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Introduction

Social Networks in Our Life

“I have more high schools friends on Facebook than I ever had in high
school?!”

“God saw Adam was bored and lonely and sent Eve. God saw men
and women were bored and sent Twitter”

http://www.toonpool.com/cartoons/Social%20network_53133#
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Introduction

Social Networks Can Be Huge

“This morning, there are more than one billion people using Facebook
actively each month, . . . Helping a billion people connect is amazing,
humbling and by far the thing I am most proud of in my life.”

— Mark Zuckerberg on October 4, 2012

1.11 billion users on May 1, 2013

As of August 21, 2013, LinkedIn has more than 238 million registered
members in over 200 countries and territories.
(http://press.linkedin.com/about)

As of September 2012, Twitter has 517 million registered users, 262
million active users, and even 35.5 million users in China. Twitter
“still has more users there than any other country in the world,
including the United States.”

— “Defying wisdom, report says Twitter is biggest in China” by
Daniel Terdiman, October 5, 2012
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Introduction

Compressing Social Networks

Analyzing huge social networks is great, only if we can handle them

Storage cost
Query answering cost

Compressibility of a social network is a feature reflecting the
structural characteristics of the social network

Compressibility of the whole social network
Compressibility of regions in a social network
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Compressing Graphs and Networks: Some Existing Methods

Graph and Network Compression: Two Major approaches

Aggregation based methods: using a “super-node” to replace a set of
nodes that have similar neighbors

S. Navlakha, et al. Graph summarization with bounded error. In
SIGMOD’08.
S. Raghavan and H. Garcia-Molina. Representing web graphs. In
ICDE’03.
G. Buehrer and K. Chellapilla. A scalable pattern mining approach to
web graph compression with communities. In WSDM’08.

Ordering based methods: ordering nodes so that similar nodes fall
into proximate positions

P. Boldi and S. Vigna. The webgraph framework I: compression
techniques. In WWW’04.
F. Chierichetti, et al. On compressing social networks. In KDD’09.
P. Boldi, et al. Layered label propagation: a multiresolution
coordinate-free ordering for compressing social networks. In WWW’11.
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Compressing Graphs and Networks: Some Existing Methods

How Are Social Networks Different from Web Graphs?

No natural ordering of vertices for general social networks

Chierichetti et al. [KDD’09] used shingle ordering to compress social
networks

Shingle ordering tends to place nodes with similar out-links list close
to each other (similar in the sense of Jaccard Coefficient)

The compression rate in social networks tends to be not as good as
that in Web graphs
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Compressing Graphs and Networks: Some Existing Methods

Query Preserving Graph Compression

Given a class of queries, compute the equivalence classes of nodes
accordingly

Build a smaller graph that has the equivalence classes as the vertices,
which can be used to answer queries with quality guarantee

Effective for simple queries, such as reachability, but less effective for
more complex queries, such as pattern matching

Not preserving community

W. Fan et al. Query preserving graph compression. In SIGMOD’12.
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Our Ideas

Goals

Compressing social networks both globally and locally

Global compression: given a space budget, retaining as much
information as possible
Local compression: communities are compressed in proximation so that
they can be accessed locally in compression — using the compressed
data without decompressing

Compressibility as a structural property measure

Natural for community detection and quality assessment
Promising for visualization, summarization, and interactive analytics
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Our Ideas

When Are Adjacency Matrices Good?

Adjacency matrices are often used to represent graphs

The adjacency matrix representation is often regarded inefficient for
sparse graphs

Consider a random graph of n vertices, where each possible edge is
included in the graph with probability 0.5

Based on the information theoretical lower bound, any compression
scheme on expectation uses at least n2 bits
Provably for this class of graphs the adjacency matrix representation is
optimal

For dense random graphs adjacency matrices are good
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Our Ideas

When Are Adjacency Lists Good?

To overcome the cost of using adjacency matrices for sparse graphs,
adjacency lists are used

Consider a random graph of n vertexes, where each vertex has only
one outgoing edge and the destination is picked uniformly at random

Any compression scheme in expectation uses at least n log n bits
Provably adjacency list is optimal

For sparse random graphs adjacency lists are good
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Our Ideas

Critical Ideas

Social networks are locally dense and globally sparse — an important,
well accepted observation

Is it possible to combine the adjacency matrix method and the
adjacency list method effectively to get a better compression method?

Critical idea: for “local” edges, use adjacency matries; for “global”
edges, use adjacency lists (i.e., pointers)
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Our Ideas

Graph Linearization

Arrange all vertices into a sequence

Example

v1 v5v4v3v2
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Our Ideas

Graph Linearization

Arrange all vertices into a sequence

Example

v1 v5v4v3v2

0  1 1  0 1  1 1  1 1  0

All edges are “local” – every edge is connecting two vertices next to
each other
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Our Ideas

Multi-Position Linearization

v1 v5v4v3v2

If every vertex can only appear once, the vertices cannot be linearized
such that every edge is “local”
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Our Ideas

Multi-Position Linearization

v1 v5v4v3v2

v2 v1v3v5v4 v4v3v2

0  1 0  1 1  0 1  1 0  1 1  0 1  1 0  0

If every vertex can only appear once, the vertices cannot be linearized
such that every edge is “local”

Multi-position linearization: a node can appear multiple times
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Lossless Compression Data Structure and Optimal MP1 Linearization

Data Structure

An array where each cell consists of a pointer and two bits

The index of the first appearance of a node is its ID

We can extend the idea by using 2k bits for each position to encode
the outlinks that are at most k positions away

0 1 0 1 0 110 1 1 1 0 1 1 0 0
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Lossless Compression Data Structure and Optimal MP1 Linearization

S-distance

Given a sequence S of nodes of the graph, the S-distance between u and v
is the minimum norm-1 distance among all pairs of appearances of u and v

v2 v1v3v5v4 v4v3v2

 dist = 2 

 dist = 1  dist = 3 

S-dist(v2,v3) = 1

19 / 53



Lossless Compression Data Structure and Optimal MP1 Linearization

MPk linearization

An MPk linearization of graph G is a sequence S of vertices, such
that for all (u, v) ∈ E (G ), S-dist(u, v) ≤ k

v1 v5v4v3v2
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Lossless Compression Data Structure and Optimal MP1 Linearization

MPk linearization

An MPk linearization of graph G is a sequence S of vertices, such
that for all (u, v) ∈ E (G ), S-dist(u, v) ≤ k

Given MPk linearization L of G , one can encode G using
(2k + dlog |L|e)× |L| bits, where |L| is the length of L

v1 v5v4v3v2

v2 v1v3v5v4 v4v3v2

MP1 Linearization

v1 v5v4v3v2

MP2 Linearization
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Lossless Compression Data Structure and Optimal MP1 Linearization

Some Observations

For a directed graph G , let Ḡ be the underlying undirected graph of G

If Ḡ is an Euler graph, the Euler path achieves the optimal MP1

linearization of G

Every edge in Ḡ appears only once, and thus the length of the vertex
sequence is minimized
All edges in G are coded

If Ḡ is not an Euler graph, but by adding one edge the graph becomes
an Euler graph, then the Euler path of the enhanced graph (i.e., the
graph with an added edge) achieves the optimal MP1 linearization of
G

