
National Aeronautics and Space Administration

NASA’s Core Flight Software -
 a Reusable Real-Time Framework

Topics:
•  Core Flight Software (CFS) Overview
•  Case Study: Morpheus Lander
•  JSC CFS Development Efforts
•  CFS Training Slides

Lorraine Prokop, Ph.D.
lorraine.e.Prokop@nasa.gov
Advanced Exploration Systems Core Flight Software Project Manager
NASA – Johnson Space Center (JSC)
November 2014

§ What is CFS?
–  NASA Agency Asset for Spacecraft Flight Software Reuse (http://cfs.gsfc.nasa.gov/)

•  Productized real-time flight software developed over several years by Goddard Space Flight
Center to serve as reusable software framework basis for spacecraft missions, test missions,
real-time systems

–  Fully tested, documented, operational with LRO spacecraft, several other operational missions since
–  Published Service Layer (cFE) and open source Operating System Abstraction Layer (OSAL) for

common services
•  Pub/sub message bus, time services, events, tables, file, task execution (http://sourceforge.net/projects/coreflightexec/files/cFE-6.4.0/)

•  Runs on multiple platforms and with several operating systems (http://sourceforge.net/projects/osal/)

–  Apps or “bubbles” for common spacecraft functions provided as government open source reuse
(available source forge shortly)
•  Scheduler, commanding, telemetry, communication, data recording, limits, system health, sequences

§ Why use it?
–  Proven rapid deployment -- Saves software development/test time, costs, skilled resources
–  Provides up-front architectural framework and services needed commonly across spacecraft/real-

time embedded command/control applications
•  Don’t have to “reinvent the wheel” every spacecraft for common functions

–  Allows ease of development and integration by supporting multiple OS’s and Platforms

§  In-house experiences with CFS software development
–  High software productivity achieved starting with solid architecture (~15+ SLOC/day)
–  Ease of application and hardware/software integration
–  Decreased verification needed – mature code and architecture – Test Readiness Level (TRL9)
–  Excellent product line support from Goddard

Core Flight Software (CFS) 
Background Context

2

CFS Project Use History – Non Exhaustive

3

[CELLRANGE]

[CELLRANGE]

[CELLRANGE]

[CELLRANGE]

[CELLRANGE]

[CELLRANGE]

[CELLRANGE]
[CELLRANGE]

[CELLRANGE]

[CELLRANGE]

Oct-09 Apr-10 Oct-10 Apr-11 Oct-11 Apr-12 Oct-12 Apr-13 Oct-13 Apr-14 Oct-14 Apr-15

Johnson Space Center CFS Usage Timeline

CFS Use in Some Current Spacecraft
Goddard Missions:

•  Lunar Reconnaissance Orbiter (LRO) (2009)
•  Solar Dynamics Observatory (SDO) (2010)
•  Magnetospheric Multiscale Mission (MMS) (2014)
•  Global Precipitation Measurement (GPM) (2014)

Ames Research Center Missions:
•  Lunar Atmosphere and Dust Environment Explorer (LADEE) (2013)

Applied Physical Lab (APL) Missions:
•  Radiation Belt Storm Probes (RBSP) (Aug 2012)
•  Solar Probe Plus (SPP) (2018)

2013	 -‐	 Lorraine	 E.	 P.	 Williams,	 Ph.	 D	 –	 NASA/JSC/ER6	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 4	

Notional CFS Application Software Architecture

Event
Services Executive

Services Time
Services

Inter-task Message Router
(Software Bus – Publish/Subscribe) Health &

Safety
Manager

Software
Bus

Data
Storage

Table
Services

Mass
Storage
Device CFDP

Data To/From Vehicle

Scheduler
Command

Ingest
Telemetry

Output
File

Manager
Mission
Specific
Apps -

Components

Hardware
Specific

Device I/O
Apps -

Components

Mission Specific Apps Core Services
Example CFS Reuse Apps

Limit
Checker

cFE (core Flight Executive)
Services API

CFS Reusable
Apps

	 	 Mission	 Specific	
CFS	 Apps	 	 	

Core Flight Software Framework-
Architectural Layers

Operating System Abstraction
Layer (OSAL) API

Platform Specific Package
(PSP)

Core Flight Software (CFS) Architecture Overview

Pla2orm	 OS	 Project	 Status	 /	 Notes	

RAD750	 vxWorks	 6.4	 LRO,RBSP,	
GPM	

Project	 tested.	

RAD750	 RTEMS	 4.10	 ICESat-‐2/
ATLAS	

Early	 in	 instrument	 test	 program	

Rad	 Hard	 Coldfire	
(5208)	

RTEMS	 4.10	 MMS	
	

Project	 tested.	 	

LEON3	 RTEMS	 4.10	 Solar	 Probe	
Plus	

In	 Development	 for	 SPP	 mission	

MCP750	 PPC	 vxWorks	 6.4	 cFE/CFS	
Project	

Tested.	
Used	 as	 baseline	 CFS	 development	 pla2orm.	

PC	 /	 x86	 Linux	 n/a	 Not	 formally	 tested.	 	 Used	 by	 JSC.	

Coldfire	 MCF5235	
board	

RTEMS	 4.10	 n/a	 Not	 formally	 tested.	 	
Used	 for	 RTEMS	 Development,	 and	 MMS	 board.	

LEON3	 –	 generic	 –
(simulator,	
mul^ple	 COTS	
boards)	

RTEMS	 4.10	 n/a	 Not	 tested.	 	 Not	 in	 CFS	 CM.	 	
Used	 for	 LEON3	 development.	 	
Can	 be	 used	 on	 LEON3	 Simulator.	

Coldfire	 Simulator	
(qemu	 68k)	

RTEMS	 4.10	 n/a	 Not	 formally	 tested.	 	
Used	 for	 OSAL	 /	 cFE	 development	

TILERA	 Linux	 Maestro	 IRAD	
(FY12)	

Not	 formally	 tested.	
Compa^ble	 with	 Desktop	 PC	 linux	 version.	

MCP750	 PPC	 vxWorks	 6.x	 Memory	
Protec^on	
IRAD	 (FY11)	

Adds	 memory	 protec^on	 to	 standard	 cFE.	
Not	 formally	 tested.	
Not	 integrated	 with	 cFE	 repository.	

