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Abstract

A posteriori error estimators are fundamental tools for providing confidence in the numerical computation
of PDEs. To date, the main theories of a posteriori estimators have been developed largely in the finite
element framework, for either linear elliptic operators or non-linear PDEs in the absence of disparate length
scales. On the other hand, there is a strong interest in using grid refinement combined with Richardson
extrapolation to produce CFD solutions with improved accuracy and, therefore, a posteriori error estimates.
But in practice, the effective order of a numerical method often depends on space location and is not
uniform, rendering the Richardson extrapolation method unreliable. We have recently introduced [Garbey
13th international conference on domain decomposition and Garbey & Shyy JCP 2003] a new method
which estimates the order of convergence of a computation as the solution of a least square minimization
problem on the residual. This method, called least square extrapolation, introduces a framework facilitating
multi-level extrapolation, improves accuracy and provides a posteriori error estimate. This method can
accommodate different grid arrangements. The goal of this paper is to investigate the power and limits
of this method via incompressible Navier Stokes flow computations.
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Abstract

A posteriori error estimators are fundamental tools for providing confidence in the numerical computation of
PDEs. To date, the main theories of a posteriori estimators have been developed largely in the finite element
framework, for either linear elliptic operators or non-linear PDEs in the absence of disparate length scales. On the
other hand, there is a strong interest in using grid refinement combined with Richardson extrapolation to produce
CFD solutions with improved accuracy and, therefore, a posteriori error estimates. But in practice, the effective order
of a numerical method often depends on space location and is not uniform, rendering the Richardson extrapolation
method unreliable. We have recently introduced [Garbey 13th international conference on domain decomposition and
Garbey & Shyy JCP 2003] a new method which estimates the order of convergence of a computation as the solution
of a least square minimization problem on the residual. This method, called least square extrapolation, introduces
a framework facilitating multi-level extrapolation, improves accuracy and provides a posteriori error estimate. This
method can accommodate different grid arrangements. The goal of this paper is to investigate the power and limits
of this method via incompressible Navier Stokes flow computations.

Index Terms

Partial Differential Equations, Least Square Method, Richardson extrapolation, a posteriori error estimate.

I. INTRODUCTION AND MOTIVATION

Richardson extrapolation (RE) is a simple, elegant and general mathematical idea that works for numerical
quadrature with the Romberg method or ODE integrations that have smooth enough solution with the Bulirsch-Stoer
method. Its use in Computational Fluid Dynamics (CFD) [3], [4], [10], [12], [13], [16], [17], [18], [21] is limited
by the fact that meshes might not be fine enough to satisfy accurately the a priori convergence estimates that are
only asymptotic in nature. Furthermore the order of convergence of a CFD code is often space dependent and
eventually parameters, such as the Reynolds number, dependent.

To cope with these limitations of RE, we have introduced recently [8], [9] the so-called Least Square
Extrapolation method (LSE) that is based on the idea of finding automatically the order of a method as the
solution of a least square minimization problem on the residual.

Our LSE method is based on the post-processing of data produced by existing PDE codes. The method has
been described in detailed in [9]. From a practical point of view, we have used a two dimensional turning point
problem [14] exhibiting a sharp transition layer as well as a finite difference approximation of the cavity flow
problem in ω− ψ formulation [15] to show that our method is more reliable than RE while the implementation is
still fairly easy and the numerical procedure inexpensive.

Our objective is to use any PDE or CFD solvers, independent of their inner working algorithm and procedures,
provided that they can offer the information including the residual of the numerical approximation, stability
estimates, and varying grid resolutions and numerical solutions, to accomplish the following goals: (i) a posteriori
estimates of PDEs that are more reliable and robust than straightforward Richardson extrapolation-based methods
with low cost in additional CPU time, (ii) a solution with improved accuracy, (iii) arithmetic efficiency of the PDE
multilevel solution procedure by providing a good starting point for iterative solvers [6], and (iv) a dynamic solution
verification software.
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From the applied mathematics point of view, a posteriori estimates have been around for many years [23]
[1]. Most work has been done in the framework of finite element analysis on linear elliptic problems in order to
drive adaptive mesh refinement. More recently a general framework for finite element a posteriori error control
that can be applied to linear and non-linear elliptic problem has been introduced by Patera et al [19]. A posteriori
Finite-Element free constant output bounds can be constructed for the incompressible Navier Stokes equation [11].
We propose to use least square extrapolation to produce a posteriori estimate using grid solutions that can be
produced by any discretization. This approach might be combined to existing a posteriori estimate when they are
available, but is still applicable as a better alternative to straightforward RE when none such stability estimate is
available.

