

A SIMPLE BUT EFFICIENT BROADCASTING
PROTOCOL FOR VIDEO-ON-DEMAND

Jehan-François Pâris1

Department of Computer Science
University of Houston

Houston, TX, 77204, USA
http://www.cs.uh.edu

Technical Report Number UH-CS-05-07

April 4, 2005

Keywords: video-on-demand.

Abstract

We present a simple fixed-delay broadcasting (SFDB) protocol for video-on-demand. Our protocol
assumes that each video to be broadcast will be partitioned into segments of equal duration to be
transmitted over a fixed number of video channels. In addition, it requires all customers to wait for the
same fixed delay before watching the video they have selected. Our protocol uses time-division
multiplexing to obtain the best transmission schedule for the channel that broadcasts the first segments of
the video. The same multiplexing scheme is then reproduced on all the remaining channels. Despite its
simplicity, our simple fixed delay broadcasting protocol achieves waiting times comparable to those of
much more sophisticated broadcasting protocols. We also show how the protocol can be modified to
handle set-top boxes that cannot receive data at more than two or three times the video consumption rate.

1 Supported in part by the National Science Foundation under grant CCR-9988390.
2

A Simple but Efficient Broadcasting Protocol for Video-on-Demand

Jehan-François Pâris1
Department of Computer Science

University of Houston
Houston, TX 77204-3010

paris@cs.uh.edu

Abstract

We present a simple fixed-delay broadcasting (SFDB)
protocol for video-on-demand. Our protocol assumes that
each video to be broadcast will be partitioned into
segments of equal duration to be transmitted over a fixed
number of video channels. In addition, it requires all
customers to wait for the same fixed delay before watch-
ing the video they have selected. Our protocol uses time-
division multiplexing to obtain the best transmission
schedule for the channel that broadcasts the first segments
of the video. The same multiplexing scheme is then repro-
duced on all the remaining channels. Despite its
simplicity, our simple fixed delay broadcasting protocol
achieves waiting times comparable to those of much more
sophisticated broadcasting protocols. We also show how
the protocol can be modified to handle set-top boxes that
cannot receive data at more than two or three times the
video consumption rate.

1. INTRODUCTION

Broadcasting protocols constitute the most efficient
means for distributing popular videos on demand to large
metropolitan audiences. Rather than waiting for customer
requests, broadcasting protocols partition each video into
segments and retransmit theses segments according to a
fixed schedule guaranteeing that any customer having
waited for a given maximum delay will be able to watch
the whole video without any interruption. As a result, the
number of customers watching the video being broadcast
does not affect its bandwidth requirements.1

The simplest broadcasting protocol for video-on-
demand is staggered broadcasting. It consists of
broadcasting the complete contents of each video on
several channels at equal offsets. Hence, it requires k
dedicated channels per video to achieve a customer wait-
ing time equal to 1/k of the duration the video. More
recent—and more complex—broadcasting protocols have

1 Supported in part by the National Science Foundation
under grant CCR-9988390.

achieved better customer waiting times at much lower
bandwidth costs. For instance, one of the most recent
protocols only requires six video channels to achieve a
customer waiting time of thirty seconds for a two-hour
video [7].

To achieve these excellent results, all recent broad-
casting protocols for video-on-demand utilize complex
transmission schedules that attempt to minimize the
amount of bandwidth required to broadcast each segment
of each video. We propose a different approach: rather
than attempting to minimize the amount of bandwidth
required to transmit all video segments, our Simple Fixed-
Delay Broadcasting (SFDB) protocol focuses its optimi-
zation efforts on the first segments of each video and
constructs the most efficient transmission schedule for
these segments. Similar segment-to-channel mappings are
then used for the remaining segments of the video ensur-
ing that these segments are transmitted in an efficient, if
not optimal, manner. The outcome of this procedure is a
much simpler broadcasting protocol that nevertheless
achieves customer waiting times comparable to those
achieved by much more sophisticated protocols.

