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Abstract 

 
The paper proposes an object-oriented design framework to implement self-stabilizing 
real-time systems and describes an implementation and analysis of a prototype of such a 
system. The paper also includes a brief study of application of the object-oriented 
paradigms such as reflection and inheritance based on the design framework. The 
analysis includes a determination of overhead and a feasibility study of the prototype. 
The framework is three-tiered in which the basic or the firs- tier components are the self-
stabilizing components of the distributed real-time systems that recover themselves in 
case of transient faults. The second- tier components of the design framework consist of 
the RobustRTOs and the MetaObjects. The third-tier components are the Guards of the 
subsystems.    
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Abstract 
 
 The paper proposes an object-oriented design framework to implement self-stabilizing real-time 
systems and describes an implementation and analysis of a prototype of such a system. The paper also includes 
a brief study of application of the object-oriented paradigms such as reflection and inheritance based on the 
design framework. The analysis includes a determination of overhead and a feasibility study of the prototype. 
The framework is three-tiered in which the basic or the firs- tier components are the self-stabilizing 
components of the distributed real-time systems that recover themselves in case of transient faults. The second- 
tier components of the design framework consist of the RobustRTOs and the MetaObjects. The third-tier 
components are the Guards of the subsystems.    
 
 
1. Introduction 
 
 Objects, as of the Object oriented paradigm, are the essential building blocks for a component or 
module based design. This modular design makes the system extensible, reusable and manageable. To obtain 
these benefits, object-oriented design could also be applied to real-time systems. The conventional objects 
cannot represent the complex temporal behavior of real-time systems. Instead of the conventional objects, K.H. 
Kim [Kim97] proposed the use of Real-time objects (RTO) in the object-oriented design of real-time systems. 
 The essential elements of a RTO are the Object data store, the Message-triggered methods and the 
Time-triggered methods [Kim97]. The Object data store contains the data required by the RTO, this data store 
holds the capability to aggregate other RTOs and could act as a communication channel. The Message-
triggered methods are invoked by other RTOs mainly as a service request. The Time-triggered methods are 
periodic methods, which are self-invoked. Figure 1 describes the RTO. To meet real-time constraints, it is 
necessary to have design-time guarantees on these methods.  

With regards to RTO very little has been done to establish a design framework for fault-tolerant real-
time systems. This has been the prime motivation for the work described in the paper. The past efforts of 
establishing design frameworks FRIENDS [Fabre98], ROAFTS[Kim98] and Chamelon [Kalbarczyk99] laid 
more stress on fault-tolerance aspect rather than real-time system aspects. The most recent real-time object 
model [Lim00] is the only design framework so far, which is built taking into consideration the dependable or 
fault-tolerant real-time systems. This design framework [Lim00] is very general as far as the fault-tolerant 
mechanism is considered. Our work is based on providing a design framework for more specific self-
stabilizing   [Cheng92] components. 

Self-stabilization is the process of automated recovery in distributed rule-base real-time systems in 
case of transient faults [Cheng92]. These self-stabilizing components are structurally different from general 
fault-tolerant systems where recovery from faults is achieved through multiple versions of the same 



        

components. The basic elements of a self-stabilizing real-time system are identified to layout the proposed 
design framework. A prototype self-stabilizing real-time system has been implemented based on the design 
framework and the analysis involves determining the processing overhead incurred by the framework based 
implementation. In section 2 the basic components of the proposed framework are explained to get better 
insight into the details of the framework. In section 3 the layout of the design framework is discussed. In 
section 4 the implementation of a prototype is described. Section 5 includes the analysis of the implemented 
prototype. The conclusions are made in the section 6. 

 
2. Basic Elements of the Proposed Design Framework 
 
 All design frameworks have different types of building blocks that result into the overall design 
framework. The proposed design framework has the following elements: 
 
2.1. Self-Stabilizing RTOs 
 
 The Self-Stabilizing RTOs are the basic components of the framework. Any RTO that has methods, 
which can be recognized as rule-based of form A [Cheng92] can be transformed into a self-stabilizing RTO. 
The details of this transformation can be found in [Cheng92].  Consider a non-self-stabilizing rule set as below: 
Rule 1. If (a = 1)  then { c = 2;  d = 4;} 
Rule 2. If (b = 1)  then { c = 3; d = 5;} 
where Rule 1 and Rule 2 are mutually exclusive. These two rules form a set, which is of the special form A, 
could be made self-stabilizing by adding the following rule to the above rule set. 
If ((a != 1) or (b != 1) then { c = init_val_of_c; d = init_val_of_d;} 
where init_val_of_c and init_val_of_d are the initial values of the variables c and d. 
It is vital at the design level to specify which RTOs could be targeted as the prospective components for self-
stabilization transformation.  
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Figure 1. RTO representation 

