An Auto-Scaling Mechanism for

Virtual Resources to Support Mobile, Pervasive,

RealTime Healthcare Applications in
Cloud Computing

Yong Woon Ahn and Albert M. K. Cheng, University of Houston
Jinsuk Baek, Winston-Salem State University
Minho Jo, Korea University
Hsiao-Hwa Chen, National Cheng Kung University

Abstract
Cloud computing with virtualization technologies has become an important trend in
the information technology industry. Due to its salient features of reliability and cost
effectiveness, cloud computing has changed the paradigms of development for
mobile pervasive services, effectively permeating the market. While most types of
best effort mobile pervasive applications can be seamlessly migrated to cloud com-
puting infrastructures, we need to consider specialized elements to make cloud
computing infrastructures more effective in realtime healthcare applications. The
client side of those applications dramatically increases its transmission rate whenev-
er it detects an abnormal event. However, the existing server side mechanisms
have limitations in adaptively allocating necessary computing resources in order to
handle these various data volumes over time. In this article, we propose a novel
server-side auto-scaling mechanism to autonomously allocate virtual resources on
an on-demand basis. The mechanism is tested in an Amazon EC2, and the results
show how the proposed mechanism can efficiently scale up and down the virtual

resources, depending on the volume of requested realtime tasks.

he world is moving toward a cloud computing

paradigm, where mobile pervasive services will be

integrated with peoples’ daily lives. The development

of innovative mobile pervasive services can be greatly
facilitated by publicly available cloud computing infrastruc-
tures that employ virtualization technologies [1]. In order to
take advantage of this facility, many organizations have start-
ed to relocate their server groups and software to cloud com-
puting infrastructures [2]. This new trend has provided great
advantages, such as reduced operation expenses and energy
consumption, while achieving high utilization of computing
resources.

Cloud computing infrastructures create a virtual comput-
ing environment, providing service interfaces for their users
to launch applications for importing/exporting virtual
machine (VM) images with a variety of operating systems
(OSs). On these public infrastructures, it is common for a
user’s VMs to be collocated with other anonymous VMs
belonging to other users on the same physical machine.
Also, operations of the VMs and their associated usage of

Minho Jo and Hsiao-Hwa Chen are the corresponding authors for this
article.

virtual resources are controlled by a shared virtual machine
monitor (VMM).

Our ultimate goal is to develop a cloud-assisted mobile per-
vasive system with medical software as a service (SaaS) and its
back-end real-time application server stacks. It should store
and manage patient health records. A possible first technolog-
ical evolution to this ultimate system is addressed in this arti-
cle. We consider deadline-critical real-time medical data
generated by sensor-based medical devices, such as wireless
electrocardiogram (ECG), as an example of a need for a more
streamlined computing platform. In order to handle the time-
sensitive and mission-critical medical data in a public cloud
computing infrastructure, a real-time application (RTA) serv-
er is required and should be operated as a VM.

However, before this goal can be successfully realized,
there are issues that need to be resolved due mainly to the
fact that the amount of data generated by a sensor-based
medical device tends to fluctuate over time, depending on the
physical condition of a patient. Generally, multiple sensors are
attached to each medical device, and once a medical device
detects an abnormal event, it is supposed to dramatically
increase its data transmission rate to accommodate data from
the sensors detecting the aforementioned abnormalities. The
server side of the platform then has to launch a new virtual

62 0890-8044/13/$25.00 © 2013 IEEE

IEEE Network * September/October 2013

RTA server to process the increased data volume. However,
this process always introduces a delay to load disk images to
the new VM due to boot-up latency. While delay varies in
duration depending on what OS and software are loaded from
a disk image, the pending real-time tasks cannot be processed
until the boot-up process is completed.

