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Abstract

Traditional segmentation techniques do not quite meet the challenges posed by inherentlyfuzzymedical
images. Image segmentation based on fuzzy connectedness addresses this problem by attempting to
capture both closeness, based on characteristic intensity, and “hanging togetherness”, based on intensity
homogeneity, of image elements to the target object. This paper presents a modification and extension of
previously published image segmentation algorithms based on fuzzy connectedness, which is computed
as a linear combination of an object-feature based and a homogeneity based component using fixed
weights. We provide a method, called DyW (fuzzy connectedness usingDynamicWeights), to introduce
directional sensitivity to the homogeneity based component and to dynamically adjust the linear weights
in the functional form of fuzzy connectedness. Dynamic computation of the weights relieves the user of
the exhaustive search process to find the best combination of weights suited to a particular application.
This is critical in applications such as analysis of cardiac cine Magnetic Resonance (MR) images, where
the optimal combination of affinity component weights can vary for each slice, each phase, and each
subject, in spite of data being acquired from the same MR scanner with identical protocols. We present
selected results of applying DyW to segment phantom images and actual MR, Computed Tomography,
and infrared data. The accuracy of DyW is assessed by comparing it to two different formulations of
fuzzy connectedness. Our method consistently achieves accuracy of more than99.15% for a range of
image complexities: contrast5% to 65%, noise-to-contrast ratio (NCR) of6% to 18%, and bias field of
four types with maximum gain factor of up to10%.

∗This work was supported in part by the NSF under Grants IIS–0431144, IIS–0335578 and IIS–9985482. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NSF.
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Abstract

Traditional segmentation techniques do not quite meet the challenges posed by inherentlyfuzzymedical images.
Image segmentation based on fuzzy connectedness addresses this problem by attempting to capture both closeness,
based on characteristic intensity, and “hanging togetherness”, based on intensity homogeneity, of image elements
to the target object. This paper presents a modification and extension of previously published image segmentation
algorithms based on fuzzy connectedness, which is computed as a linear combination of an object-feature based
and a homogeneity based component using fixed weights. We provide a method, called DyW (fuzzy connectedness
usingDynamicWeights), to introduce directional sensitivity to the homogeneity based component and to dynamically
adjust the linear weights in the functional form of fuzzy connectedness. Dynamic computation of the weights relieves
the user of the exhaustive search process to find the best combination of weights suited to a particular application.
This is critical in applications such as analysis of cardiac cine Magnetic Resonance (MR) images, where the optimal
combination of affinity component weights can vary for each slice, each phase, and each subject, in spite of data
being acquired from the same MR scanner with identical protocols. We present selected results of applying DyW to
segment phantom images and actual MR, Computed Tomography, and infrared data. The accuracy of DyW is
assessed by comparing it to two different formulations of fuzzy connectedness. Our method consistently achieves
accuracy of more than99.15% for a range of image complexities: contrast5% to 65%, noise-to-contrast ratio (NCR)
of 6% to 18%, and bias field of four types with maximum gain factor of up to10%.

Index Terms

Image segmentation, Fuzzy Connectedness, Dynamic Weights.

I. I NTRODUCTION

Medical image computing has revolutionized the field of medicine by providing novel methods to extract and
visualize information from medical data acquired using various acquisition modalities. Image segmentation is one
of the most important steps in the higher level analysis of preprocessed patient image data, and can aid in diagnosis,
functional categorization, and prognosis, as well as evaluation of therapeutic interventions. The main goal of the
image segmentation process is to divide an image into parts that have a strong correlation with objects or areas
of the real world depicted in the image. When the object or region of interest has intensity features significantly
different from the rest of the image, it is often possible to threshold the region of interest to produce a binary
image.

However, medical images are not incisive; they are characterized by a composition of small differences in
signal intensities between different tissue types, noise, blurring, background variation, partial voluming, and certain
acquisition-specific effects, e.g., surface coil intensity falloff in Magnetic Resonance imaging (MRI). Ambiguities
and uncertainties are introduced in image formation due to approximations made during image acquisition, limited
spatial, temporal, and parametric resolutions, heterogeneous tissue composition of the human body, in addition
to movement of the subject. This imprecision makes it extremely difficult to determine the exact location of the
boundary points of the object of interest purely based on the intensity values assigned to the individual image
elements.

Nevertheless, anatomical objects in medical data are characterized by certain intensity level and intensity homo-
geneity features. The image elements seem to “hang together” to form a certain perception of the object region.
Thus, medical image segmentation would benefit from a method based on the “hanging togetherness” property of
the object of interest. The image segmentation framework based on Fuzzy Connectedness developed by Udupa and
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his collaborators [1] effectively captures the “hanging togetherness” of image elements specified by their strength of
fuzzy connectedness. Fuzzy connectedness is constructed by combining an object-feature based and a homogeneity
based affinity component in a fixed manner with various functional forms [2]. The best combination of affinity
component weights for a particular functional form and particular application is determined by performing an
exhaustive search.

