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Abstract

Air Quality Forecasting (AQF) is a new computational discipline that attempts to predict atmospheric
pollution, especially high levels of ozone. The application is complex, incorporating weather models,
emissions processing and chemical transport models at multiple levels of refinement; it poses substantial
computational and storage requirements. Deployment in a grid is one way in which timely and reliable
production of forecast results may be ensured. We have extensively studied an AQF application based
upon a community Air Quality model in order to determine its development and execution requirements
as well as the ability of current grid technology to satisfy all phases of preprocessing, model execution,
and storage and retrieval of observational and generated simulation data. A production-quality campus
grid is being built at the University of Houston using up-to-date grid software to support this application.
In this chapter, we discuss AQF and its computational needs,current grid-building software, and our
experiences using it to build the campus grid. We describe the shortcomings of existing grid middleware
that were identified during the course of this work and present our efforts to augment available software
and to overcome some of these problems, with a focus on the user environment, resource management
and authentication issues.
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I. INTRODUCTION

Air Quality Forecasting (AQF) [19] is a recent discipline that addresses important air pollution problems and
attempts to provide a basis for dealing with them. With the increasing maturity of Air Quality Models, air quality
forecasting services are beginning to be established. We participate in an effort to build such a service, with the
goal of providing timely, reliable forecasts of air qualityfor the Houston-Galveston region and for several other
regions in the South Central USA that have encountered problems with air quality in the recent past. On-going
work at the University of Houston (UH) aims to create, test and deploy an AQF application [49] as well as to
establish a suitable development and deployment environment. The application cycle places substantial demands on
this execution environment. It makes intensive use of sophisticated numerical tools, requires high compute power
for the numerical simulation of meteorological and chemical processes, and entails the transfer, storage and analysis
of a huge amount of observational and simulation data [9].

The recent emergence of computational grid technology [22], and middleware tools to enable the creation of such
grids, provides a potential strategy for meeting the computational and storage needs of AQF codes. Grid technology
permits the creation of virtual organizations [25] that provide reliable access to (potentially) widely distributed
computing resources and enables seamless resource sharingamong groups of institutions and between individuals.
Grid software enables applications to exploit computational and information resources that may be owned and
managed by distinct organizations with diverse usage policies. Current grid-building initiatives have a variety of
goals, from targeting the needs of a specific application or class of applications to maximizing system throughput
across an organization or group of institutions. Users withlarge-scale problems, such as AQF applications, may
exploit multiple distributed high performance computing resources in a grid environment to run individual, complex
jobs.

In a close collaboration between AQF researchers and Computer Scientists at UH, a customized computational
grid environment is being created to fulfill the needs of our air quality forecast project. The work performed
builds upon results of the EZ-Grid Project [12], which researched and developed grid infrastructure for higher-level
interaction with grids by end users and system administrators. It is supported by Sun Microsystems as part of a
Center of Excellence in Geosciences based at UH. In this chapter, we discuss the state of the art in Air Quality
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Forecasting, report upon our efforts to construct a production-quality campus grid [13] at UH that supports the
needs of the AQF application and on our work to develop the associated portal environment. We explain the role
played by existing grid middleware (especially the Globus toolkit [21], which is the de-facto standard middleware
for grids), the need for additional infrastructure to deal with application-specific workflow requirements, and our
effort to simplify the use of the grid, with a focus on authentication issues.

The remainder of the chapter is organized as follows. Section 2 describes current efforts to provide Air Quality
Forecasting services and gives details on the on-going workat UH, which focuses on the provision of such services
for the Houston-Galveston region of Texas. In Section 3, we briefly review campus grid technology including Globus,
describe the UH Campus Grid and the EZ-Grid portal, a light-weight grid user/administrator interface deployed
on it. Section 4 analyzes the specific needs of the AQF projectwith respect to grid deployment. Our evaluation
of existing software with respect to these needs, and our efforts and experiences in realizing a production-quality
campus grid for air quality prediction in the Houston area are discussed in detail in Section 5. Finally, we present
our conclusions and indicate future work in Section 6.

II. COMPUTATIONAL A IR QUALITY FORECASTING

Physical and chemical processes in the atmosphere are complex, coupled and occur on a wide range of scales. Air
Quality Modeling studies such interactions, including theformation and dispersion of a variety of species, and air
quality forecasting attempts to predict the occurrence of ozone and other relevant sources of air quality problems.
Multi-scale models are needed to model and perform forecasting in urban areas [92]. An Air Quality Model (AQM)
[55] must be coupled with a high-resolution weather forecast, as well as pollutant emission processing, to produce
AQF results. It is therefore a major computational challenge to achieve the required high resolution results while
producing model output in a timely fashion. Recently, the U.S. Weather Research Program, National Oceanic and
atmospheric Administration (NOAA) [80] and EPA [60] announced that air quality forecasting is one of the key
research areas that require further operational developments [19]. Several AQF activities have been initiated by
these and other local entities.

As the leading organizations for the establishment of operational air quality forecasting services, the NCEP [77]
/NOAA and NERL [79] /EPA (National Exposure Research Laboratory) are collaboratively integrating the EPA’s
Community Multiscale Air Quality (CMAQ) model [8][10] and NCEP’s ETA weather model to provide regional air
quality forecasting for the Northeastern U.S.A. Unfortunately, there are no current plans to provide similar regional
air quality forecasting services for other parts of the US. Yet there is a need to establish air quality forecasting
operations for urban areas that are subject to air quality problems. In Texas, the Houston-Galveston, Beaumont-Port
Arthur, and Dallas-Fort Worth areas are all classified as Federal ozone non-attainment areas, i.e. have violated
national air quality standards. Houston and Dallas are among the largest cities in the nation, and prediction of
ozone violations in these local areas is urgently needed.

A. AQF Efforts at the University of Houston

The Institute for Multidimensional Air Quality Studies (IMAQS) at the University of Houston (UH) is a multi-
disciplinary center involving environmental scientists,chemists, mathematicians and computer scientists including
ourselves, that analyzes the air quality in the Houston areain order to provide solutions for local air quality
problems. It leads the AQF project, which aims to establish air quality forecasting operations for the three ozone
non-attainment regions in Texas.