Therefore, we cannot consider a fair resource sharing
mechanism available at existing cloud computing infrastruc-
tures to support our target system because such a solution
evenly assigns the limited virtual hardware resources to every
real-time and non-real-time VM. Of course, scaling mecha-
nisms at a certain level are supported by some of the public
cloud computing infrastructures, functioning to scale up or
down the amount of virtual resources by taking into account
the current data volume. Let us first acknowledge that those
mechanisms are only designed to support best effort tasks,
requiring a relatively conservative scaling with predefined stat-
ic thresholds. In addition to this, most of these mechanisms
require frequent human intervention in preparation for an
emergency case.

In this article, we propose a novel auto-scaling mechanism
in order to dynamically adjust the number of VMs to handle
deadline-critical real-time data, which varies in size over time.
In consequence, the resizing of the virtual resources for pro-
cessing the given data is achieved on an on-demand basis. The
key mechanism is to predict the volume of future data.
Although it is not necessarily trivial to predict the exact
moment at which a large volume of data will be delivered
from sensor-based medical devices, most objects monitored by
sensor-based devices typically show symptoms before transi-
tioning to an abnormal state. The proposed mechanism is
implemented in Amazon EC2 [3], and our evaluation results
verify that it can reliably support real-time data by efficiently
scaling up or down the number of VMs using the proposed
prediction mechanism. We also need to mention that we
achieve this effect without introducing any performance
degradation in other non-real time applications. That is, we
do not modify the existing virtual resource sharing modules in
the VMM to support real-time applications. Instead, we
implement an independent and specific session manager oper-
ating only for the RTAs.

The rest of this article is organized as follows. First, we
introduce the existing auto-scaling mechanisms employed in
public cloud computing infrastructures. We then explain our
system model for the client and server sides, respectively. Next,
e propose an auto-scaling mechanism that takes into account
the size of future data volume sent by sensor-based medical
devices. We conduct a performance evaluation of the proposed
mechanism, followed by the conclusion of this article.

Related Work

In many public cloud computing infrastructures, available vir-
tual hardware resources are fairly shared by all VMs in a
physical machine. This fairness fails to support RTAs requir-
ing differentiated levels of available virtual resources from
other non-real-time applications. Although some certain
infrastructure [3] provides a mechanism to statically increase
or decrease virtual resources for each VM, the allowable scal-
ing period (typically several minutes) is too optimistic to sup-
port RTAs. Even just a few minutes can be too risky in a
period for sensor-based RTAs such as remote structural or
patient monitoring systems.

In order to efficiently support the RTAs with currently
available hardware resources, a mechanism predicting a future
data volume is essential. The workload prediction model was
recently introduced in [4] for cloud services. The prediction

model was designed for best effort data generated by human-
controlled behaviors without considering processing timeliness
constraints. Therefore, its simplicity introduces a limitation to
be applied to sensor-based RTAs. This more intuitive
approach works well with best effort web services. Other
research [5] proposed a virtual resource scaling mechanism
that considers both timeliness and resource constraints. How-
ever, the aforementioned timeliness is not adaptively deter-
mined based on the dynamic transmission rate generated by
sensor-based medical devices. Although the approach allows
the deadline to be changed depending on the observed data
volume, the adjustment is still manually controlled by a
human system administrator who has to modify a configura-
tion file.

An autonomous computing system without human interven-
tion was considered in [6, 7]. The system defined multiple
strategic steps to develop an autonomous system, and showed
how to apply the proposed development steps to implement a
Java EE application server running in a cloud computing
infrastructure. Unfortunately, the approach is more appropri-
ate for designing best effort applications in cloud computing
infrastructures, supported with limited computing capacity.
Another autonomous management solution was proposed in
[8]. In order to reduce the energy consumption of battery
powered user devices, this approach detects and localizes
thermal hotspots in cloud data centers. Obviously, this
approach has completely different goals and methods from
ours. However, due to its real-time sensing concept, it pro-
vides meaningful clues to help solve our problems.