PC	 x86	 Linux	 Mul^-‐Core	
IRAD	 (FY12)	

Adds	 mul^-‐core	 CPU	 capability	 to	 cFE.	
Not	 formally	 tested.	
Not	 integrated	 with	 cFE	 repository.	

Leon3	 	 PikeOS	 Virtualiza^on	
IRAD	 (FY12)	

Adds	 ability	 to	 run	 in	 par^^oned	 OS.	
Prototype.	
Not	 integrated	 with	 cFE	 repository.	

Pla2orm	 OS	 Project	 Status	 /	 Notes	

Aitech	 S950	
(PPC750FX)	

vxWorks	
6.7	

Morpheus	 In	 JSC	 CM.	
IntegraSon	 tested	 on	 real	 Morpheus	
Vehicle	 hardware.	 	 Flown	 on	 Morpheus	
test	 vehicle.	

RTD	 pc386-‐
IDAN,	 PC104,	
PenSum	 M	

RTEMS	
4.10	

ISS	
Downmass/
Micro	
Capsule	

In	 JSC	 CM.	
IntegraSon	 tested	 on	 real	 Micro	
Capsule	 hardware.	

Acro	 Virtex	 5	 VxWorks	
6.9	

AEMU	 In	 development.	

Space	 Micro	
Proton	 P400k	

VxWorks	
SMP	 6.8	

MMSEV,	
AAE	

In	 JSC	 CM.	
In	 development	 for	 MMSEV	 FY13	 work.	

Maxwell	
SCS750	

VxWorks	
6.9	
RTEMS	
4.10	

EAM,	
AAE	

In	 JSC	 CM.	 	 EAM	 about	 to	 start	 using.	

787FCM	 Integrity	
ARINC	

AES	 CFS	 In	 development,	 producing	 ARINC653	
cFE,	 OSAL.	

OrionSCP	 Integrity	
ARINC	

AES	 CFS	 In	 development,	 producing	 ARINC653	
cFE,	 OSAL.	

750FCR	 VxWorks	
ARINC	 6.8	

AES	 CFS	 In	 development,	 tesSng	 FTSS	 SW	 fault	
containment	 with	 a	 voSng	 quad	
architecture.	

Trick	
(simulaSon	
environment)	

Linux	 AES	 CFS	 In	 development,	 for	 mulS-‐project	 use.	

LEON3	 VxWorks	
6.7	

BFS	 In	 JSC	 CM.	 	 BFS	 prototype.	

AiTech	 SP0	 VxWorks	
6.7	

RPM?	 In	 JSC	 CM.	 	 RPM	 performance	 analysis.	

CFS Supported Platforms
(non-exhaustive)

Recently Developed
largely in support of AES projects 5	

Broad	 Awareness/Use	 of	 the	 CFS	

6	

KSC-Evaluating
for AES, sounding
rockets and UAV’s

JPL – Evaluating
architecture for robotic
missions and ESTO
missions, DTN

South Korea Aerospace
Research Institute (KARI) -
Lunar Exploration Research
Team

Commercial -
Moon Express
(Lunar X-Prize)

DOD
• Potential for standardization though
Office of Director of National
Intelligence (ODNI)

• 2012- met w/ Space Universal
MOdular Architecture (SUMO) team
led by Office of Director for National
Intelligence (James Afarin (HQ))

JSC-Used Successfully
on Morpheus. Using on
Habitats and Suits
(AES) – enhancing for
human rated software.

GRC –Using on CPST,
Suits

APL - Successfully used
on RBSP. Proposing use
on Solar Probe, DoD
programs.

ARC- Using on LADEE
(flight SW system on
budget /schedule)

MSFC- Mighty
Eagle Lander,
prototyping for
AES

GSFC-Used
Successfully on LRO,
using on MMS, GPM,
instruments. Plans
for NICER, several
others.

http://www.nasa.gov/mission_pages/lunarquest/robotic/12-085.html

Case Study: Project Morpheus
Introduction

§ Morpheus is a Full Scale Robotic Lander
(500kg payload) built as a risk reduction
test article
–  Morpheus system includes the vehicle, ground

systems, operations
–  Developed, tested and operated in-house at

Johnson Space Center and KSC
–  Example Video: http://www.youtube.com/watch?v=tdrSYP2gSbg
§ Technologies:

–  Liquid oxygen/methane propulsion (cryogenic,
green, safe for ground handling and crew)

–  Precision landing and hazard detection Sensors
–  Leverages GSFC’s modular, reusable Core

Flight Software
–  Technology incubator for advanced

development efforts
§ Tests complete: 12 hot fire, 34 tethered,

and 14 free flights to date
§ Lean Development Approach
§ Forward Leaning towards Human

Spaceflight
While technologies offer promise, capabilities offer potential

solutions with application for future human exploration beyond LEO.
Morpheus provides a bridge for evolving these technologies into

capable systems that can be demonstrated and tested – in a
relevant flight environment.

8	

Morpheus	 Soeware	 Components	

8

Linux OS

Command &
Data

Dictionary

ITOS Infrastructure (Goddard)
(Data Com/Decom, Recon, Distribution, Display,

Scripting, Recording, Post processing)

Linux OS

Displays &
Controls

Database
(postgreSQL)

Simulation Software Ground Software

	
Morpheus	
Specific	 	

Applica^ons	
	

CFS	
Core	 	
Apps	
	
	
	
	

	
Custom	
Sensor/	
Effector	
Apps	
	
	
	
	
	

CFS Infrastructure (Goddard)

I/O Devices (Serial, 1553, A/D)

VxWorks 6.7 Operating System

Flight Software

VMWare (local PC/Mac)
Eclipse (local IDE)
CentOS/Linux (local VM OS)
GNU C/C++, Java (compile/Xlate)
Subversion (CM)
Redmine (change tracker)
Hudson (build checker)
UCC (code count metrics)
Windriver Workbench (target IDE/OS)
Parasoft C++test (standards checker)

	

Tool Chain

Dynamics, Time,
Environment Models

Generic Systems
Models

Morpheus Specific
System & I/O Models scripts

PPC 750GX Processor, cPCI (AiTech)

JEOD

Valkyrie

Trick Simulation Core (JSC)

ED
G

E
Vi

su
al

iz
at

io
n

Software Reuse
New Software

	
Morpheus	 Flight	 Soeware	 Architecture	

Mission Specific Apps cFE Core Services
CFS Configurable Applications Mission Specific I/O Apps

Event
Services Executive

Services Time
Services

GPS IO
Alt IO

SIGI,
1553

IO

Inter-task Message Router (SW Bus – Publish/Subscribe) Health &
Safety

Manager
Software

Bus

Data
Storage

Mass
Storage

SSR

Table
Services GNC-C

Application

D IO A I/O

GNC-G
Application

SIGI

Acuity Alt.

