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Abstract

The performance skeleton of an application is a short running program whose performance in any
scenario reflects the performance of the application it represents. Specifically, the execution time of the
performance skeleton is a small fixed fraction of the execution time of the corresponding application in
any execution environment. Such a skeleton can be employed to quickly estimate the performance of a
large application under existing network and node sharing.This paper presents a framework for automatic
construction of performance skeletons of a specified execution time and evaluates their use in performance
prediction with CPU and network sharing. The approach is based on capturing the execution behavior of an
application and automatically generating a synthetic skeleton program that reflects that execution behavior.
The paper demonstrates that performance skeletons runningfor a few seconds can predict the application
execution time fairly accurately. Relationship of skeleton execution time, application characteristics, and
nature of resource sharing, to accuracy of skeleton based performance prediction, is analyzed in detail.
The goal of this research is accurate performance estimation in heterogeneous and shared computation
grids.
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I. INTRODUCTION

Computational grids are emerging as the vehicle for future high performance scientific and commercial computing.
Execution environments for grids have to address allocation of resources to applications, and that is driven by the
expected performance of an application on different parts of a grid. Estimation of application performance has
an important role to play in grid computing, and the problem is much more complex for a shared heterogeneous
computation environment than for conventional high performance computing platforms.

The research community clearly recognizes the importance of performance estimation in grid environments
and substantial research effort has been invested in the measurement, modeling, and prediction of various system
resources. Measurement and prediction of CPU availabilityhas been studied in [1], [2]. Measurement and modeling
of network bandwidth and latency is a very active area of research [3], [4], [5], [6]. NWS (Network Weather
Service) [7] and REMOS (Resource Monitoring System) [8] aretwo systems that have been specifically designed
for measurement of available CPU and network resources in grid environments. NWS, in particular, is in widespread
use as a CPU and bandwidth monitoring and prediction tool.

Systems for resource management and scheduling for problemsolving on grid environments include Netsolve [9],
Nimrod/G [10], Gallop [11], AppLeS [12] and Condor [13], [14]. These systems rely on measured and predicted
availability of CPU, bandwidth and other resources to make resource allocation and management decisions where
applicable. AppLeS [12] pioneered application level scheduling, where resource selection is performed by agents
associated with an application based on available resourceinformation, rather than by a central resource manager.
A number of algorithms and frameworks have been proposed forresource selection in networked environments
based on system status information, some examples being [12], [15]. Some of the recent research has emphasized
the importance of application properties in resource allocation and addresses resource selection based on mapping
application properties to the system status [16], [17], [18], [19], [20], [21].

While the research discussed above represents many different directions, the state of the art approach to resource
selection for applications can be broadly summarized as consisting of the following steps:

1) System characterization:Measure and predict the status and availability of system resources such as CPU
and network capacities.

2) Application characterization:Develop a model that captures the dependence of an application’s performance
on availability of resources.

† Sukhdeep Sodhi is with Microsoft Inc.
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3) Mapping and scheduling:Select the best nodes to execute the application based on available system status
and application characteristics.

We argue that this state of the art has the following inherentlimitations that motivate a different paradigm:

• Maintaining accurate current system status information isinherently expensive. In order to have recent CPU and
network information whenever a resource assignment decision has to be made, available system resources have
to be monitored continuously and status information has to be broadcast frequently. For network properties,
measurements themselves consume bandwidth and the complexity increases quadratically with the size of the
available computing grid. High speed backbone network links are particularly challenging, especially since it
is not desirable to consume a critical shared resource for measurements.

• Estimating application performance based on system statusis inherently error prone.Measurement tools
provide resource availability and utilization information such as CPU load factor and unused bandwidth on
various components of a grid. On the other hand, the key information of interest for resource management
is how a particular application will perform on a set of resources under the current system status. Predicting
the performance of application tasks from system status information is very difficult. The following examples
underline the complexity:

– The amount of CPU time that a process is likely to get on a computation node cannot be determined even
when the load average on the node is known since it partly depends on the synchronization structure of
the parallel and distributed applications in the system.

– The expected duration of a bulk transfer cannot be estimatedaccurately even when accurate point to
point unused bandwidth information is available since it depends on the transport protocols used by the
application and other traffic on the network.

Finally even if the performance on individual node computations and data transfers can be determined,
estimating collective communication and overall application performance is still challenging as it depends
on the nature of sharing in the network and the application structure.

The conclusion is that it is virtually impossible to estimate application performance from network status in many
scenarios. This has motivated us to follow a different approach to estimating performance in shared heterogeneous
grid environments which is based on the following claim:
The most effective and efficient way to estimate the performance of an application under the existing status of grid
resources is brief monitored execution of code that mimics the application.

