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Abstract

Automated tools for knowledge discovery are frequently invoked in databases where objects already group
into some known (i.e., external) classification scheme. In the context of unsupervised learning or clustering,
such tools delve inside large databases looking for alternative classification schemes that are meaningful
and novel. An assessment of the information gained with new clusters can be effected by looking at
the degree of separation between each new cluster and its most similar class. Our approach models
each cluster and class as a multivariate Gaussian distribution and estimates their degree of separation
through an information theoretic measure (i.e., through relative entropy or Kullback Leibler distance).
The inherently large computational cost of this step is alleviated by first projecting all data over the single
dimension that best separates both distributions (using Fisher’s Linear Discriminant). We test our algorithm
on a dataset of Martian surfaces using the traditional division into geological units as external classes
and the new, hydrology-inspired, automatically performeddivision as novel clusters. We find the new
partitioning constitutes a formally meaningful classification that deviates substantially from the traditional
classification.
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tools delve inside large databases looking for alternativeclassification schemes that are meaningful and novel. An
assessment of the information gained with new clusters can be effected by looking at the degree of separation
between each new cluster and its most similar class. Our approach models each cluster and class as a multivariate
Gaussian distribution and estimates their degree of separation through an information theoretic measure (i.e., through
relative entropy or Kullback Leibler distance). The inherently large computational cost of this step is alleviated
by first projecting all data over the single dimension that best separates both distributions (using Fisher’s Linear
Discriminant). We test our algorithm on a dataset of Martiansurfaces using the traditional division into geological
units as external classes and the new, hydrology-inspired,automatically performed division as novel clusters. We find
the new partitioning constitutes a formally meaningful classification that deviates substantially from the traditional
classification.
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I. INTRODUCTION

Clustering algorithms are useful tools in revealing structure from unlabeled data; the goal is to discover how
data objects gather into natural groups. Research spans multiple topics such as the cluster representation (e.g., flat,
hierarchical), the criterion function to identify sensible clusters (e.g., sum-of-squared errors, minimum variance),
and the proximity measure that quantifies the degree of similarity (conversely dissimilarity) between data objects
(e.g, Euclidean distance, Manhattan norm, inner product).Additionally, the application of clustering algorithms can
be preceded and followed by various steps. First, cluster tendency is a preprocessing step that indicates when data
objects exhibit a clustering structure; it precludes usingclustering when the data appears randomly generated under
the uniform distribution over a sample window of interest inthe attribute space [1], [2], [3], [4], [5]. Second, cluster
validation is a postprocessing step that is most necessary to assess the quality and meaning of the resulting clusters
[6], [7], [8].

Cluster validation plays a key role in assessing the value ofthe output of a clustering algorithm by computing
statistics over the clustering structure. Cluster validation is calledinternal when statistics are devised to capture the
quality of the induced clusters using the available data objects only [9], [10], [8]. If the validation is performed by
gathering statistics comparing the induced clusters against an external and independent classification of objects, the
validation is calledexternal3. External cluster validation is based on the assumption that an understanding of the
output of the clustering algorithm can be achieved by findinga resemblance of the clusters with existing classes [11],
[12], [6], [7], [13]. Such narrow assumption precludes alternative interpretations; in some scenarios high-quality
clusters (as supported by an internal validation step) are considered novel if they do not resemble existing classes.
We prefer to employ the termexternal cluster assessmentwhen referring to a methodology intended to quantify
the value of new clusters when compared to an external and independent classification scheme. This adds flexibility
to the validation task. In some scenarios, a large separation between clusters and classes serves to indicate cluster
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novelty [14]; on the other hand, finding clusters resemblingexisting classes serves to confirm existing theories of
data distributions [8]. Both types of interpretations are legitimate; the value of new clusters is ultimately decided
by domain experts after careful interpretation of the distribution of new clusters and existing classes.

In this paper we propose a method for external cluster assessment that runs contrary to the traditional view of
external cluster validation; most traditional metrics output a single value indicating the degree of match between
the partition induced by the known classes and the one induced by the clusters. Our goal instead is to compute
the distance between each individual cluster and its most similar external class; our method works efficiently by
projecting the data to a single dimension that best capturesthe true separation between the class-cluster pair on the
original attribute space. Traditional metrics cannot be easily compared to our approach for several reasons. First,
by averaging the degree of match across all classes and clusters, such metrics fail to identify the potential value of
individual clusters. Moreover, the lack of a probabilisticmodel in the representation of data distributions precludes
projecting the extent to which a class-cluster pair intersect. Our approach differs in using a probabilistic model
to evaluate each cluster individually, ranking all classesagainst each cluster based on their degree of overlap or
intersection.

We apply our methodology on the characterization and classification of surfaces on Mars. The planet Mars is
at the center of our solar system exploration efforts. Thereare several Mars orbiters remotely collecting imagery,
topographic, and spectral data of the planet’s surface. Thecurrent principal tool for studying Martian surfaces
is geologic mapping. The standard technique of photogeologic interpretation of images [15] has been developed
to facilitate such mapping. A collection of sites on Mars constitutes a set of objects that are classified manually
by domain experts (geologists) on the basis of their geological properties. The resultant division of sites into the
so-called “geological units” (see section 4.1) representsan external classification. Geologic mapping, however,
is a slow and subjective procedure. The availability of Martian digital topography data suggests an alternative
classification of Martian sites based exclusively on selected topographical properties. Specifically, a relatively simple
mathematical representation [16], [17] can be constructedfor a site’s “drainage” network (see section 4.2). A
quantitative representation enables an automated, objective, and fast comparison between different sites. We have
constructed such representation for a large set of Martian sites and have used a clustering algorithm to divide this
set into natural groups. Using our approach to external cluster assessment, we study whether this novel partitioning
resembles the traditional, external classification. We findthe new partitioning, based on hydrology-inspired variables,
deviates substantially from the traditional classification.

