Social Network Compression: Not Only Space Saving,
but also Insight Gaining

Jian Pei

Simon Fraser University
Email: jpei@cs.sfu.ca
http://www.cs.sfu.ca/~jpei

Joint work with Hossein Maserrat (my graduated Ph.D. student)

/ 53

mailto:jpei@cs.sfu.ca
http://www.cs.sfu.ca/~jpei

Outline

© Introduction

53

Introduction

Social Networks in Our Life

“I have more high schools friends on Facebook than | ever had in high

school?!"
“God saw Adam was bored and lonely and sent Eve. God saw men

and women were bored and sent Twitter’

2

T SUPFORT? HELPI!
| TLST LOST 23745 FRIEND= !/

http://www.toonpool.com/cartoons/Social’%20network_53133#

http://www.toonpool.com/cartoons/Social%20network_53133#

Social Networks Can Be Huge

@ “This morning, there are more than one billion people using Facebook
actively each month, ... Helping a billion people connect is amazing,
humbling and by far the thing | am most proud of in my life."

— Mark Zuckerberg on October 4, 2012
e 1.11 billion users on May 1, 2013

@ As of August 21, 2013, LinkedIn has more than 238 million registered
members in over 200 countries and territories.
(http://press.linkedin.com/about)

@ As of September 2012, Twitter has 517 million registered users, 262
million active users, and even 35.5 million users in China. Twitter
“still has more users there than any other country in the world,
including the United States.”

— "“Defying wisdom, report says Twitter is biggest in China" by
Daniel Terdiman, October 5, 2012

http://press.linkedin.com/about

Introduction

Compressing Social Networks

@ Analyzing huge social networks is great, only if we can handle them
e Storage cost
o Query answering cost
@ Compressibility of a social network is a feature reflecting the
structural characteristics of the social network
o Compressibility of the whole social network
o Compressibility of regions in a social network

Compressing Graphs and Networks: Some Existing Methods
Outline

© Compressing Graphs and Networks: Some Existing Methods

53

Compressing Graphs and Networks: Some Existing Methods

Graph and Network Compression: Two Major approaches

@ Aggregation based methods: using a “super-node” to replace a set of
nodes that have similar neighbors

o S. Navlakha, et al. Graph summarization with bounded error. In
SIGMOD'08.

e S. Raghavan and H. Garcia-Molina. Representing web graphs. In
ICDE’03.

o G. Buehrer and K. Chellapilla. A scalable pattern mining approach to
web graph compression with communities. In WSDM'08.

Compressing Graphs and Networks: Some Existing Methods

Graph and Network Compression: Two Major approaches

o Aggregation based methods: using a “super-node” to replace a set of
nodes that have similar neighbors

o S. Navlakha, et al. Graph summarization with bounded error. In
SIGMOD'08.

e S. Raghavan and H. Garcia-Molina. Representing web graphs. In
ICDE’03.

o G. Buehrer and K. Chellapilla. A scalable pattern mining approach to
web graph compression with communities. In WSDM'08.

@ Ordering based methods: ordering nodes so that similar nodes fall
into proximate positions
e P. Boldi and S. Vigna. The webgraph framework I: compression
techniques. In WWW'04.
o F. Chierichetti, et al. On compressing social networks. In KDD'09.
o P. Boldi, et al. Layered label propagation: a multiresolution
coordinate-free ordering for compressing social networks. In WWW'11.

53

How Are Social Networks Different from Web Graphs?