We refer to such code as theperformance skeletonof the application. More formally, a performance skeleton
is a synthetically generated short running program whose execution time always reflects the performance of the
application it represents. Hence, simply executing the performance skeleton in a shared execution environment
provides an estimate of application performance in that environment. The resource selection for an application is
then addressed as follows. A group of candidate node sets is identified for execution (using existing approximate
methods) and the final choice is made by comparing the execution time of the application skeleton on each node
set.

The central contribution of this paper is a framework for automatic construction of accurate performance
skeletons for distributed applications and evaluation of the capability of automatically generated skeletons to
predict performance efficiently and accurately.

While we have used resource selection in shared grid environments for motivating this research, it is important
to point out that this approach to performance prediction has broad applicability. Another example is the prediction
of the performance of important applications on a future architecture under simulation. Since execution under sim-
ulation is multiple orders of magnitude slower than real execution, this skeleton based approach can be particularly
appropriate. The real application does not have to be simulated at all as the skeleton can be built on existing
machines.

The basic philosophy in construction of a performance skeleton can be stated as follows. If the skeleton executes
operations that are representative of application execution, the performance of the skeleton and the application will
change similarly in response to changes in the execution environment. Hence, a performance skeleton must capture
the execution behavior of the application in terms of synchronization and message exchange patterns, CPU usage
patterns, and memory access patterns, yet execute for a veryshort time. Our approach is to measure the application
performance behavior during execution, summarize it by identifying repeating phases, and then reproduce it as a
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synthetic skeleton program.
We briefly discuss other projects that summarize application behavior and their goals. Reed et.al. [22], [23]

generate compact application signatures using a curve-fitting approach to reduce event-tracing overheads for online
performance monitoring and tuning. Snavely et.al. [19] create application and machine signatures to simulate
application behavior across different system or processorarchitectures. Duesterwald et.al. [24] identify phase
behavior for kernel-level resource aware scheduling. Sherwood et.al. [25], [26] exploit periodic application behavior
to identify portions of the program that are representativeof an application for the purpose of architectural
simulations. Our approach is driven by many of the ideas and concepts developed in these projects. However, we
have a very different goal, which is to develop an independent skeleton program. An alternate approach is explored
in FAST [27], a tool that performs abstract simulations while completely avoiding execution of computation code.
This approach ignores program control flow, which can impactthe communication pattern and the computation
time. FAST also requires significant modification to the source program, while our approach does not require access
to the source code.

II. PERFORMANCE SKELETONS

A performance skeleton is defined as a program whose execution time is directly related to the execution time
of the application it represents; if the execution time of a skeleton is 1/1000th of the application execution time on
a dedicated cluster, then this relationship should hold in any execution environment, even when nodes and links
are shared with other applications. This definition is idealistic, and in practice, the goal is to build a skeleton
that conforms to these conditions as closely as possible. The skeleton should also be as short-running as possible
as skeleton execution is an overhead. We would like to point out that skeleton execution is very different from
actually executing the application for a short time. The skeleton should capture the total execution of an application
in a short time while the beginning part of an application is typically not representative of the entire application
execution.

For the performance behavior of a skeleton to be similar to that of an application, the execution and resource
usage patterns of the skeleton must be similar to the dominant corresponding patterns of the application. We have
the following specific criteria:

1) CPU activity: The processing done by the CPU and CPU busy/idle phase pattern should be similar for the
application and the skeleton.

2) Memory activity:The memory access pattern in the skeleton should be representative of the application. This
is particularly important to get similar cache performanceon nodes with different memory hierarchies.

3) I/O activity: The I/O pattern in the skeleton should be representative of the application.
4) Communication and synchronization:The data exchange patterns among processes should be similar for the

application and skeleton to preserve the communication andsynchronization performance. The sizes, types,
frequencies and patterns of network message exchanges should be similar.

5) Application phase transitions:An application transitions between different phases of execution at multiple
levels of granularity. The sequence of these phases, as wellas the CPU, memory and communication activities
in each phase, should be reflected in the skeleton.

Our long term project goal is to generate skeletons conforming to the above constructive definition but this paper
is limited to performance skeletons which mimic the communication sequences and coarse computation behavior
of the application. Such skeletons are sufficient for predicting the performance of compute and communication
bound applications under resource sharing. Reproduction of memory accesses and fine-grain instruction level
computation behavior is critical for performance estimation across different processor and memory architectures,
but not essential for simple CPU and network sharing scenarios. We discuss our efforts in reproducing memory
behavior for performance prediction in [28].