Still, every edge in Ḡ appears only once

In general, an extra pair of odd degree vertices in Ḡ needs one edge
to make an Euler path

Use Hierholzer’s algorithm to find Euler paths in linear time
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Lossless Compression Data Structure and Optimal MP1 Linearization

Minimum MP1 Linearization Algorithm

Input: an underlying undirected graph Ḡ (V ,E ) of a directed graph G
Output: the minimum MP1 linearization of G
1: i ← 0
2: while E 6= ∅ do
3: pick a vertex v with odd degree, if there is no such a vertex, pick an

arbitrary vertex with nonzero degree
4: repeat
5: choose an edge (v , u) ∈ E whose deletion does not disconnect the

graph, if there is no such a choice, choose an arbitrary (v , u) ∈ E
6: L[i ]← v , i ← i + 1
7: E ← E − {(u, v)}
8: v ← u
9: until the degree of v is 0

10: end while
11: return L
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Lossless Compression Data Structure and Optimal MP1 Linearization

Analysis

The algorithm partitions the edges to exactly Nodd
2 edge-disjoint paths,

where Nodd is the number of vertices with odd degree (assuming
Nodd > 0)

The length of an optimal MP1 linearization is for Nodd > 0

‖E‖+
Nodd

2

The time complexity: O(‖E‖)
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Lossless Compression Data Structure and Optimal MP1 Linearization

Compression Rate: An Upper Bound

Using MP1 linearization to encode a graph G the bits/edge rate is at
most

(1 +
1

d̄
)
(
dlog2(|V (G )|) + log2(d̄ + 1)e+ 1

)

where d̄ is the average degree in Ḡ , the underlying undirected graph
of G

The in-neighbor and out-neighbor query processing time on vertext v
is

O
( ∑

u∈Nv

deg(u) log |V (G )|
)

The trivial encoding of the graph that answers both in-neighbor and
out-neighbor queries uses 2 log |V | bits/edge
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Lossless Compression Computing MPk (k ≥ 2) Linearization

From MP1 to MP2 Linearization

What is the complexity of computing an optimal MP2 linearization?
An open question!

Minimum MPk linearization when k is part of the input is a
generalization of Min-Bandwidth problem and therefore it is NP-hard

Min-Bandwidth problem: Find an arrangement of vertices of the graph
that minimizes the maximum stretch of an edge
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Lossless Compression Computing MPk (k ≥ 2) Linearization

A Greedy Algorithm

1: while E 6= ∅ do
2: find the vertex u that has the largest number of edges to the last k

vertices in the current list
3: remove the edges between u and the last k vertices in the list
4: add u into the list
5: end while

The graph gets sparser and sparser as we are removing the edges

We use a threshold to reduce the value of k in the process of
linearization
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Lossless Compression Experimental Results

Data Sets

Name Description |V | |E| Acc Gcc Fre

amazon0302 Amazon product co-purchasing network from march 2, 2003 262111 1234877 0.424 0.236 0.542
amazon0312 Amazon product co-purchasing network from march 12, 2003 400727 3200440 0.411 0.160 0.531
ca-CondMat collaboration network of Arxiv Condensed Matter 23133 186878 0.633 0.264 1
ca-HepPh Collaboration network of Arxiv High Energy Physics 12006 236978 0.611 0.659 1
cit-HepPh Arxiv High Energy Physics paper citation network 34546 421534 0.296 0.145 0.003
cit-Patents Citation network among US Patents 3774768 16518947 0.091 0.067 0
email-Enron Email communication network from Enron 36692 367662 0.497 0.085 1
email-EuAll Email network from a EU research institution 265009 418956 0.309 0.004 0.260
p2p-Gnutella08 Gnutella peer to peer network from August 8 2002 6301 20777 0.015 0.020 0
p2p-Gnutella24 Gnutella peer to peer network from August 24 2002 26518 65369 0.009 0.004 0
soc-Slashdot0902 Slashdot social network from February 2009 82168 870161 0.061 0.024 0.841
soc-LiveJournal1 LiveJournal online social network 4846609 68475391 0.312 0.288 0.374
web-Google Web grpah from Google 875713 5105039 0.604 0.055 0.306
web-Stanford Web graph of Stanford.edu 281903 2312497 0.610 0.096 0.276

Table 2: The dataset stats. (Acc, Gcc, and Fre are defined in Section 3.1)

Algorithm 1 Find an MPK linearization of G

Input: K, reducing factor RF (0 ≤ RF ≤ 1), density
threshold DT (0 ≤ DT ≤ 1) and Graph G

Output: Linearization L of G
Description:
1: initialize L to an empty list
2: while |E(G)| ≥ 1 do
3: let u be a random node with nonzero degree
4: append u to L
5: /* let X be the set of the last K vertices in L */
6: while X has at least one neighbor in V (G) − X do
7: let v be the node which has the most number of

edges to and from X
8: remove all edges between v and vertices in X
9: edgecount+ = degold(v) − degnew(v)

10: append v to L
11: if Length(L)%1000==0 then
12: if edgecount/2 ∗ K ∗ 1000 < DT then
13: K = K ∗ RF
14: end if
15: edgecount = 0
16: end if
17: end while
18: end while

(the last 1000 positions as shown in Algorithm 1). Once it
drops below a certain density threshold DT , we reduce k by
multiplying it to a predefined reducing factor RF .

We choose to use a simple heuristic for linearization and
encode the local information. Our purpose is to examine the
feasibility of the framework of using MPk linearization for
compressing social networks. Our method leaves space for
further improvement which is the subject for future work.

6. EXPERIMENTS
To the best of our knowledge, there is no any existing

social network compression method which can answer out-
neighbor and in-neighbor queries in sublinear time. How-
ever, the existing methods which can answer out-neighbor
queries can be made comparable to ours in functionality by
encoding a given graph G and also its transpose GT .

6.1 Experimental Setup
We used the data sets from the SNAP project (Stan-

ford Network Analysis Package, http://snap.stanford.
edu/data/). The data sets in the SNAP project are orga-
nized in different categories. From each category we chose
the data sets with the smallest and the largest Gcc values,
respectively, in order to test the effect of our method with
respect to social networks of different degrees of locality.
Those data sets are from very different domains, such as
social networks, web graphs, peer-to-peer networks, collab-
orative networks, citation networks, and co-purchasing net-
works. Table 2 provides the statistics of these networks and
short descriptions.

We implemented our algorithms using C++, on top of the
SNAP library which is publicly available at http://snap.
stanford.edu/. We used a heterogeneous linux based clus-
ter to run most of the experiments. To report the running
time, we selected a subsets of our experiments and ran them
on a core(TM)2 Duo 2.66GHz linux system with 2GB of
main memory.

Our method has three parameters: Reducing Factor (RF),
(Starting) neighborhood size (K) and Density Threshold
(DT). The last two parameters are more important than the
first one, since they have direct control on the linearization
generated. Therefore, we conducted an extensive experi-
mental study on different values of these two parameters for
each network in our collection. Particularly we are inter-
ested in the tradeoff between the length of the linearization
and the neighborhood size.