@ No natural ordering of vertices for general social networks

@ Chierichetti et al. [KDD’'09] used shingle ordering to compress social
networks

@ Shingle ordering tends to place nodes with similar out-links list close
to each other (similar in the sense of Jaccard Coefficient)

@ The compression rate in social networks tends to be not as good as
that in Web graphs

53

Compressing Graphs and Networks: Some Existing Methods

Query Preserving Graph Compression

@ Given a class of queries, compute the equivalence classes of nodes
accordingly

@ Build a smaller graph that has the equivalence classes as the vertices,
which can be used to answer queries with quality guarantee

o Effective for simple queries, such as reachability, but less effective for
more complex queries, such as pattern matching

@ Not preserving community

W. Fan et al. Query preserving graph compression. In SIGMOD'12.

Outline

© Our Ideas

10/53

Goals

@ Compressing social networks both globally and locally

o Global compression: given a space budget, retaining as much
information as possible

o Local compression: communities are compressed in proximation so that
they can be accessed locally in compression — using the compressed
data without decompressing

@ Compressibility as a structural property measure

e Natural for community detection and quality assessment
e Promising for visualization, summarization, and interactive analytics

11/53

When Are Adjacency Matrices Good?

@ Adjacency matrices are often used to represent graphs
e The adjacency matrix representation is often regarded inefficient for

sparse graphs

@ Consider a random graph of n vertices, where each possible edge is

included in the graph with probability 0.5

e Based on the information theoretical lower bound, any compression

scheme on expectation uses at least n® bits
o Provably for this class of graphs the adjacency matrix representation is

optimal

@ For dense random graphs adjacency matrices are good

DB W —

2

R e

D= DD -

—_——o oo o|w

(b)

o—oo ——|&

R I

—oc—-2o|o

12/53

When Are Adjacency Lists Good?

@ To overcome the cost of using adjacency matrices for sparse graphs,
adjacency lists are used

@ Consider a random graph of n vertexes, where each vertex has only
one outgoing edge and the destination is picked uniformly at random

o Any compression scheme in expectation uses at least nlog n bits
e Provably adjacency list is optimal

@ For sparse random graphs adjacency lists are good

(2] (3[4 [3~{5T]
HEEIEEIN

aEgne e
1] 5[3~{3] |
2[3-(1[3{4]]

Y

Y

Y

1
2
3
4
5

13/53

Critical Ideas

@ Social networks are locally dense and globally sparse — an important,
well accepted observation

@ Is it possible to combine the adjacency matrix method and the
adjacency list method effectively to get a better compression method?

@ Critical idea: for “local” edges, use adjacency matries; for “global”
edges, use adjacency lists (i.e., pointers)

14 /53

Graph Linearization

@ Arrange all vertices into a sequence

@ Example

15/53

Graph Linearization

@ Arrange all vertices into a sequence

01

@ Example

o All edges are “local” — every edge is connecting two vertices next to
each other

15/53

Multi-Position Linearization

o If every vertex can only appear once, the vertices cannot be linearized
such that every edge is “local”

16 /53

Multi-Position Linearization

01 10 11 01 10 11 00

01

o If every vertex can only appear once, the vertices cannot be linearized
such that every edge is “local”

@ Multi-position linearization: a node can appear multiple times

16 /53

Outline

@ Lossless Compression
@ Data Structure and Optimal MP; Linearization
@ Computing MPy (k > 2) Linearization
@ Experimental Results

17 /53

Data Structure and Optimal MPy Linearization
Data Structure

@ An array where each cell consists of a pointer and two bits
@ The index of the first appearance of a node is its ID

@ We can extend the idea by using 2k bits for each position to encode
the outlinks that are at most k positions away

o1l [°] [oi]7] |TQ 11]

A A

e g

=

Ltlel foole]

—> L&

18 /53

Lossless Compression Data Structure and Optimal MP; Linearization

S-distance

Given a sequence S of nodes of the graph, the S-distance between u and v
is the minimum norm-1 distance among all pairs of appearances of u and v

® 0 O © d@

dist=3

S-dist(vo,v3) = 1

19/53

Lossless Compression Data Structure and Optimal MP; Linearization

MP linearization

@ An MPy linearization of graph G is a sequence S of vertices, such
that for all (u,v) € E(G), S-dist(u,v) < k

20 /53

Lossless Compression Data Structure and Optimal MP; Linearization

MP linearization

@ An MPy linearization of graph G is a sequence S of vertices, such
that for all (u,v) € E(G), S-dist(u,v) < k