In applications involving a large number of studies based on a fixed image acquisition protocol, the affinity
parameters and the threshold may be fixed without requiring per-case adjustment. However, without the same
protocol-specific tissue indication for intensity values, it becomes very difficult to set values for the affinity
parameters and the threshold in a manner independent of patient studies. Cardiac cine MR images as an example pose
numerous challenges. MRI generally requires several cycles of signal generation followed by signal measurement.
Thus, any motion of tissues between the excitation cycles causes blurring and other motion artifacts. The heart-
motion and respiration cause a shift in the overall position of the heart throughout the image acquisition process. In
addition, uneven breath holding and patient motion introduce further artifacts. Thus, the quality of cardiac cine-MR
relies on the ability of the operator and scanner to compensate for these changes and the ability of the post-processor
to rectify the intensity falloff in surface coil MRI. In general, the blood intensity value (object-feature) varies from
the base to apex of the heart in every slice in the same phase of the cardiac cycle without any generic pattern of
variation within a single patient. Furthermore, the blood pool intensity (homogeneity) changes within a slice due
to partial voluming, while anatomical features like papillary muscles and valves cause blood flow artifacts.

Thus, in this application area, the optimal combination of the affinity component weights and the threshold for
the connectivity scene varies for each slice, each phase, and each patient in spite of the data being acquired from the
same MR scanner with identical protocol. As a result, precision, accuracy, and efficiency of segmentation may be
compromised [3]. It may be necessary to adjust the parameters for each study to handle image-dependent variations
in intensity. Our goal is to relieve the user from the task of selection or computation of these affinity component
weights while preserving the quality of segmentation achieved using the framework based on fuzzy connectedness,
by providing a method to dynamically adjust the weights of the two affinity components in the linear functional
form of fuzzy connectedness. In addition, we introduce directional sensitivity to the homogeneity based component
to account for directional background inhomogeneity (e.g., bias field in MR). We call this image segmentation
method DyW (fuzzy connectedness usingDynamicWeights).

The remainder of this paper is organized as follows. In Section II, we provide a brief overview of image
segmentation methods based on fuzzy connectedness. In Section III, we provide the particular fuzzy connectedness
framework that we employ, and in Section IV we explain our modifications to this framework and describe DyW in
detail. In Section V, we present results of an evaluation study of DyW on synthetic phantom data, a comparison of
results using two other functional forms of fuzzy connectedness, and results obtained on real medical data acquired
using different imaging modalities. Section VI concludes by summarizing our findings.

II. PREVIOUS WORK

The challenges in analyzing medical image data encouraged researchers to develop segmentation algorithms
which regard regions as fuzzy subsets of the image, where an image data element may be classified partially into
multiple potential classes. The theory of fuzzy sets [5] is believed to effectively model the fuzziness of medical
image data. However, apart from fuzzy classification, segmentation needs to address the intensity inhomogeneities
within an object of interest. The fuzzy geometrical connectedness approach added spatial measures to handle the
spatial uncertainties in the images [6], [7]. Fuzzy connectedness represented an important topological property of
images. In addition, “hanging togetherness” was incorporated in the same fuzzy settings [8], [9].

The notion of a fuzzy object, based on ideas of fuzzy connectedness of image elements in ann-dimensional digital
space for image segmentation was first developed by Udupa and Samarasekera [1]. This fuzzy-connectedness based
image segmentation framework effectively captures the fuzzy “hanging togetherness” of image elements specified
by their strength of connectedness. Specifically, a fuzzy connectedness between two image elements is computed
based on their spatial nearness as well as the similarity of their intensity based features, which captures the local
hanging togetherness of image elements. The global fuzzy connectedness between any two spatial elements (spels)
in the image considers the strengths of all possible paths between them, where the strength of a particular path is

Parts of this work have appeared in [4].
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the weakest affinity between the successive pairs of spels along the path. Thus, the strongest connectedness path
between any two spels specifies the degree of hanging togetherness between them. The fuzzy extent of an object
is computed by expanding it from the initial seed points based on this global fuzzy connectedness.

This framework was further extended with the introduction of object scale, which allowed the size of the
neighborhood to be changed in different parts of the image and the introduction of a variety of functional forms
for each affinity component separately [2]. In the relative fuzzy connectedness approach, all the important objects
in the image are allowed to compete among themselves to seize the membership of image elements based on their
relative strength of connectedness to reference elements [10]. The fuzzy-connectedness based image segmentation
framework was also generalized for the identification of multiple elements in an image [11]. A recent approach
using tensor scale in affinity computation allows for an effective utilization of local size, orientation, and anisotropy
in a unified manner [12].

In previous approaches, connectedness, in general, consists of three major affinity components: 1) spel adjacency,
2) intensity homogeneity, and 3) object-feature. One may devise a variety of functional forms for each component
separately and combine them to the affinity relation suited for a specific application [2]. To effectively capture
the degree of local hanging togetherness of the spels, both the homogeneity and object-feature based components
should be considered in the design of fuzzy spel affinities. However, in the previous approaches the homogeneity
and object-feature based components are treated totally independent of each other. The functional forms and the
parameters associated with these components allow many possible choices for fuzzy spel affinities. Sahaet al. [2]
conducted experimental studies for obtaining an insight into the best choices. One of the shortcomings of these
approaches is the need for determination of optimal affinity parameters and the threshold for the connectivity scene
(Note: In relative fuzzy connectedness, the need for a threshold is obviated).