Javad
GPS

Automated
Flight

Manager
(AFM)

Prop EMAs, HW, Valves,
Sensors

232
1553

232

GNC Sensors

CFDP

C&T Hardware,
Serial Radio and/or
Hard-line Ethernet

Framed CCSDS
 57.6Kbps / 100Mbps

Prop
Application

100 Hz

100 Hz 100 Hz

50 Hz

25Hz

Scheduler
Command

Ingest
Telemetry

Output

100 Hz 10 Hz 10 Hz 10 Hz

5Hz

5 Hz

5 Hz

5 Hz

Nav Fast
 Propagate

(VTB & ALHAT)
Nav
UPP

Nav – KF
(Kalman

Filter)
(VTB &
ALHAT)

Nav - IMU
Preprocessor

GNC-N Apps

50 Hz 50 Hz
5 Hz

50 Hz

Bkground

 1 Hz

HDS Ethernet
HDS
IO
Lalt
IO

Doppler
IO

Ethernet
Ethernet

Laser
Alt.

Doppler
Lidar

50 Hz

PWM FW

AHRS
IO AHRS

5 Hz

5 Hz

1 Hz

232

HDS/ALHAT Sensors

House-
keepin

g
File

Manager

9	

SDIO SDI500
IMU

50 Hz

232

MTV

232
4 video
cameras

Video Switch

Wireless

PPS

DFI
1 Hz

Sample CFS App Template

10

int32 XXX_InitApp()
{
 int32 iStatus=CFE_SUCCESS;

 g_XXX_AppData.uiRunStatus = CFE_ES_APP_RUN;

 iStatus = CFE_ES_RegisterApp();
 if (iStatus != CFE_SUCCESS)
 {
 CFE_ES_WriteToSysLog("XXX - Failed to register the
app (0x%08X)\n", iStatus);
 goto XXX_InitApp_Exit_Tag;
 }

 if ((XXX_InitEvent() != CFE_SUCCESS) ||
 (XXX_InitPipe() != CFE_SUCCESS) ||
 (XXX_InitData() != CFE_SUCCESS))
 {
 iStatus = -1;
 goto XXX_InitApp_Exit_Tag;
 }

 /* Install the cleanup callback */

OS_TaskInstallDeleteHandler((void*)&XXX_CleanupCallback);

XXX_InitApp_Exit_Tag:
 if (iStatus == CFE_SUCCESS)
 {
 CFE_EVS_SendEvent(XXX_INIT_INF_EID,
CFE_EVS_INFORMATION,
 "XXX - Application
initialized");
 }
 else
 {
 CFE_ES_WriteToSysLog("XXX - Application failed to
initialize\n");
 }
 return (iStatus);
}

void XXX_AppMain()
{
 /* Perform application initializations */
 if (XXX_InitApp() != CFE_SUCCESS)
 {
 g_XXX_AppData.uiRunStatus = CFE_ES_APP_ERROR;
 }

 /* Application main loop */
 while (CFE_ES_RunLoop(&g_XXX_AppData.uiRunStatus)
== TRUE)
 {
 XXX_RcvMsg(CFE_SB_PEND_FOREVER);
 }

 /* Exit the application */
 CFE_ES_ExitApp(g_XXX_AppData.uiRunStatus);
}

Sample CFS App Template (continued)

11

int32 XXX_RcvMsg(int32 iBlocking)
{
 int32 iStatus=CFE_SUCCESS;
 CFE_SB_Msg_t* MsgPtr=NULL;
 CFE_SB_MsgId_t MsgId;

 /* Wait for WakeUp messages from scheduler */
 iStatus = CFE_SB_RcvMsg(&MsgPtr, g_XXX_AppData.SchPipeId,
iBlocking);

 /* Start Performance Log entry - create initial entry */
 CFE_ES_PerfLogEntry(XXX_MAIN_TASK_PERF_ID);

 if (iStatus == CFE_SUCCESS)
 {
 MsgId = CFE_SB_GetMsgId(MsgPtr);
 switch (MsgId)

{
 case XXX_WAKEUP_MID:
 XXX_ProcessNewCmds();
 XXX_ProcessNewData();

 /* TODO: Add more code here to handle other
things
 when app wakes up, like any cyclic
processing */

 /* The last thing to do at the end of this
Wakeup cycle
 should be to automatically publish new
output. */
 XXX_SendOutData();
 break;

 /* TODO: Add code here to handle other command
IDs, if needed.
 Normally, other app commands are added as
command codes
 to the app's CMD_MID and processed in
XXX_ProcessNewCmds().
 Adding another CMD_MID would also require adding
another
 command pipe. */

 default:
 CFE_EVS_SendEvent(XXX_MSGID_ERR_EID,
CFE_EVS_ERROR,
 "XXX - Recvd invalid SCH msgId
(0x%08X)", MsgId);
 }
 }
 else if (iStatus == CFE_SB_NO_MESSAGE)
 {
 /* If there's no incoming message, you can do something
here,
 or do nothing */
 }
 else
 {
 /* This is an example of returning on an error.
 ** Note that a SB read error is not always going to
result in an
 ** app quitting, depends on the app. Changing the run
status to
 ** CFS_ES_APP_ERROR will cause the app's main loop to
exit and the
 ** app to exit.
 */
 CFE_EVS_SendEvent(XXX_PIPE_ERR_EID, CFE_EVS_ERROR,

 "XXX: SB pipe read error (0x
%08X), app will exit", iStatus);
 g_XXX_AppData.uiRunStatus= CFE_ES_APP_ERROR;
 }

 /* Stop Performance Log entry */
 CFE_ES_PerfLogExit(XXX_MAIN_TASK_PERF_ID);

 return (iStatus);
}

Morpheus	 Simula^on	

12	

Morpheus	 Ground	 Systems	 –	 ITOS	 Control	
Room	

13	

ITOS	 Informa^on	 -‐	 Introduc^on	

14	

What is ITOS (Integrated Test and Operations System)?
•  A low-cost, highly configurable, control and
monitoring system