III. A UTOMATIC CONSTRUCTION OF SKELETONS

This research has developed a framework for automatic construction of performance skeletons and implemented
it for message passing MPI programs. We outline the procedure in this section. The main steps are as follows:

1) Record application’s execution trace:The application is executed on a controlled testbed and its execution
activity, specifically CPU usage and message exchanges, is recorded. This is theexecution trace.
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2) Compress execution trace into an execution signature:The repeated patterns in the recorded execution trace
are identified and used to generate a compact representationof the trace by introducing a “loop structure”.
The new compact representation is theexecution signature.

3) Generate a performance skeleton program from the executionsignature:The application execution signature
is converted to a computer program which generates execution activity that is similar to the recorded execution
signature, but with the execution time scaled down by a givenfactor K. This is theperformance skeleton.
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Fig. 1. Construction of application performance skeletons.

This skeleton construction procedure is illustrated in Figure 1. This procedure does not involve source code
analysis, modification or instrumentation and hence has broad applicability. The skeleton construction details are
driven by the desired ratio between the execution time of theapplication and the corresponding performance
skeleton, which we call thescaling factor. We now discuss each of these steps. Additional details are available
in [29].

A. Recording of execution trace

To generate an execution trace, the MPI application is linked with a profiling library developed for this purpose
based on PMPI. The application is then executed on a dedicated testbed cluster without any competing jobs or
network traffic. The profiling library records information for each application process in a separate trace file. Each
MPI library call, along with the parameters passed to it and its start time and end time, are recorded. Timing
measurement is done to microsecond granularity with Linuxgettimeofdaysystem call [30]. Time for computation
operations is recorded as the time spent between the end of one MPI operation and the start of the next MPI
operation. Generation of the trace file requires no modification of the application source code. We verified that the
execution time overhead of trace generation is negligible,typically well under 1% of the execution time.

B. Compression of execution trace to execution signature

The application execution trace is a long record of message exchanges and interleaved compute operations of
varying duration. The bulk of an application’s execution time is typically spent in repeating loops as application
execution activity tends to be cyclic. The goal of this step is to identify cyclic behavior in the execution trace to
generate a compact execution signature. Segments of execution trace denoting similar activity qualify for repeating
behavior; exactly identical activity is not required. Thisprocess consists of clustering similar execution events in
the trace followed by the conversion of the repeated operation sequences into a loop structure.

Clustering similar execution events:
The objective of this stage is to replace the execution traceby a string of symbols where substantially
similar execution events are placed in the same cluster and assigned the same symbol.
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As an example, suppose we encounter the following two operations in a trace:
MPI Send(Node 3, 2000 bytes), and
MPI Send(Node 3, 1800 bytes)

If both these events occur only once, they are both replaced by the following operation:
MPI Send(Node 3, 1900 bytes)

Clustering such similar events helps in generating a more compact representation. Events that are grouped
together are execution phases of approximately equal duration or message calls with similar parameters.
Our approach treats different MPI primitives and blocking and non-blocking calls as distinct events,
thus ensuring that they are never grouped together. We identify the non blocking calls and associated
MPI Wait() to determine the corresponding overlapped region. This helps develop a faithful representation
of the application’s communication structure.
Formally, we have developed a measure for dissimilarity of events in N– dimensional space based on [31],
with one dimension for each parameter of an execution event.The extent of clustering is controlled by
a similarity thresholdwhich can be assigned a value between 0 and 1. A lower similarity threshold
represents more strict rules for clustering, but will lead to less compression, while a higher similarity
threshold implies more relaxed rules for clustering and more compression. A similarity threshold of 0
implies that only identical events are clustered together.
This stage converts the trace log into a string of symbols such as:

αββγββγββγκαα

where each occurrence of a symbol represents an execution event with different occurrences of the same
symbol referring to functionally identical execution events.
To summarize, clustering of similar events and representing them by an “average event” implies some
loss of information but leads to significant compression, and subsequently, smaller skeletons. This tradeoff
can be managed with the similarity threshold parameter, andthis is discussed in more detail later in this
section.
Identification of cycles:
The objective of this step is to identify and capture repeated execution behavior as loops to construct the
final execution signature. Since the previous step convertsthe execution trace into a sequence of frequently
repeating symbols, the problem of identifying repeating application execution behavior is now represented
as the problem of finding repeating sub-strings within a string. As an example, the following string:

αββγββγββγκαα

should be replaced by:
α[(β)2γ]3κ[α]2

The procedure consists of recursively identifying the repeating sub-strings, starting with the largest matches
and working down to sub-string matches of a single symbol. The repeating sub-strings are then organized
as recursive loop nests with sub-strings of symbols as loop bodies and the number of repetitions as the
number of loop iterations. The algorithm is detailed in [29].