2. PREVIOUS WORK

Earlier video distribution protocols attempted to reduce
server bandwidth either by batching together several
requests [1] or by accelerating the video playback rate of
new requests to let them catch up with previous transmis-
sions [3]. Viswanathan and Imielinski [10] proposed in
1996 a better solution. Their Pyramid Broadcasting
protocol required special customer set-top boxes (STBs)
(a) capable of receiving data at rates exceeding the video
consumption rate and (b) having enough buffer space to
store one hour of video data. This allowed the server to
distribute the different segments of each popular video
according to a deterministic schedule ensuring that no
customer would have to wait more than a few minutes.
Their original proposal has been followed by several more
recent schemes requiring less server bandwidth to achieve
the same customer waiting times. We will only mention
those protocols that are directly relevant to our work.

First Channel S1 S1 S1 S1
Second Channel S2 S3 S2 S3

Third Channel S4 S5 S6 S7

Figure 1. The first three channels for fast broadcasting

Juhn and Tseng's Fast Broadcasting (FB) protocol [4]
allocates to each video k data channels whose bandwidths
are all equal to the video consumption rate b. It then
partitions each video into 2k-1 segments, S1 to S2

k-1, of equal
duration d. As Figure 1 indicates, the first channel con-
tinuously rebroadcasts segment S1, the second channel
transmits segments S2 and S3, and the third channel trans-
mits segments S4 to S7. More generally, channel j with
1 ≤ j ≤ k transmits segments S2

j-1 to S2
j
-1.

When customers want to watch a video, they wait until
the beginning of the next transmission of segment S1.
They then start watching that segment while their STB
starts downloading data from all other channels. By the
time the customer has finished watching segment S1,
segment S2 will either be already downloaded or ready to
be downloaded. More generally, any given segment Si
will either be already downloaded or ready to be
downloaded by the time the customer has finished watch-
ing segment Si-1.

The Pagoda Broadcasting (PB) [5] protocol improves
upon the FB protocol by using a more complex segment-
to-channel mapping. As seen in Figure 2, the PB protocol
can pack nine segments into three channels while the FB
protocol can only pack seven segments. Hence the seg-
ment size will be equal to one ninth of the duration of the
video and no customer would ever have to wait more than
14 minutes for a two-hour video. Improved versions of
the protocol, among which, the New Pagoda Broadcasting
(NPB) [6] and the Recursive Frequency-Splitting (RFS)
[9] protocols, use more sophisticated schedules to outper-
form the PB protocol. As a result, the RFS can map 26
segments into four channels and achieve a maximum
customer waiting time equal to 1/26 of the duration of the
video, that is, slightly more than four minutes and half for
a two-hour video. Adding a fifth channel would allow the
server to partition the video into 73 segments and achieve
a waiting time of 99 seconds for a two-hour video [9].

None of these protocols require customers to wait for
any minimum amount of time before watching the video
of their choice. As a result, there is no point in requiring
customer STBs to start downloading data while customers
are still waiting for the beginning of the video. The
Fixed-Delay Pagoda Broadcasting (FDPB) protocol [7]
requires all users to wait for a fixed delay w before
watching the video they have selected. This waiting time
is normally a multiple m of the segment duration d. The
FDPB protocol uses this delay to stretch the reception of
the n segments of the video over a longer time interval.
Previous Pagoda protocols required segment Si to be

First Channel S1 S1 S1 S1 S1 S1
Second Channel S2 S4 S2 S5 S2 S4
Third Channel S3 S6 S8 S3 S7 S9

Figure 2. The first three channels for the PB protocol.

Subchannel 0 S1 S2 S3 S1 S2
Subchannel 1 S4 S5 S6 S7 S4
Subchannel 2 S8 S9 S10 S11 S12

Figure 3. The first channel for an FDPB protocol with m = 9 and
3 subchannels.

repeated at least once every i slots to ensure the continuity
of the video. With the FDBP protocol, segment S1 has to
be transmitted at least once every m slots to be always
received before the customer starts watching the video.
More generally, segment Si has to be transmitted at least
once every 1−+ im slots.