What are its current applications?
 • Satellite development, test, & operations
 • Science instrument development, test, & operations
 • Ground station equipment monitoring & control

From ITOS Promo Presentation: http://itos.gsfc.nasa.gov/

Who is using ITOS?
 • SAMPEX, TRACE, FAST, SWAS, WIRE,
 • Spartan 201, 251, 401, 402
 • HESSI, Swift, ULDB, Triana
 • PiVot GPS, CIRS, Mars Pathfinder

Who is commercializing ITOS?
 • Universal Space Network
 • the Hammers Company
 • Omitron
 • AlliedSignal Technical Services Corporation

 14	

- or -

SPACECRAFT INTERFACE

SPACECRAFT

ELECTRICAL GSE

GROUND STATION

ITOS
OPERATOR
CONSOLE

ITOS
GATE
WAY

ITOS
WORKSTATIONS

SCIENCE
PROCESSING
FACILITY MISSION

PLANNING

COMMAND
MGMT

FLIGHT
DYNAMICS

WWW

IEEE/IP
CNTLR

AES Continuation Review - Sep 2013

ADVANCED EXPLORATION SYSTEMS (AES)
HUMAN EXPLORATION & OPERATIONS MISSION DIRECTORATE

CORE FLIGHT SOFTWARE (CFS) PROJECT

SUMMARY

Core Flight Software
Lorraine Prokop, Ph.D. / JSC

15

AES Continuation Review - Sep 2013

◆  Objectives
•  Provide a reusable software architecture suitable for human-rated

missions
§  Reduce/offset per-project software development, test, and certification costs

by performing that work once serving multiple projects
§  Address software and hardware issues unique or typical to human-rated

systems
•  Provide reusable software products, tools, and artifacts directly usable

by Class A projects/programs, and for general use across NASA
•  Support Advanced Exploration Systems projects as they develop toward

flight missions

16

Project Objectives

The Core Flight Software
Project’s objective is to evolve

and extend the reusability of the
Core Flight Software System

into human-rated systems, thus
enabling low cost, and rapid

access to space.

Leverage	 placorms,	 resources	
and	 skills	 from	 synergeSc	
programs/projects	 for	
development	 of	 next	 generaSon	
human-‐rated	 space	 sodware	
systems.	

Build	 upon	 reuse	 of	 exisSng	
TRL-‐9	 uncrewed	 spacecrad	
sodware	 framework	 for	
uSlizaSon	 in	 human-‐rated	
programs.	 	

USlize	 these	 products	 in	 direct	
support	 of	 development	 and	
cerSficaSon	 of	 future	 manned	
programs.	 	

AES Continuation Review - Sep 2013

◆  FY13 Products
•  Quad-Voting CFS System – CFS on Partitioned VxWorks RTOS,

synchronizing & voting 4 computers
•  CFS within Trick Simulation
•  Distributed CFS – network-based software bus
•  CFS on Orion/B787 Platform – CFS on Partitioned Green Hills RTOS
•  Reusable Certification Test Suite

◆  FY14 Products
•  Class A CFS Certification on Orion Platform
•  Performance Monitoring Tool Development
•  CFS Synch & Voting Software Development
•  Symmetric Multicore Processor (SMP) CFS Development
•  Product Line
•  Command & Data Dictionary Ground Database Tools
•  Education/Outreach
•  Orion Backup Computer Proof of Concept Demonstration

17

CFS AES Project
Product Summary to Date

Sc
he

du
le

r w
ith

Sa

m
pl

in
g

Po
rt

 P
ro

xy

Flight	 Computer	 Architecture:	
CFS	 on	 ARINC	 and	 Vo^ng	 Par^^on	

PSP (PPC750GX) PSP (PPC750GX)

CFS Partition A IO Partition

FTSS
Data

Exchange &
Voting

Sa
m
pl
in
g	
Po

rt
	 I/
O	

CFS Partition B

C
FS

 A
pp

s

TO
,C

I,S
ch

 vxWorks ARINC 653
OSAL

Ro
gu
e	
Ap

p	

Sc
he

du
le

r w
ith

Sa

m
pl

in
g

Po
rt

 P
ro

xy

cFE Layer –
Software bus

C
FS

 A
pp

s

TO
,C

I

 vxWorks ARINC 653
OSAL

G
N
C	
Ap

ps
	

PSP (PPC750GX)

Off Board I/O (Ethernet)

VxWorks ARINC Time-Space Partitioned OS: MMU, Interrupts, Scheduler, Sampling Ports

FCR 1

FCR 2

FCR 3
FCR 4

•  Four	 fault-‐containment	 regions	 (FCRs)	
–  4	 Flight	 CriScal	 Computers	 (FCC)	

•  Sodware	 voSng	
•  Ethernet	
•  Will	 accommodate	 2	 arbitrary	 non-‐

simultaneous	 faults	 Sc
he

du
le

r w
ith

Sa

m
pl

in
g

Po
rt

 P
ro

xy

cFE Layer –
Software bus

AES Continuation Review - Sep 2013

Synchronization & Voting

AES Continuation Review - Sep 2013

20

Embedded CFS-Trick Background
Flight Software - Simulation Philosophies

20

Simulation Software
(test RIG)

Flight Software
(flight hardware)

Flight I/O Interfaces

Simulation Software
(simulation computer)

Flight Software
(flight hardware)

Non-Flight I/O
Interfaces

(typically Ethernet)

Simulation Software
(simulation computer)

Flight Software
(non-flight hardware)

Non-Flight I/O
Interfaces

(typically Ethernet)

Simulation Software

Flight Software

Socket
communication

(single computer)

Simulation Software

Flight Software

(single computer, single executable)

(separate executable) (separate executable)

In
cr

ea
si

ng

Fi
de

lit
y

HWITL
“Iron Bird”

Embedded

•  Typically this
flight software is
not REAL, but an
algorithmic
prototype/analog

•  Allows SAME
source code to
run in ALL
configurations

•  Allows
analysis, faster-
than-real-time
execution, data
inspection,
debugging

External
Sim

AES Continuation Review - Sep 2013
21

Distributed CFS Demo Configuration

Test
App 1

CPU A

Telemetry
Output

5Hz

Command
Ingest

5Hz

Wireless

Wireless Ethernet

Ground Display Computer
(ITOS)