In summary, to the best of our knowledge, no mechanism
has yet been designed to support sensor-based RTAs that also
processes deadline-critical real-time data generated by medi-
cal devices. More important, all aforementioned approaches
neglect to consider the booting-up delay that occurs when
launching a new VM. Likewise, the cooling-down mechanism,
which configures the proper moment to decrease the number
of running VMs, is missing. The aforementioned limitations of
the existing approaches are taken into consideration in our
proposed system without disturbing normal operations of
other VMs in the same physical machine.

System Model
Client Side

Let us consider a sensor-based medical device, such as an
ECG equipped with a local controller and multiple sensors as
a client entity. A local controller periodically collects the sam-
pled analog signals from its sensors, performs an analog-to-
digital conversion, and compresses the digitized signals. The
sampling rate is dynamically managed to determine the data
transmission rate. For example, when the attached sensors
detect an abnormal event, the local controller transmits the
collected sampled data to its local outgoing queue at an
increased transmission rate with a predetermined and speci-
fied deadline. The transmission deadline represents the maxi-
mum allowed time until the sampled data should be
transferred to the outgoing queue of the medical device. As
such, this deadline should be determined by comprehensively
taking into account various delay factors, including time over-
head for digitization and compression. Usually, a transmission
deadline of data in each sampling period is set to the starting
time of the following sampling period. If no abnormal event is
detected, the sampled data does not need to be immediately
transmitted for emergency treatment. In such a case, reliable
transmission is more important than fast transmission. Once
the sampled data is transferred to the outgoing queue, the
data are mapped into one of the appropriated sub-queues

IEEE Network * September/October 2013

63

Other Other Other Client
traffic traffic traffic node .
Clien|
; : : nodd Client
' ' ' node
h h | T
i i i T
R T EP SR T
Common best effort traffic "
VMM
b
T T ! Sync. !
\/ : session !
ﬁ%‘

Virtual . .
TESENTEE - VM running a session
manager ,% VM manager

(others) running a RTA
server
/N |
"""""""" /NT

Figure 1. Physical machine architecture with virtual RTA servers as guest domains.

having a specific processing deadline d,,, where # is the index
of the sub-queue. This deadline-based mapping is also man-
aged by the local controller. The controller now forms a group
of consecutive real-time tasks 7 having the same processing
deadline d. When s different sensors are involved in data
transmission, variable 7 has four properties:
* The deadline for a group of tasks
* A task type
* Network address of the device
* The total amount of virtual or physical resources required
to finish 7 within the specific group deadline
The server side will reference the task type to figure out virtu-
al resource requirements for task 7. For example, if the task
type is set to be deadline-critical and CPU-intensive, the RTA
server will reserve more virtual CPU (VCPU) resources for
the task. Otherwise, if the task type is set to be mission-critical
and I/O intensive, the server only needs to pass task 7 to vir-
tual I/O devices. More detailed procedures to convert the
sampled raw signals to ordinary real-time tasks were discussed
in [9]. Hereafter, the sensor-based medical device is referred
to as a client node.

Server Side

On the server side, the RTA server parses sampled data sent
by client nodes. After that, it extracts, processes, and stores
them to a shared data repository. Also, it transmits the pro-
cessed data to remote client nodes if necessary.

Figure 1 shows that the RTA server installed in multiple
VMs possibly coexists with multiple other independent gener-
al-purpose VMs. Therefore, each VM is isolated and protect-
ed from external malfunctions. A shared VMM cooperates
with a virtual resource manager to control all VMs for
resource allocation purposes.

With the given architecture, our inclination is to provide a
non-stop service by allowing the multiple RTA servers to
share common client sessions. Without this consideration,
each client node has to attach its detailed session information
to every packet header, causing unnecessary network band-
width consumption.

As such, we design an independent session manager located
in another VM. The session manager controls and synchro-
nizes the sessions of all real-time client nodes connected to

the RTA servers. This eventually allows the sampled data sent
by the same client node to be processed by different RTA
servers. To addressing fault tolerance and scalability issues, a
session manager can be duplicated to multiple VMs.