We measured the compression performance using the
bits/edge rate, as the previous studies did. In addition, we
also report some other performance statistics such as query
processing time.

Another interesting tradeoff in our method is between the
out-neighbor query processing time and in-neighbor query
processing time. An implementation decision is how to store
the local information for each position. There are two op-
tions. In the first option, for each position in the Eulerian
data structure, we can use the first k bits to record the out-
edges to the previous k vertices in the linearization list, and
use the next k bits to record the out-edges to the next k
vertices in the list. In the second option, we can use the 2k
bits to record both the out-edges and in-edges between the
current position and the next k positions.

The first option biases on the out-neighbor queries. To an-
swer an in-neighbor query about a vertex u, we have to scan
the k positions preceding and following every occurrence of

Acc(G ): the average clustering coefficient
Gcc(G ): the global clustering coefficient
Fre(G ): the fraction of reciprocal edges in E (G )

27 / 53



Lossless Compression Experimental Results

Compression Rates

(K, reducing factor) (10, 1) (10, 0.9) (15, 0.9) (20, 0.9) (30, 0.9)
Density threshold 0 0.15 0.25 0.30 0.15 0.25 0.30 0.15 0.25 0.30 0.15 0.25 0.30

amazon0302 15.38 14.61 13.99 14.43 15.08 13.97 14.16 15.09 13.98 14.49 15.39 14.07 14.49
amazon0312 14.35 13.32 12.70 12.79 13.57 12.74 12.84 13.92 12.73 12.90 14.08 12.79 12.86
ca-CondMat 7.89 7.69 6.96 6.69 8.35 7.16 6.77 8.94 7.33 6.93 9.55 7.56 7.26
ca-HepPh 5.24 5.09 4.76 4.63 5.00 4.59 4.57 5.20 4.65 4.53 5.51 4.79 4.69
cit-HepPh 17.07 15.65 14.59 14.23 15.99 14.69 14.29 16.47 14.85 14.31 16.97 15.02 14.48
cit-Patents 31.59 27.69 25.95 25.75 27.63 25.97 25.69 27.73 25.95 25.69 27.78 25.97 25.78
email-Enron 8.72 8.11 7.39 7.26 8.53 7.47 7.27 8.88 7.52 7.31 9.19 7.64 7.44
email-EuAll 30.73 25.31 22.96 22.55 25.63 22.97 22.55 25.56 22.97 22.61 25.81 23.11 22.72
p2p-Gnutella08 30.36 25.48 22.90 21.63 26.70 23.88 23.42 29.82 27.13 26.88 33.84 33.21 33.21
p2p-Gnutella24 35.76 29.51 25.59 24.33 28.67 25.69 24.93 29.41 26.90 26.02 31.25 28.94 28.10
soc-Slashdot0902 16.17 14.19 12.68 12.14 14.55 12.69 12.15 14.63 12.68 12.17 14.75 12.74 12.19
soc-LiveJournal1 16.13 14.48 13.96 13.97 14.50 13.92 13.93 14.49 13.95 13.93 14.56 13.91 13.95
web-Google 12.84 12.22 11.63 11.66 12.29 11.58 11.68 12.74 11.61 11.70 12.99 11.59 11.65
web-Stanford 10.79 10.27 10.17 10.76 10.19 10.23 10.41 10.14 10.05 10.22 10.19 9.88 9.92

Table 3: The average number of bits per edge. The worse cases happen on those data sets that have very
poor locality measures (Gcc and Fre)

u in the linearization list. We implemented the second op-
tion in our experiments which does not bias on any specific
types of neighbor queries.

6.2 Compression Rates
Table 3 summarizes the results about compression rate.

While the performance of our method varies on different
data sets, the interesting observation here is the strong neg-
ative correlation between the bits/edge rate and the value of
locality measures. The average degree of the network seems
important, too. In particular, Fre and Gcc are larger in
Amazon0302 than in Amazon0312, but the performance of
our method is better on Amazon0312. We believe that this
is due to the higher average degree in Amazon0312 than
Amazon0302.

It is interesting to look at the difference between data
sets email-Enron and email-EuAll from the same category.
Data set email-Enron has one of the best bits/edge rates
and email-EuAll has one of the worst. We think this may
be a footprint of the difference in communication patterns
in industry and in academia.

The results clearly shows that our method takes advantage
of the locality properties of the social networks. Our best
result for the LiveJournal data set is 13.91 bits/edge, while
the best result of BV scheme for the same data set is 14.308
(reported in [8]). Please note that BV scheme supports only
the out-neighborhood queries. To answer both out-neighbor
and in-neighbor queries, BV schema needs 2 × 14.308 bits
per edge, assuming that encoding the transpose of the graph
has approximately the same rate. Moreover, our method is
flexible for incremental updates. We only need to encode the
incremental subgraph. BV schema does not allow sublinear
updates.

6.3 Query Processing Time
We report the query processing time for two types of

queries. An adjacency query checks whether a query edge
(u, v) ∈ E. A neighbor query searches for all out-neighbors
and in-neighbors of a query vertex u.

We used K = 20, RF = 0.25 and DT = 0.9 as the default
values for the parameters. Table 4 reports the average access
time for the adjacency queries performed on the compressed
graphs (comp.) and on the original graphs (SNAP) using

adj queries(ns) Neigh. queries(ns)
dataset comp. SNAP comp. SNAP

amazon0302 800 750 951 72
amazon0312 1170 790 1753 46
ca-CondMat 390 420 777 30
ca-HepPh 520 400 1849 19
cit-HepPh 1300 480 2745 28
cit-Patents 1400 930 1842 91
email-Enron 620 500 5539 31
email-EuAll 530 670 21518 148
p2p-Gnutella08 640 320 1663 34
p2p-Gnutella24 600 320 1488 50
soc-LiveJournal1 3050 1130 9734 49
soc-Slashdot0902 1380 610 7884 35
web-Google 810 830 4110 66
web-Standford 890 810 39939 49

Table 4: The average access time per edge for pro-
cessing adjacency queries and (in+out) neighbor
queries.

the SNAP implementation of the graph data structure. We
ran 1 million adjacency queries and 1 million neighborhood
queries, and normalized the time by the number of edges
that those queries returned. The time is in nano second.

Our method spends up to 3 times more time to answer an
adjacency query than that on the original graph. In most
cases, extra cost in our method is very minor. For neighbor
queries, the query answering time depends on the efficiency
of the linearization. One vertex and one edge may appear
multiple times in a linearization. The more replicates, the
longer the query answering time.

6.4 Tradeoff between Local Information and
Pointers

We divide the bits/edge rate in our method into two parts
the bits/edge rate encoding local information, and that en-
coding the points. The total bits/edge rate is simply the
sum of the two.