2.2. Metaobjects 



        

 
 Metaobjects are the high-level abstractions of the objects. In this paper, the metaobjects are the high-
level abstractions of the RTOs and self-stabilizing RTOs. Metaobjects define the behavior of the underlying 
RTOs. Along with Reflection, metaobjects are used to define the metaobject protocol (MOP) [Mitchell97]. 
Reflection is the age-old method of the object-oriented paradigm for getting the information out of objects. 
Java has built-in reflection methods that can give information about the object at run-time.   

MOP can be used to give the application developer better understanding of the underlying relevant 
properties of the RTOs while maintaining the language implementation. Irrespective of the underlying 
implementation, the real-time properties of the RTOs could be preserved using the metaobjects. The relevant 
properties of the underlying RTOs could be obtained using the Reflection on the metaobjects. The worst-case 
execution time, deadline, periodicity, etc., are some of the real-time properties of the RTOs that could be 
obtained from the metaobjects. 
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Figure 2.  A self-stabilizing RobustRTO 

2.3. RobustRTOs 
 
 RobustRTO is a fault tolerating RTO [Lim00]. According to Lim and Yang a RobustRTO encapsulates 
one or more replica RTOs as shown in figure 2 and they proposed it for an N-version fault tolerant mechanism. 
In case of N-version fault-tolerant systems the components are themselves not fault-tolerant, it is the 
mechanism or scheme as a whole that is fault-tolerant. Hence, RobustRTO was introduced to separate the 
fault-tolerance implementation from the application implementation. In case of self-reliable components there 
is no external fault-tolerance method that is involved unless a spare backup component is used for protecting 
against the node failure of the primary self-reliable component. The method to implement the spare 
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Figure 3. The overall design framework scheme of things 
 
component can be efficiently implemented using the metaobjects since metaobjects are designed to 
accommodate the run-time changes. Hence, in this paper RobustRTO is just a design level abstraction 
nevertheless important to modularize the different components. 
 
2.4 Guards 
 

Gurads are similar to the Monitors [Lim00] in the sense that they monitor the reliable real-time 
subsystems. A subsystem is a logical part of the whole system derived on the basis of its functionality. 
However, the functions of the Guard are different from the Monitor. A self-stabilizing RTO subsystem is itself 
reliable as far as the software transient faults are considered. Hence, in the self-stabilizing RTO subsystem, the 
transient faults are contained within the RobustRTOs. The primary function of the Monitors is to localize the 
transient faults to a subsystem where as the primary function of the Guard is to monitor each subsystem 
component for nodal failure.  
 Each self-reliable RobustRTO component maintains its own guard_log, a log file, which gives 
information to the Guard about the nodal failure of a self-stabilizing component. In case of the nodal failure the 
Guard has to take proper action. This action could vary depending upon the implementation of the subsystems; 
the Guard can shutdown the subsystem or invoke another backup subsystem.   
3. Design Specifications of the Components 
 
 The overall design framework for the self-stabilizing RTO model is shown in figure 3. The scheme 
corresponds to the elements described in section 2 and can be replicated to derive a complex real-time system. 
In other words, the framework is scalable. From design perspective, it is necessary for a design team to come 
up with a design specification for the development team. Hence it is necessary to specify the design framework 
for this specification of the components described in the section 2. 
 
3.1. Specification for Self-stabilizing RTOs                                                                                              
 
 The specification for a self-stabilizing RTO is shown in figure 4. The specification denoted in regular 



        

expression includes Data Store, Time Triggered Methods and Message Triggered Methods. The DataStore 
contains the name of other aggregated RTOs and the data elements denoted by <dataName>. The <dataName> 
as seen in the figure 4 is composed of the <validTime> notation that specifies the time for which the data is 
valid.  
    

