time, which can be scaled down linearlyeBycing the number of bytes exchanged we only
reduce the message transfer time, leaving the latency aoempdantact. A more accurate scaling down cannot be
achieved without making some assumptions about the execetivironments. However, we point out that this
kind of reduction is a “last resort” that is employed only fterations that remain after division by K and for
operations not in loops. In practice, the impact on overalfgrmance estimation is expected to be minimal for
most applications.

D. Shortest running “good” skeleton

It is desirable that the performance skeletons be shortimgnsince execution of the performance skeleton is
an overhead in performance estimation. However, the piediaccuracy is likely to be lower for shorter running
skeletons. The framework we have developed is designed nistrewt skeletons for any scaling factor that is
provided, and equivalently, for an arbitrary skeleton exien time. A key question in this research is as follows:
How short running can a skeleton be and still generate reddemperformance estimates ?

To address this, the skeleton construction framework bicaidly determines the shortest runtime skeleton that it
believes can be constructed without significantly sacni§grediction accuracy, and issues a warning if the reqdeste
scaling factor implies a smaller skeleton. To determinesthertest “good” skeleton, the framework identifies the
dominant sequence of execution evémthie application that comprise a significantly large patage of application
execution time. A skeleton is considered a good skeleton Igast one full iteration of the dominant sequence of
execution events is included.

As an example, consider the NAS IS (Integer Sort) benchmérse main communication operation is a large
all-all transfer. The accuracy of the skeleton is expeateloet good if one or more full all-all transfers are included.
Hence the minimum size for a good skeleton is the shortesetskethat includes at least one full all-all transfer.



IV. EXPERIMENTS AND RESULTS

A prototype framework for automatic construction of penfiance skeletons has been implemented. It was
employed to generate skeletons to predict the performahtteeaorresponding applications on a network testbed.

A. Experimental setup

The testbed for the experiments is a compute cluster cordpafs&0 Intel Xeon dual CPU 1.7 GHz machines
connected by Gigabit Ethernet links and a full crossbardwiResults are presented for experiments conducted
on 4 nodes. All experimental results are based on the MPleémphtation of the NAS Parallel Benchmarks [32],
[33]. The codes used are BT (Block Tridiagonal solver), C@r(0gate Gradient), IS (Integer Sort), LU (LU
Solver), MG (Multigrid) and SP (Pentadiagonal solver). pllograms are compiled using GNg77 (Fortran)
compiler except IS, which is compiled with tlgec (C) compiler. The MPICH implementation of MPI is used.
The bandwidth between computation nodes was managed véthittux advanced networkingproute2 [34] in
order to simulate limited bandwidth availability due to queting network trafficiproute2 works by intercepting
the network packets and passing them through artificial gsiéo simulate bandwidth limitations.

B. Experiments conducted

Performance skeletons were constructed for each Class B B&B8hmark program with an intended skeleton
execution time of 10 seconds, 5 seconds, 2 seconds, 1 sendr@l@second by defining the appropriate scaling
factors. Subsequently, the benchmarks and the corresmpmpairformance skeletons were executed on the same
testbed under the following five resource sharing scernarios

1) Two competing compute intensive processes are run on ode. n

2) Two competing compute intensive processes are run on rezid

3) Available bandwidth on one of the links was artificiallyniied to 10Mbps.

4) Available bandwidth on each link was artificially limited 10Mbps.

5) Competing processes as above on one node and reducedididgindsvabove on one link.

(Note that at least two competing processes are requiretetdecsignificant CPU contention on dual processor
nodes.)

We define themeasured scaling ratias the ratio between the measured execution time of an apiphcand the
measured execution time of a corresponding skeleton. Tédiqted execution time of an application in an arbitrary
resource sharing is the product of the measured skeletautie time in the same scenario and the corresponding
measured scaling ratioThe predicted and measured application execution times s@mpared for different size
skeletons and across the resource sharing scenarios. Mainder of this section discusses the results.

C. Validation of skeleton properties

The performance skeletons are expected to have executi@mvioe that reflects the application. As a basic test,
we compared the percentage of time spent in the communic@®1) operations versus other computations for
the skeletons and the application. The results are illtestran Figure 2.

We observe that the ratio between the computation and coreation time is broadly similar for the skeletons
and the corresponding application. The 0.5 second skelfeiorthe LU benchmark shows a somewhat larger
communication time ratio than the other cases. We expetvérg small skeletons will not represent the application
as faithfully as larger skeletons as more approximatioasraolved in their construction. The ratios for the sketesto
of BT benchmark show more variation than others. The commius that moderate variations are possible because
of the nature of skeleton construction process but mosetket are fairly close to their application in this respect.

