
Prof. Albert M. K. Cheng

Outline

 Embedded Real-Time Systems

 Functional Reactive Systems (FRS)

 Cyber-Physical Systems (CPS)

 Response Time Analysis

 Real-Time Virtual Resources

* Supported in part by the National Science Foundation under Awards No. 0720856 and No. 1219082.

 Next-Generation Embedded Systems: Functional Reactive

Programming and Real-Time Virtual Resources

Real-Time Systems Group

• Director Prof. Albert M. K. Cheng

• PhD students

 Yong Woon Ahn, Yu Li, Xingliang Zou,

 Behnaz Sanati, Sergio Chacon, Zeinab

 Kazemi, Carlos Rincon, Xin Liu, Qiong Lu,

 Seyed Mohsen Alavi (arriving in spring 2015)

• MS students

 Daxiao Liu, Chonghua Li

• Undergraduate students (NSF-REU)

 Mozahid Haque, Rachel Madrigal

• Visiting scholars

 Yu Jiang (Heilongjiang U.), Qiang Zhou

 (Beihang U.), Yufeng Zhao (Xi'an Tech. U.)

• Recent graduates and their positions

 Yuanfeng Wen (MS, Microsoft), Chaitanya

 Belwal (PhD, Visiting Assistant Professor,

 UHCL), Jim Ras (PhD), Jian Lin (PhD,

 Assistant Professor, UHCL)

2

Yu Li (Best Junior PhD Student

Awardee and Friends of NSM

Graduate Fellow) and Prof.

Albert Cheng visit the NSF-

sponsored Arecibo Observatory

after their presentation at the

flagship RTSS 2012 in Puerto

Rico.

Real-time systems research

group at Yuanfeng Wen’s

graduation party in May 2013.

Yuanfeng is now at Microsoft.

Fall 2014 (9/3) group meeting -

from left to right: Dr. Qiang

Zhou, Qiong Lu, Carlos Rincon,

Chonghua Li, Prof. Yu Jiang,

Xin Liu, Prof. Yufeng Zhao, Prof.

Albert Cheng, Xingliang

(Jeffrey) Zou, Daxiao Liu, Yu Li,

Yong Woon Ahn, and Behnaz

Sanati. Zeinab Kazemi in class.

Real-Time Systems Theory

3

Pathfinder mission to Mars: best known Priority Inversion problem.

Failure to turn on priority Inheritance (PI) - Most PI schemes complicate and slow down

the locking code, and often are used to compensate for poor application designs.

 http://research.microsoft.com/en-us/um/people/mbj/mars_pathfinder/mars_pathfinder.html

http://www.windriver.com/announces/curiosity/

http://research.microsoft.com/en-us/um/people/mbj/mars_pathfinder/mars_pathfinder.html
http://research.microsoft.com/en-us/um/people/mbj/mars_pathfinder/mars_pathfinder.html
http://research.microsoft.com/en-us/um/people/mbj/mars_pathfinder/mars_pathfinder.html

Real-Time Systems Theory

4

• The more components a real-time system

has, the more difficult it is to build and

maintain.

– In such systems, preemptive scheduling may

not be suitable, since it is likely to create

runtime overheads which can result in worst-

case task execution times of up to 40% greater

than fully non-preemptive execution.

• Yao G., Buttazzo G., Bertogna M., "Feasibility analysis under

fixed priority scheduling with limited preemptions," Real-Time

Systems, Volume 47 Issue 3, pages: 198-223, May 2011.

Real-Time Systems Theory

5

– However, preemptive scheduling allows for

more feasible schedules than non-

preemptive scheduling.

– Non-preemptive scheduling automatically

prevents unbounded priority inversion, which

avoids the need for a concurrency control

protocol, leading to a less complex scheduling

model.

– However, fully non-preemptive scheduling is

too inflexible for some real-time applications,

and has the added disadvantage of potentially

introducing large blocking times that would

make it impossible to guarantee the

schedulability of the task set.

Real-Time Systems Theory

6

• Simplify the design and scheduling

• Avoid priority inheritance

• Use functional programming

• Use abort-and-restart

• Use harmonic task sets

– However, harmonic tasks sets may be too

restrictive for some situations. For example,

one sensor needs to be serviced every 9

seconds and another (because of its design /

physical characteristics) 10 seconds.

Embedded Real-Time Systems

• An embedded system is a computer system designed for

specific control functions within a larger system

 (A is embedded into B for control)

• Often with such systems there are constraints such as

deadlines, memory, power, size, etc.

7

Embedded Real-Time Systems

• Real-time systems (RTS) are reactive systems that are

required to respond to an environment in a bounded amount

of time.

• Functional reactive systems (FRS)

• Cyber-physical systems (CPS)

– Challenges

• Complexity

• Reliability

– Fault-tolerant design

– Meeting deadlines (Response Time Analysis (RTA))

• Security/Privacy

8

Functional Reactive Systems (FRS)

Systems that react to the environment being monitored and

controlled in a timely fashion using functional (reactive)

programming are known as Functional Reactive Systems

(FRS).

These systems can range from small devices (which are not

a CPS) to distributed and complex components (similar to a

CPS).

9

Functional Reactive Systems (FRS)

10

 Reactive System Reactive Soft Real-Time System

 Reactive Hard Real-Time System Reactive Hard Real-Time System

Cyber-Physical Systems (CPS)

11

• Systematic integration of computation/information processing

and physical processes and devices.