MP; Linearization

ONONONONONORONO,

20 /53

Lossless Compression Data Structure and Optimal MP; Linearization

MP linearization

@ An MPy linearization of graph G is a sequence S of vertices, such
that for all (u,v) € E(G), S-dist(u,v) < k

MP; Linearization

ONONONONONORONO,

MP;, Linearization

ONONONONO,

20 /53

Lossless Compression Data Structure and Optimal MP; Linearization

MP linearization

@ An MPy linearization of graph G is a sequence S of vertices, such
that for all (u,v) € E(G), S-dist(u,v) < k

@ Given MPy linearization L of G, one can encode G using
(2k + [log|L|]) x |L]| bits, where |L] is the length of L

MP; Linearization

ONONONONONORONO,

MP;, Linearization

ONONONONO,

20 /53

Lossless Compression Data Structure and Optimal MP; Linearization

Some Observations

@ For a directed graph G, let G be the underlying undirected graph of G
o If G is an Euler graph, the Euler path achieves the optimal MP;
linearization of G

o Every edge in G appears only once, and thus the length of the vertex
sequence is minimized
e All edges in G are coded

e If G is not an Euler graph, but by adding one edge the graph becomes
an Euler graph, then the Euler path of the enhanced graph (i.e., the
graph with an added edge) achieves the optimal MP; linearization of
G

o Still, every edge in G appears only once

@ In general, an extra pair of odd degree vertices in G needs one edge
to make an Euler path

@ Use Hierholzer's algorithm to find Euler paths in linear time

21/53

Lossless Compression Data Structure and Optimal MP; Linearization

Minimum MP; Linearization Algorithm

Input: an underlying undirected graph G(V, E) of a directed graph G
Output: the minimum MP; linearization of G
1: i+ 0

2: while E # () do

3: pick a vertex v with odd degree, if there is no such a vertex, pick an
arbitrary vertex with nonzero degree

4: repeat

5: choose an edge (v, u) € E whose deletion does not disconnect the

graph, if there is no such a choice, choose an arbitrary (v, u) € E
6 L[] v, i+ i+1
7 E<+ E—{(uv)}
8: V<<ou
9 until the degree of v is 0
10: end while
11: return L

2R
Analysis

@ The algorithm partitions the edges to exactly ""C’ edge-disjoint paths,
where Nygq is the number of vertices with odd degree (assuming
Noda > 0)

@ The length of an optimal MP; linearization is for Nygq > 0
E odd
£+ =22

@ The time complexity: O(||E||)

23 /53

Data Structure and Optimal MP; Linearization
Compression Rate: An Upper Bound

@ Using MP; linearization to encode a graph G the bits/edge rate is at
most

(1 + =) (Tloga(|V(G)]) + loga(d +1)] +1)

where d is the average degree in G, the underlying undirected graph
of G

@ The in-neighbor and out-neighbor query processing time on vertext v

) O(Y deg(u)log|V(6)])

UENV

@ The trivial encoding of the graph that answers both in-neighbor and
out-neighbor queries uses 2 log |V/| bits/edge

24 /53

Sengpuids (7 0 2 2) Lo,
From MP; to MP, Linearization

@ What is the complexity of computing an optimal MP linearization?
An open question!

@ Minimum MPy linearization when k is part of the input is a
generalization of Min-Bandwidth problem and therefore it is NP-hard

e Min-Bandwidth problem: Find an arrangement of vertices of the graph
that minimizes the maximum stretch of an edge

25 /53

Computing MP. (k > 2) Linearization
A Greedy Algorithm

1: while E # () do

2: find the vertex u that has the largest number of edges to the last k
vertices in the current list