Figure 3 details the organization of the first channel of
a FDPB protocol requiring customers to wait for exactly
nine times the duration of a segment (m = 9). As we can
see, the channel is partitioned through time-division mul-
tiplexing into 3 subchannels, each occupying 1/3 of the
available slots. The first of these subchannels broadcasts
segments S1 to S3 ensuring that each segment is repeated
every 9 slots. The second subchannel broadcasts
segments S4 to S7 ensuring that each segment is repeated
every 12 slots. The third subchannel broadcasts segments
S8 to S12 ensuring that each segment is repeated every 15
slots. The same allocation process is repeated for the
subsequent channels, selecting each the optimal number of
subchannels. This allows the protocol to map 302
segments into four channels and achieve a deterministic
waiting time of 9/302 of the duration of the video, that is,
slightly less than four minutes for a two-hour video.
Adding a fifth channel would allow the server to broadcast
802 segments and achieve a waiting time of 80 seconds
for a two-hour video.

3. OUR PROTOCOL

We can draw two major conclusions from this brief
review of broadcasting protocols for video-on-demand.
First, fixed-delay protocols require significantly less
bandwidth than protocols only asking customers to wait
for the next occurrence of the first segment of the video to
achieve equal maximum waiting times. Second, the first
few segments of each video require much more bandwidth
than their successors. Consider for instance the case of a
FDP protocol with m = 9 broadcasting a video over five
channels. The first channel will broadcast the first 12
segments of the video leaving the four remaining channels
to broadcast the remaining 802 –12 = 790 segments of the

video. Hence 20% of the total bandwidth allocated to the
video will be used to broadcast less than 1.5 percent of the
video. This situation is not specific to the FDPB protocol.
Consider the much simpler FB protocol. It can broadcast
25 – 1 = 31 video segments over 5 channels, with
segments S1 to S7 being transmitted by the first 3 channels.
Hence, the first 7 segments of the video will occupy 60
percent of the total bandwidth, leaving only 40 percent of
the bandwidth to the remaining 25 segments even though
these segments represent 81 percent of the video.
These two observations suggest two important directions
for the design of new broadcasting protocols for video-on-
demand. First, fixed-delay broadcasting protocols should
be preferred to protocols only asking customers to wait for
the next occurrence of the first segment of the video. In
addition to utilizing the server bandwidth better, fixed-
delay protocols offer the advantage of being better suited
to the broadcasting of MPEG videos. Since these proto-
cols require that each and every segment of a video must
be completely received by the STB before the customers
start to watch it, they provide implicit forward buffering,
which will eliminate most of the bandwidth fluctuations
inherent to compressed video signal. Second, most, if not
all, our efforts should be dedicated to the optimization of
the segment-to-slot mapping of the first few video chan-
nels.

The Simple Fixed-Delay Broadcasting (SFPD) takes
these two principles to the limit. It partitions each video
into n segments of equal duration d = D/n where D is the
video length and requires all customers to wait for the
same fixed delay w = md before watching the video of
their choice. To optimize the segment-to-slot mapping of
the first video channel, it partitions it into √m subchannels
each occupying 1/√m of the channel bandwidth. Thus its
segment-to-slot mapping for the first channel is identical
to that of an FDPB protocol with the same m parameter.
Unlike the FDPB protocol, our new protocol partitions all
other video channels into the same number of subchannels
as the first channel instead of trying to find the optimal
number of subchannels for each channel.