To achieve this, IMAQS is building an integrated computational model for regional and local air quality forecasts
that is composed of three subsystems: the PSU/NCAR MM5 mesoscale weather forecast model [27], the Sparse
Matrix Operator Kernel Emission System code (SMOKE) [1], and EPA’s CMAQ chemical transport model. These
components may execute within multiple heterogeneous computing environments, with the start time of each module
dependent on the completion of one or more prior modules. Initial meteorological conditions are provided by the
daily ETA forecast analysis, the availability of which thuslimits the starting time for the forecast run. In order
to achieve the desired results, a very high resolution limited area weather forecast must be computed over the
regions of interest. This is enabled by running a sequence ofMM5 weather models with increasing resolution
and decreasing geographical boundaries. The lower resolution model results provide initial boundary conditions for
higher resolution regional and local model runs, as well as their periodic refreshment. Therefore, meteorological,
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Fig. 1. Workflow Detail of AQF Application
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Fig. 2. AQF Execution Across Institutions

emission inventory, air quality monitoring and model simulation data need to be transferred repeatedly among the
several modeling subsystems that are part of the overall application. The executables may potentially execute on
different platforms (parallel or sequential), possibly atdifferent geographic locations, so long as output is reliably
transferred between them. Finally, in addition to a timely broadcast of daily model output, the results of individual
runs must be stored and made available to researchers and state and local officials to study the patterns of air
quality and its relationship to weather conditions and emission scenarios. Fig 1 illustrates the workflow of the
nested forecasting operation for the output of an air quality forecast over a single region of interest. In the diagram,
each rectangle represents an executable and each arrow indicates the flow of data. Output is produced hourly, so
that after one executable has begun to produce data, its successors in this workflow may begin their computation.
The 36km grid provides coarse forecast data over a large areaof the earth’s surface (in our case, the continental
USA), the 12km grid provides data across a portion of this area (here, the south central USA), and the 4km grid
forecasts air quality across a smaller geographic region ofinterest contained within the area covered by the 12km
grid, and very detailed local topographical information. Afull computation to forecast air quality in an urban area
requires an additional level of refinement based upon a 1km grid.

The goal of the AQF project is to forecast air quality in the three urban regions of interest in Texas. Note that it is
possible to reduce the amount of computation required when performing air quality forecasts for multiple geographic
regions that are ”nearby”. Fig 2 shows how three institutions might each perform local forecasts, whereby only one
of them completes an entire AQF run. A second institution is able to exploit the output of the 36km run and a third
institution computing a forecast in an area that is covered by the same 12km grid need only begin computation at



4

the 4km grid level. Longer-term goals are to extend the work described here in order to enable local entities to
perform their own forecast, but to reduce the amount of overall computation by exploiting results in the manner
indicated. A multi-institution computational grid is expected to provide the computational infrastructure for this
application cycle.

III. C AMPUS GRIDS AND THE EZ-GRID PORTAL

The termcampus grid is used to denote the sharing of computational resources across an organization such as
a university, where the resources are often distributed among different departments and buildings and administered
by different groups. They are typically used to solve large problems in science and engineering. In contrast to
multi-organizational wide area grids, in such a setup thereis the potential for making organizational decisions on
deployable infrastructure, procedures, account naming and granting mechanisms, security and operational policies,
which is likely to facilitate resource sharing. In additionto the coordination of system administration efforts, it may
be possible to establish an organization-wide approach to providing and monitoring essential components, such
as the network infrastructure, across the entire grid. Somecampus grids are essentially collections of computer
hardware that share a single file system, e.g. via NFS. Increasingly, however, such campus grids do not rely on
shared files but employ some or all of the functionalities of the Globus toolkit [23] to enable the exploitation of
resources across several (sub)domains of the Internet. Several research institutions including our own are early
adopters of this approach [65][67][75][93].

The Globus project was instrumental in developing protocols and services for constructing grids. It has imple-
mented and freely distributed grid middleware tools for security, resource management, information handling and
data transfer.

• Grid Security Infrastructure (GSI) [24] for establishing agrid user’s identity. As an implementation of the
security protocol based on public key cryptosystems [85], Globus GSI supports services such as single sign-on
(so that a user need only log in once to a grid), and credentialdelegation and mapping. With these, a user’s
access privileges may be delegated to processes and grid-wide user identities are associated with resource-
specific identities.

• Globus Resource Allocation Manager (GRAM) for grid-wide resource management [17][18]. The GRAM
protocol allows the users to securely make job submissions and pass jobs to the appropriate local scheduler
(or job launcher) for execution. GRAM employs a custom Resource Specification Language (RSL) [88] based
on XML [61] to express job requests.

• Monitoring and discovery services (MDS) [16] to derive and provide job and grid-related information. MDS
enables the user to obtain details of available hardware andsoftware resources, and to determine their status
and availability. This tool is based on the Lightweight Directory Access Protocol (LDAP) [74] for saving,
managing and requesting information.

• GridFTP [2] for distributed data access across heterogeneous date resources [15]. Extensions to the standard
File Transfer Protocol [62] have been implemented for high-performance data access in grids. Globus Access
to Secondary Storage (GASS) [5] tools also provide data transfer with transparent caching.

The Globus Toolkit has undergone several changes since its first release. One of the most significant of these was
the move towards a service-based instantiation, based uponthe Open Grid Service Infrastructure (OGSI) developed
by the Global Grid Forum [83]. These changes were reflected inGlobus Toolkit v3, or GT3, which was released
in July 2003. The latest changes evolve the Globus Toolkit toward the Web Services Resource Framework (WSRF)
[82]. The WSRF proposal brings OGSI concepts more into line with Web Services. Globus Toolkit v4, or GT4,
is slated to appear sometime in early 2005 and will introducesupport for WSRF. Although recent revision and
refining of basic grid protocols and standards by the Global Grid Forum [63] aim to define grid services that adhere
to web-service specifications, the functionality providedby the Globus tools remains essential in a grid environment
and continues to be provided in new releases of Globus.