III. A F RAMEWORK FOR FUZZY CONNECTEDNESS

A. Preliminaries

A minimal set of terminology and definitions are presented to provide the preliminaries of the fuzzy connectedness
formulation we employ. We follow the terminology of Udupaet al. [1], [2].

Let X be any reference set. AfuzzysubsetA of X is a set of ordered pairsA = {(x, µA(x))| x ∈ X}, where
µA : X → [0, 1] is themembership functionof A in X (µ is subscripted by the fuzzy subset under consideration).
A fuzzy relation ρ in X is a fuzzy subset ofX × X. We shall call a fuzzy relationρ in X that is reflexive
(∀x ∈ X, ρ(x, x) = 1) and symmetric (∀x, y ∈ X, ρ(x, y) = ρ(y, x)) a proximity in X, and the pair(X, ρ) a fuzzy
space. Let X = Zn, the set ofn-tuples of integers. A proximityα in Zn is called anadjacencyand the pair(Zn, α) is
called adigital fuzzy space. The concept of fuzzy digital space characterizes the underlying digital grid independent
of any image related concepts, and it is desirable thatµα is a non-increasing function of the distance inZn. In this
fuzzy digital space, any scalar functionf : C → [L,H] from a finite subsetC of Zn to a finite subset[L,H] of the
integers defines ascene(C, f) over (Zn, α). In a scene(C, f), a proximityκ in C is called anaffinity. An affinity
relationK is called asimilitude if it is also transitive:∀x, z ∈ C, µK(x, z) = maxy∈X{min{µK(x, y), µK(y, z)}}.

Starting from any affinityκ in C, and using the notion ofpath strength, one can construct a similitudeK
in C, called κ–connectedness and denoted by the upper case form of the symbol used for the corresponding
affinity. A path pxy from x to y in C is a sequence ofm ≥ 2 elements ofC, not necessarily distinct, such
that pxy = {x = x(1), x(2), ..., x(m) = y}. Each pair(x(i), x(i+1)) is a link in the path. The set of all paths in
X betweenx and y is denoted byPxy. The strengthµ of each link (x(i), x(i+1)) in a pathpxy is simply the
affinity µκ(x(i), x(i+1)). The strengthof connectivity along a pathpxy is determined by its weakest link, namely:
µ(pxy) = min{µκ(x(1), x(2)), µκ(x(2), x(3)), ..., µκ(x(m−1), x(m))}. The fuzzyκ-connectedness ofx and y is the
strength of the strongest path inPxy: µK(x, y) = maxpxy∈Pxy

{µ(pxy)}. (Note: Pxy is an infinite set, but the use
of max instead ofsup is justified since a scene is a finite subset ofZn and thusµ(pxy) can only assume a finite
number of values). The relationK is a similitude relation inC [1].

Given aκ–connectedness similitudeK in a scene(C, f) and a specific scene elemento, the κ–connectedness
scene(C, fKo

) is defined byfKo
(c) = µK(o, c) for all c in C. This defines a family of equivalence relations in

C, since the relation defined byKθ = {(o, c)|µK(o, c) ≥ θ} is an equivalence relation for any thresholdθ ∈ [0, 1].
Thus, segmentation of the initial scene(C, f) results from thresholding this final scene(C, fKo

) at a selected
κ–connectedness level [1].
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B. Fuzzy Affinity

For the sake of simplicity and clarity of exposition, we restrict our presentation to the two–dimensional (2D)
case, but our method is not dimension–specific. This is because we follow the framework of Udupaet al. [1], [2],
so the extension to three or higher dimensional problems is straightforward.

For processing of 2D data, the fuzzy digital space is(Z2, α), where

µα(c, d) =





1, if

√
2∑

i=1
(ci − di)2 ≤ 1

0, otherwise

the scene(C, f) represents acquired image data, and(c, d) is a pair of pixels in this scene. The generic form of
an affinity relationµκ betweenc andd is given by [1]:

µκ(c, d) = h (µα(c, d), f(c), f(d), c, d) ,

whereh is a scalar-valued function with range[0, 1]. In this general formµκ(c, d) may be shift variant, meaning
it may depend on the locations of pixelsc andd.

It was recognized early on that there should be two specific, shift-invariant components of affinity in this design
– µψ, which is based onhomogeneityandµφ, which is based onobject–features[2]. The two components can be
combined in the following generic functional form forµκ:

µκ(c, d) = µα(c, d)g (µφ(c, d), µψ(c, d)) ,

whereµφ is an affinity based on average intensityI (f(c), f(d)) = f(c)+f(d)
2 andµψ is an affinity based on intensity

homogeneityD (f(c), f(d)) = |f(c)− f(d)|.
The µφ component measures affinity based on average intensityI and describes how close the feature value

(intensity) is to some specified object feature. As an example, a Gaussian function can be used:

µφ(c, d) = g1 ◦ I (f(c), f(d)) ,

where

g1(t) = exp

(
−1

2
(
t−m1

s1
)2

)

andm1 ands1 are the mean and standard deviation of the intensity of the object to be segmented.
The µψ component measures affinity based on intensity homogeneityD and describes how similar the intensity

value stays within a region. Again, a Gaussian function provides an example:

µψ(c, d) = g2 ◦D (f(c), f(d)) ,

where

g2(t) = exp

(
−1

2
(
t−m2

s2
)2

)

andm2 ands2 are the mean and standard deviation of the intensity homogeneity of the object to be segmented.
There are several choices that have been proposed for the functiong. The original is a simple linear combina-

tion [1]:
µκ(c, d) = ω1µφ(c, d) + ω2µψ(c, d) ,

whereω1 +ω2 = 1. The more homogeneous the region to whichc andd belong, the greater is the value ofµψ. On
the other hand,µφ takes a high value whenc andd are both close to the expected intensity value for the object. The
weighted linear combination of these two components strives to effectively capture both the global connectedness
and local hanging togetherness of the object to be defined.