The extrapolation procedure is simple to implement and can be incorporated into any computer codes
without requiring detailed knowledge of the source code. Its arithmetic cost should be modest compare to a direct
computation of the fine grid solution. Finally the procedure should overall enhance the accuracy and trust of a CFD
application in the context of solution verification.

In this paper, we pursue the research initiated in [8], [9] to investigate the power and limit of the LSE for
the incompressible Navier Stokes equation written in the u − v − p formulation. This test case has a number of
interesting features compared to the test case in the ω − ψ formulation already studied in [9]. As a matter of
fact, the ω − ψ formulation is essentially a fourth order problem with one unknown, i.e the stream function ψ,

while we will see that the LSE method applied to the u − v − p formulation has to deal with coupled equations,
i.e, the momentum equation, and search for an extrapolation solution constrained by the divergence free condition.
Further, for problem with multiple scale, the relation ship between the residual and the numerical error can be fairly
complex. In other words minimizing the residual via LSE does not guarantee that the error is minimized, unless
the space of search is close to the exact solution [22]. We will present in this paper a postprocessing procedure on
our coarse grid solution that makes LSE numerically efficient.

The plan of this paper is as follows. In Section 2, we first summarize basic properties of RE and summarize
the general idea of the LSE method for PDEs. In Section 3 we present in detail the algorithm for the incompressible
Navier Stokes equation. In Section 4, we discuss the numerical results for the cavity flow problem. Section 5 is
our conclusion and refer to ongoing research.

II. BASIC PROPERTIES OF RICHARDSON EXTRAPOLATION AND LEAST SQUARE EXTRAPOLATION

Let E be a normed linear space, || || its norm, v ∈ E, p > 0, and h ∈ (0, h0). ui ∈ E, i = 1..3 have the
following asymptotic expansion,

ui = v + C(
h

2i−1
)p + δ, (1)

with C constant independent of h, and ||δ|| = o(hp).
For known p, RE formula,

vi
r =

2p ui+1 − ui

2p − 1
, i = 1, 2 (2)

provides improved convergence: ||v − vi
r|| = o(hp). An a posteriori error estimate on ui is then

||ui − vi
r||. (3)

In CFD practice, one applies RE to grid functions rather than to continuous functions. Let Ei be a family
of normed linear space, associated with a mesh Mh/2i−1 . We suppose a set of equations,

U i = v + Ci(
h

2i−1
)p + δi, (4)

with Ci = (1 + εi)C, and εi = o(1). δi is a model for the h independent numerical perturbation induced by
consistency errors and/or arithmetic error. The Richardson extrapolate

V 2
r =

2p U3 − U2

2p − 1
, (5)
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defined on grid points of M2 has then for error in E2,

v − V 2
r =

1

2p − 1
((δ2 − 2pδ3) +C (ε2 − ε3)(

h

2
)p). (6)

The numerical perturbation is amplified by a factor 2p+1
2p

−1 . This RE gives then an a posteriori error estimate
on U i that is simply

||V 2
r − U i||, i = 1..3.

RE can then be used also to approximate a finer grid solution, for example

U4 ≈ V 2
r + C(

h

23
)p, (7)

where C is obtained from the identity

U3 = V 2
r + C(

h

22
)p. (8)

For applications in CFD calculation, the asymptotic order of convergence is in general not known or not
closely satisfied on the computational grid. One may use the estimate:

p ∼ log2
||u1 − u2||

||u2 − u3||
. (9)

An entirely similar analysis can be applied to non-embedded refined grid solution U i in a normed linear
space Ei, associated with a mesh Mhi

, provided that one projects all grid functions to a fine grid M 0 with an
interpolation procedure. However this interpolation should introduce an additional error term integrated in the δi

term of (4) kept much less than the expected convergence accuracy hp
i .