A. The UH Campus Grid

Several major research activities at UH, including AQF, require access to considerable computational power and,
in some cases, large amounts of storage. To accommodate manyof these needs locally, a decision was made to
create and operate a campus-wide grid that combines centralresources at the university’s HPC Center (UHHPC)
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with departmental clusters. In addition to providing an infrastructure for launching the various components of
AQF runs, other applications in such disciplines as chemistry, physics and engineering can be fully and securely
integrated into the same grid architecture, resulting in a computational environment with a richer set of resources
than otherwise locally possible.

The campus grid currently consists of a heterogeneous cluster of Sun SMPs, a Beowulf cluster and an SGI
visualization system, with 9 TB storage, at UHHPC, a clusterof Sun SMPs in Computer Science and several Sun
workstations and Linux clusters operated by the Math Department and the Geophysics Department. The AQF effort
has access to two additional Myrinet-based 64 node Intel clusters and 5 TB storage for experimentation. This grid is
available to a broad cross-section of faculty and is deployed for both research and teaching. The facility is heavily
utilized, with high average waiting times in the queue for submitted jobs.
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Fig. 3. UH Campus Grid’s Initial Setup

Each resource in the campus grid is locally administered. Sun Grid Engine (SGE) has been installed to manage
the resources within the individual administrative domains. Inter-departmental security is enabled via the certificate-
based authentication mechanisms provided by the Globus toolkit, according to which the identities of users and
resource are verified based on their public keys and the associated certificates. Certificates must be issued by a
trusted certificate authority. UHHPC serves as the certificate authority in our campus grid and is also responsible for
granting grid accounts to faculty and researchers across campus. Individual departmental resources are configured
to accept only these certificates in order to protect them from unauthorized access by non-accredited users. The
initial configuration of the UH campus grid is illustrated inFig 3.

B. EZ-Grid Portal for UH Campus Grid Services

It is a daunting task for many application scientists to interact with grids using the interfaces supplied by Globus.
One goal in the design of our campus grid environment is to make it as easy as possible for users to interact with
the grid services provided. EZ-Grid [14] is an on-going project that focuses on making it easier and more efficient
for application scientists to use grids. EZ-Grid is a light-weight, freely available implementation of a web-based
portal for ubiquitous access to grid functionalities. The software is very small in size and exhibits minimal external
software dependencies, while providing a convenient interface to all functionalities of the Globus toolkit, including
security, resource information, data management and job submission services. The Globus Java CoG Kit [32][33]
has made it relatively easy for us to access Globus functionality. The portal classes consist of a set of portal services,
implemented as Java Servlets [71], and a credential server;they can execute on any web server that supports Java
Servlets. The system architecture, showing the relationship of EZ-Grid to other middleware, is shown in Fig 4.
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Fig. 4. EZ-Grid Software Architecture

The initial version of EZ-Grid provided the following majorfunctions to a grid user:

• Grid authentication: Globus proxy creation and managementusing GSI and X.509 certificates. This allows the
user to seamlessly establish his or her identity across all campus grid resources and mutually authenticate with
them.

• Resource and operational information: Viewable information on status of grid resources, with static attributes
such as operating system version and CPU count, and dynamic attributes such as CPU loads and current length
of job queue. Users can check queue availability, or the status of their submitted jobs. Additional EZ-Grid
specific information includes application profiles (metadata about user applications) and job execution histories.

• Job specification and submission: the GUI enables the user tospecify a job and its requirements, including
the resources needed for its execution, and to supply information to the target resource management system.
Automated translation of these requirements into RSL and subsequent job submission via GRAM are supported
by the portal.

• Job management: Storage and retrieval of relevant application profile information, history of job executions
and related information. Application profiles are metadatato characterize applications that can be composed
by the user.

• Data handling: Users can transparently authenticate with and browse remote file systems of the grid resources.
Data can be securely transferred between grid resources using the GSI-enabled data transport services such as
Grid FTP.

In order to complement the static resource information thatis standard in a Globus-based environment with
queue configuration information and dynamic queue status, interfaces were developed with the local resource
management systems. Our environment primarily uses Sun Grid Engine (SGE) [91] to manage the workload; it
provides a relatively straightforward set of commands thatenable us to derive the required information. Users can
thus check the status of their jobs, the load on the individual resources and queue availability. Additional information
provided includes application profiles (metadata about applications) and user-specific job execution histories.

IV. REQUIREMENTS FOR AGRID-ENABLED AQF

Our campus grid and EZ-Grid portal software were tested as a part of student coursework [64] and by graduate
students engaged in computational science throughout the university. It has been used for the execution of a variety
of jobs. User feedback helped improve the software, and in the course of its deployment, we have gained valuable
experience of grid challenges facing both users and administrators. However, until now EZ-Grid has been used to
run jobs consisting of a single executable. In order to support the AQF project’s goal of producing reliable, timely
and accurate air quality results using resources across ourcampus grid, more work was needed. Such a complex
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application poses a number of additional challenges in terms of both the functionality and reliability of our campus
grid environment.

The AQF application requires the execution of multiple limited area weather models on increasingly smaller, but
more closely meshed, domains in conjunction with the chemical model. It also relies on global weather data that
is automatically retrieved each day. In order to support execution of the entire application, a computational grid
environment must enable the specification of the complete job including the interactions between its various com-
ponents; it must allow for the automated retrieval of globalweather data and subsequent initiation of preprocessing,
must start the weather model once the initial data set is ready, and be able to launch other executables when the
corresponding input data has been produced, according to the application cycle previously described.

Software is thus needed to enable a complete description of the application and its execution cycle, to regulate its
use (including such things as determining which users may configure aspects of the different codes), for scheduling
the individual executables, for transparently transferring files between machines according to the workflow, and for
monitoring the state of the on-going computation and responding to performance (and other operational) problems.