Software
Bus Scheduler

40Hz

Network
Software

Bus
(sbn)

Test
App 2

Telemetry
Output

5Hz

Command
Ingest

5Hz

Software
Bus Scheduler

40Hz

Network
Software

Bus
(sbn)

40Hz 40Hz

Software
Bus

Scheduler

20Hz

Network
Software

Bus
(sbn)

Test
App 3

20Hz

Ethernet

sbn over IP comm
CCSDS over IP comm

Local Display (Java)

CPU B

CPU C

80Hz
80Hz

80Hz

AES Continuation Review - Sep 2013
22

CFS on Partitioned OS/B787
Class A Product Team

AES Continuation Review - Sep 2013

Test Suite Output Excerpt

23

…

PASSED [cFE.EVS.12.005] CFE_EVS_ResetAllFiltersCmd - Reset all filters - successful

PASSED [cFE.EVS.12.006] CFE_EVS_AddEventFilterCmd - Add event filter - successful

PASSED [cFE.EVS.12.007] CFE_EVS_AddEventFilterCmd - Add event filter - event already registered for filtering

PASSED [cFE.EVS.12.008] CFE_EVS_SetFilterMaskCmd - Set filter mask - successful

PASSED [cFE.EVS.12.009] CFE_EVS_ResetFilterCmd - Reset filter mask - successful

PASSED [cFE.EVS.12.010] CFE_EVS_ResetAllFiltersCmd - Reset all filters - successful

PASSED [cFE.EVS.12.011] CFE_EVS_DeleteEventFilterCmd - Delete event filter - successful

PASSED [cFE.EVS.12.012] CFE_EVS_AddEventFilterCmd - Maximum event filters added

PASSED [cFE.EVS.13.023] CFE_EVS_VerifyCmdLength - Invalid command length with clear log command

PASSED [cFE.EVS.14.001] EVS_GetApplicationInfo - Get application info with null inputs

PASSED [cFE.EVS.14.002] CFE_EVS_WriteLogFileCmd - Write log data - successful

PASSED [cFE.EVS.14.003] CFE_EVS_SetLoggingModeCmd - Set logging mode - successful

PASSED [cFE.EVS.14.004] CFE_EVS_ReportHousekeepingCmd - Housekeeping report - successful

PASSED [cFE.EVS.14.005] CFE_EVS_CleanUpApp - Application cleanup - successful

PASSED [cFE.EVS.14.006] CFE_EVS_Register - Register application with invalid arguments

ut_cfe_evs PASSED 175 tests.
ut_cfe_evs FAILED 0 tests.

AES Continuation Review - Sep 2013
24

Performance Monitoring Tool
Screenshots

AES Continuation Review - Sep 2013

◆  Voting System for Fault Tolerance
•  Description

§  Provides CFS framework solution for
synchronization/redundancy
between flight computers

•  Accomplishments
§  Designed System, held several

design Inspections, held
Demonstrations

§  Implementation underway
§  Supported Heterogeneous Voting

Computer Demonstration 9/17/2014
•  Remaining Work (FY15)

§  Continue development
§  Improve system robustness/reliability
§  Analyze/Improve Performance
§  Support Time Triggered Systems

25

CFS Synchronization & Voting Development

AES Continuation Review - Sep 2013

◆  Symmetric Multiprocessing (SMP) Support
•  Description

§  Provide a generic SMP Operating System Abstraction Layer (OSAL)
supporting multi-core processor architectures

•  Accomplishments
§  Prototype implementation of CFS on dual core Space Micro Proton board

and VxWorks SMP complete
–  Apps can be allocated to specific cores to deterministically balance processing

load or to improve performance of certain apps

•  Remaining Work (FY15)
§  Implement on SPARC LEON 4 quad-core, Tilera 36-core
§  Merge SMP support modifications into mainline CFS

Symmetric Multiprocessing
CFS Development

26

Proton LEON4 quad-core Tilera 36-core

AES Continuation Review - Sep 2013
27

Mobile Command and Telemetry System

•  KSC developed general purpose data integration tool
for managing command and telemetry metadata

•  Intended to be generic in nature and applicable to any
project using CFS or ITOS

•  Web based interface built with Ruby on Rails

•  Data can be ingested from a variety of formats
including flat text files or Excel spreadsheets

•  Imported into PostgreSQL relational database on
which a wide variety of queries and reports can be
run from MCTS provided GUI screens

•  Currently capable of exporting data directly into ITOS
compatible data record format

•  Future enhancements include exporting data to XTCE
format files as well as ‘C’ type data structure
statements for compiling into CFS application code

•  Demonstration held August 2014

AES Continuation Review - Sep 2013

2014 Midterm AES CFS 28

Education/Course Idea: CFS on AR Drone
Embedded with Trick Controls & Simulation

29

CFS Project “To Do List” 
FY14 Work, FY15 Planned

§  Class A Products, Human Ratable
–  Certify Class A on Orion primary Platform
–  Certify Class A on Orion backup (vxWorks/LEON3) Platform

§  Testing
–  Reusable test suite additions for vxWorks
–  Cross-platform test framework
–  White-box testing of OSAL layer
–  Integrated unit test execution/post processing/reports
–  Build interface/instrument CFS code for performance testing,

monitoring, display interface
–  Reusable performance test suite

§  Human Spacecraft Support Activities
–  Support for Redundancy

•  Symmetric (same OS & shared mem) Multiprocessor Support (SMP)
(Dual core, 4 core, 36 core)

•  Asymmetric Multiprocessor CFS support
•  Open source Quad CFS voting layer (continued in FY15)

–  VML – (virtual machine language) integration w/ CFS
–  Support for Distributed Systems (sbn additions)
–  User Interface Display Support – OpenGL Interface
–  Backup Flight Systems Architecture exploration

§  Development Tools - Productivity / Interoperability
–  Performance Monitoring / Profiling Tool (Linux/Java)
–  Data Definition / Ground Integration Tools (continued FY15)
–  Autogeneration of application from a variety of tools - Matlab/

Simulink/Rhapsody/sysML/Eclipse,
–  Matlab/Simulink simulation of CFS layers
–  Top-Coder effort to start with CodeReview Redmine Tool

§  Additional Operating Systems / Hardware Platforms
–  iOS
–  Other real-time: real-time Linux, eCos
–  Additional Hypervisor prototyping- picos
–  FPGA with soft cores, PSP’s for hybrid chips with hard cores

