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Abstract: Introduction: Structure-based drug design is a wide area of identification of selective inhibi-

tors of a target of interest. From the time of the availability of three dimensional structure of the drug 

targets, mostly the proteins, many computational methods had emerged to address the challenges asso-

ciated with drug design process. Particularly, drug-likeness, druggability of the target protein, specific-

ity, off-target binding, etc., are the important factors to determine the efficacy of new chemical inhibi-

tors. 

Objective: The aim of the present research was to improve the drug design strategies in field of design 

of novel inhibitors with respect to specific target protein in disease pathology. Recent statistical machine 

learning methods applied for structural and chemical data analysis had been elaborated in current drug 

design field. 

Methods: As the size of the biological data shows a continuous growth, new computational algorithms 

and analytical methods are being developed with different objectives. It covers a wide area, from protein 

structure prediction to drug toxicity prediction. Moreover, the computational methods are available to 

analyze the structural data of varying types and sizes of which, most of the semi-empirical force field 

and quantum mechanics based molecular modeling methods showed a proven accuracy towards analys-

ing small structural data sets while statistics based methods such as machine learning, QSAR and other 

specific data analytics methods are robust for large scale data analysis. 

Results: In this present study, the background has been reviewed for new drug lead development with 

respect specific drug targets of interest. Overall approach of both the extreme methods were also used to 

demonstrate with the plausible outcome. 

Conclusion: In this chapter, we focus on the recent developments in the structure-based drug design 

using advanced molecular modeling techniques in conjunction with machine learning and other data 

analytics methods. Natural products based drug discovery is also discussed. 

Keywords: Structure-based drug design, SBDD, Machine learning, QSAR, Data analytics, Data science. 

1. INTRODUCTION 

Structure-based drug design (SBDD) is now in a big data 
era where one gains more access to perform thorough data 
analytics on structural data of proteins, drugs/inhibitors, en-
zyme kinetics, gene expression, clinical trials, etc. Moreover, 
one can integrate heterogeneous data to infer a particular 
biological mechanism associated with either normal func-
tioning of the cell or its dysfunction. The key players in this 
approach are, mainly, the databases and analytical methods. 
Many databases are available not only as data sources, but  
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also they have embedded with their own predictive methods. 
However, the choice of the scope of prediction is not limited 
to available resources. As it is multidimensional, most of the 
time, the existing analytics can serve only for customized 
data set. In this context, one can employ different analytical 
methods against different types of structural/biological data-
bases. The following sections present the overview of the 
methods employed so far for SBDD and drug discovery, and 
also the current developments in the post-genomic and big 
data era. 

Before discussing the data-driven drug discovery process, 
it is important to understand the scope of SBDD and its as-
sociated techniques. For more than two decades, the struc-
tural properties of a wide range of biological molecules 
(from small molecules to macromolecules such as protein, 
DNA, RNA, carbohydrates, etc) were studied with atomic 
details using molecular modeling methods. Precisely, the 
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two levels of calculations, namely, quantum mechanics 
(electronic properties) and molecular mechanics (force field-
based) are crucial.  

1.1. Three Dimensional Structure Prediction 

Fold recognition and homology modeling are the two dis-
tinct methods widely used for prediction of 3D structure of 
proteins for which no experimentally determined structures 
are available (Fig. 1). Fold recognition is basically used for 
assigning the fold for the protein sequence of interest and it 
employs SCOP, CATH, FSSP resources instead of high se-
quence identities/similarities [1].  

 

Fig. (1). Scope of Homology modeling and ab initio methods for 

fold recognition with respect to the sequence identity.

1.2. Molecular Docking & Screening 

Docking tools are used to identify the biologically rele-
vant binding mode of the two molecules. It is very effective 
for small molecule ligands, binding the proteins or enzymes. 
Docking relies on two components, the search algorithms to 
sample the conformations of the ligand at the rigid or flexi-
ble active site and the scoring functions to score all the poses 
[2]. For conformational sampling, different search algo-
rithms like a stochastic torsional method to sample the con-
formations based on the rotatable bonds, genetic algorithm to 
identify the conformation associated with the low potential 
energy, molecular dynamics simulations to score the binding 
based on the force fields, classification and regression using 
machine learning, etc., are used as they are unique in their 
performance. To score the binding poses, mathematical func-

tions are being used to predict the binding affinity, approxi-
mately [3]. For example, an empirical scoring function has 
the form:  

ΔGbinding = ΔG0 + ΔGhbondΣiIg1(Δr)g2(Δα) + ΔGmetalΣaMf(raM) + 
ΔGlipoΣlLf(rlL)+ ΔGrotHrot 

Where the metal binding, hydrogen bond geometry, lipophil-
icity and bond rotations are included in the binding energy 
calculation [4].  