In the course of this requirements analysis, we collaborated closely with the AQF application scientists in order to
better understand their specific needs and ensure that our revisions meet them, as well as with system administrations
in order to understand the challenges involved in maintaining grids and dealing with different kinds of users. We
further investigated the major impediments to grid-enabling our AQF applications. The outcome was a refined set
of requirements and a plan for the development of a more comprehensive environment to support the AQF project
lifecycle.

A. Workflow Requirements

During the course of execution of the AQF application, terabytes of data (meteorological data, emissions inventory
data, air quality monitoring data, and air quality simulation output) need to be transferred among the modeling
subsystems that may run on different computer platforms (parallel or sequential) at different physical locations (on
campus or state-wide). Even within each subsystem, a job will be accomplished via the cooperation of different
modules, potentially executing on different machines. Forexample, the MM5 weather forecasting system provides
meteorological data for the Air Quality Modeling tools. Butin order to prepare the data for input to the AQF
subsystem, the input data for MM5 itself must be obtained, preprocessed to create the initial conditions, the
simulation performed and post-processing tasks carried out. This is a cumbersome process that typically requires
the use of scripting languages or human control.

AQF tasks include running MPI jobs on hundreds of processors, transferring terabyte-sized files to visualization
servers at different sites, and archiving large data sets tomass storage. Support is needed to graphically define a
complex sequence of tasks that couple forecasting, emissions processing, and chemical transport simulation. AQF
team members require a graphical environment for specification of the workflow of a job being submitted, as well
as a workflow language that permits expression of the job’s dependencies for co-scheduling.

Workflow systems are needed to manage complex jobs such as this that consist of multiple executables and
dependencies between them. Without this, AQF execution is managed using shell scripts that are platform-dependent
and do not provide mechanisms for data communication between dependent activities. Challenges to support for
workflow in a grid environment include the existence of multiple administrative domains and the dynamic nature
of grid resources. Scientific applications with complex workflow such as AQF may have needs that are specific to
the scientific domain. Moreover, large-scale codes typically require at least some of the following:

• Support for very large datasets
• Support for adaptation to changes in the environment (especially where resources can dynamically change)
• Hierarchical execution, with sub-workflows created and destroyed when necessary
• Execution of large number of jobs with varying parameters
• Monitoring and dynamic control of workflow execution

B. Requirements for Grid Metascheduling

Grid metascheduling is the process of making scheduling decisions involving resources over multiple adminis-
trative domains. One of the primary differences between a grid scheduler and a local resource scheduler is that
the Grid scheduler does not own the local resources and therefore does not have control over them. The grid
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scheduler must make best-effort decisions and then submit jobs to the resources selected, generally acting as if it
were the user. Furthermore, the grid scheduler does not havecontrol over all of the jobs submitted to the local
resource scheduler, so decisions that trade off one job’s access for another’s are very hard to make in the global
sense. This lack of ownership and control is the source of many of the problems that need to be solved in this
area. For the AQF application, a job consists of several dependent tasks and placing these tasks on the appropriate
resources across a grid is much more complex than schedulinga single-executable job. Also the scheduling decision
must ensure system-wide Quality-of-Service: in our case, this means we must make sure the prediction results are
generated in a timely fashion. In addition to the general challenges of metascheduling, specific requirements for
AQF metascheduling include:

• Workflow orchestration: A submitted AQF job is not a single task or executable that can be scheduled to
one single resource, but includes tasks that depend on each other in a complex fashion, and also on the file
transfer between grid resources. The metascheduler cannotschedule the tasks one by one onto resources once
the dependencies are resolved. Instead, the metaschedulershould make a one-time assignment of tasks to
resources and possibly ask for advance reservation from thelocal resource manager for some tasks. When
launching each task, the metascheduling system also has to make sure that the workflow order of AQF tasks
is correctly maintained.

• Time constraints: The AQF application has a recurrent, i.e., typical, mode of operation and thus identifiable
typical requirements. Each day in our current development mode, AQF starts execution at 15:30p.m. and
completes around 7:00a.m. the next day. The operational mode will require much faster completion time but
will also be predictable in terms of required start and end times. The metascheduling must guarantee these.
When a task is submitted by the metascheduler to the local resource manager, the metascheduler relinquishes
control of the job and the job may potentially be held in the queue of the local resource manager for a long
period of time before being launched. Metascheduling solutions should be carefully designed with this in mind,
and wherever possible, utilize deadline or priority scheduling options that ensure a job’s timely initiation.

• Data handling issues: AQF applications download and generate large amounts of data each day. Proper handling
of this data is necessary if an AQF job is to be successfully distributed across grid resources for execution.
Efficient data movement between resources, without unnecessary waits, strategies and tools for management
and archival of this large and growing set of data, must all beprovided.

C. Grid Security Requirements

It is hard to meet all security needs in a grid while remainingtransparent for the user. General problems of
ensuring system integrity in a networked environment must be dealt with; data communicated between grid resources
must not be tampered with. The relatively straightforward task of logging in to a resource is complicated by the
need for generality and transparency of authentication. Grid applications such as AQF may spawn processes that
communicate with one another across multiple administrative domains: to clearly associate all resource requests
and utilization with an accredited user, a single grid-wideidentity is needed, along with a means for deriving
local resource-specific user identities, and corresponding access rights, from that grid identity. Since grid jobs may
dynamically acquire new resources, for instance to satisfyperformance faults, grid authentication strategies must
also provide for the delegation of rights to a remote process. To protect against their potential abuse, they should
expire after an associated time period. Any resource request made on behalf of the user after this time period thus
requires a fresh delegation. Solutions must allow for a variety of different site policies with regard to security, and
need to interoperate with a variety of pre-existing local authentication schemes.

The Globus toolkit’s grid security infrastructure is almost universally used to provide authentication in grid envi-
ronments, including ours (cf. Section III-A). It provides the services described above. Users mutually authenticate
with resources on the grid and securely spawn and manage remote computations using X.509 certificates. GSI is
primarily based on public key infrastructure (or asymmetric key) cryptography (PKI) and uses Generic Security
Services API (GSS-API) [34]. Interoperability with other technologies such as Kerberos [41] has been addressed
(e.g. KX509/KCA [73]).