3: remove the edges between u and the last k vertices in the list

4: add u into the list

5: end while

@ The graph gets sparser and sparser as we are removing the edges

@ We use a threshold to reduce the value of k in the process of
linearization

26 /53

Experimental Results
Data Sets

Name Description V] |E| Acc [Gee | Fre
amazon0302 Amazon product co-purchasing network from march 2, 2003 262111 1234877 | 0.424 | 0.236 | 0.542
amazon0312 Amazon product co-purchasing network from march 12, 2003 | 400727 3200440 0.411 | 0.160 | 0.531
ca-CondMat collaboration network of Arxiv Condensed Matter 23133 186878 0.633 | 0.264 | 1
ca-HepPh Collaboration network of Arxiv High Energy Physics 12006 236978 0.611 | 0.659 | 1
cit-HepPh Arxiv High Energy Physics paper citation network 34546 421534 0.296 | 0.145 | 0.003
cit-Patents Citation network among US Patents 3774768 | 16518947 | 0.091 | 0.067 | 0
email-Enron Email communication network from Enron 36692 367662 0.497 [0.085 | 1
email-EuAll Email network from a EU research institution 265009 | 418956 0.309 | 0.004 | 0.260
p2p-Gnutella08 Gnutella peer to peer network from August 8 2002 6301 20777 0.015 | 0.020 | 0
p2p-Gnutella24 Gnutella peer to peer network from August 24 2002 26518 65369 0.009 | 0.004 | 0
soc-Slashdot0902 | Slashdot social network from February 2009 82168 870161 0.061 | 0.024 | 0.841
soc-LiveJournall | LiveJournal online social network 4846609 | 68475391 | 0.312 | 0.288 | 0.374
web-Google Web grpah from Google 875713 | 5105039 | 0.604 | 0.055 | 0.306
web-Stanford Web graph of Stanford.edu 281903 | 2312497 | 0.610 | 0.096 | 0.276

Acc(G): the average clustering coefficient
Gee(G): the global clustering coefficient
Fre(G): the fraction of reciprocal edges in E(G)

27 /53

Lossless Compression Experimental Results

Compression Rates

(K, reducing factor) | (10, 1) (10, 0.9) (15, 0.9) (20, 0.9) (30, 0.9)
Density threshold | 0 015 | 025 |0.30 | 0.5 025 [030 |0.15 |0.25 |0.30 |0.15 | 025 |0.30
amazon0302 1538 | 14.61 | 13.09 | 14.43 | 15.08 | 13.07 | 14.16 | 15.00 | 13.08 | 14.49 | 15.30 | 14.07 | 14.49
amazon0312 1435 | 13.32 | 12.70 | 12.79 | 13.57 | 12.74 | 12.84 | 13.92 | 12.73 | 12.90 | 14.08 | 12.79 | 12.86
ca-CondMat 789 | 7.69 | 696 | 669 | 835 |7.16 | 6.77 | 894 | 7.33 | 693 | 955 | 7.56 | 7.26
ca-HepPh 524 | 500 | 476 | 463 | 500 |459 | 457 | 520 | 465 | 453 | 551 | 479 | 4.69
Cit-HepPh 17.07 | 15.65 | 14.59 | 14.23 | 15.99 | 14.69 | 14.29 | 16.47 | 14.85 | 14.31 | 16.97 | 15.02 | 14.48
Cit-Patents 3159 | 27.69 | 25.95 | 25.75 | 27.63 | 25.07 | 25.60 | 27.73 | 25.95 | 25.69 | 27.78 | 25.97 | 25.78
email-Enron 872 [S11 | 739 | 7.26 | 853 | 747 | 7.27 | 888 | 752 | 731 | 910 |7.64 | 744
email-EuAll 30.73 | 25.31 | 22.96 | 22.55 | 25.63 | 22.97 | 22.55 | 25.56 | 22.97 | 22.61 | 25.81 | 23.11 | 22.72
p2p-Gnutella03 30.36 | 25.48 | 22.90 | 21.63 | 26.70 | 23.88 | 23.42 | 29.82 | 27.13 | 26.83 | 33.81 | 33.21 | 33.21
p2p-Gnutella2d 35.76 | 29.51 | 25.50 | 24.33 | 28.67 | 25.60 | 24.93 | 29.41 | 26.90 | 26.02 | 31.25 | 28.94 | 28.10
soc-Slashdot0902 16.17 | 14.19 | 12.68 | 12.14 | 1455 | 12.69 | 12.15 | 14.63 | 12.68 | 12.17 | 14.75 | 12.74 | 12.10
soc-LiveJournall 16.13 | 14.48 | 13.96 | 13.07 | 14.50 | 13.92 | 13.93 | 14.49 | 13.95 | 13.93 | 14.56 | 13.91 | 13.95
web-Google 12.84 | 12.22 | 11.63 | 11.66 | 12.29 | 11.58 | 11.68 | 12.74 | 11.61 | 11.70 | 12.99 | 11.59 | 11.65
web-Stanford 10.79 | 10.27 | 10.17 | 10.76 | 10.19 | 10.23 | 10.41 | 10.14 | 10.05 | 10.22 | 10.10 | 9.88 | 9.92