RTO name { 
DataStore: 
 <name of aggregated RTOs>* | < dataName>* 
            {<dataName> := <name><validTime>} 
TimeTriggeredMethods: 
  <TMethodName>* 
 {<TMethodName> := <name> <periodicity><selfstabilizingStatus>} 
MessageTriggeredMethods: 
  <MMethodName>* 
 {<MMethodName> := <name> <deadline><selfstabilizingStatus>}}  

Figure 4. Specifications for RTO 
 

There can be one or more Time triggered and Message Triggered methods as denoted. The 
<selfstabilizingStatus> notation denotes whether the method can be targeted for the process of self-
stabilization. The <periodicity> denotes periodic time interval and the <deadline> indicates the deadline of the 
task. 

Apart from the above-described elements, the self-stabilizing RTO spec can include the <msg-list> and 
the <caller> | <callee>  [Lim00] that denote the messages sent to this RTO and the caller of this RTO, 
respectively. 

 
3.2. Specification for Metaobjects 
 

The Specification for the Metaobjects is described in figure 5. The specification framework for the 
metaobjects is similar to the RTO specification but with the addition of the Member and PropertyMethods 
notations. The Member notation denotes the name of the underlying RTOs, which the metaobject represents. 
The PropertyMethods notation defines the methods that give the information regarding the real-time properties 
such as the deadline, WCET, periodicity, etc.  

Properties such as current time, slack time, freshness of data stored, etc., that influence the real-time 
systems have been identified previously [Mitchell97]. Many scheduling policies require run time information 
and can be retrieved using reflection through the PropertyMethods of the metaobjects.  

  
Metaobject Name { 

Member: 
 <name of Underlying RTOs>* 
DataStore: 
 <name of aggregated RTOs>* | < dataName>* 
            {<dataName> := <name><validTime>} 
TimeTriggeredMethods: 
  <TMethodName>* 
 {<TMethodName> := <name> <periodicity><selfstabilizingStatus>} 
MessageTriggeredMethods: 
  <MMethodName>* 
 {<MMethodName> := <name> <deadline><selfstabilizingStatus>} 
 PropertyMethods:                                                                 
 <PMethodName>* 



        

 {<PMethodName> := <name><description>} 
} 
  Figure 5. Specifications for the Metaobject 
 
3.3. Specification for RobustRTO  
 
 For the proposed design framework, the RobustRTO is a design level abstraction rather that its original 
concept [Lim00] of an implementation level structure. The RobustRTO concept is used to modularize the real-
time system so that it is easier for the developer of the system to read the design. The concept of RobustRTO is 
similar to the packages in Java. Nonetheless defining a design-level specification for RobustRTO will serve as 
a good tool to the developer. Figure 6 describes the specification for the RobustRTO. The <MemberName> 
denotes the name of the underlying RTOs. <MetaObjectName> denotes the name of the underlying 
metaobject. 

 
RobustRTO name { 

RTOMembers: 
<MemberName>* 
MetaObjects: 

<MetaObjectName>* 
} 

Figure 6. Specifications for the RobustRTO 
 
3.4 Specification for Guards 
 
 Figure 7 shows the detailed specification for the Guards. <SubsystemName> denotes the name of the 
subsystem of the entire system that encapsulates the Guard. <RobustRTOName> denotes the names of the 
RTOs, which are to be monitored by the Guard. <Logname> denotes the log file name, which the Guard uses 
to determine the node failures. <ErrorActionName> denotes the type of error. Depending upon this type of 
error, the <ActionName> specifies the action to be taken.  
 

Guard name { 
Subsystem: 
 <SubsystemName> 
Members: 
 <RobustRTOName>* 
Log: 
 <LogName>* 
 {<LogName> := <RobustRTOName><LogFileName>} 
ErrorAction: 
 <ErrorActionName>* 
 {<ErrorActionName> := <ErrorName><ActionName>} 

} 
Figure 7. Specification for Guards 
 
4 Prototype Implementation   
 
 A prototype of a simulated real-time system based on the proposed design framework was 
implemented. The prototype implementation was analyzed for the performance study of the overheads 
involved in the design. The prototype simulates a real-time defense system. There are four components of this 
real-time defense system: the radar subsystem, the central control subsystem, the decision subsystem, and the 



        

action subsystem. 
 The radar subsystem monitors the external flying entities or entities approaching from the sea. The 
inputs from the command line simulate the radar subsystem. The radar subsystem passes its input to the central 
subsystem, which is the main control subsystem. This central control subsystem then invokes the decision 
subsystem to decide what action is to be taken for the identified external entities. Then the central control 
subsystem invokes the action subsystem to perform the specified action. Figure 8 describes these functional 
specifications for the prototype. The prototype involves around 1000 lines of Java code. 
 