Note that there is an inherent problem for scheduling that arises as a result of the way in which user identities are
managed. The strategy for associating grid-wide and local identities does not expose information associated with
the grid-wide identity to local resource management systems. These local systems are responsible for optimizing
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the utilization of resources under their control, for whichthey may exploit resource usage privileges and scheduling
strategies associated with local user accounts. We need to leverage their optimization capabilities for grid application
execution, but as a result of their limited information theycannot take the wider environment into account.

Although it is probably the most widely deployed part of Globus, our initial experiences using GSI grid revealed
several different kinds of weaknesses with this solution. We describe our security infrastructure briefly before
describing the problems identified.

In our setup, user authentication with EZ-Grid was equivalent to performing a grid proxy initiation with the
Globus toolkit through the portal. Our campus grid users obtained certificates from UHHPC for authentication
with the portal as well as with the grid resources. A credential server acted as a secure repository for the user
credentials (X.509 certificate and key pairs) and the proxies associated with the grid-wide user identity. This
realization permitted unlimited user mobility through a browser and enabled secure storage and export of new or
renewed certificates and keys to the credential server through the portal. Alternatively, a MyProxy [39] server could
have acted as an online repository for user proxies.

The first shortcoming of this approach is the relatively cumbersome setting up process, which involves a number
of steps to be performed by both the end user and system administrator. The following list indicates some, though
not all, of the major setup steps required by GSI.

1) The user has to generate certificate requests with the appropriate fields in the DN
2) User certificates must be signed by a CA acceptable to the target resource
3) The user sets file permissions appropriately for the credentials before signing-on
4) The user conveys his/her DN in the certificate to the administrator of the remote resource
5) Each remote administrator records the user’s DN and the associated mapping to the local resource-specific

user
6) The user configures local settings to accept the credentials of the CA that issued remote host certificates and

the credentials of the remote resource itself
7) The path must be set correctly for the trusted CA certificates to enable subsequent mutual authentication with

the target resource
8) The user creates the proxy with the appropriate credentials and authenticates with the resource

The steps 4 through 7 are repeated whenever the user gains access to a new resource that trusts the CA that issued
the user’s certificate. Steps 1 through 7 are repeated whenever the user gains access to a new resource that requires
user credentials issued from a different CA.

The relative complexity of this process was the cause of frequent confusion and error among grid users, who were
often unfamiliar with PKI. As illustrated by a simple searchon Globus mail archives, numerous deployers have
also encountered problems in setting up GSI correctly. Thisproblem is compounded by the complexity involved
in establishing and using PKI itself. Next, we explain the shortcomings associated with how we set up the portal
authentication.

Our portal’s authentication setup had obvious shortcomings in terms of maintenance and in accommodating an
increasing number of users and resources. There are two distinct authentication tasks involved. First, the user has
to prove his identity to the portal server while logging in; second, the user does mutual authentication with the grid
resources that he wants to use. In our initial setup, both these tasks used GSI and the same PKI credentials. Lack of
separate mechanisms for these two tasks hindered the flexibility of portal usage and posed increased security risks
if credentials were compromised. The portal credentials were to be refreshed whenever the user’s grid credentials
expired and vice versa. Portal authentication setup could not be changed independent of the grid credentials.

This setup posed significant burden to the system administrators in operating the portal. A variety of management
tasks required system administrator effort that would not be possible with large numbers of users or resources. In
particular:

• Whenever a new resource was added to the grid, GSI-specific configuration tasks had to be manually carried
out to ensure correct identification between local and global user identities, a non-trivial effort.

• The removal of a user’s grid account required manual editingof configuration files for all resources that the
user had access to. In the case of compromised user credentials, this would potentially require editing of all
such files, a serious problem if the number of participating resources is high. Similarly, any revocation of a
user’s certificate for other reasons requires the manual updating of the configuration files to ensure that future
accesses via the revoked credentials are denied.
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• If users may have different identities/roles, potentiallywith distinct access rights and priorities, they need mul-
tiple sets of credentials. It proved to be difficult to decidewhich credential to use for the initial authentication.
There was also a problem translating between the various credentials when the user required access to multiple
resources that did not accept a single CA’s credentials.

• Although it was a relatively easy task to make software such as ftp and ssh available through the portal,
whenever HPCC wanted to provide new services (e.g., user training materials) to campus grid users, they had
to rely upon a different authentication scheme for establishing identities. Or, they had to rely upon the GSI
mechanism even for new non-grid services.

Improvements were clearly needed to make the security infrastructure easier to deploy and maintain for both
users and system administrators.

V. UH PRODUCTION-QUALITY GRID FOR AQF APPLICATION

To support reliable, timely and accurate air quality prediction using our AQF applications, our UH campus
grid and its supporting software are evolving into a production-quality environment. In order to add required new
functionality, we have carried out an extensive study of related systems to identify their strengths and shortcomings.
We leverage and extend state-of-the-art grid technologiesto develop our AQF-specific grid middleware. In the
coming sections, we explain our strategies for supporting the complex AQF workflow, metascheduling across
organizational domains and seamless grid authentication.

A. EZ-Grid Workflow Support

Grids encourage the deployment of applications with non-trivial workflow and in consequence, several workflow
orchestration tools have already been developed, or are under development, by the Grid community, and relevant
standards have been defined or are under way. BPEL4WS [52] is apopular business language for scripting workflow
to integrate multiple services to jointly accomplish a complex task. A workflow engine acts as the agent that follows
the BPEL4WS specification document and contacts each of the services required by the specification following the
order specified. BPEL4WS is constantly being improved. However it is closed source and was not designed for
long running workflows. Consequently, the Grid Services Flow Language (GSFL) [46] has been defined to enable
the description of workflow for Grid services within the OGSAframework.