An important parameter in the procedure for the construction of an execution signature is the similarity threshold,
which determines if two similar events can be considered identical for the purpose of compression. We now address
how a given value of similarity threshold translates to specific rules for compression and then discuss how the
value of similarity threshold is determined. For message passing operations, the value of the similarity threshold
linearly relates to the maximum difference in message sizesallowed for communication operations to be combined
into a cluster. The above compression procedure is applied across communication operations without regard to
interleaving computations. When two sequences of communication events with interspersed computation events are
to be combined, an average value of execution time for the corresponding computation events in the sequence is
used to build the compressed sequence. This approach represents maximum flexibility in combining computation
events and was found to be effective in our experience.

An iterative process is employed to determine the optimal value of the similarity threshold based on the desired
compression ratio Q between the length of the execution trace and the length of the compressed execution signature.
Initially the similarity threshold is set to 0 and the clustering and compression procedure is applied. If the degree
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of compression is less than the desired ratio Q, the similarity threshold is increased gradually until the desired
compression of Q (or higher) is achieved. Now, the question is how should Q be determined ? Based on our
experience, we have used Q = K/2 where K is the scaling factor between the application execution time and the
desired skeleton execution time. It is desirable to have an upper bound on similarity threshold so that very different
execution events are not combined. In practice, this may notbe a significant issue. The maximum similarity threshold
that was required across the NAS benchmarks for meaningful execution signatures was always less than .2. The
implication is that limiting combining to closely similar events may be sufficient in practice.

C. Generation of performance skeleton program from execution signature

The previous stage gave us the execution signature which is acompressed record of the complete execution
of the application. The execution signature compresses execution information by using a loop structure with loop
bodies representing repeating execution behavior. Our goal in this step is to create a short running program in a
programming language like C/C++ which reproduces the scaled down dominant execution behavior represented by
the execution signature. The specific goal is to take the application’s execution signature and the desiredscaling
factor K as inputs, and generate an appropriate performance skeleton. The skeleton construction procedure is
outlined as follows:

1) The numbers of loop iterations in the application signature are reduced by a factor K. Loop iterations that
form the remainder in this division process are unrolled andbecome a component of the unreduced part of
the signature.

2) Groups of K occurrences of identical execution operations anywhere in the unreduced part of the skeleton
are identified and replaced by a single occurrence.

3) All remaining unreduced operations arescaled downby a factor K by adjusting their parameters. For compute
operations, the duration of execution is reduced by a factorK. For communication operations, the number of
bytes exchanged is reduced by a factor K.

4) This modified application signature is converted to synthetic C code by generating corresponding synthetic
loops, MPI calls, and compute operations.

One weakness of this approach is that scaling down a communication operation by reducing the number of
bytes exchanged is not accurate. Execution time of the reduced operation would typically be higher than expected
because communication operations have two time components; latency, which is fixed for all message sizes, and
message transfer time, which can be scaled down linearly. Byreducing the number of bytes exchanged we only
reduce the message transfer time, leaving the latency component intact. A more accurate scaling down cannot be
achieved without making some assumptions about the execution environments. However, we point out that this
kind of reduction is a “last resort” that is employed only foriterations that remain after division by K and for
operations not in loops. In practice, the impact on overall performance estimation is expected to be minimal for
most applications.

D. Shortest running “good” skeleton

It is desirable that the performance skeletons be short running since execution of the performance skeleton is
an overhead in performance estimation. However, the prediction accuracy is likely to be lower for shorter running
skeletons. The framework we have developed is designed to construct skeletons for any scaling factor that is
provided, and equivalently, for an arbitrary skeleton execution time. A key question in this research is as follows:
How short running can a skeleton be and still generate reasonable performance estimates ?

To address this, the skeleton construction framework heuristically determines the shortest runtime skeleton that it
believes can be constructed without significantly sacrificing prediction accuracy, and issues a warning if the requested
scaling factor implies a smaller skeleton. To determine theshortest “good” skeleton, the framework identifies the
dominant sequence of execution eventsin the application that comprise a significantly large percentage of application
execution time. A skeleton is considered a good skeleton if at least one full iteration of the dominant sequence of
execution events is included.

As an example, consider the NAS IS (Integer Sort) benchmark whose main communication operation is a large
all-all transfer. The accuracy of the skeleton is expected to be good if one or more full all-all transfers are included.
Hence the minimum size for a good skeleton is the shortest skeleton that includes at least one full all-all transfer.
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IV. EXPERIMENTS AND RESULTS

A prototype framework for automatic construction of performance skeletons has been implemented. It was
employed to generate skeletons to predict the performance of the corresponding applications on a network testbed.