Figure 4 describes in detail how our SFDB protocol
allocates video segments. The two input parameters of the
algorithm are the number m of segments the customer has
to wait and the number k of channels allocated to the
video. We first compute the number s of subchannels per
channel, which we round to the nearest integer. We then
start allocating segments to channels starting with the first
segment. Given that this segment must be repeated at
least once every m slots to be guaranteed to always arrive
in time, we figure that the first subchannel of the first
channel can broadcast at most ⎣m/s⎦ segments and allocate
segments S1 to S⎣m/s⎦ to that subchannel. We then continue
the same process with the remaining ks – 1 subchannels
observing that the number of segments that can be allo-
cated to a given subchannel is limited by the maximum
interval at which the lowest-numbered segment

Assumptions:
m is the number of segments customer has to wait
k is the number of video channels allocated to the video
s is the number of subchannels per channel
first [i, j] is the lowest-numbered segment broadcast by
subchannel j of channel i
last [i, j] is the highest-numbered segment broadcast by
subchannel j of channel i
n is the total number of segments into which the video will be
partitioned
na is the number of segments already assigned to a subchannel
Algorithm:
s ← round(√m)
na ← 0
for i from 1 to k begin
 for j from 1 to s begin
 first [i, j] ← na + 1
 last [i, j] ← na + ⎣(first [i, j] + m – 1)/s⎦
 na ← last [i, j]
 end
end
n ← na

Figure 4. How the SFDB protocol allocates video segments.

allocated to the channel must be repeated to guarantee it
will always arrive on time. So, if Sf is the lowest-
numbered segment to be broadcast by a given subchannel,
that subchannel will be able to broadcast ⎣(f + m – 1)/s⎦
segments. The customer waiting time will then be equal
to mD/n, where D is the duration of the video.

Table I details how an SFDB protocol with m = 9 allo-
cates its first six channels. As one can see, each channel
is subdivided into √9 = 3 subchannels. Segments are
allocated to subchannels in a purely sequential fashion
starting with the first subchannel of the first channel,
which has to broadcast segments S1 to S3 ensuring that
these three segments will be broadcast once every nine
slots.

There are several advantages to this simpler approach.
First, it greatly simplifies the protocol. Second, it makes
all subchannels interchangeable since they now have the
same bandwidth and are multiplexed in the same fashion.
This greatly simplifies the sharing of channels among
videos. Rather than having an integer number of channels
allocated to each video, we can now allocate some but not
all of the subchannels of a channel to a specific video. We
could have a given video broadcast on 4⅓ channels and

another slightly longer one on 4⅔ channels. As we will
see, the more regular structure of the protocol also makes
it easier to develop variants of the protocol limiting the
client bandwidth. The obvious disadvantage of our new
approach is that the SFDB protocol cannot map as many
segments in the same number of channels as the FDPB.

Table I. The first six channels for an SFDB protocol with m = 9

Channel Subchannel First
Segment

Last
Segment

1 S1 S3
2 S4 S7 C1
3 S8 S12
1 S13 S19
2 S20 S28 C2
3 S29 S40
1 S41 S56
2 S57 S77 C3
3 S78 S105
1 S106 S143
2 S144 S193 C4
3 S194 S260
1 S261 S349
2 S350 S468 C5
3 S469 S627
1 S628 S839
2 S840 S1121 C6
3 S1122 S1497

Recall that a FDPB protocol with m = 9 can broadcast
802 segments over 5 channels and achieve a waiting time
of 80 seconds for a two-hour video. As we can see in
Table I, an SFDB protocol with same value of m can only
broadcast 627 segments over the same number of chan-
nels. It will thus only achieve a waiting time equal to
9/627 of the video duration, that is, 103 seconds for the
same two-hour video.

Figure 5 compares the customer waiting times achieved
by the SFDB and the FDPB protocols with 4 to 7 channels
and selected values of m. All customer waiting times are
expressed in fractions of the video duration. Hence a
customer waiting time of 0.05 corresponds to a wait of
two minutes for a two-hour video. As we can see, the gap
between the performances of the two protocols narrows
when m increases from 2 to 100. In addition, an SFDB
protocol with a large value of m achieves lower customer
response times than a FDPB protocol with a small value
of m.