The worse cases happen on those data sets that have very poor locality
measures (Gcc and Fre)

28 /53

Lossless Compression Experimental Results

Query Processing Time

[adj queries(ns) | Neigh. queries(ns) |

dataset ‘ comp. ‘ SNAP ‘ comp. ‘ SNAP ‘
amazon0302 800 750 951 72
amazon0312 1170 790 1753 46
ca-CondMat 390 420 7T 30
ca-HepPh 520 400 1849 19
cit-HepPh 1300 480 2745 28
cit-Patents 1400 930 1842 91
email-Enron 620 500 5539 31
email-EuAll 530 670 21518 | 148

p2p-Gnutella08 640 320 1663 34
p2p-Gnutella24 600 320 1488 50
soc-LiveJournall | 3050 1130 9734 49
soc-Slashdot0902 | 1380 610 7884 35
web-Google 810 830 4110 66
web-Standford 890 810 39939 | 49

@ Our method spends up to 3 times more time to answer an adjacency
query than that on the original graph.

@ For neighbor queries, the query answering time depends on the
efficiency of the linearization. The more replicates, the longer the
query answering time.

29 /53

Lossless Compression Experimental Results

Sensitivity to Parameters

30 3 T T T
Tl "ca-Hep.local" —+—
oo "ca-Hep.total'
25 o
R
"p2p.dt.total" ---o--
20 B

bits/edge
&
:

bits/edge

30

25

."ea-Hep.tofe
"soc-S.local"
"soc-S.total"

"p2p.local"
"p2p.total"

10
5
0 | | | | | | 0 . I I | |
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 5 10 15 20 25
Density threshold K (starting window size)

30/53

Experimental Resus
Comparison with [Chierichetti et al. KDD'09]

@ The compression rate of the method in [Chierichetti et al. KDD'09]
on LiveJournal dataset is 14.38, but it can only answer out-neighbor
queries

@ Our compression rate is 13.91

@ Our method can answer both in-neighbor and out-neighbor queries

31/53

Outline

© Lossy Compression
@ Lossy Compression: Why and What?
@ Objective Function Design
@ A Greedy Heuristic Method
@ Experimental Results

32/53

o R
Why Lossy Compression?

@ Practical aspect: by reducing noise, lossy compression may serve as a
preprocessing step in social network analysis

@ Theoretical aspect: using the priority of including an edge/vertex into
a lossy compression, we may discover importance of edges and
vertices, and identify noise edges and vertices

33/53

o R
Sequence Graph

e A graph G; is a (k, /)-sequence graph, if |V/(Gs)| =/ and there is a
bijection ¢ between V/(G;) and the set of integers {1,...,/} such
that for every edge (x,y) € E(Gs), |¢p(x) — ¢(y)| < k. We call k the
local range size, / the sequence length, and

span(x,y) = |¢(x) — ¢(y)| the span of edge (x, y)

A (3,15)-sequence graph

@ In general, a (k,/)-sequence graph Gs; may have more than one
bijection between V/(Gs) and integers {1,...,/}

@ A sequence graph can be used to linearize a graph in a lossless or
lossy way

34 /53

Lossy Compression Lossy Compression: Why and What?