We studied the tradeoff between the local bits/edge rate
and that of the points when we varied the parameters of our

The worse cases happen on those data sets that have very poor locality
measures (Gcc and Fre)
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Lossless Compression Experimental Results

Query Processing Time

(K, reducing factor) (10, 1) (10, 0.9) (15, 0.9) (20, 0.9) (30, 0.9)
Density threshold 0 0.15 0.25 0.30 0.15 0.25 0.30 0.15 0.25 0.30 0.15 0.25 0.30

amazon0302 15.38 14.61 13.99 14.43 15.08 13.97 14.16 15.09 13.98 14.49 15.39 14.07 14.49
amazon0312 14.35 13.32 12.70 12.79 13.57 12.74 12.84 13.92 12.73 12.90 14.08 12.79 12.86
ca-CondMat 7.89 7.69 6.96 6.69 8.35 7.16 6.77 8.94 7.33 6.93 9.55 7.56 7.26
ca-HepPh 5.24 5.09 4.76 4.63 5.00 4.59 4.57 5.20 4.65 4.53 5.51 4.79 4.69
cit-HepPh 17.07 15.65 14.59 14.23 15.99 14.69 14.29 16.47 14.85 14.31 16.97 15.02 14.48
cit-Patents 31.59 27.69 25.95 25.75 27.63 25.97 25.69 27.73 25.95 25.69 27.78 25.97 25.78
email-Enron 8.72 8.11 7.39 7.26 8.53 7.47 7.27 8.88 7.52 7.31 9.19 7.64 7.44
email-EuAll 30.73 25.31 22.96 22.55 25.63 22.97 22.55 25.56 22.97 22.61 25.81 23.11 22.72
p2p-Gnutella08 30.36 25.48 22.90 21.63 26.70 23.88 23.42 29.82 27.13 26.88 33.84 33.21 33.21
p2p-Gnutella24 35.76 29.51 25.59 24.33 28.67 25.69 24.93 29.41 26.90 26.02 31.25 28.94 28.10
soc-Slashdot0902 16.17 14.19 12.68 12.14 14.55 12.69 12.15 14.63 12.68 12.17 14.75 12.74 12.19
soc-LiveJournal1 16.13 14.48 13.96 13.97 14.50 13.92 13.93 14.49 13.95 13.93 14.56 13.91 13.95
web-Google 12.84 12.22 11.63 11.66 12.29 11.58 11.68 12.74 11.61 11.70 12.99 11.59 11.65
web-Stanford 10.79 10.27 10.17 10.76 10.19 10.23 10.41 10.14 10.05 10.22 10.19 9.88 9.92

Table 3: The average number of bits per edge. The worse cases happen on those data sets that have very
poor locality measures (Gcc and Fre)

u in the linearization list. We implemented the second op-
tion in our experiments which does not bias on any specific
types of neighbor queries.

6.2 Compression Rates
Table 3 summarizes the results about compression rate.

While the performance of our method varies on different
data sets, the interesting observation here is the strong neg-
ative correlation between the bits/edge rate and the value of
locality measures. The average degree of the network seems
important, too. In particular, Fre and Gcc are larger in
Amazon0302 than in Amazon0312, but the performance of
our method is better on Amazon0312. We believe that this
is due to the higher average degree in Amazon0312 than
Amazon0302.

It is interesting to look at the difference between data
sets email-Enron and email-EuAll from the same category.
Data set email-Enron has one of the best bits/edge rates
and email-EuAll has one of the worst. We think this may
be a footprint of the difference in communication patterns
in industry and in academia.

The results clearly shows that our method takes advantage
of the locality properties of the social networks. Our best
result for the LiveJournal data set is 13.91 bits/edge, while
the best result of BV scheme for the same data set is 14.308
(reported in [8]). Please note that BV scheme supports only
the out-neighborhood queries. To answer both out-neighbor
and in-neighbor queries, BV schema needs 2 × 14.308 bits
per edge, assuming that encoding the transpose of the graph
has approximately the same rate. Moreover, our method is
flexible for incremental updates. We only need to encode the
incremental subgraph. BV schema does not allow sublinear
updates.

6.3 Query Processing Time
We report the query processing time for two types of

queries. An adjacency query checks whether a query edge
(u, v) ∈ E. A neighbor query searches for all out-neighbors
and in-neighbors of a query vertex u.

We used K = 20, RF = 0.25 and DT = 0.9 as the default
values for the parameters. Table 4 reports the average access
time for the adjacency queries performed on the compressed
graphs (comp.) and on the original graphs (SNAP) using

adj queries(ns) Neigh. queries(ns)
dataset comp. SNAP comp. SNAP

amazon0302 800 750 951 72
amazon0312 1170 790 1753 46
ca-CondMat 390 420 777 30
ca-HepPh 520 400 1849 19
cit-HepPh 1300 480 2745 28
cit-Patents 1400 930 1842 91
email-Enron 620 500 5539 31
email-EuAll 530 670 21518 148
p2p-Gnutella08 640 320 1663 34
p2p-Gnutella24 600 320 1488 50
soc-LiveJournal1 3050 1130 9734 49
soc-Slashdot0902 1380 610 7884 35
web-Google 810 830 4110 66
web-Standford 890 810 39939 49

Table 4: The average access time per edge for pro-
cessing adjacency queries and (in+out) neighbor
queries.

the SNAP implementation of the graph data structure. We
ran 1 million adjacency queries and 1 million neighborhood
queries, and normalized the time by the number of edges
that those queries returned. The time is in nano second.

Our method spends up to 3 times more time to answer an
adjacency query than that on the original graph. In most
cases, extra cost in our method is very minor. For neighbor
queries, the query answering time depends on the efficiency
of the linearization. One vertex and one edge may appear
multiple times in a linearization. The more replicates, the
longer the query answering time.

6.4 Tradeoff between Local Information and
Pointers

We divide the bits/edge rate in our method into two parts
the bits/edge rate encoding local information, and that en-
coding the points. The total bits/edge rate is simply the
sum of the two.

We studied the tradeoff between the local bits/edge rate
and that of the points when we varied the parameters of our

Our method spends up to 3 times more time to answer an adjacency
query than that on the original graph.

For neighbor queries, the query answering time depends on the
efficiency of the linearization. The more replicates, the longer the
query answering time.
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method. Limited by space, we only report here the tradeoff
for two parameters: the density threshold (DT ) and the
starting window size (K). We chose three data sets: ca-
HepPh which has the best compression rate, p2p-Gnutella24
which has the worse compression rate, and soc-Slashdot0902
which has about the average compression rate.

In the first experiment, we varied DT = 0.15 to 0.45 with
step 0.05, and fixed the other two parameters K = 20 and
RF = 0.9. Figure 3 shows the local information bits/edge
rate and the total bits/edge rate. Clearly, the compression
rate is insensitive to parameter DT . Therefore, setting the
parameter is not a big problem.

In the second experiment, we fixed DT = 0.25 and RF =
0.9, and varied K from 1 to 30. Figure 4 shows the results.
Increasing k leads to better compression rates on the ca-
HepPh and Soc-Slashdot0902 data sets. However, when k
is 5 or larger, increasing k does not gain big advantage.

Therefore, setting k to a value between 5 and 10 is a good
experience choice.

7. CONCLUSIONS
In this paper, we tackled the problem of compressing so-

cial networks in a neighbor query friendly way. We de-
veloped an effective social network compression approach
achieved by a novel Eulerian data structure using multi-
position linearizations of directed graphs. Importantly, our
method comes with a nontrivial theoretical bound on the
compression rate. To the best of our knowledge, our ap-
proach is the first that can answer both out-neighbor and
in-neighbor queries in sublinear time. An extensive empir-
ical study on more than a dozen benchmark real data sets
justifies the effectiveness of our method.