4.1 RTOs  
 
The RTOs of the prototype are as follows: 
CentralControl.java : is the main component of the prototype that runs continuously and accepts the input from 
the radar system. 
DecisionSystem.java : contains the Message Triggered methods to decide on the input sent by the radar 
subsystem. 
Action.java : contains the Message Triggered methods to take proper action. 
ActionThread.java : is a thread that runs the Action subsystem. This is used for managing the primary and 
secondary Action threads. Partial code listing for this thread class is given below.  
 
 
public class ActionThread extends Thread{ 
 

        // instance of Action 
       private Action thisAct = null; 
       
  …//some other variables 

               
  // constructor initializes the thread variables     
    public ActionThread(Action eAct) { 
        setDaemon(true); 
        thisAct = eAct; 
    } 
 
    public void run(){ 
      //invokes the current instance of the  
     // of the action thread. 
           thisAct.performAction();      
            MetaAction.updateStatus(true); 
   } 
   …// other functions } 
 

All the RTOs discussed above are stateless, in the sense that they do not maintain any database and they do not 
have to keep track of the system state. They are the so-called “control objects” in the object-oriented paradigm. 
At the design level, the timing constraints on the methods of these RTOs were made, but since the study was 
related to performance analysis the timing constraints had to be relaxed. These timing constraints could be 
useful if the prototype is ported to a distributed system, which can simulate the actual system. This is one of 
the future directions to the work described in the paper. 
 
4.3 Self-stabilizing RTOs 
 



        

DecisionSystem.java is the RTO, which is self-stabilizing. The decision subsystem could be qualified as a rule-
based system.  The modifications to make the decision subsystem self-stabilizing are indicated in the code. The 
Central control subsystem delegates the information to the decision system; hence it is not a rule-based 
subsystem and cannot be transformed into a self-stabilizing RTO.  
A partial code listing of DecisionSystem.java is given below. 
 
public class DecisionSystem{ 

 
…  // get methods 

 
            ….  // set methods 
            
 // This is the main method of the class and contains self-stabilizing code 
private void makeDecision(){ 
           if(this.enemy_sensor){ 

  if(this.latitude >= 25 && this.latitude <= 50){ 
                 if(this.longitude >= 0 && this.longitude   <=  
                                                                               50){ 

 ….         // actions involved } } } 
// following code is added to make the function self-stabilizing according  to [Cheng92] 
            else { 
                          // initialize variables 
                               Decision = false;   
                   Weapon = null; 
                     Pass = false; 
                     }  

           } 
} 

Central Control
Subsystem

Decision Subsystem

Action Subsystem

Radar

Input
Output

 
Figure 8. Functional specification for the prototype implementation 
  
 



        

4.2. Metaobjects  
 

The Metaobjects of the prototype are as follows: 
MetaAction.java: encapsulates the Action RTO. The MetaAction metaobject implements the primary-backup 
replication [Guerraoui97] model. The MetaAction metaobject uses the ActionThread to create two threads as 
shown in figure 9. 
 The primary and the secondary threads are not concurrently running threads. The secondary thread 
runs only when the primary thread undergoes a nodal failure. All the subsystems are stateless and hence the 
primary and secondary threads need not communicate with each other for synchronization. Partial code listing 
of MetaAction.java is given below. 
  
public class MetaAction{ 
 
      private SecondaryDecisionSystem secDec = new    
                                      SecondaryDecisionSystem(); 
 
      …. // all class variables 
 
      public void performAction(){ 
          …. // some code goes here  
          try { 

// the output of the action would be written in Guardlog incase of nodal failure  
 bfw = new BufferedWriter(new  
             OutputStreamWriter(new 
 

                     FileOutputStream("Guardlog.txt"))); 
           } 
           …. // some code goes here 
          Thread primThread = new ActionThread(thisAction); 
           primThread.start(); 
 
          ….. // code to check the first thread is here 
 
          secThreadstart(); // start second thread if first fails  
                }      
 
MetaDecisionSystem.java: encapsulates the decision system RTO.  