This paper is organized as follows. Section II provides background information and defines traditional metrics
for external cluster validation. Section III explains our proposed metric. Section IV describes our domain of study
based on the characterization of Martian surfaces. SectionV reports on the results of clustering Martian sites on
the basis of their topographic properties, and provides an interpretation of the output clusters. Lastly, section VI
gives our summary and discusses future work.

II. PRELIMINARIES: EXTERNAL CLUSTER VALIDATION

We assume a dataset of objects,D : {xi}, where eachxi = (a1, a2, · · · , ak) is an attribute vector characterizing
a particular object. We refer to an attribute variable asAi, and to a particular value of that variable asai. The
spaceX of all possible attribute vectors is called the attribute space. We make the simplifying assumption that each
attribute value is a real number, and thusxi ∈ ℜk.

A clustering algorithm partitionsD into n mutually exclusive and exhaustive4 subsetsK1,K2, · · · ,Kn, where
⋃

j Kj = D. Each subsetKj represents a cluster. The goal of a clustering algorithm is to partition the data such
that the average distance between objects in the same cluster (i.e., the average intra-distance) is significantly less
than the distance between objects in different clusters (i.e., the average inter-distance) [18]. Distances are measured
according to some predefined metric (e.g., Euclidean distance, Manhattan norm, inner product) over spaceX .

We assume the existence of a different mutually exclusive and exhaustive partition of objects,C1, C2, · · ·, Cm,
where

⋃

i Ci = D, induced by a natural classification scheme that is independent of the partition induced by the
clustering algorithm. Note that the number of external classes need not match the number of clusters. Our goal is to
perform an objective comparison of both partitions. It mustbe emphasized that the previously known classification
is independent of the induced clusters since our main goal isto ascribe a meaning to the partition induced by
the clustering algorithm; one may even use multiple existing external classifications to validate the set of induced
clusters.
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Traditionally, the goal behind external cluster validation is to find a near-optimal match between clusters and
external classes; if found we say the clusters have simply recovered the external class structure. As mentioned
above, we suggest a broader goal where a form of external cluster assessment indicates the degree of separation
between clusters and classes; the scientific value behind a near match or strong disagreement can then be elicited
through domain expertise.

A. Metrics Comparing Classes and Clusters

In this section we briefly review representative work in the field of external cluster validation. Several approaches
exist attacking the problem of assessing the degree of matchbetween the setC = {Ci} of predefined classes and
the setK = {Kj} of new clusters. In all cases high values indicate a high similarity between classes and clusters.
We divide these approaches based on the kind of statistics employed.

The2 × 2 Contingency Table

One type of statistical metrics is defined in terms of a2 × 2 table where each entryEij , i, j ∈ {1, 2}, counts
the number of object pairs that agree or disagree with the class and cluster to which they belong;E11 corresponds
to the number of object pairs that belong to the same class andcluster, similar definitions apply to other entries
where E12 corresponds to same class and different cluster,E21 corresponds to different class and same cluster,
andE22 corresponds to different class and different cluster. Clearly E11 andE22 denote the number of object pairs
contributing to a high similarity between classes and clusters, whereasE12 and E21 denote the number of object
pairs contributing to a high degree of dissimilarity. LetP be the total number of possible object pairs (ifN is
the total number of data objects, thenP = N(N−1)

2 ). The following statistics have been suggested as metrics of
similarity or overlap:

Rand [6]:
E11 + E22

E11 + E12 + E21 + E22
(1)

Jaccard [13]:
E11

E11 + E12 + E21
(2)

Fowlkes and Mallows [7]:
E11

√

(E11 + E12)(E11 + E21)
(3)

Γ statistic [19]:
PE11 − (E11 + E21)(E11 + E21)

√

(E11 + E21)(E11 + E21)(P − (E11 + E21))(P − (E11 + E21))
(4)

Experiments using artificial datasets show these metrics have good convergence properties (i.e., converge to
maximum similarity if classes and clusters are identicallydistributed) as the number of clusters and dimensionality
increase [13].

Them× n Contingency Table

A different approach is to work on a contingency tableM, defined as a matrix of sizem× n where each row
correspond to an external class and each column to a cluster.An entryMij indicates the number of objects covered
by classCi and clusterKj .

UsingM, the simmilarity betweenC andK can be defined in several forms:

Normalized Hamming Distance [12]:

DHc(M) +DHk(M)

2N
(5)

whereN = |D| is the size of the dataset (i.e., whereN =
∑

i

∑

j Mij) and the directional Hamming distances are
defined as follows:
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DHc(M) =
∑

i

max
j

Mij (6)

DHk(M) =
∑

j

max
i

Mij (7)

Equation 5 measures accuracy by adding the highest value on each row (conversely column) inM divided by
the total number of objects. Rows and columns are worked out separately since the number of classes and clusters
may be different.

Empirical Conditional Entropy [11], [20]:

H(C|K) = −
∑

i

∑

j

Mij

N
log2

Mij

Mj
(8)

whereMj is the marginal sum
∑

i Mij and lower values are preferred. Equation 8 measures the degree of impurity
of the partitions induced by the clustering algorithm and isbiased towards distributions characterized by many
clusters; this bias can be adjusted by applying the minimum description length principle [11].

Hypothesis Testing

The metrics described above serve as an indication of the proximity between the setC = {Ci} of classes and the
setK = {Kj} of newly constructed clusters. In addition one must be able to show that the output metric score (i.e.,
output statistic) is far from the value one would obtain if the structure ofD were random (if the objectsD were
uniformly distributed). To decide if the null hypothesisH0 (that assumes a uniform distribution overD) can be
rejected, we rely on Monte-Carlo techniques [21], [22]. Theoutput statistics is compared against the set{si}r

i=1

of statistics gathered assuming the null hypothesis true. This is effected by applying the clustering algorithm tor
different artificial samples where data objects distributeuniformly randomly; on each sample we compute statistic
si. The null hypothesisH0 is rejected ifs is greater than(1− ρ)r of the si values (for a given significance levelρ).