Note that these components are considered independent of each other and the weights for these components are
static. This assumes that the level of dominance of one component over the other is constant over the entire object.
However, in scale-based fuzzy connectedness [2] there is some adaptivity of these components via the concept of
local scale region and via the geometric mean formulation of affinity asµκ(c, d) = µα(c, d)

√
µψ(c, d)µφ(c, d).
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(a) (b) (c) (d) (e)

Fig. 1. Fuzzy affinity maps of a short-axis cardiac MR image (a), for which the weight for object-feature intensity (µφ)is set to (b) 1.0,
(c) 0.75, (d) 0.50, and (e) 0.25, respectively.

IV. M ODIFICATIONS AND EXTENSIONS TO THEFRAMEWORK

In this section, we propose a modified functional form forµψ, where directional sensitivity along with magnitude
account for directional background inhomogeneity (e.g., bias field in MR). In addition, we discuss the dynamic
determination of weights forµψ andµφ in detail.

We start by providing some motivation, based on the field of MR imaging. Suppose, as in the case of MR,
that the image of the object has a slow varying background intensity component in a horizontal direction. Then,
pixels c and d that belong to the same object but are far apart from each other in the horizontal direction will
have very different intensities. By increasing the weight forµψ we can find a path betweenc andd such that the
intensities of all the horizontal links on the path are similar enough to indicate the connectedness betweenc and
d. However, this might create a path between pixelsu and v which are vertically apart in the image, but belong
to two different objects. This will happen because the increased weight forµψ is tolerating the same amount of
dissimilarity between the intensities in each vertical link. Figure 1 depicts how the affinities assigned to pixels vary
with the change in value ofω2. Thus, it is intuitive to treat path links differently depending on their direction and
the characteristic magnitude of increase or decrease in object intensity in that direction. This suggests that weights
for µφ and µψ need to vary in accordance with the dominance of one affinity component over the other and the
direction of links in the chain.

One way to address this problem is to assign the weights toµφ andµψ components based on the relative degree
of nearness of the link(c′, d′) in the respective component domains. In MR images, the intensity of the object
changes gradually near the inter-object boundaries, making the boundaries diffused (for cardiac MR images, flow
artifacts and partial voluming of blood with the heart wall and papillary muscles have the same effect). In these
cases, even though the object-feature (characteristic intensity) is disparate near the object boundaries, the intensities
of each link (c′, d′) may still be similar, resulting in increased weight for the intensity-homogeneity component
µψ. However, this may merge two objects when intensity change is very slow and gradual at the boundary [2].
This effect is counteracted by allowing the weight forµψ to increase only to the point whereg1 ◦ I is still within
3σ from the characteristic object intensity. In the definition ofµφ, g1 = 0.01 corresponds to3s1 distance from
the characteristic intensity of the target object. Thus, dynamically computed weights for affinity components, along
with a directionally sensitiveµψ, effectively capture the fuzzy extent of the object.

A. Directionally Sensitive Intensity Homogeneity for Fuzzy Affinity

In the original formulation ofµψ, the direction of intensity inhomogeneity and its sign are not taken into
consideration. This type of formulation allows equal amounts of intensity dissimilarities in path links irrespective of
the direction of the link and does not consider the increase or decrease in intensity across the link due to directional
background variation. We propose to modifyµψ to be directionally sensitive by computing four different pairs
(m2, s2) from the sample region, one for each of the four possible directions (N → S), (S → N ), (E → W ) and
(W → E). The affinityµψ on each link(c, d) is then computed using the(m2, s2) parameter pair computed in the
direction of that link. The bias in intensity in a specific direction is thus accounted for by allowing different levels
and signs of dissimilarities in different link directions. This modified relation is still an affinity because symmetry
is preserved (sincemN→S

2 = −mS→N
2 , and similarly for all the other compass directions).

B. Dynamic Weights for Fuzzy Affinity

The bias field and noise in an image can change the nearness of object pixels in terms of characteristic object
intensity; however, the nearness may still be maintained in terms of intensity homogeneity. We have developed a
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methodto determine the weights forµφ andµψ dynamically based on the level of dominance of one component
over the other. We determine the level of dominance by the ratio of the two components. Specifically, we compute
ω1 andω2 as follows:

ω1 =
g1

g1 + g2
, andω2 = 1− ω1.

Thus,ω1 becomes high in the regions of the image with intensity almost similar to the intensity of the object to be
segmented in the scene. Conversely, in regions where intensity is different from the characteristic object intensity
but intensity homogeneity is maintained,ω2 is increased to capture the local chain homogeneity. However, when
the object-based intensityg1 ◦ I falls below 0.01 (i.e., 3s1), both ω1 and ω2 are set to zero, to avoid merging of
different objects with similar intensity homogeneity.