In practice, all pointwise RE extrapolation formula, particularly (4), are sensitive to numerical perturbation.
RE is a common tool for solution quality assessment in CFD. In our experience [9] [21], we have observed that RE
can improve the order of accuracy, but not consistently. If the quality of the solution is poor then RE may provide
worse approximations. These conclusions are reached based on extensive solution verification with two different
Navier Stokes approximations for the steady state, 2-D laminar incompressible lid-driven square cavity flow with
the Reynolds number (Re) in the range of 20 to 1000. Squared regular meshes using the ω − ψ formulation and
Finite Difference (FD) [15] or the Finite Volume (FV) version of the u− v − p formulation with centered cells
[20] have been tested. Further experiments with turbulent flows on a back step has demonstrated the critical issue
of multiscales [21].

In a recent stream of work of Eca et al, see [4], [5] and its references, one can use a least square model of
the error provided that enough grid solutions are computed. To be more specific most variant of RE suppose that
the error is represented by an asymptotic expansion as follows:

e = v − ui = Σk=1..p ak βk(h) + o(hp
i ), (10)

in a normed space (Ei, || ||).
In RE procedure, one neglects the o(hp

i ) residual and use the following identity pointwise:

e = v − ui = Σk=1..p ak βk(h), (11)

We observe that this pointwise equality not only neglect the higher order term o(hp
i ) but also disregards the nature

of the asymptotic expansion that is depending on the norm associated to Ei.

We have then two standard situations:
• If the basis function β are given, then one need p + 1 grid solutions vj to derive the unknown coefficients
ak, , k = 1..p and the (approximated) true solution v.

• If the set of basis functions βk(h) is a one parameter family of functions, for example h
γ
k, with arbitrary

exponent γ, one needs 2 p + 1 grid solution to solve the error model, i.e compute v, ak, k = 1..p, and
γk, k = 1..n, pointwise.

To cope with the fact that RE is very sensitive to noisy data, L.Eca et Al retrieve the error model with a
least square fit instead of enforcing equalities. This procedure is indeed less sensitive to noisy data, but requires
many more grid solutions than with the standard RE procedure.
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We have developed a completely different technique to optimize RE. Our criterium to select the best
extrapolate solution is to minimize an objective function such as the l2 norm of the residual for the discrete
solution on a very fine grid. This fine grid must be chosen to resolve the fine scale of the problem. We use no more
than two or three coarse grids solution in our procedure. We do not try to compute directly an approximation of the
exact solution either. We rather try to extract the best information from these two or three coarse grid solutions by
reintroducing in the construction of the extrapolation formula, the discretization of the PDE, instead of assuming
any kind of asymptotic model for the error.

Let us review briefly the LSE method for the numerical approximation of scalar function first.
Let E = L2(0, 1), u ∈ E. Let v1

h and v2
h be two approximations of u in E:

v1
h, v

2
h → u in E as h → 0.

A consistent linear extrapolation formula writes

αv1
h + (1 − α)v2

h = u.

In RE the α function is a constant. In the LSE method we formulate the following problem for the unknown
function α that is in general a non-constant function

Pα: Find α ∈ Λ(0, 1) ⊂ L∞ such that (α v1
h + (1 − α) v2

h − u) is minimum in L2(0, 1).

Typically we choose for the space Λ(0, 1) a set of polynomial trigonometric functions, but this is not necessary.
We have shown

Theorem [9]: if u, vi
h,∈ C1(0, 1), i = 1, 2 , if 1

v1

h−v2

h

∈ L∞(0, 1) and v2
h − v1

h = 0(hp) then αv1
h + (1 −α)v2

h is
an 0(M−1) × 0(hp) approximation of u.

Special care must be done if v1
h − v2

h << u− v2
h, in some set of non-zero measure.

These outliers should not affect globally the least square extrapolation and we impose α to be a bounded function
independent of h. A potentially more robust approximation procedure consists of using three levels of grid solution
as follows:

Pα,β: Find α, β ∈ Λ(0, 1) such that (α v1
h + β v2

h + (1 − α− β) v3
h − u) is minimum in L2(0, 1).

As a matter of fact, all vj
h, j = 1..3, may coincide at the same grid points only if there is no grid convergence

locally. In such a situation, one cannot expect improved local accuracy from any extrapolation technique. The
robustness of the LSE method comes from the fact that the extrapolated solution does not deteriorate the accuracy
of the coarse grid solution while it may not be the case for RE, especially when one uses (9).

In practice, we work with grid functions solution of discretized PDE problem. The idea is now to use the
PDE in the RE process to find an improved solution on a given fine grid M 0.