B. Limitations of Current Metrics

In practice, a quantification of the similarity between setsof classes and clusters is of limited value; any potential
discovery provided by the clustering algorithm is only identifiable by analyzing the meaning of each cluster
individually. As an illustration, Figure 1(left) shows a two-dimensional attribute space where two clusters (K1,
K2) make a close match with two external classes (C1, C2) ; a third cluster (K3) denotes a novel structure that does
not resemble any existing classes. Averaging the similarity between clusters and classes altogether disregards the
potential discovery carried by the third cluster.

In addition, even when in principle one could analyze the entries of a contingency matrix to identify clusters having
little overlap with existing classes (section II-A), such information cannot be used in estimating the intersection of
the true probability models from which the objects are drawn. This is because the lack of a probabilistic model
in the representation of data distributions precludes estimating the extent of the intersection of a class-cluster pair.
As an illustration, Figure 1(right) shows a two-dimensional attribute space comparing a clusterKj with an external
classCi. The z axis represents the conditional probability of a data object (P (x|Kj) for clusterKj andP (x|Ci)
for classCi). A contingency matrix simply counts the number of data objects falling on different regions of the
attribute space (e.g.,Kj ∩Ci, Kj \ Ci, Ci \Kj , Kj ∪ Ci); a probabilistic model, in contrast, generates an expectation
of the number of objects lying on these regions; the expectation can differ significantly from the actual count. This
is the result of constructing density models using all data objects that belong to the class-cluster pair of interest.
We address these issues and our proposed metric next.
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C1

C2

k1 k3
k2 A1

A2

C i kj

A1

A2

P(x / C i) P(x / kj)

Fig. 1. (left) Averaging the similarity between clusters and classes altogether disregards the potential discovery carried by clusterK3. (right)
A contingency matrix simply counts the number of objects covered by both class and cluster; a probabilistic model generates an expectation
based on the density of that intersection that may differ significantly from the actual count.

A1

A2

fj fi

kj C i

A1

A2

fj fi

kj

C i

Fig. 2. (left) A projection of the data over an attribute transforms the original problem into a new problem made of one-dimensional
Gaussian distributions; (right) Two non-overlapping distributions in ak-dimensional space may appear highly overlapped when projected
over each attribute (herek = 2).

III. O UR APPROACH TOEXTERNAL CLUSTER ASSESSMENT

We now turn into our proposed approach for external cluster assessment. We start under the assumption that
both clusters and classes can be modelled using a multi-variate Gaussian (i.e., Normal) distribution. In this case
the probability density function is completely defined by a mean vectorµ and covariance matrixΣ:

f(x) =
1

(2π)k/2|Σ|1/2
exp [−1

2
(x − µ)tΣ−1(x − µ)] (9)

wherex andµ arek-component vectors, and|Σ| andΣ
−1 are the determinant and inverse of the covariance matrix.

Our goal is simply to assess the separation or distance between a clusterKj , modelled asfj(x) : N [µj,Σj ], and
its most similar classCi, modelled asfi(x) : N [µi,Σi] (wherefj corresponds toP (x|Kj) andfi corresponds to
P (x|Ci)). Before explaining our methodology (section III-C) we introduce two preliminary metrics.

A. Integrating Over the Attribute Space

A straightforward approach to measure the degree of separation betweenfj(x) andfi(x), denoted asΨ(fj, fi),
is to apply a function to each pointx, ψfj ,fi

(x), and to integrate that function over the whole attribute space:

Ψ(fj, fi) =

∫

x

ψfj ,fi
(x) dx (10)

A simple example ofψfj ,fi
(x) is the square distance(fj(x) − fi(x))2. We assume that in the extreme case

where both distributions are identical thenψfj ,fi
(x) = 0, and henceΨ(fj, fi) = 0. Although equation 10 can

be approximated using numerical methods, the computational cost can become very expensive; integrating over
high-dimensional spaces soon turns intractable even for moderately low values ofk. In practice, a solution to this
problem is to assume a form of attribute independence as explained next.
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B. The Attribute-Independence Approach

Instead of integrating over all attribute space one may lookat each attribute independently. In particular, a
projection of the data over each attribute transforms the original problem into a new problem made of one-
dimensional Gaussian distributions, as shown in Figure 2 (left). We represent the two distributions on attribute
Al, 1 ≤ l ≤ k, asf l

j(x) (corresponding to clusterKj) and f l
i (x) (corresponding to classCi); the parameters for

these distributions are easily obtained from thek-dimensional multi-variate Gaussian distributions by extracting the
l-entry of the mean vector, and the(l, l)-entry of the covariance matrix.

The computation of the separation of the two one-dimensional distributions,Ψ(f l
j, f

l
i ) = Ψl, is now performed

over a single dimension and is thus less expensive (equation10). Nevertheless we are now forced to devise a
function

⋃

(·) to combine the degree of separation over all attributes:

Ψ(fj, fi) =
⋃

(Ψ(f1
j (x), f1

i (x)), . . . ,Ψ(fk
j (x), fk

i (x)) =
⋃

l

Ψl (11)

Besides the need to define the nature of
⋃

(·), this approach carries a disadvantage. By looking at each attribute
independently, two non-overlapping distributions in ak-dimensional space may appear highly overlapped when
projected over each attribute, as shown in Figure 2 (right).Our challenge lies on finding an efficient approach to
estimateΨ(fj, fi) along a dimension that provides a clear representation of the true separation between objects on
both distributions.

C. Projecting Over a Single Dimension Using Fisher Linear Discriminant

Our proposed solution consists of projecting data objects over a single dimension that is orthogonal to Fisher
linear discriminant [18]. The general idea is to find a hyperplane that best discriminates data objects in cluster
Kj from data objects in classCi. The weight vectorw that lies orthogonal to the hyperplane will be used as the
dimension upon which the data objects will be projected. Therationale behind this method is that among all possible
dimensions over which that data can be projected, classicallinear discriminant analysis identifies the vectorw with
an orientation that results in a maximum (linear) separation between data objects inKj andCi; the distribution of
data objects overw provide a better indication of the true overlap betweenKj andCi in k dimensions compared
to the resulting distributions obtained by projecting dataobjects over the attribute axes. Figure 3 illustrates our
methodology. Weight vectorw –which lies orthogonal to the hyperplane that maximizes theseparation between
the objects in clusterKj and classCi– is used as the dimension over which data objects are projected.

