Classifying Sentinel-2 Satellite Images Based on Tree Coverage HOUSTON Charles Abdo, Rabil Momin / College of Natural Science and Mathematics, University of Houston

Introduction	Machine Learning Models	Conclusion
As the number of imaging satellites increases, so too does the amount of image data about our planet's surface.	Random Forest Decision Trees in Ensemble Training Time: 3.6s (Required Parameter Tuning)	All three of our models performed well with accuracies greater than 90%, however it is clear our Neural Networks excel over the Random Forest.
Various subsets of this data have been used to model economic and sociological patterns. However, this imagery could prove useful in	Convolutional Neural Network Utilizes Convolutions and Pooling	The simpler CNN and the ResNet34 have similar performances. This was expected considering the small size of our input images and thus less utilization of all layers in the ResNet.
identifying trends in Earth's ecosystems.	Training Time: 1m 27s	Future Implications
For instance, deforestation and tree density, aspects of our planet that contribute greatly to larger issues, such as climate change.	Residual Neural Network Groups Convolutions in Identity Blocks to Increase Efficiency	With satellite image datasets constantly increasing, it is entirely possible to make these models more robust using larger, higher resolution images from other sources, such as Satellite image APIs.
Thus, we sought to train machine learning models that utilize a subset of this data to classify whether a given satellite image contains tree coverage.	Training Time: ~10m Using Google Colab GPU Accel	In doing so, we will be able to track tree coverage and deforestation rates over large areas by aggregating classifications of smaller areas. This could yield useful information about climate change and the future of our planet as a whole.
5,200 Images w/ Trees	5,200	Models 34 Layer Residual Neural Network Percentage of Correctly Classified Test Images 96%
		Convolutional Neural Network 96%
		Random Forest 92%