§  Specific Support Needed or AES Projects
–  DTN-CFS integration development
–  AMO-CFS integration
–  AAE project platforms / chosen architectures
–  RPM development
–  Exploration Augmentation Module development
–  Advanced EVA development support

§  Outreach Maturation – Quad Copter
–  Develop Sim of Quad Copter, Basic GNC Apps
–  Develop product distribution for outreach (CFS, Apps & Trick)

§  CFS Institutional Support/Infrastructure
–  Configuration Control, evolution, product planning
–  Website: how-to, wiki, FAQ, downloads
–  Product support & releases, training
–  SARB Recommended fixes

§  Possible Flight Projects
–  ISS Flight Computer shadow
–  Orion Backup flight computer prototype, Leon3 processor
–  Software partition for Asteroid Retrieval Mission

cFE- Page 30

Core Flight Software System (CFS)/
Core Flight Executive (cFE)

Training Material

Jonathan Wilmot
GSFC/Code 582

Jonathan.J.Wilmot@nasa.gov
301-286-2623

cFE- Page 31

cFE - Overview

•  A set of mission independent, re-usable, core flight software
services and operating environment
–  Provides standardized Application Programmer Interfaces (API)
–  Supports and hosts flight software applications
–  Applications can be added and removed at run-time (eases system

integration and FSW maintenance)
–  Supports software development for on-board FSW, desktop FSW

development and simulators
–  Supports a variety of hardware platforms
–  Contains platform and mission configuration parameters that are used to

tailor the cFE for a specific platform and mission.
•  cFE services include:

–  Executive Services
–  Software Bus Services
–  Time Services
–  Event Services
–  Table Services

•  Layered on the Operation System Abstraction

cFE- Page 32

Motivation

•  About six years ago GSFC was tasked two large in-
house missions with concurrent development schedules
(SDO, GPM)

•  GSFC was to build the spacecraft bus, both avionics and
software, and integrate the whole spacecraft

•  Without the staff for both, we were directed to find a
better way

•  So management said, “you engineers figure out how to
make the schedule and keep the cost in line”

o  We had about a year to figure it out before staffing up

•  This is before full cost accounting

cFE- Page 33

Approach

•  Formed a team of senior FSW engineers to strategize and
develop a better way

•  Each had experience on a few different missions and
immediately saw all the commonality we could have had

•  Team then decided to:
–  Determine impediments to good flight software reuse
–  Utilize best concepts from missions ranging from Small Explorer class to

the Great Observatories
–  Design with reusability and flexibility in mind
–  Take advantage of software engineering advances
–  Be Composable

•  Management helped isolate team engineers from short term
mission schedules

•  Team established architecture goals

cFE- Page 34

Goals

1.  Reduce time to deploy high quality flight software

2.  Reduce project schedule and cost uncertainty

3.  Directly facilitate formalized software reuse

4.  Enable collaboration across organizations

5.  Simplify sustaining engineering (AKA. On Orbit FSW
maintenance) Missions last 10 years or more

6.  Scale from small instruments to Hubble class missions

7.  Build a platform for advanced concepts and prototyping

8.  Create common standards and tools across the center

cFE- Page 35

Mission Heritage

35

Swift BAT

(12/04)

IceSat GLAS (01/03)

XTE (launched 12/95) TRMM (launched 11/97)

MAP (launched 06/01)

SWAS

 (launched 12/98)
WIRE

(launched 2/99)

SMEX-
Lite

Triana

(cancelled)

TRACE

(launched 3/98)

SAMPEX

(launched 8/92)

ST-5 (5/06)

core FSW Executive JWST ISIM
(2013)

SDO (2008)

Core FSW System

LRO (2009)

LWS/RBSP

GPM (2013)
MMS (2013) …

cFE- Page 36

Heritage , what worked well

•  Message bus
–  All software applications use message passing (internal and external)

–  CCSDS standards for messages (commands and telemetry)
–  Applications were processor agnostic (distributed processing)

•  Layering
•  Packet based stored commanding (AKA Mission Manager)

–  Absolute Time Sequence (ATP), Relative Time Sequence (RTP)

•  Vehicle FDIR based on commands and telemetry packets
•  Table driven applications
•  Critical subsystems time-triggered on network schedule

–  1553 bus master TDMA

•  Clean application interfaces
–  Component based architecture (The Lollipop Diagram)

cFE- Page 37

Heritage , what worked well

•  Lots of innovation
–  Constant pipeline of new and varied missions

–  Teams worked full life cycle
•  Requirements through launch + 60days
•  Maintenance teams in-house and in contact with engineers early in

development

–  Teams keep trying different approaches
•  Rich heritage to draw from

cFE- Page 38

Heritage: what didn’t work so well

•  Statically configured Message bus
–  Scenario: GN&C needs a new diagnostic packet

•  Give the C&DH team your new packet definition file
•  Wait a week for a new interim build
•  Rinse and Repeat

–  How do I add a new one on orbit? (FAST mission example)

•  Monolithic load (The “Amorphous Blob”)
–  Raw memory loads and byte patching needed to keep bandwidth needs

down

•  Reinventing the wheel
–  Mission specific common services (“Look , I’ve got a new and improved

version!”)

•  Application rewrites for different OSes

cFE- Page 39

Re-use in the Past

•  In the past, GSFC’s Flight Software Branch (FSB) has
realized little cost savings via FSW reuse
–  No product line. Instead heritage missions were used as starting

point
–  Changes made to the heritage software for the new mission were

not controlled
•  New flight hardware or Operating System required changes throughout

FSW
•  FSW Requirements were sometimes re-written which effects FSW and

tests.
•  FSW changes were made at the discretion of developer
•  FSW test procedure changes were made at the discretion of the tester
•  Extensive documentation changes were made for style

–  Not all Products from heritage missions were available
–  Reuse was not an formal part of FSB development methods
–  Reuse was not enforced

cFE- Page 40

40

Concepts and Standards

•  Layered Architecture
•  Standard Middleware/Bus
•  Standard Application Programmer Interface

for a set of core services

•  Plug and Play Reusable Applications
•  Command & Telemetry database

•  Reuse Requirements Management
•  Reuse Standards
•  Reuse Repository

•  Configuration Tool for Mission Users
•  Development Tools

}

}

Core Flight Executive (cFE)