C. The DyW algorithm

Starting with a small (5x5 pixels) sample region of the segmentation target as a seed, we compute(m1, s1), and
the four pairs(mN→S

2 , sN→S
2 ), (mS→N

2 , sS→N
2 ), (mE→W

2 , sE→W
2 ), and(mW→E

2 , sW→E
2 ), which correspond to the

four different compass directions. We then follow the dynamic programming based algorithm for the extraction of
theκ-connectedness scene(C, fKo

) as presented by Udupa and Samarasekera [1]. In order to objectively compute
the best possible threshold levelθ for segmentation, we use Otsu’s automatic thresholding method [13]. This process
is entirely objective and void of any user interaction or manipulation.

V. RESULTS AND DISCUSSION

In this section, we present the performance of our DyW image segmentation method. First, we present the
results of image segmentation using the DyW algorithm on a phantom data set to evaluate its robustness and
accuracy. Then, we present the comparison of DyW with two different formulations of fuzzy connectedness, as the
arithmetic (EqW) or geometric (Sqrt) mean of its affinity componentsµφ andµψ. In particular, theEqW andSqrt
fuzzy connectedness similitudes are defined using the following fuzzy affinity formulations:µκ = 1

2µφ + 1
2µψ, and

µκ = √
µφµψ, respectively. Finally, we present the results of applying DyW on actual MR, infrared, and Computed

Tomography (CT) data.
One of the main challenges of evaluating segmentation algorithms on medical data is that the absolute ground

truth cannot be defined. Testing a segmentation algorithm on a phantom data set allows for the establishment
of a ground truth and the definition of an evaluation metric. The image quality depends on certain acquisition
parameters of the imaging modality, such as spatial resolution, contrast sensitivity, noise to contrast ratio (NCR),
and background intensity variations (bias).

Contrast is the basis for image perception and plays a vital role in defining the quality of the image. Image contrast
is defined using the image intensities as(|SA − SB|)/(SA + SB), whereSA and SB are the luminance in the
image regionsA andB (background), respectively. The physics of image acquisition introduces variable contrast
sensitivity for different tissue types. Noise is always present in image acquisition; most especially in medical image
acquisition as a result of the inaccuracies imposed by the nature of the scanners. We use the NCR to quantify it
in this paper (instead of contrast–to–noise) as NCR helps us introduce noise that is proportional to the contrast of
the target object with respect to its neighborhood in the phantom image. Bias in MR images is a gradual change in
intensity gain factor with respect to the position of the receptor coil. It causes the region of interest, if it is large
enough, to exhibit significantly different intensity levels. For example, the left side of a region of interest may have
intensity values considerably lower than the right side of the region. This causes a problem for most segmentation
algorithms that are solely based on intensity-based features.

A computational phantom data set was developed,P = {Ci|Ci = (C, fi), 1 ≤ i ≤ 400}, where eachCi is
128 x 128 pixels. Starting with this original synthetic 2D scene with a background intensity of zero, a total of
400 phantom images were created by introducing five different contrast levels, four varying degrees of zero-mean
Gaussian white noise, five varying degrees of bias level, and four different types of bias fields. These variations
will serve as the parameters to assess the robustness of the DyW method.

The pixels of the target region of the original synthetic 2D scene were assigned an intensity value of five different
degrees of contrast level (0.65, 0.5, 0.35, 0.20 and 0.05) to generate five 2D scenes. The low values of contrast levels
were selected to test extreme cases (representing medical images where neighboring tissue contrast is very small).
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(a) (b)

(c) (d)

Fig. 2. Bias gain factors for four types of bias fields; (a) Type I, (b) Type II, (c) Type III, and (d) Type IV.

(a) (b)

Fig. 3. Representative phantom images: (a) original, and (b) high bias field with high noise (contrast level= 0.5, bias level= 10%, NCR
= 0.18, Bias Type IV).

From this set of five simulated scenes, we created 20 2D scenes by independently adding four different levels of
zero-mean correlated white Gaussian noise to each 2D scene. The variance of Gaussian noise was expressed in
terms of NCR2, where NCR ranges from0.06 to 0.18 with increments of0.04. Each of these twenty 2D scenes
were independently multiplied by four different types of bias fields. The maximum gain factor of bias fields ranges
from 0% to 10% with increments of2.5% resulting in a total of 400 simulated 2D scenes.

The bias due to coil intensity falloff in MR is simulated as a linear combination of linear and second order
ramp to capture gain factor as a function of distance from the receptor coil. The ramp type bias was defined
as: b(x, y) =

∑1
0

∑1
0 f(x)f(y), where image coordinatesx, y are scaled to the range[0, 1] with f(x) = x and

f(y) = 1 (Type I), f(x) = x2 andf(y) = 1 (Type II), andf(x) = x2 andf(y) = y2 (Type III). The Type IV bias
was defined as equal weighted linear combination of four Type III bias fields rotated by90o to simulate bias field
with four receiver coils located on the corners of the phantom image. The four types of bias fields are depicted in
Figure 2. Figure 3 depicts examples from the phantom data set.