A. Experimental setup

The testbed for the experiments is a compute cluster composed of 10 Intel Xeon dual CPU 1.7 GHz machines
connected by Gigabit Ethernet links and a full crossbar switch. Results are presented for experiments conducted
on 4 nodes. All experimental results are based on the MPI implementation of the NAS Parallel Benchmarks [32],
[33]. The codes used are BT (Block Tridiagonal solver), CG (Conjugate Gradient), IS (Integer Sort), LU (LU
Solver), MG (Multigrid) and SP (Pentadiagonal solver). Allprograms are compiled using GNUg77 (Fortran)
compiler except IS, which is compiled with thegcc (C) compiler. The MPICH implementation of MPI is used.
The bandwidth between computation nodes was managed with the Linux advanced networkingiproute2 [34] in
order to simulate limited bandwidth availability due to competing network traffic.iproute2 works by intercepting
the network packets and passing them through artificial queues to simulate bandwidth limitations.

B. Experiments conducted

Performance skeletons were constructed for each Class B NASBenchmark program with an intended skeleton
execution time of 10 seconds, 5 seconds, 2 seconds, 1 second and 0.5 second by defining the appropriate scaling
factors. Subsequently, the benchmarks and the corresponding performance skeletons were executed on the same
testbed under the following five resource sharing scenarios:

1) Two competing compute intensive processes are run on one node.
2) Two competing compute intensive processes are run on eachnode.
3) Available bandwidth on one of the links was artificially limited to 10Mbps.
4) Available bandwidth on each link was artificially limitedto 10Mbps.
5) Competing processes as above on one node and reduced bandwidth as above on one link.
(Note that at least two competing processes are required to create significant CPU contention on dual processor

nodes.)
We define themeasured scaling ratioas the ratio between the measured execution time of an application and the

measured execution time of a corresponding skeleton. The predicted execution time of an application in an arbitrary
resource sharing is the product of the measured skeleton execution time in the same scenario and the corresponding
measured scaling ratio. The predicted and measured application execution times were compared for different size
skeletons and across the resource sharing scenarios. The remainder of this section discusses the results.

C. Validation of skeleton properties

The performance skeletons are expected to have execution behavior that reflects the application. As a basic test,
we compared the percentage of time spent in the communication (MPI) operations versus other computations for
the skeletons and the application. The results are illustrated in Figure 2.

We observe that the ratio between the computation and communication time is broadly similar for the skeletons
and the corresponding application. The 0.5 second skeletonfor the LU benchmark shows a somewhat larger
communication time ratio than the other cases. We expect that very small skeletons will not represent the application
as faithfully as larger skeletons as more approximations are involved in their construction. The ratios for the skeletons
of BT benchmark show more variation than others. The conclusion is that moderate variations are possible because
of the nature of skeleton construction process but most skeletons are fairly close to their application in this respect.

D. Validation of performance prediction

Average error in the execution time predicted by the performance skeletons across applications and skeleton sizes
is plotted in Figure 3. These results are averaged across resource sharing scenarios. We observe that the average
prediction error across all benchmarks, scenarios, and skeleton sizes, is a relatively low 6.7% implying that the
performance skeletons can predict execution time effectively. We now discuss the relationship of prediction accuracy
to application characteristics, skeleton size and resource sharing scenarios.
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Fig. 2. Time spent by NAS benchmarks and corresponding skeletons in different execution activities. The bar with horizontal lines is for
the actual application.
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sharing scenarios.

Skeleton size and benchmarks::Our goal of “short running” performance skeletons is to reduce overheads but
preserve prediction accuracy. From Figure 3 we observe thatthe relationship between average prediction error and
skeleton size shows no distinct pattern across benchmarks.For some benchmarks, prediction error does not change
much when going from 10 second to 0.5 second skeletons. However, error is usually close to the highest for the
smallest 0.5 second skeletons. The average error across allapplications for 0.5 seconds skeletons is around 8%
versus the range around 5% to 6% for other cases.

The minimum execution time of a “good” skeleton for each benchmark as determined by our framework, based
on discussion in section III-D, is listed in Figure 4. Based on this table, the skeletons that are flagged as potentially
“not good” are 0.5 and 1 second skeletons for BT, 0.5, 1, and 2 second skeletons for IS, and 0.5 and 1 second
skeletons for LU. Indeed the 4 cases with the highest prediction error, i.e., the 0.5 second BT skeleton and 0.5,1,
and 2 second IS skeletons, were flagged to have low predictionvalue by the skeleton construction framework.

The prediction errors for each size skeleton are grouped together and displayed in Figure 5. While there is no
uniform pattern again, the number of cases with a relativelylarge prediction error increase with reduced skeleton
sizes and is clearly higher for 0.5 second skeletons.