Specifically, Fisher linear discriminant finds the vectorw that maximizes the following criterion function:

J(w) =
w

tSBw

wtSWw
(12)

The termSB is also named the between-class scatter matrix; it is simplythe outer product of two vectors:

SB = (µj − µi)(µj − µi)
t (13)

whereµj is the mean vector of cluster distributionfj(x) andµi is the mean vector of class distributionfi(x).
The termSW is also named the within-class scatter matrix; it is the sum of the scatter matrix over the two

distributions:

SW =
∑

x∈Kj

(x− µj)(x − µj)
t +

∑

x∈Ci

(x− µi)(x − µi)
t (14)

Fisher linear discriminant maximizes the ratio of between-class scatter to within-class scatter. Geometrically the
goal is to find a vectorw so that the difference of the projected means overw is large compared to the standard
deviations around each mean. It can be shown that a solution maximizingJ(w) (equation 12) is in fact independent
of SB:

w = S−1
W (µj − µi) (15)
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µ1

µ2

W

A1

A2

Fig. 3. Weight vectorw –which lies orthogonal to the hyperplane that maximizes theseparation between the objects in clusterKj and
classCi– is used as the dimension over which data objects are projected.

Data Projection

Projecting data objects over the resulting vectorw obviates working on each attribute separately (as in equa-
tion 11); we have then found an efficient approach to estimatethe degree of separation between two distributions
along a single dimension that captures most of the variability of classCi and clusterKj . To perform the data
projection mentioned above we need to transform each original data pointx into its projectionx′, through a scalar
dot product5, x′ = w

t
x.

We will refer to the projected density functions overw asf ′i(x) (for classCi) andf ′j(x) (for clusterKj). Their
parameters can be easily estimated after projecting data objects overw. Let µ be the mean of density function
f(x), then the projected parameters are defined as

µ′ = w
t µ σ′

2
=

1

N

∑

(x′ − µ′)2 (16)

whereµ′ andσ′2 are the projected mean and variance respectively; if the parameters correspond tof ′j(x), N is
the number of data objects comprised by clusterKj (N = |Kj | = Nj); otherwiseN is the number of data objects
comprised by classCi (N = |Ci| = Ni).

In summary, our approach is to quantify the separation between two one-dimensional Gaussian distributions
f ′j(x) andf ′i(x) obtained after projecting data objects in classCi and clusterKj along vectorw.

D. The Distance Between Two One-Dimensional Distributions

To finalize the description of our approach we need only specify how to compute the degree of separation between
the two one-dimensional Gaussian distributionsf ′j andf ′i , denoted asΨ(f ′j, f

′
i). To that purpose we make use of

the concept of relative entropy of two density functions [23]. The relative entropy (or Kullback Leibler distance)
between two density functions is the expectation of the logarithm of a likelihood ratio:

Ψ(f ′j , f
′
i) = D(f ′j||f ′i) =

∫

f ′j(x) log
f ′j(x)

f ′i(x)
dx (17)

For our purposes, equation 17 is a measure of the error generated by assuming that functionf ′i can be used to
represent functionf ′j; the integral6 measures the additional amount of information required to describe clusterKj

given its most similar classCi. The higher the distance7, the higher the amount of information conveyed by cluster
Kj .

Since the form of the distributions is known to be Gaussian, we can further simplify our measure (we use natural
logarithms to reduce the equation; the resulting information is now expressed in nats instead of bits):

Ψ(f ′j, f
′
i) = D(f ′j||f ′i) =

∫

f ′j(x) ln
f ′j(x)

f ′i(x)
dx (18)
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=

∫

f ′j ln

1
√

2πσ′
2

j

e
−

(x−u′

j
)2

2σ′
2

j

1√
2πσ′2

i

e
−

(x−u′

i
)2

2σ′2
i

dx (19)

=

∫

f ′j ln(
σ′i
σ′j

e
1

2
(
(x−u′

i
)2

σ′
2

i

−
(x−u′

j
)2

σ′
2

j

)

) dx (20)

=

∫

f ′j ln
σ′i
σ′j

dx+
1

2σ′
2

i

∫

f ′j(x− u′i)
2 dx− 1

2σ′
2

j

∫

f ′j(x− u′j)
2 dx (21)

= ln
σ′i
σ′j

∫

f ′j dx+
1

2σ′
2

i

∫

f ′j(x− u′i)
2 dx−

σ′
2

j

2σ′
2

j

(22)

= ln
σ′i
σ′j

+
1

2
[

1

σ′
2

i

∫

(x− u′i)
2f ′j dx− 1] (23)

= ln
σ′i
σ′j

+
1

2
[
Ef ′

j
[(x− u′i)

2]

σ′
2

i

− 1] (24)

Equation 24 shows the behavior of relative entropy over two one-dimensional Gaussian distributions. If both
distributions are the same, then the expectation of(x − u′i)

2 according to distributionf ′j is identical toσ′
2

i and
Ψ(f ′j, f

′
i) = 0. As the two distributions differ the value ofΨ(f ′j, f

′
i) grows above zero.

E. Overview of our Approach and Computational Complexity

To summarize, our approach is divided into two steps:
1) Projecting data objects in clusterKj and classCi over the weight vectorw that lies orthogonal to the

hyperplane that maximizes the separation betweenKj andCi (section III-C), and
2) Computing the degree of separation between the resultingone-dimensional Gaussian distributions (section III-

D).
Figure 4 provides an algorithmic description of our method.The computational complexity of the algorithm is

dominated by the first step (Fig. 4, lines 1-7) where the goal is to find the weight vectorw. The most expensive
calculation is that of the within-class scatter matrixSW and its inverse. The complexity is of orderO(k[Nj +Ni]

2),
wherek is the number of attributes andNj +Ni is the total number of data objects comprised by clusterKj and
classCi. Even though the computational cost is quadratic onNj + Ni, we expect the number of data objects on
both cluster and class to be mush less than the total size of the data set (i.e., we expectNj +Ni ≪ N ).