• Communication and sensing are components of CPS

Cyber-Physical Systems (CPS)

The current set of tools available for analysis cannot handle

the complexity of CPS and thus are unable to predict

system behavior with high degree of accuracy.

The consequences of these shortcomings:

Consider the electric power grid -- Massive failures leading

to blackouts can be triggered by minor events.

12

Cyber-Physical Systems (CPS)

13

Classic (non-CPS) electric grid system/behavior

Cyber-Physical Systems (CPS)

14

• In a CPS, wireless/wired smart meters measuring real-time electricity

usage and historical data (state) feedback (communication) to the

generation station to better manage and distribute electricity.

• Current and predicted weather condition data can also further inform the

decision-making in where to distribute electricity (very hot or very cold

weather increase electricity demand).

• There is also a need to guard against intrusion into the system.

• Advocate formal verification to ensure satisfaction of safety properties.

Cyber-Physical Systems (CPS)

15

Cyber-Physical Systems (CPS)

Imagine an airplane that refuses to crash. While

preventing all possible causes of a crash is not

possible, a well-designed flight control system can

prevent certain causes. The systems that do this

are good examples of cyber-physical systems.

16

Cyber-Physical Systems (CPS)

For example, some airplanes use a technique called flight envelope

protection to prevent a plane from going outside its safe operating range,

and prevent a pilot from causing a stall.

17

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=IrNkGA-EbYglpM&tbnid=mvFrmC2p79gyGM:&ved=0CAUQjRw&url=http://www.answers.com/topic/flight-envelope&ei=CHpHUYjOJ4na8ASnr4DQBA&bvm=bv.43828540,d.dmg&psig=AFQjCNFnoDs7t7iWgcuffhGvk8Akui94bg&ust=1363725142133216
http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=IrNkGA-EbYglpM&tbnid=mvFrmC2p79gyGM:&ved=0CAUQjRw&url=http://en.wikipedia.org/wiki/Flight_envelope&ei=oHpHUaqNN4bk8gSxqYCQBA&bvm=bv.43828540,d.dmg&psig=AFQjCNFnoDs7t7iWgcuffhGvk8Akui94bg&ust=1363725142133216

Cyber-Physical Systems (CPS)

18

Cyber-Physical Systems (CPS)

19

• One of the key goals in our research is to develop the core tools that

can be used to facilitate the analysis, design and engineering of

highly-complex systems.

• With such tools, we can ensure that these systems are reliable,

predictable, efficient, secure and resilient to multiple points of failure,

and hence that their operation and safety can be depended upon

with a high degree of confidence.

• We advocate formal verification to ensure safety of CPS's, but their

complexity requires further research in verification tools.

Cyber-Physical Systems (CPS)

20

 Small Aircraft Transportation System (SATS)

 Self Control Area Airspace Volume

Cyber-Physical Systems (CPS)

21

 Small Aircraft Transportation System (SATS)

 3-D View of the SCA

IF

FAF

MAP

runway

IAF_R IAF_L

Missed approach path

Holding fix Holding fix

Holding fix Holding fix

3000 AGL

2000 AGL

Functional Reactive Programming

• Priority-based Functional Reactive Programming (P-FRP)

• P-FRP provides real-time guarantees using static priority assignment

• Higher-priority tasks preempt lower-priority ones; preempted tasks are aborted

• Multi-version commit model of execution

• Atomic execution – “all or nothing” proposition

• Execution different from ‘standard’ models

Other Examples of Functional Programming (FP) Languages:

• Haskell

• Atom - Domain Specific Language in Haskell

• Erlang - Developed at Ericsson for programming telecommunication equipment

• Esterel - Designed for reactive programming

• F# - Developed by Microsoft; available as a commercial platform

22

Functional Reactive Programming (FRP)

23

• Functional reactive programming (FRP) is a style of functional

programming where programs are inherently stateful, but

automatically react to changes in state.

• FRP allows intuitive specification and formal verification of safety-

critical behaviors, thus reducing the number of defects during the

design phase, and the stateless nature of execution avoids the need

for complex programming involving synchronization primitives.

• Therefore, the program remains an algebraic description of system

state, with the task of keeping the stated (unidirectional) relationships

in sync left to the *language*.

24

Hierarchical Real-Time Scheduling

(HRTS) – Virtual Resources

• Motivation: deploying real-time systems on powerful

modern hardware causes low resource utilization

• Solution: integrating multiple real-time systems into one

single platform

Magic7: Experimental Results

 Single-resource

64-resource

25

 Concluding Remarks

• Our goal: Enhance the safety and performance of a physical system

controlled by an embedded controller consisting of single or networked

control components with functional reactive programming (FRP) and real-

time virtualization.

• FRP allows intuitive specification and formal verification of safety-critical

behaviors, thus reducing the number of defects injected during the design

phase, and the stateless nature of execution avoids the need for complex

programming involving synchronization primitives.

• Accurate response time analysis tools (accounting for CPU execution,

memory access, I/O, and sensor processing times), novel scheduling

techniques, and new power-conserving methods are needed.

• Research impact: Facilitate the design and update of the embedded

controller (or network of controllers) as well as its (their) timing and safety

verification.

• Enhance and update embedded systems with real-time virtual resources.

26