Condor is probably the best known workflow system for scientific computing. The Condor DAGMan [58] allows
dependencies to be expressed between Condor [35] jobs (executables) and supports the submission of multiple jobs
to Condor in the proper order. For DAGMan, a configuration filecreated prior to job submission describes the
workflow in form of an acyclic graph. In it, the jobs are represented as nodes of the graph, and the edges identify
the dependencies between them. Priority relationships between input, output, and execution of the corresponding
programs can thus be specified. However, this software can only be used for Condor jobs and in order to interface
with other grid codes, a separate abstraction layer is needed. An alternative to the approach adopted by Condor is the
Directed Cyclic Graph (DCG) used by Triana [94] as its methodfor modeling the workflow process. Triana is built on
the idea of composing applications from reusable components, as are a number of other systems including WebFlow
[6] and Symphony [36]. WebFlow provides a web-based visual programming environment for high performance
computing software. Symphony and Triana offer similar functionality for the development of distributed computing
software from predefined software modules, whereas Common Component Architecture (CCA) [54] focuses on
composition of software components at runtime.

However, most of these workflow systems are designed to be used by experts and are not suitable for use by
novice users. Gridant [4] and Karajan [72] are efforts that target the user without expertise in sophisticated workflow
systems. Both aim to provide a convenient tool to the Grid community that allows the expression and control of
the execution sequence in a workflow computation. As parts ofthe Globus Commodity Grid kit (CoG) [32] [33],
both Gridant and Karajan have the ability to submit jobs to multiple resources managed by GT2, GT3 and the
future GT4. Gridant is a simple client-side workflow specification system that makes use of Apache Ant [50] [51],
a popular build tool extensively used in the Java community,as its workflow engine. The functionality of Apache
Ant is extended by Ant tasks, which are specifically suited for the grid environment.

Karajan, which provides workflow specification and a workflowengine, enables the definition of complex jobs
for execution in a computational grid and offers advanced features such as failure handling, checkpointing, dynamic
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workflows, and distributed workflows. A workflow can be classified as centralized or distributed according to the
manner in which tasks are distributed within a workflow. A workflow in which all tasks are executed at one location
is called as centralized workflow. In distributed workflow tasks can be executed at multiple locations. Workflows
in Karajan are defined using a language based on XML; it is extensible through Java. The execution engine in
Karajan is based on an event handler. Karajan defines elements which are building blocks for functionalities such
as parallel processing, parallel iterators, and Grid elements such as job submission and file transfer. Elements react
to events received from other elements and generate their own events.

After evaluating existing technologies, including the above, we decided to leverage the Karajan software to provide
workflow support in our environment. Karajan is open source and can easily be modified to suit AQF needs. Karajan
supports sequential and parallel execution containers that allow subtasks to be executed in sequence or concurrently,
as desired. Tasks and dependencies between them can be conveniently expressed. Inter-task dependencies may be
specified as constraints on the occurrence or the temporal ordering of significant events generated by the involved
tasks.

Yet, one major weakness of Karajan in supporting AQF is the lack of support for metascheduling and it only
submits the tasks of a workflow job one by one. Thus we must extend some of the Karajan workflow component to
integrate with our metascheduler. Metascheduler is responsible for assigning individual tasks to different resources
and for enforcing task dependencies (this procedure is described below). The scheduler also coordinates the execution
of tasks in the workflow. In [43] a distinction is made among three scheduling approaches: centralized (a single
scheduler schedules the tasks of all concurrent workflows),partially distributed (a local scheduler for each workflow),
and fully distributed (no scheduler is used, but task agentscoordinate their execution by communicating with each
other). We have adopted the approach of a centralized scheduler. Overall, the workflow is managed by a Grid
metascheduler, which assigns and schedules jobs to different machines, while the individual tasks are managed by
local schedulers.

We also aim to provide the option of fully automatic scheduling of AQF workflow jobs based on our profile data
and experimentation with a variety of execution scenarios.Current research in our team also considers automated
resource brokerage. This is highly desirable to automatically and transparently select suitable resources to test
environment model configurations and find optimal setups fordifferent geographic and seasonal conditions.

In addition, GUI support from Karajan is very simple and not integrated with web portal. In our work, a high-
level GUI will be provided to help a user define complex tasks (workflows) using the extended Karajan and will be
integrated with the EZ-Grid portal environment. Additional on-going work addresses features that allows users to
store and schedule workflows when desired. These workflows can then be configured to automatically run, either
periodically or at a specified time.

B. QoS-Guaranteed Metascheduling with Workflow Orchestration

As part of our efforts to develop a metascheduler to support AQF project, we have tested a number of related
software systems to determine the one most appropriate for our needs. Global metaschedulers are relatively new in
the field of grid computing. Existing global schedulers suchas Maui and CSF are sophisticated, but unfortunately
cannot fulfill our needs. The Maui scheduler is not OGSA-compliant, has no workflow support and is also not open
source. The Community Scheduler Framework (CSF) [86] is a global scheduler that interfaces with local schedulers
such as OpenPBS [84], LSF [87] and SGE. However, CSF currently has no support for specifying workflow. Other
essential features missing from existing global schedulers are data-aware scheduling and interfaces with portals.
Data-aware scheduling refers to an ability to select the compute resource that is closest to the data. This is likely
to be an important feature for applications such as AQF, which transfer large sets of data.

The task of the metascheduler is to select appropriate resources for submitted jobs, according to the current or
predicted resource usage information and user job information. It also helps to set up the file transfer channel that
will be used for moving data between tasks or jobs. However, the process of choosing appropriate resources is very
complicated. The metascheduling process is split into a series of stages in which the potential set of resources is
progressively narrowed down to ultimately identify the best resource for the given job specification. In our initial
implementation, we divide this process into two stages; first, we select resources based on the job specification
and static resource information, such as the number of CPUs,memory sizes, etc. Secondly, we order the selected
resources based on dynamic resource information, which includes resource usage value (RUV) and job average
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waiting time (JAWT) on specific resources. The first step performs the simple match-making of each attribute of
the job specification with known resource information. For the second step, RUV and JAWT are combined into
a single normalized value, Resource Load Value (RLV) and based on this RLV, the metascheduler will order the
selected resources and choose the ”right” one for the user’sjob.