Let us denote formally the linear PDE

L[u] = f, with u ∈ (Ea, || ||a) and f ∈ (Eb, || ||b),

and its numerical approximation,

Lh[U ] = fh, with U ∈ (Eh
a , || ||a) and fh ∈ (Eh

b, || ||b),

parameterized by a mesh step h.
We suppose that we have a priori a stability estimate for these norms

||U ||a ≤ C hs (||fh||b), (12)

with s real not necessarily positive.
Let Gi, i = 1..3, be three embedded grids that do not necessarily match, and their corresponding grid solutions

Ui. Let M0 be a regular grid that is finer than the grids Gi. Let Ũi be the coarse grid solutions interpolated on the
fine grid M 0.
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The main idea of the LSE method is to look for a consistent extrapolation formula based on the interpolated
coarse grid solutions Ũi that minimizes the residual, resulting from Ũi on a grid M 0 that is fine enough to capture
a good approximation of the continuous solution.

Let us restrict for simplicity to a two-point boundary value problems in (0, 1). Our least square extrapolation
is now defined as follows:

Pα: Find α ∈ Λ(0, 1) ⊂ L∞ such that (Lh[αŨ1 + (1 − α)Ũ2] − fh) is minimum in L2(M
0).

The three-level version is analogous to the two-level one. To focus on the practical use of this method, we
should make the following observations. It is essential that the interpolation operator gives a smooth interpolant
depending on the order of the differential operator and the regularity of the solution of the differential problem.
For conservation laws, one may require that the interpolation operator satisfies the same conservation properties.
For reacting flow problems, one may require that the interpolant preserves the positivity of species. For elliptic
problems, it is convenient to postprocess the interpolated functions Ũ i, by few steps of the relaxation scheme

V k+1 − V k

δt
= Lh[V k] − fh, V

0 = Ũ i, (13)

with appropriate artificial time step δt. This will readily smooth out the interpolant.
Let ej , j = 1..m be a set of basis function of Λ(0, 1). The solution process of Pα and/or P(α,β) can be

decomposed into three consecutive steps.
• First, interpolation of the coarse grid solution from Gi, i = 1..3 to M 0.
• Second, evaluation of the residual Lh[ej (Ũ i − Ũ i+1)], j = 1..m, and Lh[Ũ3] on the fine grid M 0.
• Third, the solution of the linear least square problem that has m unknowns.

In practice, we keep m low by using a spectral representation of the unknown weight functions α and
eventually β. The arithmetic complexity of the overall procedure is then still of order Card(M 0), i.e., it is linear.
The application to nonlinear PDE problem is done via a Newton-like loop [9]. The algorithm might be coded in a
stand alone program independent of the main code application.

We are going now to describe the algorithm for the incompressible Navier Stokes set of equations.

III. APPLICATION TO THE CAVITY FLOW PROBLEM

Let us consider the velocity-pressure formulation of the square cavity problem in two space dimensions. The
steady problem writes in Ω = (0, 1)2,

N1[u, v, p] = −
1

Re
∆u+ u

∂u

∂x
+ v

∂u

∂y
+
∂p

∂x
= 0, (x, y) ∈ Ω (14)

N2[u, v, p] = −
1

Re
∆v + u

∂v

∂x
+ v

∂v

∂y
+
∂p

∂y
= 0, (x, y) ∈ Ω, (15)

submitted to the constraint
Div(u, v) =

∂u

∂x
+

∂v

∂y
= 0, (x, y) ∈ Ω. (16)

In this system of equations Re is the Reynolds number. Furthermore this set of equations is supplemented with the
no-slip boundary conditions on the walls of the cavity. The flow speed is zero on all walls except on the sliding
wall

u(x, 1) = g(x), x ∈ (0, 1). (17)

In applying the LSE method with u − v − p formulation, we deal with three new difficulties that were not
present in the Navier Stokes calculation of [9]

• We have a system of coupled non linear PDEs. The cavity flow problem with ΩΨ formulation is really a fourth
order non linear elliptic problem on Ψ only.

• The LSE on the velocity field should satisfy the divergence free constraint.
• Thanks to the discontinuity of the boundary condition on the velocity field at the corners, there is no valid

pointwise model of the error that follows a standard Taylor expansion.
The grid functions (ui, vi, pi) on Gi are computed with a standard FD code using a projection method and

staggered grids [15].
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Let us consider a set of three-grid solutions (ũi, ṽi, p̃i)i=1..3 projected onto the fine grid M 0 via a high order
smooth interpolation procedure. Let us denote N 0

1 , N
0
2 , Div

0 the corresponding discretized operator. For finite
differences that we will consider from now on, M 0 is a staggered grid system, and the discretized operator are
given by central second order finite differences.