On a pentium 4 processor with 1GB of memory, the execution time for the two steps mentioned above on a
dataset corresponding to Martian landscapes with 386 data objects (section IV) is on average less than one second.

F. Preliminary Assessment

We report on a preliminary assessment using artificial datasets comparing our method with the attribute-independence
approach (section III-B). Our artificial datasets comprisedata objects (i.e. points) drawn from two Gaussian
distributions with different means but same standard deviation on a two-dimensional attribute space. The location
of the means is selected as follows. One mean is chosen uniformly randomly on the plane, while the other mean
is randomly located away from the first mean at a fixed distance(e.g., one standard deviation). Our experiments
vary the number of points drawn from each distribution and the distance between the means.

The degree of separation under the attribute independence approach simply averages the relative entropy (or
Kullback Leibler distance) of the distributions obtained after projecting the data on each attribute. The degree of
separation is then as follows (equation 11):
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Algorithm 1: External Cluster Assessment
Input: clusterKj , classCi

Output: DistanceΨ(f ′j, f
′
i)

DISTANCE(Kj ,Ci)
(1) Estimate mean vectorµj (clusterKj)
(2) Estimate mean vectorµi (classCi)
(3) Compute the within-class scatter matrix:
(4) SW =

∑

x∈Kj
(x − µj)(x − µj)

t +
∑

x∈Ci
(x − µi)(x − µi)

t

(5) Find the vectorw = S−1
W (µj − µi)

(6) Find projected densities overw:
(7) f ′i(x) (classCi) andf ′j(x) (clusterKj)

(8) ComputeΨ(f ′j, f
′
i) = D(f ′j||f ′i) =

∫

f ′j(x) ln
f ′

j(x)

f ′

i(x) dx

(9) return Ψ(f ′j, f
′
i)

Fig. 4. The logic behind our approach to external cluster assessment.

Ψ(fi, fj) =
⋃

(Ψ(f1
i (x), f1

j (x)), . . . ,Ψ(fk
i (x), fk

j (x)) =
1

k
D(f ′j||f ′i) (25)

wheref ′j andf ′i are obtained by projecting the data objects on each attribute.
Figure 5 shows our results. On all graphs, thex-axis stands for the size of the dataset (on a logarithmic scale);

the y-axis stands for the degree of separation (i.e., relative entropy) between both Gaussian distributions. Each
result is the average of ten runs; we show95% confidence intervals (using a t-student distribution); thesolid line
corresponds to the true degree of separation assuming an infinite sample.

Our method takes slightly longer to converge when the distance between the means is zero (i.e., when both cluster
and class belong to the same distribution). This is the result of finding a vectorw orthogonal to Fisher’s linear
discriminant when no decision boundary actually exists (Fig. 5 top-left). As the distance between the means grows
larger, however, our method converges to the true separation relatively fast. In contrast, the attribute-independence
approach tends to underestimate the true degree of separation; attribute projections show a distorted view of the
true overlap between the two distributions over the plane. In summary, our method outperforms the attribute-
independence approach when projections over the attributeaxes convey a distorted view of the actual location of
the class-cluster pair.

IV. CHARACTERIZATION OF MARTIAN SURFACES

We now turn to an area of application where our approach is tested. Our study revolves around the characterization
and classification of Martian surfaces. We study a large set of Martian sites showing various types of surfaces.
First, we discuss the notion of geological units - the standard classification of Martian sites assigned by domain
experts (geologists) after careful examination of a site’simage. Assigning geological units to each site in our set
divides the dataset intom predefined external classes. Second, we discuss the notion of a network descriptor - a
numerical attribute of a Martian site that is calculated from its topography. Network descriptors are 4-dimensional
vectors. Applying a clustering algorithm to network descriptors partitions the dataset inton clusters. Our metric is
used to assess the distance between those clusters and the set of classes predefined on the basis of geological units.

A. External Classes: Geological Units

Presently, the main tool for studying the Martian surface (and other planetary surfaces) is geologic mapping
[15]. A geologic map is a 2-dimensional projection of the 3-dimensional distribution of geological units, bodies
of rock that are thought to have formed by a particular process or set of related processes over a discrete time
span [24]. In a terrestrial context, geological units are determined from in situ inspections. In a Martian context,
however, these units are determined from images through topographical expressions. A geologic map is a thematic
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Fig. 5. A comparison of our approach with the attribute independence approach on four artificial datasets. The difference between the
means varies from zero standard deviations (upper left) up to two standard deviations (bottom right).

map of geological units, an encapsulation of a huge amount ofinformation into a concise output by means of
human interpretation.

Figure 6 shows an example of a geologic map. The East Mangala Valles region on Mars (coordinates of the
site’s center are: -147.56E, 9.95S) has been manually mapped (middle panel) from imagery data (left panel). The
site has been divided [25] into geological units indicated by different colors and labeled in the legend (right panel).
The criteria considered by a geologist in making this division includes terrain texture, geological structure, age,
and stratigraphy. The labels given to geological units are shortcuts for longer natural language descriptions. For
example, the unit Npl1 is described as “highly cratered uneven surface of moderate relief; fractures, faults, and small
channels common.” The vast majority of geological units have names that start with letters N, H, or A indicating
Noachian, Hesperian, and Amazonian stratigraphic epochs,respectively. However, sometimes mappers encounter a
terrain that is specific to a given site and assign it a name outside of the general framework. An example of such
assignment are units C1 to C4 on Figure 6.

B. Quantitative Characterization of Martian Surfaces

Geological units are the traditional, qualitative means ofclassifying Martian surfaces. One shortcoming of such
classification is that it cannot be automated. Given the vastamount of data collected by spacecrafts, the field
of Martian geomorphology would benefit from an automated, quantitative classification of surfaces. A stumbling
block to the development of such an automated classificationis the lack of an adequate yet concise mathematical
representation of a topographic surface. It has been proposed [17] that a binary tree data structure (tantamount to
a terrain’s “drainage” network) provides such a representation. We explain such representation next.