The encouraging results in this study suggest several in-
teresting future directions. First, it is interesting to explore
approximation methods for MPk linearization for k > 1.
Second, it is interesting to explore effective methods to de-
termine a good value of k for MPk linearization compression
of social networks. Last, our heuristic algorithm is simple.
It leaves space for further improvement in both the compres-
sion rate and the compression runtime.
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method. Limited by space, we only report here the tradeoff
for two parameters: the density threshold (DT ) and the
starting window size (K). We chose three data sets: ca-
HepPh which has the best compression rate, p2p-Gnutella24
which has the worse compression rate, and soc-Slashdot0902
which has about the average compression rate.

In the first experiment, we varied DT = 0.15 to 0.45 with
step 0.05, and fixed the other two parameters K = 20 and
RF = 0.9. Figure 3 shows the local information bits/edge
rate and the total bits/edge rate. Clearly, the compression
rate is insensitive to parameter DT . Therefore, setting the
parameter is not a big problem.

In the second experiment, we fixed DT = 0.25 and RF =
0.9, and varied K from 1 to 30. Figure 4 shows the results.
Increasing k leads to better compression rates on the ca-
HepPh and Soc-Slashdot0902 data sets. However, when k
is 5 or larger, increasing k does not gain big advantage.

Therefore, setting k to a value between 5 and 10 is a good
experience choice.

7. CONCLUSIONS
In this paper, we tackled the problem of compressing so-

cial networks in a neighbor query friendly way. We de-
veloped an effective social network compression approach
achieved by a novel Eulerian data structure using multi-
position linearizations of directed graphs. Importantly, our
method comes with a nontrivial theoretical bound on the
compression rate. To the best of our knowledge, our ap-
proach is the first that can answer both out-neighbor and
in-neighbor queries in sublinear time. An extensive empir-
ical study on more than a dozen benchmark real data sets
justifies the effectiveness of our method.

The encouraging results in this study suggest several in-
teresting future directions. First, it is interesting to explore
approximation methods for MPk linearization for k > 1.
Second, it is interesting to explore effective methods to de-
termine a good value of k for MPk linearization compression
of social networks. Last, our heuristic algorithm is simple.
It leaves space for further improvement in both the compres-
sion rate and the compression runtime.
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Comparison with [Chierichetti et al. KDD’09]

The compression rate of the method in [Chierichetti et al. KDD’09]
on LiveJournal dataset is 14.38, but it can only answer out-neighbor
queries

Our compression rate is 13.91

Our method can answer both in-neighbor and out-neighbor queries
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Lossy Compression Lossy Compression: Why and What?

Why Lossy Compression?

Practical aspect: by reducing noise, lossy compression may serve as a
preprocessing step in social network analysis

Theoretical aspect: using the priority of including an edge/vertex into
a lossy compression, we may discover importance of edges and
vertices, and identify noise edges and vertices
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Sequence Graph

A graph Gs is a (k, l)-sequence graph, if |V (Gs)| = l and there is a
bijection φ between V (Gs) and the set of integers {1, . . . , l} such
that for every edge (x , y) ∈ E (Gs), |φ(x)− φ(y)| ≤ k. We call k the
local range size, l the sequence length, and
span(x , y) = |φ(x)− φ(y)| the span of edge (x , y)
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(a) Graph G
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(b) A (3, 15)-sequence graph Gs that is a lossy linearization of G.

Figure 1. A graph G and its lossy representation using a (3, 15)-sequence
graph Gs.

We call k the local range size, l the sequence length, and
span(x, y) = |φ(x) − φ(y)| the span of edge (x, y).

Intuitively, in a sequence graph, the vertices can be lined
up into a sequence so that all edges are “local”, that is, the
two end points locate within a segment of at most k in the
sequence. Since φ is a bijection between V (Gs) and integers
{1, . . . , l}, hereafter, we may simply refer to the vertices in
Gs by integers in {1, . . . , l}, and may draw the vertices of a
sequence graph in a sequence and omit the integers if they
are clear from the context.

Example 1 (Sequence graph). Graph Gs in Figure 1(b) is
a (3, 15)-sequence graph. Please note that we simply line
up the vertices in a sequence and omit the integers in the
graph. ψ(·) in the figure is for Example 2 and should be
ignored at this moment.

In general, a (k, l)-sequence graph Gs may have more
than one bijection between V (Gs) and integers {1, . . . , l}.
Our discussion applies to all bijections unless specifically
mentioning.
To store a (k, l)-sequence graph, for each vertex, we only

need to allocate 2k bits to represent the edges involving
the vertex. This representation can also enable efficient
neighborhood queries — finding all neighbors of a vertex
u takes only O(k) time.
The general idea behind graph compression using lin-

earization is that we try to “unfold” a graph into a sequence
graph, so that many vertices have the associated edges in
their local ranges. Then, storing the corresponding sequence
graph can save space, because many edges are stored using
only 2 bits each, one for each end point. We refer to this
process as “unfolding” because a vertex in the original graph
may be mapped to several vertices in the sequence graph.

Definition 2 (Graph linearization). A (k, l)-sequence graph
Gs is a (k, l)-linearization of a graph G if there exists
a function ψ : V (Gs) → V (G) such that (1) for every
edge (x, y) ∈ E(Gs), (ψ(x),ψ(y)) ∈ E(G), and (2)
there do not exist two edges (x, y), (x′, y′) ∈ E(Gs),
(x, y) $= (x′, y′) such that (ψ(x),ψ(y)) = (ψ(x′),ψ(y′)).
To keep our notation simple we overload the symbol ψ by
writing ψ(x, y) = (ψ(x),ψ(y)).

Gs is a lossless linearization [17] of G if for every edge
(u, v) ∈ E(G), there exists an edge (x, y) ∈ E(Gs) such
that ψ(x, y) = (u, v). Otherwise, Gs is a lossy linearization
of G.

The second condition in Definition 2 ensures that an
edge in the original graph is encoded at most once in the
linearization. This condition helps us to design a simple yet
effective objective function for lossy compression in the next
section.

Example 2 (Lossy linearization). The (3, 15)-sequence
graph Gs in Figure 1(b) is a lossy linearization of graph
G in Figure 1(a). The mapping ψ(·) from the nodes of Gs

to the nodes of G is depicted.

The problem of finding a (k, l)-lossless linearization of
G that minimizes l is also known as computing MPk-
linearization of graphs [17]. We [17] showed that MPk-
linearization is a very challenging problem in general,
though an optimal algorithm exists for k = 1.
In general, a graph G may have multiple (k, l)-lossy

linearizations. Finding the best (k, l)-lossy linearization for
a graph G is a novel problem not touched by any previous
work. To make the problem concrete, we need to explore
how to quantify the “loss of information” and assess the
degree of community preservation in lossy compression. We
answer this question next by designing an objective function.