The current metascheduling system is designed to find suitable resources from a grid for a single job. Scheduling
dependent tasks of a job could be simply implemented on top ofsingle-job metascheduling by scheduling each
task when its dependent tasks are completed. But a major problem of this approach is that the metascheduler
cannot in general guarantee the scheduled task will be launched right after it is submitted to the local scheduler
and it may wait in the local queue for some time. Our approach makes a one-time choice that assigns resources
for all the tasks, and then the metascheduler submits them tothe local scheduler. The required resources of the
submitted tasks will be held or reserved by the local scheduler during their execution time. The metascheduler
predicts this time based on available information on the duration of each task and the amount of data produced.
The high predictability of AQF runs, which generally use thesame mesh sizes and number of time-steps, will
enable us to do so accurately. We have extensively profiled the complete application on the various grid platforms
and configurations at our disposal in order to better understand its likely runtime behavior and to determine grid
configurations that are useful for execution. This may need to be partially repeated when systems are extended or
upgraded.

Accurate run-time resource information is also essential for the metascheduler to make the best decision globally.
The metascheduler can exploit both static and dynamic information in the two stages of match-matching. First,
static information that captures resource setup details such as platform, OS, library installed, etc, will be used
in the first-stage filtering by metascheduler. Static information is provided by Globus MDS or configured in the
information services by system administrators. Second, dynamic information that captures the runtime behavior of
grid resources, such as current load, queue information, available memory and swap, available network bandwidth,
and so on, will be used in the second stage of scheduling. Thisinformation is provided by either the local resource
manager or third party resource monitoring tools. Since ourAQF jobs will run daily at the same time, resource
usage forecasting may be employed to guide the metascheduler in resource assignment.

1) Workflow Orchestration:To integrate Karajan with our metascheduler, we extend Karajan’s workflow de-
scriptions with two sets of information necessary for global scheduling: first, task dependency details, which we
call dependency elements; and second, the profiled task execution detail. Task dependencies are represented by
DAGs like those in Condor. Dependency elements, such as file name, parameters passed, are appended to the DAG
edges, which thus have richer information than just the relationship. The DAG vertices, which represent tasks of
a workflow job, are linked with the execution details, such asthe execution time on various number of CPUs on
different grid resources.

Using the extended workflow description, the metaschedulerassigns tasks to resources and submits them accord-
ingly to the local scheduler. To do so, the metascheduler first predicts when each task can start by traversing the
DAG; it then checks resource availability for each task at its starting time. During this calculation, the time needed
to handle dependency elements may also be considered, one typical example of which is file transfer between tasks.
This is further discussed in Section V-B.3. To mitigate the effect of inaccurate prediction, the metascheduler assigns
buffer time or a grace period for each task.

Although the tasks are submitted to the local scheduler oncethey are assigned to resources by the metascheduler,
they will not be launched until their dependencies have beenresolved. This is accomplished via the sending of
corresponding events by the dependent tasks when they complete. Until these are received, the tasks are held in the
local scheduler’s queue. At that point, the event handler will release the task from the queue and it will be dispatched
to the compute nodes. The metascheduler also receives the event notification and triggering information to enable
it to track the current flow of task executions. It can use thisto adjust the start time of other unfinished tasks. If
the metascheduler does not receive the event notification after the established grace period, it will check the current
status of their dependent tasks. If they are still healthy, it may do nothing but monitor it more frequently. In case
of severe delays or the failure of tasks, the metascheduler may force the local scheduler to launch or dynamically
modify the assignment of resources to uncompleted tasks. The failure handling also causes the metascheduler to
adjust the event chains established previously.

2) Time Constraints:If not properly scheduled, an AQF task may be held in the queueof a local resource manager
for a long time and this is not controlled by the metascheduler. Our ability to schedule executables to reliably
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produce results at the required time hinges on the ability ofthe local schedulers to perform advance reservation
and backfilling. The high predictability of AQF jobs permitsus to reserve resources or create temporary dedicated
queues for AQF tasks in order to reduce or avoid waiting time in local queues. We have tested these capabilities in
SGE, LSF and PBS Pro, all of which provide resource reservation features. We are currently developing a uniform
interface to enable our metascheduler to make best use of these features. This interface complements the DRMAA
[59] interface to local schedulers. DRMAA is currently supported by SGE and Condor and provides job control
interfaces. We plan to submit our interface for resource advanced reservation to GGF.

Another key feature of our metascheduling approach that helps to address the time constraint issue is the
immediate submission of tasks with their predicted starting time when the resource selection decision is made.
The local resource manager will hold the resources for the task if its the dependencies are not resolved at the
specified start time, or backfill to permit other jobs to run when the AQF task is waiting. Preemptive scheduling
may be employed to ensure that the high-priority AQF tasks can use the resources if they are approaching their
deadline.

3) Data-aware scheduling:If the execution is to span several grid resources that do nothave shared file systems
efficient data handling is essential. While file-staging in the local resource manager or Globus GASS can be used
to transfer files for an individual AQF task, they also introduce several problems. First, both are completely out of
the control of the metascheduler once the task is submitted.Further, there is a higher probability of failure when
transferring large files than with small file transfer; any failure should be detected easily and quickly to initiate re-
transfer. If a task is stopped because of the failure of file staging or a GASS transfer, the metascheduler would have
to identify the details of the job error report from local resource manager to discover the root cause, and resubmit
the tasks with the any required corrections. This process would be very inefficient, would complicate the design
of the metascheduler unnecessarily and would probably pollute the scheduling decisions already made. Moreover,
time spent in file staging or GASS is normally ignored by a scheduling system. But our AQF application requires
large file transfer and has time constraints, so that this time should be properly allocated by the metascheduler
when assigning AQF tasks to grid resources. Thus we have rejected the use of these mechanisms and devolve this
responsibility to our metascheduler.

In our metascheduling strategy, we consider large file transfers to be separate tasks in the workflow. The
approximate time for the transfer is calculated from the predicted file size and network bandwidth between the source
and destination hosts obtained via monitoring. Also, in theprocess of assigning resources to tasks, metascheduling
will consider the existence of shared file systems within or between resources, and thus eliminate unnecessary
transfer costs. The design of our metascheduler recognizesand deals with situations when output is not produced
in a timely fashion by any one of the executables in a job. Thisis based upon the profile data and active monitoring
of job status.