1.3. Molecular Dynamics Simulations 

Molecular dynamics (MD) simulation is a method to 
compute the physical changes in the atoms of molecules. 
This technique has potential applications in structure-based 
drug design as it efficiently samples the biological conforma-
tions of macromolecules such as proteins, enzymes, carbo-
hydrates and nucleic acids, as well as the complex systems. 
The basis for the MD simulation is Newton's second law of 
motion (F=ma) to compute the atomic motions and it has the 
form: 

 

where, Fxi is the force and mi is the mass along the xi coordi-
nate. The study conducted by McCommon et al., was the 
first report on the application of MD simulations in the pro-
tein dynamics [5] which was preceded by the first simulation 
report based on the simulation of solid spheres moving at a 
constant velocity [6]. Later on, simulation results of proteins 
and other biological molecules were reported with their 
movements observed over time [7]. 

The empirical force field terms assume that atoms or par-
ticles 

i to have their own arrangement of electrons and nuclei, 

ii to be spherical with their atomic radii calculated experi-
mentally or theoretically, 

iii to have net charge and 

iv to interact with each other and their interactions are 
treated with springs and potentials. 

AMBER: Initially, Kollman and co-workers [8] intro-
duced the “united atom” force field and embedded with 
AMBER simulation package. The "all-atom" version Amber 
ff86 [9] was later introduced with effective transferability. 
With improved parameterization, ff99, ff02, ff03 versions 
were developed [10]. The atomic charges derived from the 
basis set, B3LYP/cc-pVTZ//HF/6-31G* and corrections in 
the polarization for intra-molecular interactions [11] were 
implemented. Additionally, parameters for organic com-
pounds (General amber force field, GAFF), for phospholip-
ids (lipid14), etc. [12] were also introduced.  

CHARMM is a widely used force field developed by 
Karplus and co-workers for simulation of biomolecules. It 
has many versions, including the CHARMM22 [13] and 
CHARMM/CMAP [14] for protein simulation in explicit and 
implicit water environments, respectively. CHARMM27 
[15] was developed for lipids and nucleic acids. The 
CHARMM36 [16] and its updates are the recent versions 
available. 
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GROMOS is available in both united and all-atom ver-
sions. The earlier versions GROMOS87+ and GROMOS96 
[17] are widely used for protein simulations. Further, the 
parameterization process resulted in newer versions such as 
53A6, 54A7,54B7, etc., with improved parameters for sec-
ondary structure treatments, phospholipid head groups, 
coarse-grained models, etc. [18]. 

OPLS is available in the united atom as well as in all-
atom versions developed by Jorgensen et al., initially for 
hydrocarbons [19]. Further development based on both short 
and long hydrocarbons provided support for simulation bio-
molecules in the membrane phospholipid environment. Here, 
the energy profiles were calculated for hydrocarbons using 
MP2/aug-cc-pVTZ basis set to improve the diffusion coeffi-
cient, viscosities and gauche-trans ratios.  

1.4. Binding Free Energy Calculations 

Binding free energy (ΔGbind) calculation is important to 
study the affinity of the compounds towards the target of 
interest. The relative binding free energy is particularly ap-
plied in studies based on the congeneric molecules. The mo-
lecular dynamics simulations and statistical mechanics help 
to sample the conformations and aid in binding free energy 
calculation to be accurate. The following expression denotes 
the ΔGbind. 

 

where, ΔEMM is the molecular mechanics energy, –TΔS is 

conformational entropy, ΔGsol 
is solvation free energy and 

ΔEinternal  includes bond, angle and dihedral energies. 