We utilize one designated root RTA server to process the
sampled data. More RTA servers will be launched and defined
as child RTA servers upon receiving the request to launch
more RTA servers. The root RTA server has an incoming and
outgoing queue to buffer the requested tasks by its client
nodes. If the root RTA server does not have enough comput-
ing resources to finish all of the real-time tasks within their
specified deadlines, it assigns those tasks to its child RTA
SETVer.

In order to check the available computing resources against
a given real-time task 7}, it calculates projected system
response time R; for the real-time task 7; and compares it
with a given absolute processing deadline d;. For the calcula-
tion, we consider:

* Expected processing time for task 7;

* Waiting time to de-queue task 7; from an incoming queue

* Waiting time to de-queue task 7; from an outgoing queue
The expected processing time again consists of:

* Time for scheduling task 7; in a root RTA server

¢ Time for computation for task 7;

* Time for completing I/O operations for task 7;

To meet the processing deadline, the projected response time
R; should be shorter than absolute time difference between
two consecutive absolute processing deadlines d; and d; 1.

Auto-Scaling Mechanism

Due largely to our hierarchical structure among the RTA
servers, our system does not need to be governed by the cen-
tralized conventional auto-scaling mechanism provided by the
VMM. Instead, the root RTA server acts as an auto-scaling
controller to launch a new child RTA server or terminate an
existing child RTA server. In order to design the auto-scaling
mechanism, we partially adopt four iterative, stepwise, and
functional concepts of autonomous computing proposed in
[10], as follows:

* Monitor: It collects, filters, and reports condition of the

managed resources.

64

IEEE Network * September/October 2013

90°

-90°

Figure 2. State diagram for transitions of the proposed auto-scal-
ing mechanism.

* Analyzer: It analyzes collected data of managed resources
and predicts future states based on these data.

* Planner: It generates an appropriate plan to achieve techni-
cal goals.

* Executer: It controls managed resources based on a recom-
mended plan received from the planner.

Monitor

The simplest way to monitor resource usage of multiple RTA
servers can be achieved by straightforwardly adopting a
default resource monitor [11] provided by a public cloud
infrastructure. However, the predefined optimistic monitoring
interval does not work well with our RTA servers. This is
because in our system each RTA server may need to have dif-
ferent monitoring intervals and performance metrics, which
should be dynamically adjusted for better system-wise perfor-
mance. Therefore, we implement an independent real-time
resource monitor as a sub-component on a guest OS running
in the root RTA server.

The developed monitoring module initially collects system
parameters, such as associated private and public IP address-
es, associated instance IDs, initial monitoring interval, and
performance metrics. Within the monitoring system, we
launch various monitoring software such as the one reported
in [12]. The monitor can now capture and parse the on-screen
results from the software. The results are stored in a shared
knowledge repository for other functional components. Each

component has peer-to-peer communication modules to
request and respond to virtual resources usage and queue
states. Another important role of the monitoring system is to
monitor the child RTAs in the same way as the other man-
aged resources. The monitored results will be used by the ana-
lyzer.

Analyzer

The analyzer predicts future states of the RTA servers based
on the collected performance metrics. It decides whether the
root RTA server will take on a new real-time task after check-
ing available resources against the deadline of the task. If the
root RTA server has insufficient resource capacity to run the
task, it shifts the task to the child RTA that has the smallest
number of buffered tasks in its incoming queue. If there is no
available child RTA server, a root RTA server launches a new
VM to run an additional child RTA server. It introduces
boot-up delay D, which is the required time to launch a new
VM with a guest OS image.