The projected flow field (ũi, ṽi) does not satisfy a priori the divergence-free condition

Div0(ũi, ṽi) = 0, (x, y) ∈ Ω. (18)

In the unlikely case where (18) is satisfied, the extrapolated value of the flow field

α(ũi, ṽi) + (1 − α)(ũi, ṽi), i 6= j,

will not be divergence-free anyway for the Div0 operator, unless α is a constant.
We define then the following mapping (u, v) → Ψ → (U, V ), where

U =
∂Ψ

∂y
, V = −

∂Ψ

∂x
, (x, y) ∈ Ω, and

∆Ψ =
∂u

∂y
−
∂v

∂x
, (x, y) ∈ Ω, Ψ = 0 on ∂Ω.

We define also its discrete analogue (ũ, ṽ) → (Ũ , Ṽ ), in M 0.

Thanks to this mapping, we can retrieve from the grid function (ui, vi) in Gi a divergence free approximation
(Ũi, Ṽi) in M0. The least square extrapolation problem with two levels writes then

Pα1,α2
: Find α1 and α2 ∈ Λ(Ω) ⊂ L∞(Ω) such that

N0[α1Ψ̃1 + (1 − α1)Ψ̃2, α2p̃1 + (1 − α2)p̃2]

is minimum in L2(M
0,M0), with N 0[Ψ, p] = (N 0

1 [U, V, p], N 0
2 [U, V, p]).

Since this problem is nonlinear, we use a Newton loop to construct a sequence of weight functions (αn
1 , α

n
2 )

that may converge to the solution. The iterative procedure starts from the finest coarse grid solution at our disposal.
Convergence is not guaranteed and may depend on how close the initial guess is to the true M 0 grid solution.
If (U0, V 0, p0) represents the current solution, the next iterate is found by applying the least square extrapolation
procedure to the linear operator

L0(U0, V 0)[Ψ, p] = (L0
1(U

0, V 0)[U, V, p], L0
2(U

0, V 0)[U, V, p]), (19)

with

L1(U
0, V 0)[u, v, p] =

−
1

Re
∆u+ U0∂u

∂x
+ u

∂U0

∂x
+ V 0∂u

∂y
+ v

∂U0

∂y
+
∂p

∂x
− U0∂U

0

∂x
− V 0 ∂U

0

∂y
,

L2(U
0, V 0)[u, v, p] =

−
1

Re
∆v + U0 ∂v

∂x
+ u

∂V 0

∂x
+ V 0 ∂v

∂y
+ v

∂V 0

∂y
+
∂p

∂y
− U0 ∂V

0

∂x
− V 0∂V

0

∂y
,

A similar algorithm is derived for the three-level case.
The space of unknown weight function is chosen as in [9] to be the set of trigonometric polynomial functions

α = Σi=1..m,j=1..mαi,je
i ej ,

with e0 = 1, e1 = cos(πx) and ei = sin((i− 2)πx), for i = 3..m.
This set of trigonometric functions allows us to approximate at second order in L2 norm any smooth non-

periodic functions of C1[(0, 1)2], [7]. The main advantage of this choice of approximation space for the weight
function is that it will allow us to easily interpret our numerical result in the frequency space.

However, for Navier Stokes computation with large Reynolds number, we are currently investigating the use
of wavelets since the convergence order might be closely related to the multiscale properties of the solution.

We are going now to present our numerical experiments with the LSE method.
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IV. RESULTS AND DISCUSSION

To illustrate the numerical result, we restrict ourselves to the test case of the square cavity with a constant
sliding wall velocity that is g(x) = −1, and a Reynolds number Re = 400. This test case is representative of the
results obtained with our method. In particular, the first component u of the speed is singular at the corner, as well
as the pressure. From this numerical experiment and many others we can draw the following conclusions:

The three-level extrapolation method is more robust and more accurate than the two-level extrapolation
method. Figure 1 illustrates the cancelation phenomenon with two grid solutions 51 × 51 and 61 × 61. We plot
in this picture the local minimum per vertical and/or horizontal lines of the difference between two coarse grid
solutions projected on the fine grid. These minima are such that any a priori bounded weight coefficient α will
have no influence on the extrapolated solution. The two-level extrapolated solution cannot therefore improve the
accuracy of the solution. Further we cannot decide if the grid solutions are fully converged at these points or, on
the contrary, if the numerical methods lack convergence locally, unless we use a very grid solution to compare. We
have verified then that the RE formula based on three-level extrapolated solution with the computed convergence
order as in (9) exhibits large local errors on the convergence order. Following the approach of [3], one may select
adaptively the points where RE has better chances to be valid. We are going to present the numerical experiments
for LSE using three grids only.