9

Application Smallest Skeleton

BT 1.01 sec 

CG 0.13 sec 

IS 3 sec 

LU 1.97 sec 

MG 0.34 sec 

SP 0.34 sec 

Fig. 4. Estimated minimum execution time for the smallest good skeleton.
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The main conclusion is that performance skeletons of a few seconds are normally adequate for reasonably accurate
performance prediction, with a loose correlation between smaller skeletons and lower prediction accuracy. Also, the
framework generates meaningful application specific lowerbounds for skeleton sizes below which the prediction
based on a skeleton is unreliable.

Sharing scenarios::We examine how the nature of sharing relates to accuracy of performance prediction. Our
experiments have spanned sharing of one or all CPUs, one or all communication links, and a combination of one
node and one link. Figure 6 shows prediction error under different sharing scenarios when employing representative
10 second skeletons. We observe that the prediction error ishigher for scenarios that include competing traffic. In
the case of CPU sharing only, the error is higher for the “unbalanced” sharing of a single node versus sharing of
all nodes.

We believe that prediction error is higher for network sharing because communication operations cannot be
scaled down linearly unlike compute operations, as discussed in section III-C. We speculate that the error in
unbalanced execution scenarios is higher because of potential inaccuracy in reproduction of synchronization behavior
in performance skeletons. While constructing a skeleton, we set the duration of compute operations within loops to
their average duration across iterations of the loop. A moreaccurate approach that considers frequency distribution
of the duration of compute events will be taken in the future.

E. Comparison with other prediction techniques

We performed additional experiments to compare predictionaccuracy of such performance skeletons versus two
other simple and “reasonable” approaches to performance prediction listed as follows:

• Average Prediction:The average slowdown of the entire benchmark suite under a given resource sharing
scenario was used to predict the execution time for every program in the same scenario. The reasoning is
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Fig. 6. Prediction error for NAS benchmarks across five resource sharing scenarios. A 10 second skeleton was used.

that, if all programs slow down roughly equally under resource competition, there is no need for customized
performance skeletons for applications discussed in this paper; instead, a generic short running program could
be run to predict the execution time for any application under resource sharing.

• Class S Prediction:The experiments described in this paper were performed withClass B NAS benchmarks,
which run in 30 to 900 seconds without load on 4 machines in ourcluster. Each NAS benchmark also has a
Class S version which typically runs in less than a second. Inthis case, the Class S benchmarks were used as
the performance skeletons for the Class B benchmarks for performance prediction. The reasoning is that, since
both classes of benchmarks perform the same fundamental calculation but on different data sizes and scales,
the short running class S benchmarks could be considered good manually generated performance skeletons.
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Fig. 7. Minimum, maximum and average prediction error for the NAS benchmark suite for prediction with different size skeletons, with
class S benchmarks as skeletons, and using average prediction. The execution scenario is one competing process on one node and traffic on
one link

The performance prediction error for each of these approaches is plotted in Figure 7. The performance skeleton
approach based on the framework in this paper is clearly better than the other methods. Prediction with 0.5 second
skeletons, which roughly take as long to run as Class S benchmarks, is also clearly superior to other methods.
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Hence the overhead of our approach is also competitive.
The above results are significant for the following reasons.The fact that “average prediction” approach is relatively

ineffective proves that applications have widely varying execution behavior and hence an approach that is customized
to applications is required. The inability of Class S benchmarks to predict the behavior of larger Class B benchmarks
shows that one cannot simply run an application with a very small input data set and expect it to have similar
execution behavior as running with realistic data sets.

V. L IMITATIONS AND EXTENSIONS

This research establishes performance skeletons as an important and effective approach to execution driven
performance prediction. We discuss the limitations of our implementation and future work that is needed to develop
a comprehensive solution to the problems this framework is designed to solve.

• Fine grain prediction: This paper is limited to modeling coarse computation and communication behavior.
Modeling of instruction level execution and memory access patterns is essential to employ skeletons to predict
performance across architectures. An important application is prediction of performance by simulation on a
future architecture.

• Other programming models: The current implementation is limited to message passing MPI programs. While
the basic concepts are independent of the programming model, implementation will be significantly different
for another programming model. An alternate approach that infers communication by network modeling can
be independent of the programming model and has been investigated in [35].

• Scalable skeletons:The current methodology constructs skeletons for execution on a fixed number of nodes.
A better solution is a skeleton that can execute on a variablenumber of nodes. This is a current topic of
research and would involve combining this work with other research in scalable performance modeling.

• Prediction across data sets:The current methodology constructs a skeleton based on a specific execution
and input data set. The approach can be made to work across different data set sizes when execution time is
dependent on the size of a data set. However, like most performance prediction methods, this approach cannot
be applied when execution is strongly data dependent.