The Poisson Boltzmann (PB) or Generalized Born (GB) 
are the methods used to calculate the polar contributions, and 
the solvent-accessible surface area (SASA) [20] is used to 
calculate the non-polar contribution. The entropy term penal-
izes the steric clashes and it could be calculated using (i) 
normal mode analysis or (ii) Quasi-Harmonic (QH) [21] 
methods, the low-frequency motions through the approxima-
tion of mass-weighted covariance matrix, followed by sum 
of the vibrational frequencies calculated for each mode. 
OpenMM [22] and Gromacs [23] are the open-source pro-
grams available for simulation and binding free energy cal-
culations while AMBER [24], CHARMM [25] and NAMD 
[26] are academic and AceMD and Desmond are the com-
mercial packages. 

1.5. QSAR & Toxicity Prediction 

The quantitative structure-activity relationship (QSAR) is 
the technique that relates the descriptors of the training com-
pounds to their biological activity. This has the relation: v = 
f(p), where v denotes the activity and p denotes the probabil-
ity function of the set of descriptors, which can be repre-
sented using Taylor's series expansion. QSAR is mainly used 
to lead optimization based on either the 2D descriptor or 3D 
descriptor features. The 3D-QSAR relies on the flexible 

ligand alignment followed by the molecular field analyses 
methods such as comparative molecular field analysis 
(CoMFA), similarity indices based (CoMSIA), receptor sur-
face-based (RSA) and shape of the molecule (MSA). The 
force field-based calculations on the 3D structures of the 
training set compounds involve electrostatic and van der 
Waals contributions correlated by partial least squares to the 
experimental activity data. 

On the other hand, the toxicity prediction gains impor-
tance in order to eliminate the selected candidate using mo-
lecular modeling techniques. Some of the important compu-
tational methods to predict the toxicity of the given com-
pounds are listed below. 

Tools to predict drug toxicity 
DEREK Nexus: www.lhasalimited.org/products/derek-
nexus.htm 

ToxTree:  toxtree.sourceforge.net 

HazardExpert:  www.compudrug.com/hazardexpertpro 

TOPKAT:  accelrys.com/products/collaborative-science/ 
biovia-discovery-studio/qsar-admet-and-predictive-
toxicology.html 

CASE Ultra: www.multicase.com/case-ultra 

OECD QSAR:  www.oecd.org/chemicalsafety/risk-
assessment/theoecdqsartoolbox.htm 
Toxicology databases 
SIDER:  sideeffects.embl.de 

Comparative Toxicogenomics Database: ctdbase.org 

ACToR:  actor.epa.gov 

FDA Adverse Event: www.fda.gov/Drugs/GuidanceCom- 
plianceRegulatoryInformation/Surveillance/AdverseDrug 
Effects 

OpenTox:  www.opentox.org 

PharmGKB: www.pharmgkb.org 

T3DB:  www.t3db.ca 

TOXNET:  toxnet.nlm.nih.gov 

ToxBank: www.toxbank.net 

SuperToxic:  bioinformatics.charite.de/supertoxic/ 

ACToR: actor.epa.gov/actor/home.xhtml 

eTOX: www.etoxproject.eu 

HSDB:  toxnet.nlm.nih.gov/newtoxnet/hsdb.htm 

Haz-Map:  hazmap.nlm.nih.gov 

CEBS: tools.niehs.nih.gov/cebs3/ui/ 

2. QSAR AND MACHINE LEARNING 

In addition to the typical QSAR methods for lead optimi-
zation, machine learning (ML) methods equally play a cru-
cial role in the classification of active compounds from the 
test sets. ML is a computational study to learn the character-
istics of data in the absence of experimental evidence. It has 
the functionalities to extract the features pertinent to the 
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function and classify data accordingly. The data to be han-
dled can vary and the method of application will also vary. 
Supervised and unsupervised learning algorithms are com-
monly applied methods. The logistic and linear regression 
models, Naive Bayes, classification and regression trees 
(CART), K-nearest neighbor (KNN) [27], support vector 
machine (SVM) [28], random forest (RF) [29], and artificial 
neural networks (ANNs) are some of the supervised learning 
methods while the hierarchical clustering, K-means, and 
principal component analysis (PCA) are examples for unsu-
pervised learning methods. Fig. (2) depicts the steps in-
volved in the application of machine learning algorithms. 