It would thus be tempting to assume that we could
achieve even lower customer waiting times by using even
larger values of m. This is not true as we would quickly
approach the theoretical lower bound for a fixed-delay
protocol using k video channels.
Consider a video of duration D and assume that all
customers are willing to wait w time units between the
time they have ordered the video and the time they can
start watching it. Let b represent the video consumption
rate and Δt a small time interval at a location t within the

video. Assuming that each customer STB starts
downloading video data from the moment the video is
ordered, the contents of this time interval will have to be
broadcast at a minimum bandwidth)/(wtb + where b is
the video consumption rate. Passing to the limit when Δt
goes to 0, we see that the minimum bandwidth required to
transmit the video is be given by

w

wDbdt
wt

bB
D +

=
+

= ∫ log
0min (1)

From this equation, we can also derive the minimum
waiting time wmin that can be achieved when the broad-
casting bandwidth is equal to k video channels, which is

1min −

= ke
Dw (2)

Figure 6 compares the customer waiting times achieved
by the SFDB protocol with those achieved by the Fast
Broadcasting (FB) and the Recursive Frequency-Splitting
(RFS) protocols. We selected the first protocol for its
simplicity and the second for its excellent performance.
In addition, the solid curve at the bottom represents the
theoretical minimum waiting time that we have just
derived. As in Figure 5, all customer waiting times are
expressed in fractions of the video duration. We can see
that our SFDB protocol always achieves lower customer
waiting times than the FB protocol. In addition it outper-
forms the RFS protocol for sufficiently large values of its
parameter m. The actual threshold was found to be m =
36.

Comparing the waiting times achieved by our SFDB
protocol with the minimum customer waiting times
derived from Equation 2, we can also see that we will
never be able to derive a protocol that would achieve
much lower waiting times than the SFDB protocol with a
sufficiently large value of m.

There is one last aspect of the SFDB protocol we have
to address, that is, its client storage requirements. To
derive those, we need to observe that a STB downloading
a video broadcast by the SFDB protocol will go through
three phases, namely, one during which it receives more
data than it consumes by displaying the video, a second
during which the data arrival rate is exactly equal to the
video consumption rate and a third during which the data
arrival rate will be lower than the video consumption rate.
To estimate the client storage requirements of the proto-
col, we need to measure the number of video segments
stored in the STB at any moment when the data arrival
rate is exactly equal to the video consumption rate. The
STB will enter that state when it has just terminated
receiving data from the first k – 1 channels and leave that
state when it stops receiving data from the first subchannel
of the last channel.

Consider the contents of the STB at the time it has just
terminated receiving data from the first k – 1 channels.
Let mlast designate the number of slots elapsed since the

0

0.02

0.04

0.06

0.08

0.1

0.12

2 3 4 5 6 7

Number of Channels

C
us

to
m

er
 W

ai
tin

g
Ti

m
e

SFDB m = 4
SFDB m = 9
SFDB m = 25
SFDB m = 100
FDPB m = 4
FDPB m = 9
FDPB m = 49
FDPB m = 100

Figure 5. Compared customer waiting times of the SFDB and the FDPB protocols for different values of m.

0

0.02

0.04

0.06

0.08

0.1

0.12

2 3 4 5 6 7

Number of Channels

C
us

to
m

er
 W

ai
tin

g
Ti

m
e FB
SFDB m = 4
SFDB m = 9
RFS
SFDB m = 25
SFDB m = 100
Theoretical Minimum

Figure 6. Compared customer waiting times of the SFDB, the FB and the RFS protocols.

time the customers ordered the video and slast represent the
index of the highest-numbered segment broadcast by
channel Ck–1. At that time, the customer STB will contain
all the slast – (mlast – m) segments it has received from the
first k – 1 channels but not yet played and all the mlast
segments it has already received from the last channel as

none of them has already been played. The total number
of segments in the customer STB will thus be equal to

Nmax = slast – (mlast – m)+ mlast = slast + m
Returning to Table I, we can see that the highest

numbered segment broadcast by channel C5 is segment
S627. We can infer that a SFDB protocol broadcasting a

video over 7 channels with a customer waiting times equal
to 9 times the duration of a segment will store in the
customer STB up to 636 segments, that is, 636/1497 or
42.5 percent of the video size.