In order to assign the task to a new RTA, the projected
response time requirement for the new RTA server should be
revised to include the boot-up delay. That is, the calculated
and projected system response time R; should be even shorter
than the time difference between two consecutive absolute
deadlines, d; and d; 1, plus boot-up delay D. This deadline
checking procedure is required to automatically assign real-
time tasks to available RTA servers. A new child RTA server
should be launched only when absolutely necessary. However,
if D is too long to satisfy the deadline requirement, a proper
prediction mechanism is required. Our prediction is per-
formed with a moving average filter (MAF) module. Let us
suppose that Avg; is the ith moving average value of VCPU
usage, CU; is the amount of the ith VCPU usage, and k is the
number of observed intervals. When we calculate the value of
Savg by subtracting Avg;_; from Avg;, S,,, becomes the current
slope of Avg;, which will then be used to predict Avg; 1.
Accordingly, if S, is larger than zero, the root RTA server
determines that the tasks may require more computing
resources in the next interval. Otherwise, it requires less com-
puting resources.

The existence of an independent resource monitor with an
adjustable monitoring interval allows us to reference real-time
VCPU usage records to predict the system states for the next
interval more accurately. However, increasing or decreasing
the number of VMs only depending on the observed S,,,
would introduce suboptimal resource utilization, because the
value §,,, is likely to be oscillated drastically even within a
very short time interval. Therefore, the system should define
multiple logical states to prevent frequent but unnecessary
variations of the number of VMs. Let N be the total number
of states that each RTA server has, and DJ[i] is the degree rep-
resenting a current state i of a RTA server, which is ranged
from —90° to 90°. The DJ[i] value can be calculated by convert-
ing S, to the angular value of each timing point.

Our system initially indicates that the root RTA server is in
“State 1” in normal operational mode. In order to provide
more accurate predictions, the number of transitions should
vary depending on the value of D[i]. Let us assume that there
are M sections between —90° and 90°. If the value of D[i] is
equal to or greater than w90°/M/2, but smaller than
(w+1)90°/M/2, and DJi] is bigger than 0°, the analyzer moves
the state w transitions forward. If the value of D[i] is equal to
or smaller than w(-90°)/M/2, but still smaller than
(w+1)(-90°)/M/2, and D[i] is smaller than 0°, the analyzer
moves the state w transitions backward. Figure 2 shows an
example, when there are four different sections, including F1,
F2, B1, and B2.

IEEE Network * September/October 2013

65

400

w w
o vl
o o
T T

N

w1

o
T

Required VCPU capacity
- N
ul o
o o
T T

-

(=

o
T

u1
o
T

o

1 1 1
0 50 100 150 200 250 300

Time (min)

Figure 3. VCPU workload used for evaluation.

N
o
o

-
o]
o
T
L

160 - 5

= =
N B
o O
T T
L L

Root RTA states
© o
o o
T T
L

(o))
o
T
L

iy
o
T
L

N
o o
<[l
|

1 1
50 100 150 200 250 300
Time (min)

Figure 4. States of root RTA server over time with a given VCPU
workload.

If the root RTA server reaches State N, it determines
whether it needs more computing resources or not by check-
ing the states of other child RTA servers. If it is needed, it
launches a new child RTA server, where the overloaded pend-
ing real-time tasks will be assigned. On the other hand, if D is
smaller than 0°, it now makes w backward transitions. When it
reaches at State 1, it terminates one of its child VMs and
intercepts the workload of the terminating child RTA. Note
that the actual launching and termination of child RTAs will
be performed in executer.

In order to figure out appropriate parameters such as N,
we need to run a certain number of iterations with four
autonomous computing concepts. The parameter values can
eventually be obtained by repeatedly referencing a knowl-
edge repository, where the previous parameter values and
history of missing deadlines are stored. The parameter val-
ues obtained at the current iteration are passed to the
planner.

Planner

The planner makes a plan for the next iteration based on the
forwarded parameter values from the analyzer. If the analyzer
reports that a root RTA server reaches State N, the planner
sends a launch command to the executer. In addition to this,
the planner will make a plan to assign overloaded pending
tasks to the newly launched child RTA server. If the analyzer
indicates that a VM reaches State 1, the planner needs to
make a plan to terminate the child VM running the fewest
tasks. The running tasks at the child RTA that are supposed
to be terminated will shift to the root RTA server or another
child RTA server. In such a case, the system notifies these
activities for the client node. We require that the root RTA
server take over most of these shifted tasks as long as the

resource is available because this mechanism allows the child
RTA servers to have smaller workloads and be terminated
sooner. In our system, this module is implemented using AWS
Java SDK [13].