Graph Linearization

o A (k,I)-sequence graph Gs is a (k, /)-linearization of a graph G if
there exists a function ¢ : V(Gs) — V/(G) such that (1) for every
edge (x,y) € E(Gs), (¢(x),%¥(y)) € E(G), and (2) there do not exist
two edges (x,y), (x',y') € E(Gs), (x,y) # (X', y') such that
(), (1)) = (), B("))

@ G; is a lossless linearization of G if for every edge (u,v) € E(G),
there exists an edge (x,y) € E(Gs) such that ¥(x,y) = (u, v).
Otherwise, Gs is a lossy linearization of G

P() vy vy v vz Vg V7 Vs U1 Uy Ui Ul U3 Uy Uiz Uiy

35/53

Objective Function Design
Objective Function Design

o In general, a graph G may have multiple (k, /)-lossy linearizations.
Finding the best (k,/)-lossy linearization for a graph G is a novel
problem not touched by any previous work

@ Given a graph G and parameters / > 0 and k > 0, find a (k, /)-lossy
linearization G for G and the mapping ¢ : V(Gs) — V(G) such that
a utility objective function f(Gs) is maximized, where f(Gs) measures
the goodness of Gs in preserving the information in G

@ Since communities are the essential building blocks of social networks,
we advocate lossy compressions of social networks that preserve
communities

@ We regard a dense area in a graph as a potential community, and
intently avoid an exact definition of community, since different
applications may have different definitions

36 /53

e Al
A Simple Objective Function

@ Let G; be a linearization of graph G, p = (u1, U2, ..., um) a path in G,
and p’ = (uy, U, ..., u),) the embedding of p in Gs. The span of pis

span(p) = max {¢(uj)} — min {¢(u;)}

1<i<m 1<i<m

TR

e d a b ¢
3 45 6 7

For path p = (d, a, c, b,), the span is 7 — 3 = 4.
o First idea: k =/ = |V/(G)|, and shorten the sum of spans of all edges

f(Gs) = Z aP2(Y) where (0 < o < 1)
(x,y)€E(Gs)
@ Shorter spans of edges in the sequence graph — higher utility
@ More edges included in the compression — higher utility

37/53

Lossy Compression Objective Function Design

Generalization

@ How are paths of a certain length represented in a sequence graph?

o Generally, a community as a dense subgraph has many short paths
traversing among members within the community

e If a sequence graph preserves the community information, the members
of the community are lined up close to one another in the sequence
graph and thus the paths in the community fall into short ranges of the
sequence

o Let P,(Gs) be the set of paths of length m in a sequence graph Gs.
We extend utility function f; to

(6= Y e

PEPm(Gs)

38 /53

e Al
Tackling the Case of m = 2

@ We tackle the simplest nontrivial setting m = 2 as the first step
o Interestingly, several recent studies suggested that even considering
random walks of short length can generate high quality results in
network analysis
e For m > 3, the problem is computationally more expensive, and is the
subject of future studies
@ For the sake of simplicity, we omit the subscript 2 hereafter, and

tackle the optimization of the following objective function:

() =h(G)= Y aw
PGPZ(GS)

@ Our problem is highly related to (and more complex than) a family of
graph layout problems, whose objective is to find an ordering of nodes
to optimize a particular objective function

e Many variants of these problems have been shown to be NP-hard, even
no constant factor approximation algorithm for any variation of these
problems is known

39/53

e Al
Bounding the Objective Function

o Let G; be a sequence graph. Then,

Z aspan(el)Jrspan(eg) < f(Gs) < Z (a1/2)span(el)+span(e2)
pEP,(Gs) pEP>(Gs)

° a% and « are constants. Heuristically, if we can obtain a sequence
graph optimizing the lower bound, the sequence graph may have a
good chance to boost the objective function f

o Let E; be the set of edges incident to vertex i in Gg and P; the set of
those paths of length two that have vertex i as the middle vertex.