An automated classification of Martian surfaces uses digital topography data. Martian topography data was
gathered by the Mars Orbiter Laser Altimeter (MOLA) instrument [26]. This data was subsequently used to construct
the Mission Experiment Gridded Data Records (MEGDR) [27] which are global topographic maps of Mars with
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Fig. 6. (left) Image of East Mangala Valles region on Mars. The width of this side is≈ 340 km. (middle) The geologic map of Mangala
Valles region. Different geological units are indicated bydifferent colors. (right) The legends for the geologic map on the left.

outletnode #1
(a , l , e )1 1 1

node #2
(a , l , e )2 2 2

Fig. 7. (left) Visual rendering of an elevation field of Naktong Vallis region on Mars (31.3E, 6.6N). The black line shows the boundary of
the catchment and the blue lines show the drainage network ofarbitrary penetration into the catchment. (right) The binary tree representing
the “drainage” network. Red dots indicate three points of interest, an outlet and two out of 145 nodes. Values ofa, l, ande are calculated
and stored at the nodes of the tree.

a resolution of≈ 0.5 km. For a site of interest the MEGDR is used to construct a digital elevation model (DEM)
of the site. The DEM is a regular grid of cells with assigned elevation values. A hydrology-inspired algorithm was
designed [17] for quantitative analysis of surfaces as represented by DEMs. The algorithm can be thought of as
subjecting a surface to “artificial rain” and registering how it drains. The term “drain” is used here as a metaphor
for connectivity between different points on the surface. The resultant drainage pattern characterizes the texture
and structure of the surface.

Specifically, a point called an outlet is selected and the portion of the surface that ultimately drains through this
point is called a catchment. A drainage network is the part ofthe catchment where the flow is concentrated. The
extent of penetration of the network into the catchment is adjustable, the network can reach into every cell in the
catchment. The network has a spanning binary tree geometry with an outlet being at the root of the tree. Figure 7
illustrates a relation between the surface, the catchment,and the drainage network.

The binary tree network doubles as a data structure with every nodeS holding values of three variables:a, an
area of catchment with an outlet atS; l, length of the longest upstream path starting atS; e, potential energy
dissipated along a segment of the network terminating atS. We describe the network, and thus the catchment,
and ultimately the surface in terms of probability distribution functions of these three variables. Reflecting the
fractal structure of the network, all three variables have power law distributions,P (a) ∝ a−(1+τ), P (l) ∝ l−(1+γ),
P (e) ∝ e−(1+β), and a network can be statistically characterized by the power law indicesτ , γ, andβ. An additional
variable,ρ, the uniformity of drainage density [16] is added to the three power law indices to form a 4-dimensional



12

0.20.30.40.50.60.7 00.511.52

1

1.5

2

2.5

3

3.5

C6

C1

C5

C7

C9

C3

C2

C8

C4

γτ

ρ

Fig. 8. Nine clusters resulting from partition of dataset ofMartian sites with respect to the values of their network descriptors. Ellipsoids
represent 3-dimensional projections of clusters in the 4-dimensional space.

vector (τ, γ, β, ρ) which we call a network descriptor. A network descriptor provides an algorithmically derived,
quantitative characterization of a surface that is independent from a descriptive characterization using geological
units.

V. EMPIRICAL STUDY

Our dataset consists of 386 Martian sites taken from a wide range of Martian latitudes and elevations. They
represent all three major epochs and are classified intom = 16 different geological units (classes): Npl1(28),
Npl2(17), Npld(41), Nple(8), Nplr(31), Nh1(11), Had(15),Hh3(12), HNu(16), Hpl3(14), Hr(72), Hvk(32), Ael1(10),
Aoa(15), Apk(38), and Aps(26). The numerical values between parentheses indicate the number of sites in a given
class. We have clustered the dataset of 386 Martian sites with respect to the similarity of their network descriptors.
Our empirical study is divided into three steps: 1) an internal assessment of the quality of the clusters alone; 2) an
external cluster assessment by looking at the separation between clusters and classes (geological units) using our
proposed approach; and 3) a geomorphic interpretation of the clusters.

A. Assessing the Quality of Clusters Alone

We cluster the dataset of Martian sites with respect to theirnetwork descriptors using a probabilistic clustering
algorithm. The algorithm assumes a data objectx belongs to a clusterKj with a posterior probabilityP (Kj |x).
Objectx is assigned to the cluster exhibiting highest posterior probability (i.e., objectx belongs to clusterKj if
P (Kj |x) > P (Kl|x), l = 1 . . . n, l 6= j).

The algorithm works under a Bayesian framework. The posterior probability of a clusterKj given an example
x is expressed as follows:

P (Kj |x) =
P (x|Kj)P (Kj)

∑n
l=1 P (x|Kl)P (Kl)

(26)
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Since the denominator is constant for all clusters we can dispense with it. We then assign clusterKj to example
x if it maximizesP (x|Kj)P (Kj). This requires an estimation of the parameter vectorθj characterizingP (x|Kj)
(if assuming a Gaussian distributionθj = [µj ,Σj]), and the a priori probabilityP (Kj). Such estimations can be
performed using the Expectation Maximization (EM) technique [28]. Since the numbern of clusters is assumed to
be known, the algorithm tries different values using cross-validation8.

The dataset of 386 Martian sites was partitioned into nine clusters labeled C1(23), C2(28), C3(37), C4(49),
C5(29), C6(35), C7(16), C8(129), and C9(40). The numericalvalues between parentheses indicate the number of
sites in a given cluster. Each cluster can be represented as a4-dimensional ellipsoid in the(γ, τ, β, ρ) space. The
center of an ellipsoid is at(〈γ〉, 〈τ〉, 〈β〉, 〈ρ〉), where the means are calculated over the objects belonging to a given
cluster. For visualization purposes, the length of each ellipsoid’s semi-axis is equivalent to one standard deviation
(extracted from the diagonal of the covariance matrix).