Executer

This module executes a plan recommended by the planner. If
the root RTA needs to launch a new child RTA, it is executed
by a remote procedure call. In the case of child RTA termina-
tion, the executer must complete a similar procedure by send-
ing the terminating message to the cloud. In order to use
these remote procedure calls, the executer must collect the
instance ID of the child RTA along with its private and public
IP address.

Performance

We set up our experiment environment in Amazon EC2 that
provides 1.7 Gbyte memory space and moderate I/O perfor-
mance. To observe the operations of the proposed auto-scal-
ing mechanism, we turned off the default resource manager
provided by the VMM. Instead of actual workload generated
by the client nodes, we used a virtual workload indicating
required VCPU capacities to process all real-time tasks within
the specified deadlines. It allows us to eliminate any possible
impact of the shared VMM for our evaluation. It is necessary
to provide reliable and generic evaluation results, which can
later be applied to other publicly available cloud computing
infrastructures equipped with a general-purpose VMM. The
proposed mechanism was implemented in Java 1.6 and includ-
ed in the Fedora 16 image [14]. It starts automatically as a
daemon process while booting up the image.

Figure 3 shows VCPU workload requirements for 300 min
to process the requested real-time tasks. As we reflect on
cases of erroneous environments such as packet losses, the
curves show a faintly audible level of noise, which makes it
difficult to predict the workload shouldered by the next inter-
val. The maximum VCPU capacity of each RTA is set to 50.
Therefore, the first existing root RTA experiences two pend-
ing groups of real-time tasks at 28 min and 196 min, respec-
tively. The workload also shows two peaks. The first peak
occurs at 55 min, and approximately 68 units of the VCPU
capacity are required to process the given real-time tasks.
Therefore, the root RTA has to launch a new child RTA
before dropping the real-time tasks. The boot-up delay for the
64-bit Fedora 16 image is usually about 1 min.

Figure 4 shows values D[i] with the VCPU workload. We
set the interval value k to 10, and N to 90°. As we can see, the
root RTA reaches the final state N at 36 and 198 min, and is
required to launch a new child RTA. Since these results were
evaluated based on the prediction mechanism, we can ensure
that the mechanism allows a new RTA to be launched before
the real-time tasks are overloaded. We also can simultaneous-
ly launch multiple child RTAs by analyzing the amount of
incoming tasks in the queue.

When the analyzer detects that the root RTA reaches State
N, it calculates the number of RTAs still to be booted up. Fig-
ure 5 shows the number of running child RTAs with the pro-
posed auto-scaling mechanism. We can see that the root RTA
launches the first running child RTA at about 20 min. On the
other hand, the root RTA terminates all child RTAs at about
93 min in order to scale down. As a result, the root RTA does
not need to have a child RTA until the 197-min mark.

However, at 198 min, two child RTAs become available. It
is crucial to note that these two child RTAs have already been
launched at the 181-min mark, showing an achievement the
success of which is due to our prediction mechanism.

66

IEEE Network * September/October 2013

12

10F .

Number of running child RTAs
(o)}
T
|

) L L |
0 50 100 150 200 250 300
Time (min)

Figure 5. The number of child RTA servers over time.

100
0 B
80
70
60
50
40
30
20
10

VCPU usage (%)

1 1 1
0 50 100 150 200 250 300
Time (min)

Figure 6. VCPU usage of the root RTA.

Since the workload includes unstable and nonlinear val-
ues of required VCPU capacities, it is possible that the VM
pool has more child RTAs than it actually needs. However,
this is still acceptable to run RTA servers in the public
cloud infrastructures, due to the fact that the VM pool
maintains only a small number of VMs when the objects
sensed by the client node are in a normal condition. There-
fore, meeting the specific deadlines is much more important
than saving the computing resources for RTA servers, espe-
cially when time-critical real-time tasks are requested by the
client nodes.