IV. OBJECTIVE FUNCTION DESIGN
Let us consider the following optimization problem. Given

a graphG and parameters l > 0 and k > 0, find a (k, l)-lossy
linearization Gs for G and the mapping ψ : V (Gs)→ V (G)
such that a utility objective function f(Gs) is maximized,
where f(Gs) measures the goodness of Gs in preserving the
information in G.
Lossy compression trades off some edges in the original

graph G for space saving. What information in G should be
preserved in priority? Since communities are the essential
building blocks of social networks, in this paper, we focus
on lossy compressions of social networks that preserve
communities. We regard a dense area in a graph as a po-
tential community, and intently avoid an exact definition of
community, since different applications may have different
definitions.
We want to obtain a utility function that opts for edges

of short spans in the corresponding sequence graph. Instead
of developing a utility function parameterized by local range

A (3, 15)-sequence graph

In general, a (k , l)-sequence graph Gs may have more than one
bijection between V (Gs) and integers {1, . . . , l}
A sequence graph can be used to linearize a graph in a lossless or
lossy way
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Graph Linearization

A (k , l)-sequence graph Gs is a (k, l)-linearization of a graph G if
there exists a function ψ : V (Gs)→ V (G ) such that (1) for every
edge (x , y) ∈ E (Gs), (ψ(x), ψ(y)) ∈ E (G ), and (2) there do not exist
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Gs is a lossless linearization of G if for every edge (u, v) ∈ E (G ),
there exists an edge (x , y) ∈ E (Gs) such that ψ(x , y) = (u, v).
Otherwise, Gs is a lossy linearization of G
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We call k the local range size, l the sequence length, and
span(x, y) = |φ(x) − φ(y)| the span of edge (x, y).

Intuitively, in a sequence graph, the vertices can be lined
up into a sequence so that all edges are “local”, that is, the
two end points locate within a segment of at most k in the
sequence. Since φ is a bijection between V (Gs) and integers
{1, . . . , l}, hereafter, we may simply refer to the vertices in
Gs by integers in {1, . . . , l}, and may draw the vertices of a
sequence graph in a sequence and omit the integers if they
are clear from the context.

Example 1 (Sequence graph). Graph Gs in Figure 1(b) is
a (3, 15)-sequence graph. Please note that we simply line
up the vertices in a sequence and omit the integers in the
graph. ψ(·) in the figure is for Example 2 and should be
ignored at this moment.

In general, a (k, l)-sequence graph Gs may have more
than one bijection between V (Gs) and integers {1, . . . , l}.
Our discussion applies to all bijections unless specifically
mentioning.
To store a (k, l)-sequence graph, for each vertex, we only

need to allocate 2k bits to represent the edges involving
the vertex. This representation can also enable efficient
neighborhood queries — finding all neighbors of a vertex
u takes only O(k) time.
The general idea behind graph compression using lin-

earization is that we try to “unfold” a graph into a sequence
graph, so that many vertices have the associated edges in
their local ranges. Then, storing the corresponding sequence
graph can save space, because many edges are stored using
only 2 bits each, one for each end point. We refer to this
process as “unfolding” because a vertex in the original graph
may be mapped to several vertices in the sequence graph.

Definition 2 (Graph linearization). A (k, l)-sequence graph
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there do not exist two edges (x, y), (x′, y′) ∈ E(Gs),
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To keep our notation simple we overload the symbol ψ by
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Gs is a lossless linearization [17] of G if for every edge
(u, v) ∈ E(G), there exists an edge (x, y) ∈ E(Gs) such
that ψ(x, y) = (u, v). Otherwise, Gs is a lossy linearization
of G.

The second condition in Definition 2 ensures that an
edge in the original graph is encoded at most once in the
linearization. This condition helps us to design a simple yet
effective objective function for lossy compression in the next
section.

Example 2 (Lossy linearization). The (3, 15)-sequence
graph Gs in Figure 1(b) is a lossy linearization of graph
G in Figure 1(a). The mapping ψ(·) from the nodes of Gs

to the nodes of G is depicted.

The problem of finding a (k, l)-lossless linearization of
G that minimizes l is also known as computing MPk-
linearization of graphs [17]. We [17] showed that MPk-
linearization is a very challenging problem in general,
though an optimal algorithm exists for k = 1.
In general, a graph G may have multiple (k, l)-lossy

linearizations. Finding the best (k, l)-lossy linearization for
a graph G is a novel problem not touched by any previous
work. To make the problem concrete, we need to explore
how to quantify the “loss of information” and assess the
degree of community preservation in lossy compression. We
answer this question next by designing an objective function.

IV. OBJECTIVE FUNCTION DESIGN
Let us consider the following optimization problem. Given

a graphG and parameters l > 0 and k > 0, find a (k, l)-lossy
linearization Gs for G and the mapping ψ : V (Gs)→ V (G)
such that a utility objective function f(Gs) is maximized,
where f(Gs) measures the goodness of Gs in preserving the
information in G.
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graph G for space saving. What information in G should be
preserved in priority? Since communities are the essential
building blocks of social networks, in this paper, we focus
on lossy compressions of social networks that preserve
communities. We regard a dense area in a graph as a po-
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We call k the local range size, l the sequence length, and
span(x, y) = |φ(x) − φ(y)| the span of edge (x, y).

Intuitively, in a sequence graph, the vertices can be lined
up into a sequence so that all edges are “local”, that is, the
two end points locate within a segment of at most k in the
sequence. Since φ is a bijection between V (Gs) and integers
{1, . . . , l}, hereafter, we may simply refer to the vertices in
Gs by integers in {1, . . . , l}, and may draw the vertices of a
sequence graph in a sequence and omit the integers if they
are clear from the context.

Example 1 (Sequence graph). Graph Gs in Figure 1(b) is
a (3, 15)-sequence graph. Please note that we simply line
up the vertices in a sequence and omit the integers in the
graph. ψ(·) in the figure is for Example 2 and should be
ignored at this moment.

In general, a (k, l)-sequence graph Gs may have more
than one bijection between V (Gs) and integers {1, . . . , l}.
Our discussion applies to all bijections unless specifically
mentioning.
To store a (k, l)-sequence graph, for each vertex, we only

need to allocate 2k bits to represent the edges involving
the vertex. This representation can also enable efficient
neighborhood queries — finding all neighbors of a vertex
u takes only O(k) time.
The general idea behind graph compression using lin-

earization is that we try to “unfold” a graph into a sequence
graph, so that many vertices have the associated edges in
their local ranges. Then, storing the corresponding sequence
graph can save space, because many edges are stored using
only 2 bits each, one for each end point. We refer to this
process as “unfolding” because a vertex in the original graph
may be mapped to several vertices in the sequence graph.

Definition 2 (Graph linearization). A (k, l)-sequence graph
Gs is a (k, l)-linearization of a graph G if there exists
a function ψ : V (Gs) → V (G) such that (1) for every
edge (x, y) ∈ E(Gs), (ψ(x),ψ(y)) ∈ E(G), and (2)
there do not exist two edges (x, y), (x′, y′) ∈ E(Gs),
(x, y) $= (x′, y′) such that (ψ(x),ψ(y)) = (ψ(x′),ψ(y′)).
To keep our notation simple we overload the symbol ψ by
writing ψ(x, y) = (ψ(x),ψ(y)).