We evaluate and compare the DyW algorithm with the EqW and Sqrt algorithms using the three measures of
accuracy recommended by Udupaet al. [14]. For any sceneC = (C, f), let CO be the segmentation result (binary
scene) output by the given segmentation method for which the ground truthCgt is known. The three measures of
accuracy, FPVF (false positive volume fraction), FNVF (false negative volume fraction), and TPVF (true positive
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Connectivity scene and segmented results for the high bias, high noise scene depicted in Fig. 3(b) (contrast level= 0.5, bias level
= 10%, NCR = 0.18, Bias Type IV); (a,d) using the DyW algorithm, (b,e) using the (EqW) algorithm, and (c,f) using the Sqrt algorithm.

volume fraction) are defined as follows:

FNVF = |Cgt∩C′O|
|Cgt| × 100

FPVF= |CO∩C′gt|
|Cgt| × 100

TPVF = |CO∩Cgt|
|Cgt| × 100

(1)

Here |Cgt| represents the number of pixels inCgt with value 1, and the complements ofCO andCgt are represented
asC′O andC′gt, respectively. FNVF indicates the fraction ofCgt missed by the method and FPVF denotes the number
of pixels falsely identified by the method, while TPVF denotes the number of pixels correctly identified by the
method.

The square region of 5x5 pixels in the lower left lobe of the phantom object shape is considered the seed region
for the phantom images. Figure 4 depicts the connectivity scenes and segmented results for high bias field with
high noise (contrast level= 0.5, bias level= 10%, NCR = 0.18, Bias Type IV)(Fig. 3(b)), using the DyW , EqW,
and Sqrt algorithms. One can observe how the bias field affects the affinity values in the connectivity map of the
EqW algorithm, missing the portion of right upper lobe. The Sqrt algorithm produces higher FNVF as it can not
account for intensity variations throughout the image. However, the DyW algorithm for image segmentation assigns
higher and consistent affinities across the target region to give more accurate segmentation result.

Figure 5 presents results on accuracy measured in terms of FNVF comparing the DyW algorithm with the EqW
and Sqrt algorithms across the range of only one of the image quality parameters. Figure 5(b) clearly depicts the
inability of the EqW and Sqrt algorithms to cope with increasing levels of noise. DyW is more accurate across the
range on contrast, NCR, and bias levels compared to the other two methods. Figure 6 presents a similar comparison
across the ranges of two of the image quality parameters. Figure 7 presents the same data as the first column of
Figure 6, but with a different colormap range.

Tables I, II, and III present results on the accuracy of the DyW image segmentation algorithm for phantom
images, in terms of FPVF, FNVF, and TPVF. Each cell in Table I corresponds to a particular level of contrast and
NCR, and provides the mean and standard deviation of the indicated volume fraction measured over four types and
five levels of bias. The values of FPVF and FNVF indicate the decrease in accuracy of the algorithm at the NCR of
18%.In Table II, each cell corresponds to a particular level of bias and contrast, and provides the mean and standard
deviation of the indicated volume fraction measured over the same four types of bias and four levels of NCR. The
increase in FPVF values indicates decrease in accuracy at high bias and low contrast levels. Finally, in Table III
each cell corresponds to a particular level of bias and NCR, and provides the mean and standard deviation of the
indicated volume fraction measured over four types of bias and five levels of contrast. This table in conjunction
with Tables I and II indicates the high accuracy of the DyW algorithm for the range of image complexities: contrast
of 5%− 65%, NCR of up to14%, and four types of bias with the maximum gain factor of up to10%.
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(a) (b)

(c) (d)

Fig. 5. Accuracy statistics (measured in terms of FNVF) for the DyW algorithm, the EqW algorithm, and the Sqrt algorithm. (a) Statistics
for the indicated contrast levels (computed over various NCR and bias levels and types); (b) statistics for the indicated bias levels (computed
over various NCR and contrast levels and bias types); (c) statistics for the indicated NCR levels (computed over various contrast and bias
levels and types); and (d) legend. All numbers are percentages.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6. Accuracy statistics (measured in terms of FNVF) for the DyW algorithm (first column), the EqW algorithm (second column), and
the Sqrt algorithm (third column). (a–c) Mean and standard deviation of FNVF for the indicated combinations of NCR and contrast levels
(computed over various bias levels and types); (d–f) mean and standard deviation of FNVF for the indicated combinations of contrast and bias
levels (computed over various NCR levels and bias types); and (g–i) mean and standard deviation of FNVF for the indicated combinations
of NCR and bias levels (computed over various contrast levels and bias types). All numbers are percentages.
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Fig. 7. Accuracy statistics (measured in terms of FNVF) for the DyW algorithm. (a) Mean and standard deviation of FNVF for the indicated
combinations of NCR and contrast levels (computed over various bias levels and types); (b) mean and standard deviation of FNVF for the
indicated combinations of contrast and bias levels (computed over various NCR levels and bias types); and (c) mean and standard deviation
of FNVF for the indicated combinations of NCR and bias levels (computed over various contrast levels and bias types). All numbers are
percentages.

TABLE I

ACCURACY OF THEDYW IMAGE SEGMENTATION ALGORITHM FOR PHANTOM IMAGES, IN TERMS OFFPVF, FNVF,AND TPVF. EACH

TABLE ENTRY CORRESPONDS TO A PARTICULAR LEVEL OF CONTRAST ANDNCR, AND PROVIDES THE MEAN AND STANDARD

DEVIATION OF THE INDICATED VOLUME FRACTION MEASURED OVER FOUR TYPES AND FIVE LEVELS OF BIAS. ALL NUMBERS ARE

PERCENTAGES.