CFS Applications

Library & CM

Integrated Development
Environment

}
}

cFE- Page 41

cFE Layers

Time Client/Server
Interface

Physical
Layer

Mission Application

582 FSW LibraryHardware

Software

Application
Layer

Supported Hardware

Software
Interface

Interrupt
Handlers

Time
Services

Time API

Event
Services

Event API

Software Bus

Software Bus API

Table Services

Table API

Reuse Application

Unsupported Hardware

cFE Application

OS & BSP Exception
Handlers

User
Interface

Hardware
Drivers

Time Client/Server
Interface

Physical
Layer

582 FSW LibraryHardware

Mission dependent
Software

PSP & BSP Supported
Hardware

Software
Interface

Time
Services

Time API Event API Software Bus API Table API

Mission Hardware

cFE Application

NetworkException
Handlers

User
Interface

Hardware
Drivers

Time
Distribution

Core
Services

Table APIExecutive API

Mission
Interrupt
Service

Routines

Executive Services

Platform Support Package (PSP)

Platform Support
Package API

Operating System Abstraction Layer (OSAL) API

Operating System Abstraction Layer (OSAL)

cFE- Page 42

42

Standard Middleware Bus

Publish/Subscribe
•  Components communicate over a

standards-based Message-oriented
Middleware/Software Bus.

•  The Middleware/ Software Bus uses a
run-time Publish/Subscribe model.
Message source has no knowledge of
destination.

•  No inherent component start up
dependencies

Impact:
•  Minimizes interdependencies
•  Supports HW and SW runtime “plug and

play”
•  Speeds development and integration.
•  Enables dynamic component distribution

and interconnection.
Publish/Subscribe: loosely-coupled, standard interface, data
formats, protocols, & component independence

Legacy: Tightly-coupled, custom interfaces- data formats - protocols,
internal knowledge, component interdependence

cFE- Page 43

Standard Application Programmer Interface API

Application Programmer Interfaces
•  CFS services and middleware

communication bus has a standardized,
well-documented API

•  An abstracted HW component API
enables standardized interaction
between SW and HW components.

Impact:
•  Allows development and testing using

distributed teams
•  With the framework already in place,

applications can be started earlier in
the development process

•  Can do early testing and prototyping on
desktops and commercial components

•  Simplifies integration

43

API supplies all functions and data components
developers need.

cFE- Page 44

Plug and Play

Plug and Play
•  cFE API’s support add and remove

functions
•  SW components can be switched in and out

at runtime, without rebooting or rebuilding
the system SW.

•  Qualified Hardware and CFS-compatible
software both “plug and play.”

Impact:
•  Changes can be made dynamically during

development, test and on-orbit even as part
of contingency management

•  Technology evolution/change can be taken
advantage of later in the development
cycle.

•  Testing flexibility (GSE, test apps,
simulators)

44

This powerful paradigm allows SW components to be switched in and out
at runtime, without rebooting or rebuilding the system SW.

cFE- Page 45

Reusable Components

Reusable Components
•  Common FSW functionality has been

abstracted into a library of reusable
components and services.

•  Tested, Certified, Documented
•  A system is built from:

–  Core services
–  Reusable components
–  Custom mission specific

components
–  Adapted legacy components

Impact:
•  Reuse of tested, certified components

supplies savings in each phase of the
software development cycle

•  Reduces risk
•  Teams focus on the custom aspects of

their project and don’t “reinvent the
wheel.” 45

Image 
Processor

Proximity  
Sensor

Science
Process

TLM + 
Command

HW
Comp

Orbit
Control

HW
Comp

HW
Comp

cFE- Page 46

Sample CFS Reusable Applications

Application Function
Command Ingest Reusable component for spacecraft commanding

Telemetry Output Reusable component for sending and packaging telemetry

CFDP Transfers/receives file data to/from the ground

Checksum Performs data integrity checking of memory, tables and files

Data Storage Records housekeeping, engineering and science data onboard for
downlink

File Manager Interfaces to the ground for managing files

GN&C Framework Provides framework for plugging in ACS models and objects

Housekeeping Collects and re-packages telemetry from other applications.

Health and Safety Ensures that critical tasks check-in, services watchdog, detects CPU
hogging, and calculates CPU utilization

Limit Checker Provides the capability to monitor values and take action when exceed
threshold

Math Libraries Scalar, vector, matrix and quaternion functions
Memory Dwell Allows ground to telemeter the contents of memory locations. Useful

for debugging

Memory Manager Provides the ability to load and dump memory.

Scheduler Schedules onboard activities (eg. hk requests)

Stored Command Onboard Commands Sequencer (absolute and relative).

cFE- Page 47

Health and Safety App / Housekeeping App

•  Health and Safety App
–  Monitor Applications

•  Detect when defined applications are not running and take a defined action

–  Monitor Events
•  Detect table defined events and take a table defined action

–  Manage Watchdog
•  Initialize and periodically service the watchdog
•  Withhold periodic servicing of the watchdog if certain conditions are not met

–  Manage App Execution Counters
•  Report execution counters for a table defined list of Application Tasks

•  Housekeeping App
–  Build combined telemetry messages containing data from applications
–  Notify the ground when expected data is not received

cFE- Page 48

Data Storage App / File Manager App

•  Data Storage App
•  Stores Software Bus messages (packets) to data storage files.
•  Filters packets according to packet filter table definition
•  Stores packets in files according to destination table definition

•  File Manager App
•  Manages onboard files

•  Copy, Move, Rename, Delete, Close, Decompress, and
Concatenate files providing file information and open file listings

•  Manages onboard directories
•  Create, delete, and providing directory listings

•  Device free space reporting

cFE- Page 49

Limit Checker App / Memory Dwell App

•  Limit Checker App
–  Monitors Table Driven Telemetry Watch points

•  Each watch point compares a telemetry data value with a constant
threshold value

–  Evaluates Table Driven Action points
•  Each action point analyzes the results of one (or more) watch points

•  Memory Dwell App
–  Samples data at any processor address
-  Augments telemetry stream provided during development and debugging
–  Dwell Packet Streams are Specified by Dwell Tables
–  Up to 16 active Dwell Tables
–  Dwell Tables can be populated either by Table Loads or via Jam

Commands

cFE- Page 50

Scheduler App / Stored Command App

•  Scheduler App
–  Operates a Time Division Multiplexed (TDM) schedule of Applications via