 

Fig. (2). Steps involved in applications of ML algorithms.  

In structure-based drug design, the application of ML 
techniques can be understood from the literature [30]. An 
appropriate application of machine learning in target fo-
cussed library design will boost the successive structure-
based as well as pharmacophore-based screening of large 
chemical libraries. 

3. ARTIFICIAL INTELLIGENCE (AI) AND BIG 
DATA ANALYSES 

Application of AI in drug discovery is at the stage of in-
fancy now and it will become very effective as the data size 
keeps on increasing. The biological data is very complex in 
terms of the activity of the compound, say, a drug molecule. 
Here, the activity of the drug will be represented by many 
types of data heterogeneous in nature. For example, the af-
finity denoted by the Ki, IC50, etc., and the PK/PD profile are 
very complex to inter-relate. Additionally, the protein inter-
action network, the pathway and expression data in response 
to drug treatment [31], disease classification, target and off-
target binding, etc., are the factors that impose the complex-
ity in multi-dimensions (Fig. 3).  

 

Fig. (3). Heterogeneous data involve in AI-driven SBDD.  

The data set to prepare for the known and approved drugs 
itself involves 100-1000 data types that could cover the 
druggable space. Most of the time, this process will begin 
with the text mining of the literature database to explore the 
source data for further process. The integral part of ML or AI 
is the deep learning (DL) algorithm, which works based on 
the pattern matching or segmentations and is very effective 
when the data size is very large and when the other ML algo-
rithms fail to handle. Hence, the big data analyses had 
emerged and some of the popular services available on 
Cloud are listed in Table 1 given below. 

Table 1. List of cloud services for big data analyses in the 

area of precision medicine. 

Service Platform URL 

Amazon Web 

Services 

www.aws.amazon.com 

Google Cloud 

Platform 

cloud.google.com 

Microsoft Azure azure.microsoft.com 

IBM Cloud www.ibm.com/cloud/ 

Software as a 

service (SaaS) 

Alibaba Cloud www.alibabacloud.com 

DNAnexus www.dnanexus.com 

Illumina Base 

Space Sequence 

Hub 

basespace.illumina.com 

Seven Bridges www.sevenbridges.com/platform 

Infrastructure 

as a service 

Globus Genom-

ics 

globusgenomics.org 

 

Further, the following section will focus on the recent 
findings through the application of advanced and coupled 
methods. 
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4. Identification of compounds against a target 

With reference to the methods discussed above, ranging 
from the molecular modeling techniques to the ML algo-
rithms, the structure-based drug design enters into the new 
regime with a combination of physics-based and computa-
tion-based methods. In this section, we emphasize that the 
conventional structure-based methods end up with more 
false positives as well as the failure of many candidates at 
different stages of the drug discovery pipeline. The new ap-
proaches address this issue in two ways: (i) drug repurposing 
and (ii) lead identification using ML and AI algorithms. In 
drug repurposing, identification of the new purpose of exist-
ing drugs is programmed using computational techniques. 
The drug interaction network and clinical data analyses are 
the key players in this domain. In the application of ML and 
AI algorithms to identify new chemicals with effective 
pharmacological activity, the conventional molecular model-
ing and structure-based drug design take part in the lateral 
stage. The AI and ML are most effective in the initial data 
set, such as large chemical databases. As a result, target-
focussed ligand libraries are generated and successive appli-
cation of SBDD will result in more promising hits with less 
false positives.  

5. Identification of drugs from natural products 

Until the colonial period (1800's) in India, Indian Medi-
cine was completely dependent on medicinally important 
plants. Sometimes, the natural ones isolated were found to 
have serious side-effects and in these cases, modern science 
helped to prepare derivatives from them to overcome these 
side-effects. Some of the old drugs from natural products are 
shown in Table 2. 