Contrast/ NCR 6 10 14 18

FPVF 0.00 , 0.00 0.00 , 0.00 0.02 , 0.03 0.58 , 0.30

65 FNVF 0.03 , 0.10 0.02 , 0.04 0.06 , 0.06 0.13 , 0.16

TPVF 99.97, 0.09 99.97, 0.04 99.94, 0.06 99.87, 0.16

FPVF 0.00 , 0.00 0.00 , 0.00 0.07 , 0.04 0.69 , 0.35

50 FNVF 0.02 , 0.04 0.06 , 0.18 0.07 , 0.07 0.12 , 0.10

TPVF 99.98, 0.04 99.94, 0.18 99.93, 0.07 99.88, 0.10

FPVF 0.00 , 0.00 0.00 , 0.00 0.02 , 0.04 0.72 , 0.35

35 FNVF 0.01 , 0.02 0.02 , 0.02 0.09 , 0.08 0.13 , 0.19

TPVF 99.99, 0.02 99.98, 0.02 99.92, 0.08 99.87, 0.19

FPVF 0.00 , 0.00 0.00 , 0.00 0.00 , 0.01 0.62 , 0.33

20 FNVF 0.02 , 0.03 0.01 , 0.02 0.08 , 0.08 0.10 , 0.08

TPVF 99.98, 0.03 99.99, 0.02 99.92, 0.08 99.90, 0.08

FPVF 0.00 , 0.00 0.00 , 0.00 0.01 , 0.02 0.89 , 0.50

5 FNVF 0.05 , 0.16 0.02 , 0.03 0.09 , 0.17 0.11 , 0.10

TPVF 99.95, 0.16 99.98, 0.03 99.92, 0.17 99.89, 0.10

TABLE II

ACCURACY OF THEDYW IMAGE SEGMENTATION ALGORITHM FOR PHANTOM IMAGES, IN TERMS OFFPVF, FNVF,AND TPVF. EACH

TABLE ENTRY CORRESPONDS TO A PARTICULAR LEVEL OF BIAS AND CONTRAST, AND PROVIDES THE MEAN AND STANDARD

DEVIATION OF THE INDICATED VOLUME FRACTION MEASURED OVER FOUR TYPES OF BIAS AND FOUR LEVELS OFNCR. ALL NUMBERS

ARE PERCENTAGES.

Contrast/ Bias 0 2.5 5 7.5 10

FPVF 0.12 , 0.22 0.15 , 0.35 0.16 , 0.31 0.16 , 0.34 0.14 , 0.24

65 FNVF 0.06 , 0.08 0.07 , 0.08 0.05 , 0.06 0.07 , 0.18 0.07 , 0.10

TPVF 99.95, 0.08 99.93, 0.08 99.95, 0.06 99.93, 0.18 99.93, 0.01

FPVF 0.23 , 0.43 0.14 , 0.26 0.16 , 0.30 0.15 , 0.30 0.21 , 0.43

50 FNVF 0.05 , 0.07 0.04 , 0.05 0.06 , 0.11 0.12 , 0.20 0.07 , 0.07

TPVF 99.95, 0.21 99.96, 0.06 99.94, 0.100 99.88, 0.06 99.93, 0.05

FPVF 0.22 , 0.43 0.13 , 0.24 0.17 , 0.34 0.17 , 0.32 0.25 , 0.45

35 FNVF 0.11 , 0.21 0.07 , 0.06 0.07 , 0.10 0.04 , 0.06 0.04 , 0.05

TPVF 99.94, 0.06 99.95, 0.09 99.96, 0.06 99.95, 0.07 99.98, 0.08

FPVF 0.14 , 0.31 0.13 , 0.28 0.26 , 0.47 0.14 , 0.25 0.12 , 0.25

20 FNVF 0.06 , 0.06 0.06 , 0.09 0.04 , 0.06 0.06 , 0.07 0.06 , 0.08

TPVF 99.97, 0.05 99.96, 0.07 99.89, 0.20 99.91, 0.18 99.93, 0.10

FPVF 0.24 , 0.46 0.20 , 0.41 0.21 , 0.40 0.35 , 0.70 0.14 , 0.26

5 FNVF 0.03 , 0.05 0.04 , 0.07 0.10 , 0.20 0.09 , 0.18 0.07 , 0.10

TPVF 100.00, 0.00 100.00, 0.00 100.00, 0.01 99.96, 0.03 99.93, 0.09
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TABLE III

ACCURACY OF THEDYW IMAGE SEGMENTATION ALGORITHM FOR PHANTOM IMAGES, IN TERMS OFFPVF, FNVF,AND TPVF. EACH

TABLE ENTRY CORRESPONDS TO A PARTICULAR LEVEL OF BIAS ANDNCR, AND PROVIDES THE MEAN AND STANDARD DEVIATION OF

THE INDICATED VOLUME FRACTION MEASURED OVER FOUR TYPES OF BIAS AND FIVE LEVELS OF CONTRAST. ALL NUMBERS ARE

PERCENTAGES.