Then,
(Z aspan(e))2 _ Z aspan(el)-i-span(eg)
ecE; p=e1e€P;
@ We optimize the lower bound if we optimize
(e)= Y (X awr@y
1<i<|V(G,)| e€E;

40 /53

Lossy Compression Objective Function Design

Connection between Parameters o and k

@ Our problem formulation assumes a parameter k is given as the
maximum local range size for the sequence graph. The objective
function, however, uses parameter «

@ For a given «, the maximum span of all edges in the optimal
sequence graph is at most log,, @

a1

o We use k = log,, 4_‘1) to estimate «

e To estimate « given k, we do a binary search on the interval [0, 1], and

stop when the value of log,, O‘(14_°‘) is between k and k — 0.01

a(l—a)
7

e The binary search is effective because the function log,,
monotonically increasing in the interval [0, 1]

e Using this estimate of «, experimentally we observe that in the
resulting sequence graphs the spans of an extremely small fraction of
edges are more than k/2.

is

41 /53

NEET e
Greedy Heuristic Search

@ We initialize Gs with a random ordering of the vertices of G. There is
no edge in Gs at this stage
@ lteratively we consider all vertices for possible reallocation

e Find a position in G for possible insertion of an extra copy of u and its
associated edges

o If the length of G; is already /, the algorithm searches the local range
of the insertion point for a possible deletion

o We apply the changes if they improve the objective function

@ Details in our paper

42 /53

A Greedy Heurisic Method
Pseudocode (the Framework)

Input: G: input network, k: local range, I length of compression (/ > |V(G)|)
Output: SeqG: sequenced compression

1: Initialize SeqG with a random ordering of nodes, a <— EstimateAlpha(k)

2: repeat

3 b+ f(SeqG,)

4 for all u € V(G) do

5: IPos <— NULL, DPos < NULL, (IPos, Nbh) < ReAllocate(u, G, SeqG, «)
6: if (/IPos # NULL) and (Length(SeqG) = I) then

7 DPos < SeqG.LowestBenf (IPos — k, IPos + k)

8

: end if
9: x « Utilitylncrease(IPos, Nbh, SeqG), y + UtilityDecrease(DPos, SeqG)
10: if x —y > 0 then
11: Insert(IPos, Nbh, SeqG), Delete(DPos, SeqG)
12: end if
13: end for

14: o+« f(SeqG,a)
15: until convergence condition

43 /53

Lossy Compression Experimental Results

Evaluation Methodology

@ Compression rate does not have a straightforward meaning in lossy
compression

@ The bit-utility rate is the ratio of the number of edges encoded in
the lossy compression over the total number of bits

@ To generate synthetic data sets, we use the LFR benchmark, and the
same settings as those used by Fortunato

Bit-utility rate

L L L
01 02 03 04 05 06 07 08
Mixing parameter
44 /53

Lossy Compression Experimental Results

Evaluating Community Preservation Using Proximity Graph

o Let G; be a linearization of G, and ¥ : V(Gs) — V/(G) the mapping.
Note that V(Gs) = {1,---,|V(Gs)|}. The proximity graph of G
with respect to G is defined as follows. Consider (u,v) € E(G) and
(i,j) € E(Gs) such that |i —j| < k and (i) = u, ¥(j) = v. Without
loss of generality we assume j < j.The weight of undirected edge
(u, v) in the proximity graph is

S Al S b

(i,NEE(Gs),1=) U,EE(Gs),I<i
@ The first (second) term is over all the edges associated with position i
(j) that pass over position j (i). If there is no such a pair of (i, J),
then the weight for (u, v) is 0. If there are more than one such pair,
for each of those pairs, we compute the weight and take the sum over
all of them
@ The weight of edge (u, v) is an indicator for u and v belonging to the

same community
45 /53

Lossy Compression Experimental Results

Comparing Normalized Mutual Information on Original
Graph and Proximity Graph

Use the community finding algorithm by Clauset et al.