In the following we will present a fair comparison between RE and LSE, i.e we will compare RE and LSE
to predict the same fine grid solution, instead of using RE to predict the continuous true solution. In each graph (2)
to (6) the horizontal axis indicates the number of grid points N in each space direction for the fine grid M 0 used
to evaluate the residual. The vertical axis gives in log10 scale the relative error in L2 norm’s. Labels of curves are
as follows: ’o’ for the grid solution G2 solution, ’v’ for the the finest coarse grid solution G3 solution, � for RE,
� for LSE.

We recall that M 0 is the finer grid on which the extrapolation is conducted. Let us take M 0 to be a grid
with a slightly smaller space step than G3. RE as well as LSE predicts very accurately the solution on M 0. In
figure 2, the three coarse grid solutions are 51 × 51 for G1, 61 × 61 for G2, and 71 × 71 for G3. We see that as
M0 gets finer the LSE deteriorates, while the RE assuming second order improved.

In general LSE seems to be reliable to bounds from below the true error on G3 by comparing the prediction
on M0 done by LSE and the coarse grid solution G3 interpolated on M 0. This seems to be a promising tool for
routine solution verification. RE gives similar performance for this specific benchmark, and gives much better result
than LSE for finer grid prediction.

We observe a numerical locking of the LSE method to predict solution when the grid M 0 gets significantly
finer than G3. In other words increasing the number of Fourier modes m to approximate the weight function provides
little improvement on the minimum of the residual. Further, the optimal weight function does not correspond
necessarily to the minimum of the residual. This phenomenon has been clearly demonstrated in [22], where LSE
was restricted to the search for constant α values with two grid levels only. In this specific case, the best weight
coefficient that minimizes the residual in the least square sense, can give poorer result than the RE method assuming
second order of convergence. Figure 3 illustrates the poor performance of the LSE method with three grid levels
and m = 4 Fourier modes in each space direction to approximate the weight function. In this figure, we have
compared the solution with the 121 × 121 grid solution declared as the true solution, while the LSE uses a fine
grid M0 with growing size from 81 × 81 to 121 × 121. The three coarse grids solution are still 51 × 51 for G1,
61 × 61 for G2, and 71 × 71 for G3.

We propose the following explanation of this phenomenon: we observe that the coarse grid solution interpo-
lated on a fine grid M 0 has high spurious wave number terms brought by the interpolation procedure. We know
that the high wave number components of the coarse grid solution relative to the coarse grid itself are inaccurate.
The interpolation procedure combined with the weight function expansion worsen the phenomenon. These high
wave numbers components are amplified in the computation of the residual for a nonlinear stiff problem as the
cavity flow with large Reynolds number. The LSE method minimizes therefore the L2 norm of a residual polluted
by high wave number components. To get the minimum of this residual does not guarantee therefore that the error
on the low wave number component of the solution is minimum. This phenomenon is not visible when LSE is
used to predict the solution on a near by G3 finer grid, because the gap in frequency between G3 and M0 is small.
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To validate our heuristic analysis, we postprocess each coarse grid solution with the NS code on the fine
grid. We use explicit time stepping with dt constraint by the CFL condition as well as the explicit treatment of the
diffusion term. Ten time steps does not allow the NS to converge on M 0 by all means, but relax efficiently the
high frequency components of the projected coarse grids due to the interpolation. We further apply a least square
low mode approximation of the computation of each residual computed in the LSE method. LSE is therefore now
computing the weight functions that minimize the low mode approximation of the residual. In other words high
frequency components are completely filtered out, and the effect of the singularity at the corner in the computation
of the residual is somehow weakly weighted.