Cragg and Newman (2016) reviewed the impact of med-
icinally important plants/natural compounds to treat various 
human ailments. This survey covered the period 1981-2014 
[32]. Snafi from The qar University, Iraq has published a 
series of research papers on many medicinal plants and their 
effects on humans in curing various diseases. Most of these 
publications are reviews emphasizing the impact of herbal 
medicines on humans. Out of 175 small molecules with the 
anti-cancer activity which were introduced into therapy in 
western countries nearly 70 years back, around 49% were 
either directly obtained or were derived from natural prod-
ucts. Some of the important herbs included ginseng, Cur-
cuma longa and Withania somnifera. Anti-cancer nature of 
some of the dietary phenols like quercitin, luteolin, genistein, 
apigenin and resveratrol had been discussed in many re-
search publications. Combinatorial chemistry suppressed the 
impact of herbal medicine for sometimes. But recently, the 
focus has been switched over again to natural medicine as 
nature has been continuously carrying out its own version of 
combinatorial chemistry for 1000s of years and secondary 
metabolites are evolved in medicinal plants in response to 
the needs and challenges in the natural environment. In many 
cases, it has been found that nature and evolution have de-
vised molecular structures that are far superior to even the 
best synthetic moieties in terms of diversity, specificity, 
binding efficiency and propensity in interacting with the bio-
logical targets. Compared to the compounds from combina-
torial chemistry and synthetic drugs derived from natural 

substances, the drugs and products obtained from the natural 
sources exhibited more diverse and chemically complex 
structures. The natural product database contains a signifi-
cantly larger number of scaffolds that exhibit higher struc-
tural novelty. Some of the scaffolds found naturally in the 
secondary metabolites cannot be synthesized at all. Herb-
herb combination is used for therapeutic enhancement and 
advancement. Polypharmacy is a combined therapy leading 
to therapeutic benefit for a number of diseases. The main 
advantages of herbal drugs for many therapeutic activities is 
the involvement of low cost, complete accessibility, en-
hanced tolerance, more protection, high potency and effi-
ciency with fewer side effects. At the same time, there are 
some drawbacks in the use of herbal medicine, namely, (i) 
scientific evidence for the clients by the herbalists are 
needed, (ii) standardization of herbal drug is needed, (iii) 
authenticated product test is needed, (iv) reliable clinical 
trials are needed and lastly, (v) reliable analytical methods 
are needed to reveal the phytoconstituents. As most of the 
herbal medicines being used now do not satisfy the above, 
these herbal formulations are sold as dietary supplements 
only without the need for the approval of FDA and some 
countries have formed regulations for using these herbal 
products. With the progress made in the areas of cellular 
biology, genomics and molecular mechanisms and also due 
to the vast development of the techniques and facilities in 
solving molecular structures, the number of druggable tar-
gets has increased. This allows screening for candidates of 
natural product libraries against an ever increasing number 
of potential molecular sites for therapeutic intervention. It 
has been reported that out of the 175 anticancer drugs devel-
oped and approved during 1940-2010 from western countries 
and Japan, 85 compounds (48.6%) were natural products or 
directly derived from natural products. 

Suhitha et al., detailed many herbs along with the dock-
ing results and these herbs are from the North-East region of 
India and are being used by the herbalists for control-
ling/curing various types of cancers, inflammation, diabetes 
and removal of kidney stones [33]. In one of the medicinal 
plants, Stephania Hernandifolia (SH), the major compound 
D-L.Tetrahydro palamatine (THP) was reported from the 
GC-MS analysis, with its presence in 57.9%. The 3-
dimensional X-ray crystal structure of this compound was 
also elucidated and its docking with the cancer-related BCL-
2 target (Pdb id: 2o2f) was compared with Fangchinoline, a 
compound isolated from the Chinese herb, Stephania 
Tetrandra [34] and being used for the treatment of breast 
cancer (Fig. 4).  

As a continuation of this work, Mohan et al., carried out 
LCMS and LCMSMS studies and confirmed traces of two 
compounds whose molecular weights differed from THP 
isolated from SH (with the local name Jabong) [35]. These 
compounds were later identified as the one –OH and -2 OH 
group substitutions in the four -OCH3 groups containing 
THP (Fig. 5). Having identified these traces and also based 
on the docking studies of THP using the Induced fit docking 
protocol in Glide module of Schrodinger LLC., which 
proved the anti-breast cancer nature, modeling studies were 
similarly carried out for -OH group substitution instead of 
every -OCH3 substitution in THP compound. Docking re-
sults showed better binding than THP compound when all 
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Table 2. List of few known natural products which had undergone chemical modifications to overcome their side effects. 