We found that the client storage requirements of the
protocol were a decreasing function of both the number k
of channels assigned to the video and the number m of
segments the customers had to wait before watching the
video they had ordered. The maximum customer storage
requirements we observed were 60 percent of the video
for k = m = 2, a combination that we are not likely to
encounter as it provided a waiting time equal to 27 percent
of the video duration. The client storage requirements for
more reasonable values of k, that is, values of k providing
waiting times not exceeding 5 percent of the duration of
the video, remained below 47 percent of the video size.
These values are comparable to those achieved by other
broadcasting protocols for video-on-demand.

4. LIMITING THE CLIENT BANDWIDTH

Like most other broadcasting protocols, our SFDB
protocol assumes that all customer STB can and will
simultaneously receive data from the k channels on which
the various segments of the video are broadcast. This
requirement complicates the design of the STB and
increases its cost.

One possible approach to this problem is to restrict the
STB receiving bandwidth to a given multiple k' < k of the
video consumption rate. For instance, the Skyscraper
Broadcasting protocol [2] never requires the customer
STB to receive data from more than two channels at the
same time. This approach has a major drawback, namely
a very significant increase in the server bandwidth
required to distribute the videos. Hence, the potential
savings in STB costs achieved by skyscraper broadcasting
cannot be achieved without bigger video servers and a
costlier network infrastructure.

We propose here a less radical implementation of the
same concept, namely, reducing the client bandwidth
requirements of an existing protocol to two or three
concurrent channels. As we will see, this approach will
result in very moderate increases of the server bandwidth.

Consider a modified FDPB protocol with m = 9 and 3
subchannels per channel that restricts its client bandwidth
to 2 channels. As shown in Table II, the segment-to-
subchannel mappings of the two first channels are
unchanged. The first mappings to be affected are those of
channel C3, because the STB must now wait until it has
received all data from the first subchannel of channel C1
before starting to receive data from the first subchannel of
channel C3. Since the first subchannel of channel C1
broadcasts 3 segments and occupies 1/3 of the slots of its
channel, it will repeat itself every 9 slots. Hence the STB
will have to wait exactly 9 slots before starting to receive
data from the first subchannel of channel C3. The lowest-

Table II. The first six channels for a modified SFDB protocol
with m = 9 limiting its client bandwidth to 2 channels

Channel Subchannel First
Segment

Last
Segment

1 S1 S3
2 S4 S7 C1
3 S8 S12
1 S13 S19
2 S20 S28 C2
3 S29 S40
1 S41 S53
2 S54 S69 C3
3 S70 S90
1 S91 S116
2 S117 S148 C4
3 S149 S188
1 S189 S237
2 S238 S299 C5
3 S300 S375
1 S376 S470
2 S471 S588 C6
3 S589 S735

numbered segment broadcast by that subchannel is
segment S41. With the original SFDB protocol, it had to be
broadcast at least once every 41 + 9 – 1 = 49 slots. Since
the STB will now have to wait 9 slots before receiving
data from the subchannel broadcasting segment S41, that
segment will now have to be broadcast at least once every
49– 9 = 40 slots. Similarly segment S42 will now have to
be broadcast at least once every 41 slots instead of every
50 slots and so on. Since all subchannels occupy exactly
1/3 of the slots of their channel, the first subchannel of
channel C3 will be able to broadcast exactly ⎣40/3⎦ = 13
segments, that is, segments S41 to S53. The same process
will be applied to the second subchannel of channel C3,
observing that the STB will not be able to receive data
from this subchannel until it has finished receiving data
from the second subchannel of channel C1. After that, it
will be repeated for the third subchannel of channel C3,
then to all subchannels of channel C4 and so on. The out-
come of this procedure is summarized in Table II.

Figure 7 presents a more general description of the
algorithm used to map the segments into subchannels.
The algorithm has three inputs, namely, the number m of
segments the customer has to wait before starting to watch
the video, the number k of video channels allocated to the
video, and the number k’ of video channels the client STB
can receive at the same time.