Figure 8 shows a projection of ellipsoids representing all nine clusters onto the(γ, τ, ρ) space9. The clusters are
well separated in the space indicating that our dataset has been divided into distinct groups. Similar projections
onto the three other possible 3-dimensional sub-spaces confirm this conclusion. To assess quantitatively the quality
of our clusters we have calculated a9 × 9 matrix of Kullback-Leibler distances between the clusters(following
the methodology of section III). Of course, the diagonal entries in this matrix are all equal to zero. The smallest
off diagonal entry, corresponding to the distance between the clusters10 C3 and C9 equals1.45. Even this smallest
distance indicates a significant separation (see Table 2). The largest off diagonal entry, corresponding to the distance
between the clusters C7 and C8, equals52.84. The average distance is11.18, and the standard deviation is9.65. Thus,
our clustering of Martian sites resulted in a meaningful classification. A physical interpretation of this classification
is attempted in section 5.3.

B. Comparing Clusters to Geological Units

We now assess the degree of separation between the nine clusters and the sixteen Martian geological units
(classes). The network descriptors for the sites classifiedinto a single geological unit form a “concentration” in the
(γ, τ, β, ρ) space. Such a concentration can be represented as a 4-dimensional ellipsoid employing the method used
in section 5.1 for cluster representation. Conceptually, the comparison between the clusters and the classes amounts
to assessing the degree of overlapping between the sets of corresponding ellipsoids. In practice, the assessment
is achieved using our proposed approach (section III-D). Wehave calculated a9 × 16 matrix of Kullback-Leibler
distances between the clusters and classes. The distances vary from a minimum of 0.3078 (between C4 and Hr)
to a maximum of 17.97 (between C7 and Had). The average distance is 2.97 and the standard deviation is 2.67.
Table 1 shows the Kullback-Leibler distances between clusters and selected classes. The first column corresponds
to the nine clusters obtained by partitioning the dataset ofMartian sites on the basis of similarity between network
descriptors. For each row, the second column corresponds tothe class with smallest separation to that cluster, the
third column corresponds to the class with the second smallest separation, and so on. We report on the five classes
with smallest separation for each cluster. Within parentheses we show the identification label (the name of the
geological unit) for each class. As a baseline for comparison, Table 2 shows the degree of separation using our
proposed approach between two one-dimensional Gaussian distributions having the same variance. The columns
indicate the difference between the means in units of standard deviation.

The results in Table 1 indicate that none of the nine clusterscan serve as a surrogate for any geological units. For
a cluster to be consider a candidate for class surrogate, itsKullback-Leibler distance to that class should be small,
and its distances to all other classes should be large. Sincenone of the nine clusters meets such criteria, we conclude
our results point to a new classification of Martian sites. A deeper analysis of Table 1 shows that cluster C4 has a
relatively small separation values from a number of classes: Hr, Npl1, Nplr, and Npl2. These separation values have
similar magnitudes, but none stands out as significantly smaller than the others. Closer examination reveals that
sites in those four different classes are distributed similarly in the(γ, τ, β, ρ) space. The Kullback-Leibler distances
between pairs of these classes are all smaller than 0.34. Thus, the ellipsoids representing Hr, Npl1, Nplr, and Npl2
are all very similar to each other. The smaller ellipsoid representing C4 is located inside the other four ellipsoids.
This geometry explains why the separation between cluster C4 and the other four classes is similar and small.
Clearly, cluster C4 groups catchments that occur often in Martian terrain classified as Hr, Npl1, Nplr, and Npl2.
However, the differences between these surfaces, previously identified by geologists, are not readily encapsulated
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TABLE I

A MEASURE OF THE DEGREE OF SEPARATION BETWEEN CLUSTERS AND CLASSES IN THE CONTEXT OFMARTIAN TOPOGRAPHY.

Geological Units
Clusters Most Similar 2nd 3rd 4rd 5th
C1 1.4622 (Hr) 1.489 (Nplr) 1.502 (Npld) 1.5983 (Hh3) 1.8741 (Npl1)
C2 0.6015 (Aoa) 0.7812 (Hpl3) 0.823 (Nple) 0.8438 (Hvk) 1.4669 (Ael1)
C3 0.9738 (Nh1) 0.9908 (Apk) 1.0827 (Npl1) 1.1275 (Aps) 1.1356 (Hvk)
C4 0.3078 (Hr) 0.3584 (Npl1) 0.4127 (Nplr) 0.5756 (Npl2) 0.7287 (Aps)
C5 0.8789 (Hh3) 1.6257 (Nplr) 1.6997 (Npl1) 2.011 (Hr) 2.0254 (Npld)
C6 1.0818 (Hvk) 1.3423 (Ael1) 1.7171 (Hpl3) 1.7177 (Had) 1.8053 (Npld)
C7 1.1037 (Nplr) 1.7299 (Npl1) 3.1915 (Nple) 3.6975 (Npl2) 5.038 (HNu)
C8 0.3461 (Hvk) 0.4909 (Ael1) 0.5942 (Apk) 0.7608 (Aps) 0.764 (HNu)
C9 0.9535 (Nplr) 1.2416 (Nh1) 1.2812 (Aps) 1.3445 (Hpl3) 1.3565 (Hr)

TABLE II

A MEASURE OF THE DEGREE OF SEPARATION BETWEEN TWO ONE-DIMENSIONAL GAUSSIAN DISTRIBUTIONS, f1 AND f2 , WITH EQUAL

VARIANCE .