The same test case as the one illustrated in Figure 3 has been used. Figure 4 shows that keeping a 8 Fourier
modes in each space direction for the residual approximation, improves significantly the result. This result is fairly
insensitive to the number of NS iterates on the fine grid, once the spurious oscillations introduced by the interpolation
of the coarse grids are damped out on M 0. We checked for example that to take 100 NS iterates instead of 10
improve the accuracy of LSE marginally only.

The same result can be reproduced with higher accuracy for finer meshes as in Figure 5. In this last case
the declared true solution is for the grid 181 × 181 and the three coarse grid solutions are 101 × 101, 111 × 111
and 121× 121 grids. It demonstrates some practical convergence of the LSE method with very good error estimate
on the solution. Further LSE gives the best performance to predict the grid solution on M 0 when the coarse grid
solution are projected on the same M 0. However, how good should be the coarse grid solution is still an open
issue.

Finally, it should be noticed that as the coarse grid solutions get finer, the LSE accuracy is always significantly
better than the RE prediction. This is shown in Figure 6 where LSE is computed with simultaneous increasing
resolution of the coarse grid solutions (N − 20)2 for G1, (N − 10)2 for G2 and N 2 for G3, for N = 70 up to
N = 110.

Finally it can be observed on this test case that the flow speed is discontinuous at the two corners of the
sliding wall. This singular behavior of the pressure and the velocity components at these corner points leads to
locally low order accuracy of the numerical solution [21]. This impacts the efficiency of the RE indeed. We obtain
then better a posteriori estimate with LSE than with RE, thanks to the postprocessing of the coarse grid solution.

It is not yet clear if a wavelet representation of the weight function α and β, will better approximate sharp
variation of the convergence order at the corner and give a significantly better result for the singular case obtain
with g(x) = −1. We have also observed that spline interpolation of the coarse grid solution on M 0 smears out the
singularity at the corner and might be also one of the barriers for recovering accurate solution in the L2 norm with
very coarse grids. This is currently the subject of further investigations.

V. CONCLUSIONS

We have studied a new extrapolation method for PDEs that is more robust and accurate than RE applied
to numerical solutions with inexact or varying convergence order. Our method provides a better tool to establish
a posteriori error estimate than RE when the convergence order of a CFD code is space dependent. However
there are still many open questions concerning mainly how fine should be the coarse grid solution to provide
accurate a posteriori error estimate. We are currently investigating the use of wavelet approximation instead of
regular trigonometric polynomial to track the multiscale properties of the solution reflected in sharp variation of
the convergence order.

Further let us mention that there are many variants of the least square method [2]. We have so far considered
the most straightforward method with an unreliable estimator. We may therefore need to find an optimal weight to
the Least square, and eventually use better methods such as the generalized least square or nonlinear least square
method.
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laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of
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Fig. 1. Location of some local minima of p̃2 − p̃1 on the left and ψ̃2 − ψ̃1 on the right where cancellation with the two level’s LSE take
places.
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Fig. 2. Performance of LSE (without postprocessing of the residual) to predict the solution on the grid 121×121. The coarse grid solution
G1, G2, G3, are respectively 51 × 51, 61 × 61, 71 × 71.



11

80 85 90 95 100 105 110 115 120 125

−2.2

−2

−1.8

−1.6

−1.4

−1.2

−1

Pressure

o for G2
v for G3
square for LSE
diamond for RE

80 85 90 95 100 105 110 115 120 125

−2.8

−2.6

−2.4

−2.2

−2

−1.8

−1.6

−1.4

U

o for G2
v for G3
square for LSE
diamond for RE

80 85 90 95 100 105 110 115 120 125

−2.8

−2.6

−2.4

−2.2

−2

−1.8

−1.6

−1.4

V

o for G2
v for G3
square for LSE
diamond for RE

Fig. 3. Performance of LSE to predict the M0 grid solution with the same notation and computation as in Figure 2.
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Fig. 4. Performance of LSE to predict the M0 grid solution with the same notation and computation as in Figure 2 but with postprocessing
of the coarse grid solution and the residual to filter out the high waves components.
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Fig. 5. Performance of LSE, with postprocessing of the residual, to predict the solution on the grid 181 × 181. The coarse grid solution
G1, G2, G3, are respectively 101 × 101, 111 × 111, 121 × 121.
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Fig. 6. Comparison of LSE versus RE with varying accuracy for the coarse grid solution. G1, G2, G3, are respectively (N −20)2, (N −

10)2, N2 grids. Horizontal axis gives the number of grid points N in each space direction for G3.
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