Assumptions:
m is the number of segments customer has to wait
k is the number of video channels allocated to the video
k’ is the number of channels the client STB can receive at the
same time
s is the number of subchannels per channel
delay[i, j] is the number of slots the client must wait before
receiving data from| subchannel j of channel i
first [i, j] is the lowest-numbered segment broadcast by
subchannel j of channel i
number[i, j] is the number of segments broadcast by subchannel
j of channel i
last [i, j] is the highest-numbered segment broadcast by
subchannel j of channel i
n is the total number of segments into which the video will be
partitioned
na is the number of segments already assigned to a subchannel
Algorithm:
s ← round(n)
na ← 0
for i from 1 to k begin
 for j from 1 to s begin
 delay[i, j] ← 0
 end
end
for i from 1 to k begin
 for j from 1 to s begin
 first [i, j] ← na + 1
 number[i, j] ← ⎣(first [i, j] + m – 1 – delay[i, j])/s⎦
 last [i, j] ← na + number[i, j]
 na ← last [i, j]
 delay[i+k’, j] ← delay[i, j] + s×number[i, j]
 end
end
n ← na

Figure 7. How a modified SFDB protocol limiting its client
bandwidth to k’ video channels allocates video segments.

Such a simple algorithm would not have been possible
with the FDPB protocol because FDPB partitions each
channel into a different number of subchannels. One
possible solution [7] is to require the STB to wait until it
has received all the data transmitted by channel C1 before
allowing it to receive any data from channel C3. This
introduced additional delays and produced less than opti-
mum segment to subchannel mappings. A more recent
algorithm [8] achieved better segment to subchannel
mappings but required complex adjustments in the number
and bandwidths of the subchannels of all high-numbered
channels, starting with channel C3. These adjustments are
not required with our SFDB protocol because all
subchannels have the same bandwidth.

Figure 8 compares the customer waiting time achieved
by a modified SFDB protocol limiting its client bandwidth
to two video channels with those achieved by the original
SFDB protocol, the FDPB and the Skyscraper Broadcast-
ing protocol. We selected an “unconstrained” version of
the Skyscraper Broadcasting that does not place any
restriction on the number of segments that are broadcast
by each channel because it achieves shorter customer
waiting times than versions of the protocol restricting that
number to a maximum width W. As on previous graphs,
customer waiting times are expressed in fractions of the
video duration while bandwidths are expressed in video
channels. We can immediately see that the modified
SFDB protocol achieves much lower customer waiting
times than a Skyscraper Broadcasting protocol using the
same number of video channels. For instance, a modified
SFDB protocol with m = 9 that limits its client bandwidth
to two channels can achieve a lower customer waiting
time with 5 channels than a Skyscraper Broadcasting
protocol requiring 7 channels. Increasing the parameter m
of the SFDB protocol results in even lower waiting times.

We should mention than the Skyscraper Broadcasting
protocol has the dual objective of limiting both the client
bandwidth and the client storage requirements of the
protocol while our modified SFDB protocol only limits its
client bandwidth. It should be relatively easy to limit the
storage requirements of any SFDB protocol by limiting
the number of segments transmitted by each individual
subchannel. We did not pursue that avenue as the
continuous increase of memory and disk drive storage
capacities make that objective less important today than it
was when the Skyscraper Broadcasting protocol was
introduced.

5. CONCLUSION

We have presented a simple broadcasting protocol for
video-on-demand that performs as well as much more
sophisticated protocols. This excellent performance was
due to two factors. First, we selected a fixed-delay policy
requiring all customers to wait for the some amount of
time. Second, we partitioned the first video channel into
the optimal number of subchannels for each customer
waiting time to segment duration ratio m. To keep the
protocol as simple as possible, we did not attempt to opti-
mize the remaining video segments in a similar fashion
and decided instead to partition all channels into the same
number of subchannels. Despite its simplicity, our Simple
Fixed-Delay Broadcasting (SFDB) protocol achieves
waiting times comparable to those of much more sophisti-
cated broadcasting protocols, such as the Fixed-Delay
Pagoda Broadcasting protocol. We have also shown how
the more regular structure of the protocol made it much
easier to develop variants of the protocol limiting the
client bandwidth.