• Implementation and experimentation:Several aspects of this implementation can be improved. Synchroniza-
tion overhead is modeled in a simple way as the timing information is approximated. The implementation can
also be improved to better manage scaling down of individualcommunication operations when necessary for
small skeletons. More experimentation, particularly on wide area networks, is needed for stronger validation.

VI. CONCLUDING REMARKS

This research is in the direction of the broader topic of resource selection and performance estimation in grid
computing environments. We believe that knowledge of an application’s cyclic behavior can be effectively employed
in grid performance estimation and resource selection frameworks. This paper introduces performance skeletons,
which are short running programs that can be used for performance estimation with resource sharing. The main
advantage of a performance skeleton based approach is that it avoids the cost and inaccuracy associated with
determining up-to-date information regarding node and network usage and translating it to expected application
performance.

We demonstrate that automatically generated performance skeletons that run in seconds can predict application
performance accurately, and that our framework can effectively compute the size of the shortest possible “good”
skeleton for performance estimation. The paper offers insight into how application characteristics, skeleton size
and nature of resource competition impact prediction accuracy and discusses the limitations of this approach. In
summary, the paper presents a promising approach to performance estimation with resource sharing and provides
convincing evidence that it is practical and effective.

VII. A CKNOWLEDGMENTS

This material is based upon work supported by the National Science Foundation under Grant No. ACI-0234328
and Grant No. CNS-0410797. Support was also provided by the Department of Energy through Los Alamos
National Laboratory (LANL) contract number 03891-99-23 , and by University of Houston’s Texas Learning and
Computation Center.



12

REFERENCES

[1] P. Dinda and D. O’Hallaron, “An evaluation of linear models for host load prediction,” inProceedings of the 8th IEEE International
Symposium on High Performance Distributed Computing, August 1999. [Online]. Available: citeseer.nj.nec.com/dinda98evaluation.html

[2] R. Wolski, N. Spring, and J. Hayes, “Predicting the CPU availability of time-shared unix systems on the computational grid,” Cluster
Computing, vol. 3, no. 4, pp. 293–301, 2000. [Online]. Available: citeseer.nj.nec.com/wolski99predicting.html

[3] N. Cardwell, S. Savage, and T. Anderson, “Modeling TCP latency,” in Proceedings of IEEE INFOCOM 2000, 2000, pp. 1742–1751.
[Online]. Available: citeseer.nj.nec.com/cardwell00modeling.html

[4] K. Lai and M. Baker, “Nettimer: A tool for measuring bottleneck link bandwidth,” inUSENIX Synposium on Internet Topology and
Systems, March 1991, pp. 123–134. [Online]. Available: citeseer.nj.nec.com/lai01nettimer.html

[5] V. Paxson and S. Floyd, “Wide-area traffic: The failure ofPoisson modeling,”IEEE/ACM Transactions on Networking, vol. 3, no. 3,
pp. 226–244, June 1995.

[6] M. Stemm, S. Seshan, and R. Katz, “Spand: Shared passive network performance discovery,” inUSENIX Symposium on Internet
Technologies and Systems, Monterey, CA, June 1997.

[7] R. Wolski, N. Spring, and C. Peterson, “Implementing a performance forecasting system for metacomputing: The Network Weather
Service,” inProceedings of Supercomputing ’97, San Jose, CA, Nov 1997.

[8] B. Lowekamp, N. Miller, D. Sutherland, T. Gross, P. Steenkiste, and J. Subhlok, “A resource query interface for network-aware
applications,” inSeventh IEEE Symposium on High-Performance Distributed Computing, Chicago, IL, July 1998.

[9] H. Casanova and J. Dongarra, “NetSolve: A network-enabled server for solving computational science problems,”The International
Journal of Supercomputer Applications and High Performance Computing, vol. 11, no. 3, pp. 212–223, Fall 1997. [Online]. Available:
citeseer.nj.nec.com/casanova00netsolve.html

[10] R. Buyya, D. Abramson, and J. Giddy, “Nimrod/g: An architecture for a resource management and scheduling system in aglobal
computational grid,” inThe 4th International Conference on High Performance Computing in Asia-Pacific Region, 2000. [Online].
Available: citeseer.nj.nec.com/buyya00nimrodg.html

[11] J. Weismann, “Metascheduling: A scheduling model for metacomputing systems,” inSeventh IEEE Symposium on High-Performance
Distributed Computing, Chicago, IL, July 1998.

[12] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao, “Application-level scheduling on distributed heterogeneous networks,” in
Proceedings of Supercomputing ’96, Pittsburgh, PA, November 1996.