@ Use several (5 in our experiments) independent linearizations to
obtain an aggregated proximity graph

5 oo 5 ;
g g s
2 2 5
® ® 3
z g :
3 2 3
3 3 s
£ 3 S 2 o
2 0 i SN 2 o) 01 02 03 04 05 06 07 08
01 02 03 04 05 06 07 08 01 02 03 04 05 06 07 08 Mixing parameter
.. Mixing parameter . Mixing parameter A re ated roximit
Original networks Proximity networks geres P y
networks

46 /53

Experimental Results
Effect of Local Range Size k and Length of Sequences /

0.8 T T 0.8
N=1000,S —@— A A
S 07 N=1000B —M— A& - s 07} A
= N=5000,S ---A&--- ~ = A
E 0.6 [N=5000B - 4x g E 06 X
S ki S / A4
£ o5 E E o5t B A
E] E - * AAR SR S
2 04 E 2 04 *
s s
3 03 E 3 03f #
S N
g 0.2 , g 0.2 -
o o
Z 041 B Z 01
0 L 0 L L L L
0 5 10 15 20 25 30 35 1 1.2 1.4 1.6 1.8 2
k (local range size) | (length in multiple of number of nodes in the graph)
u=06and L=12x N p=0.6and K=38

47 /53

= T
Evaluation Using Centrality

@ Use betweenness, PageRank, and degree
@ The centrality of all vertices forms a vector

@ Evaluate the Pearson Correlation on centrality vectors

1

1

09 g 09 - b 09 g
5 § o8| q §
5 5 5 L]
2 08 . B g o7l] g 08
° 4 ° ® 07Ff 1
£ o7 ; 1 5 o6l 1 5
o o o 06 1
c 06 / i c o0s5f 1 c
8 / 8 oal] § osf .
5 051 ®4A g 5 s 7
o / PageRank —@— & o3} PageRank —@— o 04r / PageRank —@— -
04t & Betweenness ---A-- 02l & Betweenness -—--A-— | ozl A Betweenness ---A-— |
Degree ---4--- A Degree ---4--- A Degree ---4---
03 M ik A 01 L Peoree 02 L Peoree
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
K (local range size) K (local range size) K (local range size)
Collaboration network Wiki vote network Email exchange network

5,242 nodes, 14,990 edges 1,133 nodes, 5,451 edges 7,115 nodes, 100,763 edges

48 /53

Experimental Results
Single Iteration Runtime

Running time (second)

1000
900
800

600
500
400
300
200
100 &~

100 200 300 400 500 600 700 800 900 1000
Number of nodes (times 1000)

49

53

Outline

@ Conclusions and Future Work

50/53

Conclusions and Future Work

Conclusions

@ Online social networks are more and more popular, and larger and
larger

@ We developed a novel framework for social network representation
which leads to compression

e Our method does not use any coding yet

o Compression rate guaranteed in MP;

o Our method has a comparable compression rate than the
state-of-the-art method

Our method are query friendly

@ Importantly, our method reduces the problem of compressing a graph
to an intuitive combinatorial problem, and lead to new understanding
of structural properties in social networks

51/53

Future Work

Complexity or NP-hardness for MP, when k is fixed
Better heuristic algorithms for MP linearization (if it is NP-hard)

Plugging in other compression techniques into our framework

Using graph linearization to gain better understanding of graph
properties

52 /53

Our Papers

@ Hossein Maserrat and Jian Pei: Neighbor query friendly compression
of social networks. In KDD 2010: 533-542

@ Hossein Maserrat and Jian Pei: Community preserving lossy
compression of social networks. In ICDM 2012

53 /53

	Introduction
	Compressing Graphs and Networks: Some Existing Methods
	Our Ideas
	Lossless Compression
	Data Structure and Optimal MP1 Linearization
	Computing MPk (k 2) Linearization
	Experimental Results

	Lossy Compression
	Lossy Compression: Why and What?
	Objective Function Design
	A Greedy Heuristic Method
	Experimental Results

	Conclusions and Future Work