D. Validation of performance prediction

Average error in the execution time predicted by the perforoe skeletons across applications and skeleton sizes
is plotted in Figure 3. These results are averaged acrossiness sharing scenarios. We observe that the average
prediction error across all benchmarks, scenarios, ankbtekesizes, is a relatively low 6.7% implying that the
performance skeletons can predict execution time effelgtiVWe now discuss the relationship of prediction accuracy
to application characteristics, skeleton size and resosharing scenarios.
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Fig. 2. Time spent by NAS benchmarks and corresponding wkeden different execution activities. The bar with horizal lines is for
the actual application.

010 second skeleton B5 second skeleton B2 second skeleton
El1 second skeleton M0.5 second skeleton

BT CG IS LU MG SP Average
Applications

Fig. 3. Prediction error for NAS benchmarks across sketetsines from 10 to 0.5 seconds. The error is averaged acrosssalrce
sharing scenarios.

Skeleton size and benchmark®ur goal of “short running” performance skeletons is to @ overheads but
preserve prediction accuracy. From Figure 3 we observethieatelationship between average prediction error and
skeleton size shows no distinct pattern across benchnmfaoksome benchmarks, prediction error does not change
much when going from 10 second to 0.5 second skeletons. Hayexror is usually close to the highest for the
smallest 0.5 second skeletons. The average error acroapaitations for 0.5 seconds skeletons is around 8%
versus the range around 5% to 6% for other cases.

The minimum execution time of a “good” skeleton for each lhenark as determined by our framework, based
on discussion in section IlI-D, is listed in Figure 4. Basexdthis table, the skeletons that are flagged as potentially
“not good” are 0.5 and 1 second skeletons for BT, 0.5, 1, andc®rsed skeletons for IS, and 0.5 and 1 second
skeletons for LU. Indeed the 4 cases with the highest piiedi@rror, i.e., the 0.5 second BT skeleton and 0.5,1,
and 2 second IS skeletons, were flagged to have low predictire by the skeleton construction framework.

The prediction errors for each size skeleton are groupeethieg and displayed in Figure 5. While there is no
uniform pattern again, the number of cases with a relatilalge prediction error increase with reduced skeleton
sizes and is clearly higher for 0.5 second skeletons.



Application | Smallest Skeleton
BT 1.01 sec
CG 0.13 sec
IS 3 sec
LU 1.97 sec
MG 0.34 sec
SP 0.34 sec

Fig. 4. Estimated minimum execution time for the smallesidyskeleton.

OBT BCG RIS OLU MMG E2SP HAverage

=

10 second 5 second 2 second 1 second 0.5 second
skeleton skeleton skeleton skeleton skeleton

Skeleton Sizes

Fig. 5. Prediction error for skeletons of different sizes RAS benchmarks. The error is averaged across all resotiarng scenarios.

The main conclusion is that performance skeletons of a feers#s are normally adequate for reasonably accurate
performance prediction, with a loose correlation betweaaaler skeletons and lower prediction accuracy. Also, the
framework generates meaningful application specific lol@unds for skeleton sizes below which the prediction
based on a skeleton is unreliable.

Sharing scenarios:We examine how the nature of sharing relates to accuracy rddrpgance prediction. Our
experiments have spanned sharing of one or all CPUs, ond coramunication links, and a combination of one
node and one link. Figure 6 shows prediction error undeegdfit sharing scenarios when employing representative
10 second skeletons. We observe that the prediction erfugkeer for scenarios that include competing traffic. In
the case of CPU sharing only, the error is higher for the “lari@ed” sharing of a single node versus sharing of
all nodes.

We believe that prediction error is higher for network shgrbecause communication operations cannot be
scaled down linearly unlike compute operations, as digmiss section 1lI-C. We speculate that the error in
unbalanced execution scenarios is higher because of @ti@aiccuracy in reproduction of synchronization behavio
in performance skeletons. While constructing a skeletenset the duration of compute operations within loops to
their average duration across iterations of the loop. A nam@urate approach that considers frequency distribution
of the duration of compute events will be taken in the future.

E. Comparison with other prediction techniques
We performed additional experiments to compare prediaiccuracy of such performance skeletons versus two
other simple and “reasonable” approaches to performaredigtion listed as follows:

» Average Prediction:The average slowdown of the entire benchmark suite undevengiesource sharing
scenario was used to predict the execution time for evergraro in the same scenario. The reasoning is
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Fig. 6. Prediction error for NAS benchmarks across five resmgharing scenarios. A 10 second skeleton was used.

that, if all programs slow down roughly equally under reseucompetition, there is no need for customized
performance skeletons for applications discussed in thiep instead, a generic short running program could
be run to predict the execution time for any application ur@source sharing.