Gs is a lossless linearization [17] of G if for every edge
(u, v) ∈ E(G), there exists an edge (x, y) ∈ E(Gs) such
that ψ(x, y) = (u, v). Otherwise, Gs is a lossy linearization
of G.

The second condition in Definition 2 ensures that an
edge in the original graph is encoded at most once in the
linearization. This condition helps us to design a simple yet
effective objective function for lossy compression in the next
section.

Example 2 (Lossy linearization). The (3, 15)-sequence
graph Gs in Figure 1(b) is a lossy linearization of graph
G in Figure 1(a). The mapping ψ(·) from the nodes of Gs

to the nodes of G is depicted.

The problem of finding a (k, l)-lossless linearization of
G that minimizes l is also known as computing MPk-
linearization of graphs [17]. We [17] showed that MPk-
linearization is a very challenging problem in general,
though an optimal algorithm exists for k = 1.
In general, a graph G may have multiple (k, l)-lossy

linearizations. Finding the best (k, l)-lossy linearization for
a graph G is a novel problem not touched by any previous
work. To make the problem concrete, we need to explore
how to quantify the “loss of information” and assess the
degree of community preservation in lossy compression. We
answer this question next by designing an objective function.

IV. OBJECTIVE FUNCTION DESIGN
Let us consider the following optimization problem. Given

a graphG and parameters l > 0 and k > 0, find a (k, l)-lossy
linearization Gs for G and the mapping ψ : V (Gs)→ V (G)
such that a utility objective function f(Gs) is maximized,
where f(Gs) measures the goodness of Gs in preserving the
information in G.
Lossy compression trades off some edges in the original

graph G for space saving. What information in G should be
preserved in priority? Since communities are the essential
building blocks of social networks, in this paper, we focus
on lossy compressions of social networks that preserve
communities. We regard a dense area in a graph as a po-
tential community, and intently avoid an exact definition of
community, since different applications may have different
definitions.
We want to obtain a utility function that opts for edges

of short spans in the corresponding sequence graph. Instead
of developing a utility function parameterized by local range
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Objective Function Design

In general, a graph G may have multiple (k , l)-lossy linearizations.
Finding the best (k , l)-lossy linearization for a graph G is a novel
problem not touched by any previous work

Given a graph G and parameters l > 0 and k > 0, find a (k , l)-lossy
linearization Gs for G and the mapping ψ : V (Gs)→ V (G ) such that
a utility objective function f (Gs) is maximized, where f (Gs) measures
the goodness of Gs in preserving the information in G

Since communities are the essential building blocks of social networks,
we advocate lossy compressions of social networks that preserve
communities

We regard a dense area in a graph as a potential community, and
intently avoid an exact definition of community, since different
applications may have different definitions
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A Simple Objective Function

Let Gs be a linearization of graph G , p = (u1, u2, . . . , um) a path in G ,
and p′ = (u′1, u

′
2, . . . , u

′
m) the embedding of p in Gs . The span of p is

span(p) = max
1≤i≤m

{φ(u′i )} − min
1≤i≤m

{φ(u′i )}

7
a b cde

3 4 5 6

Figure 2. The span of a path.

size k, we introduce a parameter α (0 < α < 1) that controls
the strength of preference on shorter spans. We will build
the connection between parameters α and k in Section V-B.
A path p = (u1, u2, . . . , um) in a graph G is a series

of edges such that (ui, ui+1) ∈ E(G), 1 ≤ i < m. The
length of path p is (m − 1), the number of edges involved
in the path. In a linearization Gs of G under mapping ψ,
path p′ = (u′

1, u
′
2, . . . , u

′
m) in Gs is the embedding of path

p if ψ(ui, ui+1) = (u′
i, u

′
i+1) for 1 ≤ i < m.

Definition 3 (Span of path). Let Gs be a linearization
of graph G, p = (u1, u2, . . . , um) a path in G, and
p′ = (u′

1, u
′
2, . . . , u

′
m) the embedding of p in Gs. The span

of p is

span(p) = max
1≤i≤m

{φ(u′
i)}− min

1≤i≤m
{φ(u′

i)}

Example 3. Figure 2 shows a segment of a (3, l)-sequence
graph. For path p = (d, a, c, b, e), the span is 7− 3 = 4.

Let us start our design of the objective function by consid-
ering a simple function. Suppose Gs is a (k, l)-linearization
of G, where k = l = |V (G)|. If we only consider individual
edges, and try to shorten the sum of spans of all edges, then
we can use the following utility function

f1(Gs) =
∑

(x,y)∈E(Gs)

αspan(x,y)

Utility function f1 has the following two properties.
Property 1: the shorter the spans of edges in the sequence

graph, the higher the utility. This property is consistent
with our goal of preserving community information. A
community typically has a high density, which means there
exist many edges among the set of vertices belonging to the
community. If the vertices of a community are placed in
proximate positions in the sequence, the spans of the edges
within the community tend to be short. The edges of long
spans contribute little to the utility. The utility decreases
exponentially with respect to the span. This property en-
courages the arrangement of vertices belonging to the same
community in the close-by positions, and discourages the
inclusion of edges crossing communities far away in the
original graph G.
Property 2: the more edges included in the compression,

the higher the utility. Consider two linearization graphs Gs

and G′
s such that V (Gs) = V (G′

s) and E(Gs) ⊂ E(G′
s).

Then, f1(Gs) < f1(G
′
s). This property encourages a lin-

earization graph to include as many edges as possible in
addition to optimizing for short span edges.

Utility function f1 is sensitive to individual edges. We
can extend it to incorporate community information better.
Instead of edges, we can consider how paths of a certain
length are represented in a sequence graph. Generally, a
community as a dense subgraph has many short paths
traversing among members within the community. If a
sequence graph preserves the community information, then
the members of the community are lined up close to one
another in the sequence graph and thus the paths in the
community fall into short ranges of the sequence.
To incorporate the above idea, let Pm(Gs) be the set of

paths of length m in a sequence graph Gs. We can extend
utility function f1 to

fm(Gs) =
∑

p∈Pm(Gs)

αspan(p)

Clearly, utility function fm is a generalization of f1.
The longer the paths are considered, the more community
oriented the utility function becomes. At the same time, the
optimization problem becomes more challenging when the
value of m increases.
Observe that function f1 takes its maximum value when

the span of each edge is one, and that is basically an
adjacency representation of the graph. In this paper, we focus
on the simplest nontrivial setting m = 2 as the first step.
Interestingly, several recent studies, such as [10], suggested
that even considering random walks of short length can
generate high quality results in network analysis. Note that
for m ≥ 3, the problem is computationally more expensive.
Optimizing fm for larger values ofm is the subject of future
studies.
For the sake of simplicity, we omit the subscript 2 here-

after, and tackle the optimization of the following objective
function:

f(Gs) = f2(Gs) =
∑

p∈P2(Gs)

αspan(p) (1)

V. LINEARIZATION METHOD

In this section, we derive upper and lower bounds of the
objective function, build the connection between parameters
α and k, and develop a greedy heuristic linearization method.