C. Revised Sign-On and Authentication Setup in UH Grid

As a result of our experiences with GSI, we searched for alternative approaches to realize a flexible and scalable
approach to grid authentication. Our portal authentication phase had to be decoupled from the grid authentication
and hence made independent of GSI. We required a new web-based authentication mechanism to achieve this.

CoSign [56] is an open source project at the University of Michigan to provide a web-based authentication system.
Users need to authenticate only once per session in order to access any number of Cosign-protected services. It
is based on the idea of using a central server for authentication. Cosign provides a much simpler web-based
initial logon scheme than does GSI and permits use of existing authentication schemes such as LDAP, Kerberos,
username-password and X.509 certificates. In a CoSign-based security scheme, our portal services (including those
that let the user access grid resources) would check with a central CoSign service to ensure that a user is logged-in.
This approach improves portability and reduces administration overhead. Using a central server for authentication
also tremendously simplifies the configuration needed to support user certificate-based authentication (e.g. KX-509)
across campus web services. Unlike other cookie-based web authentication solutions, Cosign does not employ
domain or otherwise public cookies to allow cross-server authentication. The Cosign server has its own cookie as
do the departmental web servers. The Cosign cookie is available only to the Cosign server; the departmental service
cookies are available only to the departmental servers. Cosign leverages its central state database to allow simple,
effective user-initiated logout at the end of a session.
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We have revised our UH campus grid so that it relies upon a centralized CoSign authentication server for
portal authentication. Once the user identity has been successfully established through this central server, the user
can access any number of services protected by the Cosign server, including grid services. Thus, user access to
grid services is considerably simplified in comparison to our earlier setup. The portal authentication phase relies
solely upon CoSign and is completely independent of grid authentication credentials and GSI. Further, the two
authentication mechanisms (CoSign and GSI) can be setup andconfigured independent of each other, providing
ease-of-use for administrators. A stand-alone grid proxy creation service now allows the user to choose among
multiple GSI credentials to perform grid authentication. Access to this service, in turn, is protected by the central
CoSign server. Now, the user has a clear separation between authenticating to the portal and to the grid resources.

It is now a simple task to add new services to the portal, whichentails protecting them by the central Cosign
server. All services check for Cosign authentication and user identity before granting access to the user. The Cosign
server can be replicated in order to achieve better load balancing and avoid a single point of contention and failure.
However, adding new grid resources still poses a problem as it requires that the GSI-related configuration be
repeated on each target resource. This is a concern we plan toaddress in our future work.
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Fig. 5. CoSign-based UH Campus Grid Authentication Setup

Under the revised setup, users authenticate to the central CoSign server using a simple username/password
combination. The success of this process is indicated by theestablishment of a login cookie for the user on the
central server. Then whenever a user accesses a service (protected by CoSign) a service cookie is established. The
central server orchestrates this process by associating the service cookie with the user’s login cookie. The user
can simply access CoSign-protected grid services for proxycreation (this requires the correct passphrase entry
however), job submission and other related grid operations. The user can also logout by simply clicking a URL
that clears the login cookie, after which subsequent operations require fresh authentication with the central CoSign
server. The process is illustrated in Fig 5.

It is important to note that our revised portal only simplifies the user tasks of signing-on and accessing grid
services. It does not address the server-side work requiredto maintain correct credential configurations and identity
mappings. We have yet to deal with a scenario where the user acquires access to resources that require a new set
of credentials, potentially because they expect certificates from a different CA.

VI. CONCLUSIONS AND FUTURE WORK

Grid environments enable the creation of new infrastructures as ”virtual organizations” that seamlessly aggregate
distributed and dynamic collections of resources. Campus grids provide an opportunity to help researchers solve
computationally demanding problems in science and engineering. However, simplified access to grid services is
essential if computational scientists are to fully utilizethem. Grid portals can help raise the level of user-grid
interaction. They enable web-based access to grid resources and services and may be used to perform single sign-
on, view resource status information, submit jobs and manage data. The EZ-Grid portal project addresses these
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issues and provides a single web-based interface for performing standard grid tasks. This portal is being extended
and adapted to meet the specific needs of the AQF project. The AQF application consists of a number of executables
that interact via the transfer of relatively large files; it has a highly predictable execution behavior. New functionality
will enable AQF researchers to fully automate the process ofspecifying and starting their complex jobs that may
utilize a variety of hardware resources on our campus.

Major improvements include support for specifying, scheduling and executing workflow jobs that entail the trans-
fer of large data files between executables. They also include support for improved user authentication. To achieve
our goals, we have evaluated a variety of existing approaches and where possible, exploit existing implementations.
Our current workflow system allows users to conveniently andflexibly combine different computational tasks within
a module e.g MM5.

Existing metaschedulers make resource assignment decisions mostly for single-executable jobs and do not have
any QoS features. Our scheduler integrates with and extendsKarajan workflow systems to support AQF jobs
with complex dependencies, and addresses AQF-specific issue of time constraints for better QoS. To improve the
decision making, the scheduling process exploits additional information including job profile data. Time cost for
data transfer is considered also to make sure that the coordination of dependencies are properly handled and incur
minimum unnecessary delays in the coordination. We are alsoprototyping network-bandwidth- and topology-aware
scheduling in the metascheduler. This is especially usefulfor our AQF campus grid where huge datasets need to
be downloaded and transferred before and after the execution of each AQF module.

The need for users to deal explicitly with certificates proved to be one of the biggest hurdles in user-grid
interaction. We modified our campus grid to use the CoSign software to simplify this process, although it did
not alleviate the system administration burden. We need to continue to search for ways to simplify all aspects of
grid authentication. Since GSI is the de-facto authentication mechanism, a solution should ultimately use the GSI
fabric; however, it is important to make it easier to achievegrid security from the perspective of both users and
system administrators. We plan to study information retrieval algorithms [48] for key management and retrieval
based on search query formation. Also, key striping techniques might be leveraged for increased fault tolerance
and protection against compromised keys.
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