NCR / Bias 0 2.5 5 7.5 10

FPVF 0.00 , 0.00 0.00 , 0.00 0.00 , 0.00 0.00 , 0.00 0.00 , 0.00

6 FNVF 0.01 , 0.01 0.02 , 0.03 0.02 , 0.03 0.05 , 0.16 0.06 , 0.10

TPVF 99.99, 0.01 99.98, 0.03 99.98, 0.03 99.95, 0.16 99.94, 0.10

FPVF 0.00 , 0.00 0.00 , 0.00 0.00 , 0.00 0.00 , 0.00 0.00 , 0.00

10 FNVF 0.02 , 0.03 0.01 , 0.02 0.02 , 0.03 0.06 , 0.18 0.03 , 0.03

TPVF 99.98, 0.03 99.99, 0.02 99.98, 0.03 99.94, 0.18 99.97, 0.03

FPVF 0.02 , 0.04 0.02 , 0.03 0.01 , 0.02 0.02 , 0.03 0.02 , 0.04

14 FNVF 0.07 , 0.06 0.07 , 0.08 0.12 , 0.18 0.08 , 0.07 0.04 , 0.05

TPVF 99.93, 0.06 99.93, 0.08 99.88, 0.18 99.92, 0.07 99.96, 0.05

FPVF 0.74 , 0.40 0.59 , 0.34 0.75 , 0.32 0.76 , 0.50 0.66 , 0.35

18 FNVF 0.15 , 0.18 0.11 , 0.09 0.11 , 0.11 0.11 , 0.16 0.12 , 0.09

TPVF 99.85, 0.18 99.89, 0.09 99.89, 0.11 99.89, 0.16 99.88, 0.09

(a) (b) (c) (d)

Fig. 8. Results of the DyW algorithm for (a,b)left ventricular blood pool segmentation in an SSFP and (c,d) lesion segmentation in a
T1-weighted MR image, respectively.

We also applied the DyW algorithm to segment MR, CT, and infrared images. In this paper, we present some
representative images. The DyW algorithm has been used successfully on cine-MR images for left ventricular
(LV) blood segmentation [15]. Representative LV blood pool segmentation in balanced steady state free precession
(SSFP) (Figure 8(a,b)) image presents the quality of segmentation achieved in cardiac MR data. Figure 8(c,d) depicts
the qualitative segmentation of the right temporal and basal ganglia lesions enhanced strongly with gadolinium in
T1-weighted MR images.

The DyW algorithm with multiple seeds has been applied for face segmentation on infrared images. Facial
segments in infrared images are typically multi-modal distributions. They feature ‘hot’ and ‘cold’ regions. The
‘hot’ mode regions include the area around the eyes and forehead. The ‘cold’ mode regions include the nose
and ears. The multiple seeds are selected on the basis of sharp gradient changes on facial skin. The resulting
segmented parts are merged to obtain a complete segmented facial image. We used images from the Equinox
database acquired in mid-wave infrared (3-5 microns) for our experiments [16]. Figure 9 depicts representative
results of face segmentation using DyW for mid wave infrared images.

(a) (b) (c) (d)

Fig. 9. (b,d) Results of the multi-seed DyW algorithm for face segmentation in the mid-wave infrared images (a,c), respectively.
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VI. CONCLUSION

In this paper we have presented a modification and extension of previously published image segmentation
algorithms based on fuzzy-connectedness, which is computed as a linear combination of an object-feature based
and a homogeneity based component using fixed weights. Our DyW algorithm introduces directional sensitivity
to the homogeneity based component and dynamically adjusts the linear weights in the functional form of fuzzy
connectedness.

Various other enhancements of the fuzzy connectedness framework exist. They include attempts in the directions
of 1) the adaptivity of affinity components, and 2) obviating the need for thresholding (relative fuzzy connectedness).
However, the main contribution of this paper is to the very basic (linear combination of components) formulation
of fuzzy connectedness, in terms of adding directional sensitivity to the homogeneity component and a dynamic
adjustment of the weights of the affinity components. Dynamic computation of the weights and automatic compu-
tation of a threshold relieves the user of an exhaustive search process. This is very critical in applications such as
analysis of cardiac cine-MR images, where optimal combination of affinity component weights varies for each slice,
each phase, and each subject in spite of data being acquired from the same MR scanner with identical protocol.
The intention of this paper is to show that significant improvements can be achieved even in this basic form with
our modifications. These modifications, being at the lower level, can be combined with more sophisticated Fuzzy
Connectedness methods, such as the vectorial-scale based fuzzy connectedness, which may further improve the
segmentation performance. Using the basic form allows us to evaluate the improvements that are due exclusively
to our modifications.

The single seed DyW algorithm has been applied successfully to images acquired with different modalities
and exhibits accuracy of segmentation within the range of inter and intra–observer variations and a multiple
seed approach has been used effectively in infrared face segmentation. Other methods exist that handle the two
components of affinity in an adaptive manner, such as Sqrt, however, DyW is more effective in terms of accuracy
of segmentation. The DyW image segmentation algorithm consistently achieves accuracy of more than99.15% for
a range of image complexities: contrast5% to 65%, NCR of 6% to 18% and bias field of different types with the
maximum gain factor up to10%.
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