Software Bus Messages
•  Synchronized to external Major Frame (typically 1 Hz) signal
•  Each Major Frame split into a platform configuration number of

smaller slots (typically 100 slots of 10 milliseconds each)
•  Each slot can contain a platform defined number of software bus

messages (typically 5 messages) that can be issued within that slot

•  Stored Command App
–  Executes preloaded command sequences at predetermined absolute or

relative time intervals.
–  Supports Absolute Time Tagged Sequences
–  Supports Relative Time Tagged Sequences

cFE- Page 51

Checksum App / Memory Manager App

•  Checksum App
–  Monitors the static code/data specified by the users and reports all

checksum miscompares as errors.
–  CS will be scheduled to wakeup on a 1Hz schedule

–  CS will be byte-limited per cycle to prevent CPU hogging

•  Memory Manager App
–  Performs Memory Read and Write (Peek and Poke) Operations

–  Performs Memory Load and Dump Operations

–  Performs Diagnostic Operations

–  Provides Optional Support for Symbolic Addressing

cFE- Page 52

Other CFS Apps

•  CFDP App
–  Implements flight portion of CCSDS CFDP Protocol

•  Command Uplink App
–  Implements flight portion of CCSDS Command uplink
–  Usually mission specific

•  Telemetry Output App
–  CCSDS Telemetry downlink
–  Usually mission specific

•  Memory Scrub App
–  Memory Scrub – Scrubs SDRAM check bits
–  Usually mission specific

•  CI Lab & TO Lab
–  UDP sockets based uplink and downlink apps for lab testing

cFE- Page 53

Component Example

•  Interface only through core API’s.

•  A components contains all data needed to define
it’s operation.

•  Components register for services
•  Register exception handlers
•  Register Event counters and filter
•  Register Tables
•  Publish messages
•  Subscribe to messages

•  Component may be added and removed at
runtime. (Allows rapid prototyping during
development)

Table API SB API Event API Exec & Task
 API

Exec Exception
API

Time API

Tables
Files

.

.

.

Exception
Handlers

.

.

.

Messages
.
.
.

Application
code body

.

.

.

Events &
Filters

.

.

.

cFE- Page 54

cFE Core - Overview

•  A set of mission independent, re-usable, core flight software services and
operating environment
–  Provides standardized Application Programmer Interfaces (API)
–  Supports and hosts flight software applications
–  Applications can be added and removed at run-time (eases system

integration and FSW maintenance)
–  Supports software development for on-board FSW, desktop FSW

development and simulators
–  Supports a variety of hardware platforms
–  Contains platform and mission configuration parameters that are used to

tailor the cFE for a specific platform and mission.

Executive
 Services
 (ES)

 Software
 Bus
 (SB)

 Time
Services
 (TIME)

 Event
Services
 (EVS)

 Table
Services
 (TBL)

cFE- Page 55

cFE Core - Executive Services (ES)

•  Manages the cFE Startup
•  Provides ability to start, restart and delete cFE Applications
•  Manages a Critical Data Store which can be used to preserve data (except

in the case of a power-on reset)
•  Provides ability to load shared libraries
•  Logs information related to resets and exceptions
•  Manages a system log for capturing information and errors
•  Provides Performance Analysis support

Executive
 Services
 (ES)

cFE- Page 56

•  Provides a portable inter-application message service
•  Routes messages to all applications that have subscribed to the message.

–  Subscriptions are done at application startup
–  Message routing can be added/removed at runtime

•  Reports errors detected during the transferring of messages
•  Outputs Statistics Packet and the Routing Information when commanded

cFE Core - Software Bus (SB)

 Software
 Bus
 (SB)

cFE- Page 57

cFE Core - Event Services (EVS)

•  Provides an interface for sending asynchronous informational/error
messages telemetry to ground
–  Provides a processor unique software bus event message containing the

processor ID, Application ID, Event ID, timestamp, and the request-
specified event data (text string including parameters)

•  Provides an interface for filtering event messages
•  Provides an interface for registering an application’s event filter masks,

types, and type enable status
•  Provides an interface for un-registering an application from using event

services
•  Provides an interface for enabling/disabling an application’s event filtering
•  <optional> Provide an interface for logging event into a local event log

 Event
Services
 (EVS)

cFE- Page 58

cFE Core - TIME Services

•  Provides a user interface for correlation of spacecraft time to the
ground reference time (epoch)

•  Provides calculation of spacecraft time, derived from mission elapsed
time (MET), a spacecraft time correlation factor (STCF), and
optionally, leap seconds

•  Provides a functional API for cFE applications to query the time
•  Distributes of a “time at the tone” command packet, containing the

correct time at the moment of the 1Hz tone signal
•  Distributes of a “1Hz wakeup” command packet
•  Forwards tone and time-at-the-tone packets

 Time
Services
 (TIME)

cFE- Page 59

cFE Core - Table Services

•  Manages all CFS table images
•  Provides an API to simplify Table Management
•  Table Registry is populated at run-time eliminating cross coupling of

Applications with flight executive at compile time
•  Performs table updates synchronously with the Application that owns the

table to ensure table data integrity
•  Shares tables between Applications
•  Allows Non-Blocking Table updates in Interrupt Service Routines
•  Provides a common ground/user interface to all tables

 Table
Services
 (TBL)

cFE- Page 60

Operating System Abstraction Layer (OSAL)
Overview

•  A standalone project, separate from the cFE
–  The cFE is built on the OSAL to provide portability

•  Available as Open Source on NASA’s Open Source Website
–  http://opensource.gsfc.nasa.gov

•  Allows execution of FSW on multiple Real Time OSs
–  Build Verification testing done using VxWorks 6.4

•  Allows execution of FSW on simulators and desktop computers
•  Support three primary targets

–  POSIX
•  OSX
•  Linux
•  Cygwin

–  RTEMS 4.10
–  VxWorks 6.x

cFE- Page 61

Platform Specific Package Overview

•  Supports the following Hardware Platforms/Operating Systems
(non exhaustive)
–  Flight Hardware Environments

•  MCP750/vxWorks 6.x
•  BAE RAD750/VxWorks 6.x
•  Coldfire/RTEMS 4.x
•  MCP405/linux (Spacecube)

–  Desktop FSW Test Environments
•  MAC/OSX
•  MAC/linux
•  PC(x86)/linux, Cygwin