« Class S PredictionThe experiments described in this paper were performed @liiss B NAS benchmarks,
which run in 30 to 900 seconds without load on 4 machines inctuster. Each NAS benchmark also has a
Class S version which typically runs in less than a seconthiscase, the Class S benchmarks were used as
the performance skeletons for the Class B benchmarks féorpgaince prediction. The reasoning is that, since
both classes of benchmarks perform the same fundamentailatzbn but on different data sizes and scales,
the short running class S benchmarks could be considered ganually generated performance skeletons.

—A— MIN —@— Average —— MAX

120 -
100 ~
80 +
60 -

Error (%)

40 -

20 ~

- S—

10 sec 5 sec 2 sec 1 sec 0.5sec ClassS Average
skeleton skeleton skeleton skeleton skeleton

Prediction methodology

Fig. 7. Minimum, maximum and average prediction error fa& MAS benchmark suite for prediction with different sizelskans, with
class S benchmarks as skeletons, and using average preditltie execution scenario is one competing process on afe ama traffic on
one link

The performance prediction error for each of these appemhplotted in Figure 7. The performance skeleton
approach based on the framework in this paper is clearleb#tan the other methods. Prediction with 0.5 second
skeletons, which roughly take as long to run as Class S bemdtsnis also clearly superior to other methods.
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Hence the overhead of our approach is also competitive.

The above results are significant for the following reas®hs. fact that “average prediction” approach is relatively
ineffective proves that applications have widely varyimg@ition behavior and hence an approach that is customized
to applications is required. The inability of Class S benahta to predict the behavior of larger Class B benchmarks
shows that one cannot simply run an application with a verglsinput data set and expect it to have similar
execution behavior as running with realistic data sets.

V. LIMITATIONS AND EXTENSIONS

This research establishes performance skeletons as antampand effective approach to execution driven
performance prediction. We discuss the limitations of euplementation and future work that is needed to develop
a comprehensive solution to the problems this frameworkesighed to solve.

« Fine grain prediction: This paper is limited to modeling coarse computation androamnication behavior.
Modeling of instruction level execution and memory accessgons is essential to employ skeletons to predict
performance across architectures. An important apptioa8 prediction of performance by simulation on a
future architecture.

« Other programming models: The current implementation is limited to message passingvdyrams. While
the basic concepts are independent of the programming mingglementation will be significantly different
for another programming model. An alternate approach tif@rs communication by network modeling can
be independent of the programming model and has been igaesdi in [35].

« Scalable skeletonsThe current methodology constructs skeletons for execuiioa fixed number of nodes.
A better solution is a skeleton that can execute on a variableber of nodes. This is a current topic of
research and would involve combining this work with othese@rch in scalable performance modeling.

« Prediction across data setsThe current methodology constructs a skeleton based on @afispexecution
and input data set. The approach can be made to work acréseedifdata set sizes when execution time is
dependent on the size of a data set. However, like most peafoece prediction methods, this approach cannot
be applied when execution is strongly data dependent.

« Implementation and experimentation: Several aspects of this implementation can be improvedct8gniza-
tion overhead is modeled in a simple way as the timing infdionais approximated. The implementation can
also be improved to better manage scaling down of individoahmunication operations when necessary for
small skeletons. More experimentation, particularly odevarea networks, is heeded for stronger validation.

VI. CONCLUDING REMARKS

This research is in the direction of the broader topic of selection and performance estimation in grid
computing environments. We believe that knowledge of ariegaipn’s cyclic behavior can be effectively employed
in grid performance estimation and resource selection draonks. This paper introduces performance skeletons,
which are short running programs that can be used for pednoa estimation with resource sharing. The main
advantage of a performance skeleton based approach istthaoids the cost and inaccuracy associated with
determining up-to-date information regarding node andvagt usage and translating it to expected application
performance.

We demonstrate that automatically generated performakeletens that run in seconds can predict application
performance accurately, and that our framework can effelgticompute the size of the shortest possible “good”
skeleton for performance estimation. The paper offergghtsinto how application characteristics, skeleton size
and nature of resource competition impact prediction asguand discusses the limitations of this approach. In
summary, the paper presents a promising approach to perf@menestimation with resource sharing and provides
convincing evidence that it is practical and effective.
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