[13] M. Litzkow, M. Livny, and M. Mutka, “Condor — A hunter of idle workstations,” inProceedings of the Eighth Conference on
Distributed Computing Systems, San Jose, California, June 1988.

[14] R. Raman, M. Livny, and M. Solomon, “Matchmaking: Distributed resource management for high throughput computing,”
in 7th IEEE International Symposium on High Performance Distributed Computing, july 1998. [Online]. Available:
citeseer.nj.nec.com/raman98matchmaking.html

[15] J. Subhlok, P. Lieu, and B. Lowekamp, “Automatic node selection for high performance applications on networks,” inProceedings of
the Seventh ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, Atlanta, GA, May 1999, pp. 163–172.

[16] J. Bolliger and T. Gross, “A framework-based approach to the development of network-aware applications,”IEEE Trans. Softw. Eng.,
vol. 24, no. 5, pp. 376 – 390, May 1998.

[17] H. Casanova, G. Obertelli, F. Berman, and R. Wolski, “The AppLeS Parameter Sweep Template: User-level middleware for the grid,”
in Supercomputing 2000, 2000, pp. 75–76. [Online]. Available: citeseer.nj.nec.com/casanova00apples.html

[18] G. Shao, F. Berman, and R. Wolski, “Master/slave computing on the grid,” in9th Heterogeneous Computing Workshop, 2000, pp.
3–16. [Online]. Available: citeseer.nj.nec.com/wolski00masterslave.html

[19] A. Snavely, N. Wolter, and L. Carrington, “Modeling application performance by convolving machine signatures with application
profiles,” in IEEE Workshop on Workload Characterization, Austin, TX, 2001.

[20] H. Tangmunarunkit and P. Steenkiste, “Network-aware distributed computing: A case study,” inSecond Workshop on Runtime Systems
for Parallel Programming (RTSPP), Orlando, March 1998.

[21] S. Venkataramaiah and J. Subhlok, “Performance estimation for scheduling on shared networks,” in9th Workshop on Job Scheduling
Strategies for Parallel Processing, Seattle, WA, June 2003.

[22] C. Lu and D. A. Reed, “Compact application signatures for parallel and distributed scientific codes,” inProceedings of Supercomputing
2002, Baltimore,MD, Nov 2002.

[23] A. Snavely, L. Carrington, N. Wolter, J. Labarta, R. Badia, and A. Purkayastha, “A framework for performance modeling and prediction,”
in Proceedings of Supercomputing 2002, Baltimore,MD, Nov 2002.

[24] E. Duesterwald, C. Cascaval, and S. Dwarkadas, “Characterizing and predicting program behavior abd its variability,” in International
Conference on Parallel Architectures and Compilation Techniques (PACT), New Orleans, LA, September 2003.

[25] T. Sherwood, E. Perelman, and B. Calder, “Basic block-dsitribution analysis to find periodic behavior and simulation points in
applications,” inInternational Conference on Parallel Architectures and Compilation Techniques (PACT), Sep 2001.

[26] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically characterizing large scale program behavior,” in 10th International
Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS-X), San Jose, CA, October 2002.

[27] M. Dikaiakos, A. Rogers, and K. Steiglitz, “Fast: A functional algorithm simulation testbed,” inInternational Conference On Parallel
and Distributed Systems, December 1993.

[28] A. Toomula and J. Subhlok, “Replication memory behavior for performance prediction,” inLCR 2004: The 7th Workshop on Languages,
Compilers, and Run-time Support for Scalable Systems, Houston, TX, October 2004.

[29] S. Sodhi, “Automatic construction of performance skeletons for grid resource selection and performance estimation frameworks,”
Master’s thesis, University of Houston, Jan 2004.

[30] “Linux man pages.”
[31] J. Han and M. Kamber,Data Mining: Concepts and techniques. Morgan Kaufman Publishers, 2001.



13

[32] D. Bailey, T. Harris, W. Saphir, R. van der Wijngaart, A.Woo, and M. Yarrow, “The NAS Parallel Benchmarks 2.0,” NASA Ames
Research Center, Tech. Rep. 95-020, December 1995.

[33] T. Tabe and Q. Stout, “The use of the MPI communication library in the NAS Parallel Benchmark,” Department of Computer Science,
University of Michigan, Tech. Rep. CSE-TR-386-99, Nov 1999.

[34] W. Almesberger, “Linux network traffic control — implementation overview,” White Paper, April 1999, available at
ftp://lrcftp.epfl.ch/pub/people/almesber/pub/tcio-current.ps.

[35] A. Singh and J. Subhlok, “Reconstruction of application layer message sequences by network monitoring,” inIASTED International
Conference on Communications and Computer Networks, Boston, MA, November 2002.