Compounds Isolated Natural Source Clinical Use Remarks 

Paclitaxel Pacific yew tree Ovarian Cancer Poor water solubility. Docetaxel is 

an analog with improved solubility 

Morphine Opium, Poppy plant Analgesic and sedative effects - 

Salicin Willow trees Pain relief Acetyl salicylic acid (Aspirin) is the 

synthetic derivative, causes gastric 

complications.  

Berberine Berberi fermontii Anti-microbial activity 100 fold more active in combination 

with methoxyhydrocarpin (an inac-

tive compound from the same plant) 

Ginsenoide Ginseng Anti-breast cancer and anti-diabetic 

activity 

Cardiovascular dysfunction 

Aristolochic acid Aristolochia Anti-inflammatory activity Renal and kidney failure  

Camptothecin Camptotheca acuminata Anti-ovarian and small cell lung 

cancer 

Bladder toxicity 

Toptecan & Irinotecan Semisynthetic derivative of 

Camtothecin 

Anti-varian and colon cancers  

Fatty acids Sterculiafoetida L. Seeds Anti-oxidant, anti-microbial - 

Podophyllotoxin Podophyllum species - Anologs: Etoposide 

Vinblastine, Vincristine and their 

semi-synthetic analogs vinorolbine 

and vindesine. 

Cantheranthus roseus Anti-bladder and breast cancers and 

leukemia 

Vindesine is the chemically modi-

fied one. 

Saponins, 

Sapogenol A,B 

Naringin, rutin, baicalin 

Soybean Anti-microbial and immunomodula-

tor 

Colon cancer 

Crude Extract from Ethylacetate Garcinia mangostana L Anti-inflammatory activity Xanthones are major constituents 

Areal part Caralluma diffusa Anti-oxidant and anti-viral - 

Silimarin Seeds of Silibum maranum Anti-viral activity - 

Leave juice Moringa Blood pressure, head and tooth 

aches 

- 

 

the four -OCH3 groups were substituted by four -OH groups. 
A simple reaction of THP compound experimentally con-
verted THP into the above new compound, namely, tetrahy-
droprotoberberine (THPB). In the cell line studies, THP 
showed good IC50 for colon, lung and breast cancers. The 
cell line studies confirmed IC50 of 10.5 μg/mL for the breast 
cancer cell line MCF-7 and IC50 of 27 μg/mL for the lung 
cancer cell line A-549. For the colon cancer cell line HCT -
116, the IC50 was 17 μg/mL for THP and for the four -OH 
substituted compound, Tetrahydroprotoberberine the IC50 

was 7 μg/mL suggesting that the new compound, tetrahydro-
protoberberine is the best for colon cancer. THP is found to 
be good for treating lung and breast cancers [36].  

Table 3 shows better docking score and glide energy for 
the newly obtained compound, tetrahydroprotobererine 
(THPB) compared to both stepholidine (two -OH group sub-
stitutions) and the native ligand, 3-Hydroxybenzisoxazole 

suggesting that THPB compound is a better candidate as an 
anti-breast cancer compound. All the hydrophobic interac-
tions of the native compound are also found with the binding 
of THPB compound along with the better hydrogen bonds. 
Fig. (5) shows the binding of the THPB compound at the 
active site of the human 3-phosphoglycerate dehydrogenase 
enzyme along with the co-crystal compound and also with 
stepholidine.  

Mohan et al., also identified the major presence of two 
compounds from the mixtures of two herbal formulations 
being used by a herbalist in Meghalaya for curing breast 
cancer (Mohan et.al., 2018b). These compounds were found 
to inhibit the TNFα and NFkB targets of inflammation. Five 
compounds from the herb 'Sivakarandai', being used in south 
India to control various types of cancers, have so far been 
identified and reported [37]. Details of one of these com-
pounds, Decahydro-6-(imonomethyl)-4a-methylnaphthalen-
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Fig. (4). ORTEP diagram of THP (a) and its interactions with the breast cancer target, BCL-2, PDB id: 2O2F (b). (c) shows the binding of 

fangchinoline isolated from Stephania Tetrandra.

Table 3. Results of docking studies with Breast Cancer Target PDB ID: 5NZP. 