Figure 6 shows VCPU usage of the root RTA with the pro-
posed mechanism. After launching its child RTAs, the VCPU
usage of the root RTA immediately drops down to around 10
percent. As described in the previous section, we allow the
root RTA to process as many tasks as it can. In most cases,
the child RTAs complete a relatively small amount of tasks
when compared to their root RTA. Also, the child RTAs are
supposed to be terminated as soon as their incoming queues
are empty. This can maximize VCPU utilization of the system
and minimize the number of child RTAs. Accordingly, at
around 40 min, our auto-scaling mechanism determines that
the root RTA can process more tasks and tries to terminate
its child RTA.

As shown in Fig. 5, there are two running child RTAs at
that moment. As a result of these terminations, the VCPU
usage of the root RTA increases over 50 percent. Immediately
afterward, the system detects that the tasks are overloaded
once again. The root RTA unfortunately needs to launch
child RTAs again at the 51-min mark. However, from around
100 to 190 min, the workload shows stabilization due to the
normal condition of the detected object. Our system accurate-
ly recognizes this condition and minimizes the number of run-
ning RTAs during this period.

Conclusion

We investigate limitations of the existing scaling mecha-
nisms implemented in publicly available cloud computing
infrastructures. In order to overcome the limitations, we
propose a novel auto-scaling mechanism supported by ses-
sions used to support RTAs. The reliability and efficiency of
the proposed mechanism come from cooperating with an
independent real-time resource monitor, a virtual session
manager, and a workload prediction algorithm. The evalua-
tion was performed with workload in terms of VCPU usage
in Amazon EC2 with Fedora 16 image. The results verify
that the proposed mechanism can efficiently scale the num-
ber of RTA servers up and down by considering the avail-
able computing resources against the given workload. In the
future, we will define new parameter groups to consider and
categorize subject (or patient) groups to differentiate our
state transition mechanism. For example, if a group’s severi-
ty is higher than others, the RTA server’s state would be
moved to another state relatively faster with differentiated
parameters, which can be determined by physicians or medi-
cal professionals.

References

[1]1 S. Ahn et al., “Isolation Schemes of Virtual Network Platform for Cloud
Computing,” KSII Trans. Internet and Info. Sys., vol. 6, no. 11, Nov.
2012, pp. 2764-83.

[2] W. Hui, C. Lin, and Y. Yang, “MediaCloud: A New Paradigm of Multime-
dia Computing,” KSII Trans. Internet and Info. Sys., vol. 6, no. 5, May
2012, pp. 1153-70.

[3] Amazon Elastic Compute Cloud, http://aws.amazon.com/ec2/, last
retrieved June 2013.

[4] N. Roy, A. Dubey, and A. Gokhale, “Efficient Autoscaling in the Cloud
Using Predictive Models for Workload Forecasting,” Proc. 2011 IEEE Int'l.
Conf. Cloud Computing, July 2011, pp. 500-07.

[5] M. Mao, J. Li, and M. Humphrey, “Cloud Auto-Scaling with Deadline and
Budget Constraints,” Proc. 2010 IEEE/ACM Int'l. Conf. Grid Computing,
Oct. 2010, pp. 41-48.

[6] B. Solomon et al., “Decentralized Predictive Control of Autonomic Comput-
ing Environments,” Proc. 2006 Int'l. Info. and Telecommun. Technologies
Symp., Dec. 2006, pp. 94-103.

[7] B. Solomon et al., “A Real-Time Adaptive Control of Autonomic Computing
Environments,” Proc. 2007 Centre for Advanced Studies Conf., Oct.
2007, pp. 1-6.

[8] H. Viswanathan, E. K. Lee, and D. Pompili, “Self-Organizing Sensing
Infrastructure for Autonomic Management of Green Datacenters,” IEEE
Network, vol. 25, no. 4, Aug. 2011, pp. 34-40.