The main aim of the prototype is to establish a performance-based study. Hence the real-time property 
that is pertinent towards this study is the execution time. As a result the metaobjects of the prototype reflect 
only the execution time. 
 
4.3. Guards  
 
The action subsystem maintains a guard log that holds the information regarding the nodal failure of the 
subsystem. The only usage of the guard in the prototype would have been to signal that the nodal failure had 
occurred, hence the implementation of the guard is not considered important as far as the performance study is 
considered. 
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Figure 9. Action Thread implementation 
 
4.4. Use of Inheritance 
 
 Inheritance could be used to accommodate the changes that need to be carried out at the runtime. In the 
prototype the primary and the secondary backup components of the decision subsystem RobustRTO use 
inheritance. The secondary RTO is inherited from the primary self-stabilizing RTO, the implementation of the 
secondary RTO is simpler than the primary RTO. The Action subsystem selects the secondary RTO at runtime 
if the primary self-stabilizing RTO undergoes a nodal failure. This is achieved through inheritance. 
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Figure 10 Performance chart 

 
 



        

Vanilla (ms) 5 5 5 6 5 4 4 5 
Self-stabilizing (ms) 6 5 6 6 6 5 5 6 
Prototype (ms) 42 36 38 40 38 41 37 43 
 

Table 1 Execution time data for each implementation 
(ms denotes time in milliseconds) 

 
 
5. Analysis of Implementation 
 
 The analysis of the implementation includes performance-based study. The performance of the 
prototype is based on the execution time of the modules. Then this performance is compared to the other two 
implementations. These implementations are described below: 
Vanilla system: This implementation is very basic in the sense that it has no timing constraints, no self-
stabilizing components, and the overall reliability is zero. There are no metaobjects.  
Self-stabilizing system: This implementation contains self-stabilizing components only in addition to the 
Vanilla system. There are no metaobjects, no primary-secondary implementations and the overall reliability is 
achieved only through the self-stabilizing components.  
All the three implementations are functionally similar and coded in Java, but the complexities of the 
implementations differ based on the degree of reliability that is achieved. To compare these three 
implementations, 8 test cases are identified. These test cases vary according to the input.  

The testing was performed on the Themis SunOS 5.8 cluster of the department of Computer Science at 
the University of Houston. Due to huge and varying user activity on the cluster, proper time had to be selected 
at which the user activity is almost zero or almost constant. To reduce influence of other activities on the 
execution time, averages of 4 readings, taken at different time, have been used.  

The performance chart shows that the vanilla implementation has the least execution time followed by 
the self-stabilizing implementation. The prototype has a very high overhead and the execution time is almost 5-
6 times greater than the vanilla and the self-stabilizing implementations. The increased overhead in the 
prototype is a result of threading, inheritance, and primary-secondary implementation structure. 
 
6 Conclusion 
 
 Self-stabilization is a very efficient way of implementing fault-tolerance mechanism for transient faults 
in a distributed system. It reduces the component redundancy. The proposed design framework to implement 
such a self-stabilizing system is very specific to the needs of the self-stabilizing system and allows the designer 
to focus on these needs. The basic element of the framework is the RTO which is further refined to self-
stabilizing RTO if the possible.  
 Our analysis shows that the prototype implementation of the framework involves some overheads. By 
considering these overheads as a part of the WCET of the system modules one can meet the timing-constraints 
of the real-time systems. This framework may not be useful in situations where “short-execution-time” is more 
important than “on-time-execution”.  Nonetheless, the design achieved through the proposed framework will 
aid the developer in visualizing the system before implementation. 
 In the past, many doubts have been raised over the use of object-oriented design in real-time systems. 
These objections [Healton98] suggest that object-oriented design is not a total solution for the problems in 
infrastructure deployment or software maintenance and moreover incurs additional overheads. The object-
oriented paradigms like reuse, extensibility, etc., in a system could be achieved only if these needs are 
recognized at the design time.   
 As and when the self-stabilizing systems will evolve there would be many new things and needs that 
could be accommodated into the framework. The future work lies in deploying the prototype in a simulated or 
small scale distributed embedded systems. A scaled-up version of the self-stabilizing components could also 



        

bring out some issues that could be solved at the design level and this is another direction of the future work. 
Currently, we are working to implement self-stabilizing system in Java and we hope to derive the new issues 
for the proposed design framework. 
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