A. Bounding the Objective Function
How difficult is the problem of finding the optimal lossy

linearization using utility function f in Equation 1, that is,
finding a sequence graph maximizing the objective function?
In literature, there is a family of graph layout problems [7],
whose objective is to find an ordering of nodes to optimize
a particular objective function. Many variants of these prob-
lems have been shown to be NP-hard [21], [4]. To the best
of our knowledge, even no constant factor approximation
algorithm for any variation of these problems is known [25],
[7]. Note that our setting is even more complex, since one
node can appear in several positions in a sequence graph.

For path p = (d , a, c , b, e), the span is 7− 3 = 4.

First idea: k = l = |V (G )|, and shorten the sum of spans of all edges

f1(Gs) =
∑

(x ,y)∈E(Gs)

αspan(x ,y), where (0 < α < 1)

Shorter spans of edges in the sequence graph → higher utility

More edges included in the compression → higher utility
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Generalization

How are paths of a certain length represented in a sequence graph?

Generally, a community as a dense subgraph has many short paths
traversing among members within the community
If a sequence graph preserves the community information, the members
of the community are lined up close to one another in the sequence
graph and thus the paths in the community fall into short ranges of the
sequence

Let Pm(Gs) be the set of paths of length m in a sequence graph Gs .
We extend utility function f1 to

fm(Gs) =
∑

p∈Pm(Gs)

αspan(p)
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Tackling the Case of m = 2

We tackle the simplest nontrivial setting m = 2 as the first step
Interestingly, several recent studies suggested that even considering
random walks of short length can generate high quality results in
network analysis
For m ≥ 3, the problem is computationally more expensive, and is the
subject of future studies

For the sake of simplicity, we omit the subscript 2 hereafter, and
tackle the optimization of the following objective function:

f (Gs) = f2(Gs) =
∑

p∈P2(Gs)

αspan(p)

Our problem is highly related to (and more complex than) a family of
graph layout problems, whose objective is to find an ordering of nodes
to optimize a particular objective function

Many variants of these problems have been shown to be NP-hard, even
no constant factor approximation algorithm for any variation of these
problems is known
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Bounding the Objective Function

Let Gs be a sequence graph. Then,
∑

p∈P2(Gs)

αspan(e1)+span(e2) ≤ f (Gs) ≤
∑

p∈P2(Gs)

(α1/2)span(e1)+span(e2)

α
1
2 and α are constants. Heuristically, if we can obtain a sequence

graph optimizing the lower bound, the sequence graph may have a
good chance to boost the objective function f
Let Ei be the set of edges incident to vertex i in Gs and Pi the set of
those paths of length two that have vertex i as the middle vertex.
Then,

(
∑

e∈Ei

αspan(e))2 =
∑

p=e1e2∈Pi

αspan(e1)+span(e2)

We optimize the lower bound if we optimize

f̄ (Gs) =
∑

1≤i≤|V (Gs)|

(
∑

e∈Ei

αspan(e))2
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Connection between Parameters α and k

Our problem formulation assumes a parameter k is given as the
maximum local range size for the sequence graph. The objective
function, however, uses parameter α

For a given α, the maximum span of all edges in the optimal
sequence graph is at most logα

α(1−α)
4

We use k = logα
α(1−α)

4 to estimate α

To estimate α given k , we do a binary search on the interval [0, 1], and

stop when the value of logα
α(1−α)

4 is between k and k − 0.01

The binary search is effective because the function logα
α(1−α)

4 is
monotonically increasing in the interval [0, 1]
Using this estimate of α, experimentally we observe that in the
resulting sequence graphs the spans of an extremely small fraction of
edges are more than k/2.
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Greedy Heuristic Search

We initialize Gs with a random ordering of the vertices of G . There is
no edge in Gs at this stage

Iteratively we consider all vertices for possible reallocation

Find a position in Gs for possible insertion of an extra copy of u and its
associated edges
If the length of Gs is already l , the algorithm searches the local range
of the insertion point for a possible deletion
We apply the changes if they improve the objective function

Details in our paper
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Pseudocode (the Framework)

Input: G : input network, k: local range, l : length of compression (l ≥ |V (G)|)
Output: SeqG : sequenced compression
1: Initialize SeqG with a random ordering of nodes, α← EstimateAlpha(k)
2: repeat
3: b ← f (SeqG , α)
4: for all u ∈ V (G) do
5: IPos ← NULL, DPos ← NULL, (IPos,Nbh)← ReAllocate(u,G , SeqG , α)
6: if (IPos 6= NULL) and (Length(SeqG) = l) then
7: DPos ← SeqG .LowestBenf (IPos − k, IPos + k)
8: end if
9: x ← UtilityIncrease(IPos,Nbh, SeqG), y ← UtilityDecrease(DPos, SeqG)
10: if x − y > 0 then
11: Insert(IPos,Nbh, SeqG), Delete(DPos,SeqG)
12: end if
13: end for
14: α← f (SeqG , α)
15: until convergence condition
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Evaluation Methodology

Compression rate does not have a straightforward meaning in lossy
compression

The bit-utility rate is the ratio of the number of edges encoded in
the lossy compression over the total number of bits

To generate synthetic data sets, we use the LFR benchmark, and the
same settings as those used by Fortunato
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Evaluating Community Preservation Using Proximity Graph

Let Gs be a linearization of G , and ψ : V (Gs)→ V (G ) the mapping.
Note that V (Gs) = {1, · · · , |V (Gs)|}. The proximity graph of G
with respect to Gs is defined as follows. Consider (u, v) ∈ E (G ) and
(i , j) ∈ E (Gs) such that |i − j | ≤ k and ψ(i) = u, ψ(j) = v . Without
loss of generality we assume i < j .The weight of undirected edge
(u, v) in the proximity graph is

∑

(i ,l)∈E(Gs),l≥j

α|i−l | +
∑

(j ,l)∈E(Gs),l≤i

α|j−l |

The first (second) term is over all the edges associated with position i
(j) that pass over position j (i). If there is no such a pair of (i , j),
then the weight for (u, v) is 0. If there are more than one such pair,
for each of those pairs, we compute the weight and take the sum over
all of them
The weight of edge (u, v) is an indicator for u and v belonging to the
same community
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Comparing Normalized Mutual Information on Original
Graph and Proximity Graph

Use the community finding algorithm by Clauset et al.

Use several (5 in our experiments) independent linearizations to
obtain an aggregated proximity graph
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Effect of Local Range Size k and Length of Sequences l
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Evaluation Using Centrality

Use betweenness, PageRank, and degree

The centrality of all vertices forms a vector

Evaluate the Pearson Correlation on centrality vectors
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Single Iteration Runtime
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Conclusions

Online social networks are more and more popular, and larger and
larger

We developed a novel framework for social network representation
which leads to compression

Our method does not use any coding yet
Compression rate guaranteed in MP1

Our method has a comparable compression rate than the
state-of-the-art method
Our method are query friendly

Importantly, our method reduces the problem of compressing a graph
to an intuitive combinatorial problem, and lead to new understanding
of structural properties in social networks
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Future Work

Complexity or NP-hardness for MPk when k is fixed

Better heuristic algorithms for MPk linearization (if it is NP-hard)

Plugging in other compression techniques into our framework

Using graph linearization to gain better understanding of graph
properties
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Our Papers

Hossein Maserrat and Jian Pei: Neighbor query friendly compression
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