[9] Y. W. Ahn et al., “Improving QoS for ECG Data Transmission with
Enhanced Admission Control in EDCA-Based WLANSs,” Proc. IEEE GLOBE-
COM, Dec. 2011, pp. 1-5.

[10] “SMART (Self Managing and Resource Tuning),” IBM Research, 2003.

[11] Xen, http://www.xen.org/products/, last retrieved in June 2013.

[12] Mpstat, http://www.linuxcommand.org/man pages/mpstat1.html, last
retrieved June 2013.

[13] AWS Java SDK, http://aws.amazon.com/sdkforjava/, last retrieved June
2013.

[14] Linux, Fedora 16, http://fedoraproject.org/, last retrieved June 2013.

Biographies

YONG WOON AHN (yahn@cs.uh.edu) received B.S. and M.S. degrees in
computer science and engineering from the Hankuk University of Foreign
Studies, Korea, in 2001 and 2003, respectively. He is currently pursuing a
Ph.D. degree in computer science with the Department of Computer Sci-
ence, University of Houston, Texas. His current research interests include
cloud computing, realtime systems, fault-tolerant computing, ubiquitous
computing with embedded devices, and middleware for scalable network
environments.

ALBERT MO KIM CHENG (cheng@cs.uh.edu) received B.A., M.S., and Ph.D.
degrees, all in computer science, from the University of Texas, Austin. He is a
full professor and former interim associate chair of the Department of Comput-
er Science at the University of Houston, where he is also the founding director
of the Real-Time Systems Laboratory. The author of the popular textbook Real-
Time Systems (Wiley), he has published over 180 refereed publications in
leading venues in the area of power and reliability-aware real-time, embed-
ded, and cyber-physical systems.

IEEE Network * September/October 2013

67

JINSUK BAEK (baekj@wssu.edu) received B.S. and M.S. degrees in computer
science and engineering from the Hankuk University of Foreign Studies in
1996 and 1998, respectively, and a Ph.D. degree in computer science from
the University of Houston in 2004. He is currently an associate professor of
with the Department of Computer Science, Winston-Salem State University,
North Carolina. His current research interests include multimedia communica-
tions, scalable reliable multicast protocols, mobile wireless communications,
and network security.

MINHO JO [M'07] (minhojo@korea.ac.kr) received his Ph.D. from the
Department of Industrial and Systems Engineering, Lehigh University, in
1994. He is a professor with the College of Information and Communica-
tion at Korea University, Seoul. He is the founder and Editor in-Chief of
KSII Transactions on Internet and Information Systems. He is an Editor of
IEEE Network and IEEE Wireless Communications, respectively He has pub-
lished many refereed academic publications in very high-quality journals

and magazines. Areas of his current interest include cognitive radio, net-
work algorithms, optimization and probability in networks, network securi-
ty, wireless communications, energy efficient wireless communications,
WBAN, and cloud computing.

HSIAO-HWA CHEN [S'89, M'91, SM'00, F'10] (hshwchen@mail.ncku.edu.tw) is
currently a Distinguished Professor in the Department of Engineering Science,
National Cheng Kung University, Taiwan. He obtained his B.Sc. and M.Sc.
degrees from Zhejiang University, China, and a Ph.D. degree from the Univer-
sity of Oulu, Finland, in 1982, 1985, and 1991, respectively. He is the
founding Editor-in-Chief of Wiley's Security and Communication Networks
Journal (www.interscience.wiley.com/journal/security). He was the recipient of
the Best Paper award at IEEE WCNC 2008 and the IEEE Radio Communica-
tions Committee Outstanding Service Award in 2008. Currently, he is also
serving as Editor-in-Chief of IEEE Wireless Communications. He is a Fellow of
IET and a Fellow of BCS.

68

IEEE Network * September/October 2013

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus settings for Acrobat Distiller 9)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Cadmus_Flattener_Presert)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