Ligand 
Docking Score 

(kcal/mol) 

Glide Energy 

(kcal/mo) 
Interaction 

Distance Å 

D…A 
Hydrophobic Interaction 

N

OH

O

HO

O  

Stepholidine 

-6.724 -38.241 - - 

Leu151, Tyr174, Pro176, 

Leu193, Trp197, Pro208, 

Leu210 and Leu216 

N

OH

OH

HO

OH  

Tetrahydroprotoberberine 
(MW: 299Da) 

-6.824 -41.946 

(O-H...O)Asp175 

Ser212(O-H...O) 

(O-H...O)Ser212 

3.06 

2.94 

2.98 

Leu151, Leu153, Tyr174, 

Pro176, Ile177, Leu193, 

Pro208, Leu210 and Leu216 

N

O

OH

C7H5NO2

Mol. Wt.: 135  

Native 

benzo[d]isoxazol-3-ol 

-6.256 -26.262 Asp175(O-H...O) 3.15 

Leu151, Leu153, Tyr174, 

Pro176, Ile177, Pro208, 

Leu210 and Leu216 

 

2-ol (MW 195 Da) were presented in a meeting in the USA 
[38, 39]. The crystallographic structure and anticancer activ-
ity of one of the compounds detected by us [37] were later 
published [40]. Modeling studies with the breast cancer tar-
get phosphoglycerate dehydrogenase (PDB ID 5NZP) 
showed that one compound with molecular weight 516 Da 
had better binding than the co-crystal ligand and also com-
pared to the two isomers (MW 195 Da) and the two other 
compounds identified [37]. 

Subasri et al., (2016) examined the phytoconstituents 
from four herbs (being used as folk medicine) and their use 
as antidotes for snake bites [38]. 

There are many more examples validating the use of 
herbs to cure/control various human ailments, but these 
herbs should be used after consulting with experienced 
herbalists as there may be some side effects due to herb-herb 
interactions also. 
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CONCLUSION 

Continuous growth in the biological data such as protein 
and chemical structure data, biochemical data related to cata-
lytic/inhibitory activities, etc., in parallel to the growth of 
pharmacological/clinical data provides new avenues for ad-
vanced drug discovery and development of low-risk com-
pounds. But, the conventional methods do not handle all 
these data together and particularly have limitations to make 
use of clinical data in SBDD. Hence, there is an increased 
interest in the application of AI in drug discovery as it paves 
the path to access very complex data, which is not feasible 
for humans or a routine method to handle. This includes 
many divisions such as biomarkers discovery, drug repurpos-
ing, identification of new chemical entities, generation of 
data sets and predictive models, drug-drug interactions, etc. 
As of now, nearly 150 pharma startups initiated AI-driven 
drug discovery projects and it will reach 200 very soon. As 
medicinal plants and their phytoconstituents are reported as a 
cure for many human diseases, it is the right time to validate 
these herbs and their products so that they can also be ex-
ported. Attempts have to be made to overcome the losses of 
the valuable natural source due to deforestation, environ-
mental pollution and global warming. One has to be very 
careful while choosing the herbs for treatment as herb-
pharma drug interactions and also herb-herb interactions are 
already reported. One must also be very careful in identify-

ing the level of heavy metals in the herbal preparations, if 
added any. With the upcoming research and development in 
science and technology, improvements in the quality, effi-
cacy and safety of herbal medicines are immediately needed. 
Regulatory information like indications, contents, precau-
tions, usage details, particular side effects if any, storage, 
etc., should be made available for all herbal products. Toxic-
ity should be completely removed in the preparation of 
herbal drugs. Safety, efficiency, quality control and compati-
bility with other medicines are also to be cautiuosly observed 
while using herbal medicines. Computational methodologies, 
computer-aided drug design, bioinformatics tools, machine 
learning, along with modern wet-lab technologies will soon 
give a big boom to herbal medicines as these have been in 
practice for thousands of years. 
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Fig. (5). The ligand interaction diagram of (a) Stepholidine, (b) tetrahydro protoberberine and (c) the cocrystallized ligand, 3-

Hydroxybenzisoxazole with Breast Cancer Target, human 3-phosphoglycerate dehydrogenase (PDB ID: 5NZP).
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