0

0.02

0.04

0.06

0.08

0.1

0.12

3 4 5 6 7

Bandwidth

C
us

to
m

er
 W

ai
tin

g
Ti

m
e

Skyscraper
SFDB m=9 k'=2
SFDB m=9
SFDB m=100 k' = 2
SFDB m=100
FDPB m=100

Figure 8. Compared customer waiting times of a modified SFDB protocol limiting the client bandwidth to two channels

with those achieved by, the original SFDB protocol, the FDPB and the Skyscraper Broadcasting protocols

.

We believe we can derive two general conclusions
from this study. First, broadcasting protocols that require
their customers to wait for a fixed delay before watching
the video of their choice are inherently more efficient than
protocols that only require their customers to wait for the
next broadcast of the first segment of the video. They
should thus be our first choice. Second, all protocol opti-
mization efforts should focus on reducing the bandwidth
required to distribute the first few segments of the video
as these segments are the most costly to distribute.
Conversely, there is little incentive for developing better
techniques for distributing the remaining segments of the
video in the most efficient fashion as any reasonable solu-
tion will reach satisfactory results.

More work is still needed to evaluate how our SFDB
protocol could handle video s in MPEG format and how
the minimum frequencies at which each individual
segment of the video should be adjusted to reflect the bit-
rate fluctuations inherent to any compressed video signal.

REFERENCES

[1] A. Dan, D. Sitaram, and P. Shahabuddin. Dynamic batch-
ing policies for an on-demand video server. Multimedia
Systems, 4(3):112–121, June 1996.

 [2] K. A. Hua and S. Sheu, Skyscraper broadcasting: a new
broadcasting scheme for metropolitan video-on-demand
systems. Proc. SIGCOMM 97 Conf., pp. 89–100, Sept.
1997.

[3] L. Golubchik, J. Lui, and R. Muntz. Adaptive piggyback-
ing: a novel technique for data sharing in video-on-demand
storage servers. Multimedia Systems, 4(3): 140–155, 1996.

[4] L. Juhn and L. Tseng. Fast data broadcasting and receiv-
ing scheme for popular video service. IEEE Trans. on
Broadcasting, 44(1):100–105, March 1998.

[5] J.-F. Pâris, S. W. Carter and D. D. E. Long. A hybrid
broadcasting protocol for video on demand. Proc. 1999
Multimedia Computing and Networking Conf., pp. 317–
326, Jan. 1999.

[6] J.-F. Pâris. A simple low-bandwidth broadcasting protocol
for video-on-demand, Proc. 8th Int. Conf. on Computer
Communications and Networks, pp. 690–697, Oct. 1999.

[7] J.-F. Pâris. A fixed-delay broadcasting protocol for video-
on-demand, Proc. 10th Int. Conf. on Computer Communi-
cations and Networks, pp. 418–423, Oct. 2001.

[8] K. Thirumalai, J.-F. Pâris and D. D. E. Long. Tabbycat: an
inexpensive scalable server for video-on-demand. Proc.
2003 IEEE Int. Conf. on Communications, pp. 896–900,
May 2003.

[9] Y.-C. Tseng, M.-H. Yang and C.-H. Chang. A recursive
frequency-splitting scheme for broadcasting hot videos in
VOD service. IEEE Trans. on Communications,
50(8):1348–1355, Aug. 2002.

[10] S. Viswanathan and T. Imielinski. Metropolitan area
video-on-demand service using pyramid broadcasting.
Multimedia Systems, 4(4):197–208, 1996.

	Abstract
	1. INTRODUCTION
	2. PREVIOUS WORK
	3. OUR PROTOCOL
	4. LIMITING THE CLIENT BANDWIDTH
	5. CONCLUSION