Difference between the means
0.2 σ 0.4 σ 0.6 σ 0.8 σ 1.0 σ 1.2 σ 1.4 σ 1.6 σ 1.8 σ 2.0 σ 2.2 σ

Ψ(f1, f2) 0.02 0.08 0.18 0.32 0.50 0.72 0.98 1.28 1.62 2.00 2.42

by network descriptors. The most populous cluster C8 groupscatchments that are typical for many surfaces. This
is why it also has relatively small separations from a numberof classes. Its average distance from all 16 classes
is 0.97 with a standard deviation of 0.41. On the other hand, cluster C1 groups peculiar catchments that are not
common on any surfaces. These are interiors of large craters. As a result, cluster C1 is well separated from all
classes. Its average distance from all 16 classes is 3.22 with a standard deviation of 1.51.

C. Physical Interpretation of Clusters

Using our method for external cluster assessment, we were able to determine that partitioning the dataset of
Martian sites on the basis of network descriptors produced anovel classification that does not match the traditional
classification based on geological units. In general, the new classification pertains to the character of catchments. The
most populous cluster, C8, groups sites with network descriptors describing a catchment that has a character common
to many Martian (and terrestrial) terrains. This charactercould be succinctly described as moderate elongation. In
contrast, cluster C9 groups sites with network descriptorsindicating “square” catchments without much elongation;
cluster C6 groups sites with narrow, elongated catchments.It remains an open question to explain how the shape
of a catchment relates to terrain attributes such as texture, structure, and stratigraphy.

Figure 9 shows an example of the difference between catchment shapes and more traditional geomorphic attributes.
Four Martian surfaces are shown in a2 × 2 matrix arrangement. Surfaces in the same row belong to the same
geological unit, surfaces in the same column belong to the same cluster. The top two sites show two surfaces
from the Hr geological unit that is described as ”ridged plains, moderately cratered, marked by long ridges.” These
features can indeed be seen in the two surfaces. Despite suchtexture similarity they have very different catchments
as indicated by their drainage networks. The bottom two sites show two surfaces from the Apk unit described
as ”smooth plain with conical hills or knobs.” Again, looking at Figure 9 it is easy to see the similarity between
these two surfaces based on that description. Nevertheless, the two terrains have catchments with markedly different
character. On the basis of catchment similarity, these foursurfaces could be divided vertically instead of horizontally.
Such division corresponds to our cluster partition.

VI. SUMMARY AND CONCLUSIONS

Clustering algorithms arrange data objects into groups that convey potentially meaningful and novel domain
interpretations. When the same data objects have been previously framed into a particular classification scheme,
the value of each cluster can be assessed by estimating the degree of separation between the cluster and its most
similar class. In this paper we propose an approach to external cluster assessment based on modeling each cluster
and class as a multivariate Gaussian distribution; the degree of separation between both distributions follows an
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Fig. 9. Four Martian surfaces from two different geologicalunits and belonging to two different clusters. Binary treesrepresenting “drainage”
networks are drawn on top of the surfaces.

information-theoretic measure known as relative entropy or Kullback Leibler distance. Compared to previous work,
our method evaluates each cluster individually and employsa probabilistic model (as opposed to a contingency
table) in estimating the separation between class and cluster.

Our approach achieves a balance between the computational cost of approximating the separation of two distribu-
tions when integrating over the whole attribute space, as compared to integrating over each attribute independently.
In the first case, the cost of integrating over high dimensional spaces soon turns intractable even for moderately
low number of attributes. In the second case, two non-overlapping distributions in the attribute space may appear
highly overlapped when projected over each attribute. Our approach estimates the separation of two distributions
along a single dimension, by projecting all data objects over the vector that lies orthogonal to the hyperplane that
maximizes the separation between cluster and class (using Fisher’s Linear Discriminant).

We test our approach on a dataset of Martian surfaces by comparing their description-based classification into
geological units with a new, algorithm-based division. Using our approach we have determined that a particular
automated classification, based on hydrology-inspired variables, cannot be used in place of geological units. Instead,
we discovered the Martian dataset can be divided into high quality clusters with respect to these novel variables.

Future work will assess the value of clusters obtained with alternative algorithms (other than the probabilistic
algorithm used in section V-A). We also plan to devise bettermodelling techniques for the external class distribution.
Our approach assumes each cluster can be modelled through a multivariate Gaussian distribution; while this
assumption is reasonable due to the expected local nature ofeach cluster, the same assumption comes unwarranted
for external classes (their nature is often unknown). An alternative approach is to model each external class as
a mixture of models. Finally, one line of research is to design clustering algorithms that search for clusters in a
direction that maximizes a metric of relevance orinterestingnessas dictated by an external classification scheme.
Specifically, a clustering algorithm can be set to optimize ametric that rewards clusters exhibiting little (conversely
strong) resemblance to existing classes.
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Footnotes

1) Department of Computer Science, University of Houston. 4800 Calhoun Rd., Houston TX 77204-3010, USA.
2) Lunar and Planetary Institute. 3600 Bay Area Blvd, Houston TX 77058-1113, USA.
3) A third type of cluster validation, calledrelative, compares different clustering structures obtained from the

same clustering algorithm [8].
4) We consider a flat type of clustering (as opposed to hierarchical) where each object is assigned to exactly

only cluster.
5) The projections have a clear geometrical interpretationwhen performed overw0 = w

||w|| . Vector w0 is a
normalized vector (i.e.,||w0|| = 1). But the magnitude ofw is of no consequence; if||w|| 6= 1 the result is
simply a change on the scale ofx′.

6) The integral runs along values ofx for which f ′j(x) > 0 (i.e., runs along the support set off ′j). We assume
that0 log 0

0 = 0, and that∀x(f ′j(x) > 0) → (f ′i(x) > 0) (i.e., the support set off ′j is embedded in the support
set off ′i).

7) Note that althoughD(f ′j||f ′i) ≥ 0,
relative entropy is not a true distance because it is not symmetric [23]; that isD(f ′j||f ′i) 6= D(f ′i ||f ′j).

8) The algorithm is part of the WEKA machine-learning tool [29].
9) We use a projection to facilitate visualization of our clusters.

10) The matrix is not symmetric asD(f ′j||f ′i) 6= D(f ′i ||f ′j). When referring to the distance between two clusters
CA and CB we assume that particular order (i.e., we assumeD(f ′A||f ′B)).
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